第九章多元函数微分法及其应用习题

合集下载

第九章多元函数微积分及其应用习题参考答案

第九章多元函数微积分及其应用习题参考答案

习题9-1 多元函数的基本概念1.求下列各函数的定义域: (1)ln(z y x =- (2)u =。

解 (1) 函数的定义域为(){}22,,0,1x y y x x xy >≥+<.(2) 函数的定义域为(){}22,0x y z x y ≤+≠.2.求下列各极限: (1)(,)(0,0)limx y →; (2)(,)(2,0)tan()lim x y xy y →.(3)2222()lim()x y x y x y e-+→∞→∞+ (4)()(,0,0limx y →解 (1) 原式()(()(()(,0,0,0,0,0,0441limlim lim 4x y x y x y xy →→→-+====-(2) 原式()()()()()()()()()()(),2,0,2,0,2,0,2,0tan tan tan limlim lim lim 122x y x y x y x y xy xy xy x x yxy xy →→→→⎡⎤==⋅=⋅=⋅=⎢⎥⎣⎦(3) 令22u x y =+,原式1limlim 0u uu u u e e →∞→∞===(4) 令t =23220001sin 1cos 12lim lim lim 336t t t xt t t t t t +++→→→--==== 习题9-2 偏导数1.求下列函数的偏导数:(1)2sin()cos ()z xy xy =+; (2)(1)yz xy =+; (3)arctan()zu x y =-. 解 (1)()()()()()cos 2cos sin cos sin 2zy xy xy xy y y xy xy x∂=+⋅-⋅=-⎡⎤⎡⎤⎣⎦⎣⎦∂ ()()()()()cos 2cos sin cos sin 2zx xy xy xy x x xy xy y∂=+⋅-⋅=-⎡⎤⎡⎤⎣⎦⎣⎦∂ (2)()121y z y xy x -∂=+∂; ()()()ln 11ln 11y y xy z xy e xy xy y y xy +⎡⎤∂∂⎡⎤==+++⎢⎥⎣⎦∂∂+⎣⎦. (3) ()()()()()()()11222ln ,,111z z zz z z z x y z x y x y x y u u u x y z x y x y x y ------∂∂∂==-=∂∂∂+-+-+-.(4)设()23y z xy x ϕ=+,其中()u ϕ可导,证明22z z x y xy x y∂∂+=∂∂ 证 ()()222,33z y z yy xy x xy x x y xϕϕ∂∂''=-+=+∂∂,左边()()22222233z y y x y x y xy y xy x xy x x ϕϕ∂⎡⎤''=+=-++=+=⎢⎥∂⎣⎦右边2.求下列函数的22z x ∂∂,22z y ∂∂和2zx y∂∂∂.(1)arctany z x=; (2)xz y =. 解 (1) ()22222222212,;1z y y z xy xx x y x y x y x ∂∂⎛⎫=⋅-=-= ⎪∂+∂⎝⎭⎛⎫++ ⎪⎝⎭()22222222112,;1z x z xy yx x y y y x y x ∂∂⎛⎫=⋅=-=- ⎪∂+∂⎝⎭⎛⎫++ ⎪⎝⎭()()()22222222222222x y y y z y y x x y y x y x y x y +-⋅⎛⎫∂∂-=-=-= ⎪∂∂∂+⎝⎭++. (2) 222ln ,ln x x z z y y y y x x ∂∂==⋅∂∂, ()2122,1x x z z xy x x y y y--∂∂==-∂∂, ()()21ln 1ln x x z y y y x y x y y -∂∂==+∂∂∂. 习题9-3 全微分1.求下列函数的全微分:(1)y xz e =; (2)yzu x =. (3)sin2yz yu x e =++. (4)()222tan z y x u ++=解 (1) 因为2y x z y e x x ∂=-∂, 1y x z e y x ∂=∂,所以()21yxz z dz dx dy e ydx xdy x y x∂∂=+=--∂∂. (2) 因为1,ln ,ln yz yz yz u u u yzx zx x yx x x y z-∂∂∂===∂∂∂,所以 ()1ln yz yz u u udu dx dy dz yzx dx x x zdy ydz x y z-∂∂∂=++=++∂∂∂.(3)11,c o s ,22yz yz u u y uze ye x y z∂∂∂==+=∂∂∂,所求的全微分为 1cos 22yz yz y du dx ze dy ye dz ⎛⎫=+++ ⎪⎝⎭.(4) 因为u x ∂=∂,u y ∂=∂u z ∂=∂,所以)du xdx ydy zdz =++.2.求函数yz x=,当2x =,1y =,0.1x ∆=,0.2y ∆=-时的全增量和全微分。

多元函数微分学的应用习题及详细解答

多元函数微分学的应用习题及详细解答

(x, y) 0 下的极值点,下列选项正确的是( D )。
A.若fx(x0, y0 ) 0,则f y(x0, y0 ) 0 C.若fx(x0, y0 ) 0,则f y(x0, y0 ) 0
B.若fx(x0, y0 ) 0,则f y(x0, y0 ) 0 D.若fx(x0, y0 ) 0,则f y(x0, y0 ) 0
x 1 y 2 z 1. 1 1 1
5.已知曲面 z x2 y2 z2 上点 P 处的切平面 x 2y 2z 0 平行,求点 P 的坐标以及曲
面在该点的切平面方程。
解:曲面在点 P 处的法向量为 n Fx, Fy, Fz 2x, 2y, 2z 1 ,依题意,n 1, 2, 2 ,
(0, 0) 处取得极小值的一个充分条件是( A )。
A. f (0) 1, f (0) 0 C. f (0) 1, f (0) 0
B. f (0) 1, f (0) 0 D. f (0) 1, f (0) 0
(5)设 f (x, y)与(x, y) 均为可微函数,且y (x, y) 0,已知(x0, y0)是f (x, y)在约束条件
在何处?
解:行星表面方程为 x2 y2 z2 36 .令 L 6x y2 xz 60 (x2 y2 z2 36) ,求
解方程组 6 z 2x 0 , 2 y 2 y 0 , x 2z 0 ,则可得驻点
x
y
z
(4, 4, 2), ( 3, 0,3), (0, 0, 6) ,结合题意易知 H 在 (4, 4, 2) 处最小,且最小值为 12.
2x a2
2y b2
y
0,
y
b2 a2
x y
所以在点
a, 2
b 2

第9章多元函数微分法及其应用近年试题

第9章多元函数微分法及其应用近年试题

0809 B一、填空题(每小题3分,共18分)2、设)ln(xy z =,则其全微分dz = . 11dx dy x y+ 3、函数xy x y u 2222-+=的所有间断点是 .2{(,)|2,,}x y y x x R y R =∈∈二、选择题(每小题3分,共15分)1、22),(y x xyy x f +=,则极限=→→),(lim 00y x f y x ( A )(A )不存在 (B )1 (C )2 (D )0A当点(,)P x y 沿曲线y kx =趋向(0,0)时,222200lim (,)lim x x y kxk x f x y x k x →→==+21kk =+显然,当k 取值不同是,极限也不相同。

所以22(,)(0,0)limx y xyx y →+不存在.2、在曲线32,,t z t y t x =-==所有切线中,与平面433=++z y x 平行的切线( A )(A )只有一条; (B ) 只有两条; (C )至少有3条; (D ) 不存在曲线的切向量2((),(),())=(12,3)T t t t t t ϕψω'''=-,,平面的法向量(1,3,3)n = 22(12,3)(1,3,3)1690t t t t -⋅=-+=,,2(31)0t -=,1.3t =得所以只有一条切线满足条件.3、点()0,0是函数xy z =的( B )(A )极值点;(B ).驻点但不是极值点;(C )是极值点但不是驻点;(D )以上都不对 分析: 令0,0x y z y z x ====,得(0,0)是驻点,但点(0,0)是xy z =的鞍点,不是极值点.四、计算题(每小题8分,共32分)1、设, , ,sin y x v xy u v e z u+===求xz∂∂和y z ∂∂ 解z f f u f vx x u x v x∂∂∂∂∂∂=+⋅+⋅∂∂∂∂∂∂e sin e cos e [sin()cos()]u u x y v y v y x y x y =⋅+=⋅+++e sin e cos u u zf f u f v v x v y y u y v y∂∂∂∂∂∂=+⋅+⋅=⋅+∂∂∂∂∂∂e [sin()cos()]x y x x y x y =⋅+++ 五、解答题(每小题分10,共20分)1、要造一个容积为定数a 的长方形无盖容器,如何设计它的尺寸才能使它的表面积最小?此时最小表面积为多少?解:设长方体的长宽高分别为,,,z y x 则问题就是在条件(,,)0x y z xyz a ϕ=-=下求函数 22S xy xz yz =++ )0,0,0(>>>z y x的最小值. 作拉格朗日函数(,,)22(),L x y z xy xz yz xyz a λ=++++-求其对,,,x y z λ的偏导数,并使之为零,得到 20,20,2()0,0.y z yz x z xz x y xy xyz a λλλ++=⎧⎪++=⎪⎨++=⎪⎪-=⎩因为z y x ,,都不等于零, 得 11,22z x y ==代入0xyz a -=,得x y z ===这是唯一可能的极值点. 由问题本身可知最小值一定存在,所以最小值就在这个可能的极值点处取得.时, 最小表面积S =0910B一、填空题(每小题2分,共10分)2、设函数),(y x f z =是由方程z z y x 4222=++给出,则全微分=dz .2d 224x x ydy zdz dz ++=,2xdx ydydz z+=-.3、曲面14222=++z y x 在点)3,2,1(P 处的切平面方程为 .切平面得法向量(1,2,3)(1,2,3)(2,2,2)n x y z =(2,4,6),=切平面方程为2(1)+4(2)6(3)0,23140.x y z x y z --+-=++-=或 二、选择题(每小题2分,共10分)1、二元函数),(y x f 在点),(00y x 处可微是两个偏导数),(',),('0000y x f y x f y x 都存在的 ( A )(A )充分条件 (B )必要条件(C )充分必要条件 (D )既非充分又非必要条件.四、计算题(每小题10分,共40分) 1、设v u z ln 2=,而y x u =、y x v 23-=,求:xz∂∂、y z ∂∂. 解:()()22223323ln 2y y x x y x y x x z -+-=∂∂,()()223223223ln 2y y x x y x yx y z ----=∂∂1011B一、填空题(每小题3分,共15分)(1) 设二元函数)1ln()1(y x xez yx +++=+,则=)0,1(|dz .(1,0)(1,0)(1,0)1|(ln(1))|()|1x y x y x y x dz e xe y dx xe dy y++++=++++++ (1,0)d 2ed (e 2)d zx y ∴=++(2) 旋转抛物面122-+=y x z 在点)4,1,2(处的法线方程是 . 法线的方向向量(2,1,4)(2,1,4)(2,2,1)s x y =-(4,2,1),=-法线方程是214421x y z ---==-. 二、单项选择题(每小题3分,共15分)(4) 设),(y x f z =的全微分为ydy xdx dz += 则点 )0,0( ( C ) .A 不是),(y x f 的连续点;.B 不是),(y x f 的极值点;.C 是),(y x f 的极小值点;.D 是),(y x f 的极大值点.分析:z ,x y x z y ==,得z 1,1,0xx yy xy z z ===,由210,10AC B A -=>=>,则点 )0,0(是),(y x f 的极小值点.三、求偏导数(每小题10分,共20分)(1)设),(3xyxy f x z =,其中f 具有二阶连续偏导数.求 y z ∂∂;22y z ∂∂;y x z ∂∂∂2.解:231223(())z yx f x yf f x x∂''=++-∂23123x f x yf xyf ''=+-3121(())z x xf f y x∂''=+∂ 4212x f x f ''=+ 242122()z x f x f y y ∂∂''=+∂∂421112212211(())(())x f x f x f x f x x ''''''''=⋅++⋅+ 531112222x f x x f xf ''''''=⋅++ y x z ∂∂∂22z y x ∂=∂∂4212()x f x f x∂''=+∂ 3421111222122224(())2(())y y x f x f y f xf x f y f x x ''''''=+⋅+⋅-+++- 3412112242.x f xf x yf yf ''''=++- (2)设),(y x z z =是方程)arc tan(z y x xyz ++=在)1,1,0(-点确定的隐函数,求xz∂∂及)1,1,0(-∂∂yz解:令)arctan(),,(z y x xyz z y x F ++-= …1分则 2)(11z y x xy F z +++-= 2)(11z y x yz F x +++-=2)(11z y x xz F y+++-= …6分 1])(1[1])(1[22-+++-+++-=-=∂∂z y x xy z y x yz F F x z z x ; …8分 11])(1[1])(1[22)1,1,0(-=-+++-+++-=-=∂∂-z y x xy z y x xz F F yz z y…10分六、应用题(本题满分10分)从斜边长为l 的一切直角三角形中,求有最大周长的直角三角形,并求出最大周长.解:设另两边长分别为y x ,,则 222l y x =+,周长 l y x C ++= …2分 设拉格朗日函数 )(),,(222l y x l y x y x F -++++=λλ …4分令 ⎪⎩⎪⎨⎧=-+==+==+=0021021222l y x F y F x F y x λλλ …6分解方程组得l y x 22==为唯一驻点,且最大周长一定存在 …8分 故当l y x 22==时,最大周长为l C )21(+= …10分1112B一、填空题(每小题2分,共10分)1. y x z 2=在点)1,1(处的._______________=dz22,dz xydx x dy =+112.x y dzdx dy ===+2. 设函数y xy ax x y x f 22),(22+++=在点)1,1(-取得极值,则常数_____=a .211(1,1)(4)0x x y f x a y ==--=++=,11(1,1)220y x y f xy ==--=+=,所以 5.a =-例36 设函数22(,)22f x y x ax xy y =+++在(1,1)-处取得极值,试求常数a ,并确定极值的类型.分析 这是二元函数求极值的反问题, 即知道(,)f x y 取得极值,只需要根据可导函数取得极值的必要条件和充分条件即可求解本题.解 因为(,)f x y 在(,)x y 处的偏导数均存在,因此点(1,1)-必为驻点, 则有 2(1,1)(1,1)(1,1)(1,1)40220fx a y x f xy y ----⎧∂=++=⎪∂⎪⎨∂⎪=+=⎪∂⎩,因此有410a ++=,即5a =-. 因为22(1,1)4f A x-∂==∂,2(1,1)(1,1)22fB y x y--∂===-∂∂, 22(1,1)(1,1)22fC x y--∂===∂,2242(2)40AC B ∆=-=⨯--=>,40A =>,所以,函数(,)f x y 在(1,1)-处取得极小值.二、选择题(每小题2分,共10分)3. 在点P 处函数),(y x f 的全微分df 存在的充分条件为 ( C ) (A) y x f f ,均存在 (B) f 连续(C) f 的全部一阶偏导数均连续 (D) f 连续且y x f f ,均存在三、计算题(每小题8分,共40分)1. 设),(y x z z =是由方程z z y x 2222=++所确定的隐函数,计算22,x z x z ∂∂∂∂的值. 解:设 222(,,)2F x y z x y z z =++-,则2x F x =,2y F y = ,22,z F z '=-2,221z x x x z z ∂=-=∂--22()1z xx x z∂∂=∂∂-21(1)x z xz z -+=-22231(1)1(1)(1)xz xz x z z z -+-+-==-- 4. 求函数zx yz xy u ++=在点)3,1,2(沿着从该点到点)15,5,5(的方向导数.解 方向(3,4,12)l = 03412{,,}.13133l =1312cos ,134cos ,133cos ===γβα3)3,1,2(,5)3,1,2(,4)3,1,2(===z y x u u u ,1368cos cos cos =++=∂∂γβαz y x u u u l z . 五、证明题(每小题7分,共7分)证明(,)(0,0)(,)0(,)(0,0)x y f x y x y ≠==⎩在)0,0(点偏导数存在,但不可微.证: (,0)0,(0,)0f x f y ==,0(0,0)(0,0)(0,0)limlim00.x x x f x f f x∆→→+∆-===∆ 00(0,0)(0,0)(0,0)limlim 00.y y y f y f f y∆→∆→+∆-===∆ (,)(0,0)f x y 所以函数在处可导....................3分2202200lim ),(lim )0,0()0,0(limy x y x yx y x f y f x f z y x ∆∆∆∆∆∆∆∆ρ∆∆∆ρρρ+=+=--→→→当点(,)P x y ∆∆沿曲线y kx =趋向(0,0)时,22222222000()lim lim lim ()()()()x x y k xx y x y k x x y x y x k x ρ→∆→→∆=∆∆∆∆∆∆==∆+∆∆+∆∆+∆21kk =+. 显然,当k 取值不同是,极限也不相同。

第九章多元函数微分学习题简解

第九章多元函数微分学习题简解

基本训练11.设函数222),(yx xy y x f +=,求⎪⎭⎫⎝⎛x y f ,1. 答案:222yx xy +2.求下列函数的定义域:(1)()84ln 2+-=x y z ; 答案:)}2(4|),{(2->x y y x ; (2)yx yx z -++=11; 答案:|}||),{(y x y x >;(3)xy z arcsin=; 答案:}0|||||),{(≠≤x x y y x 且3.求下列极限: (1)11lim 22220-+++→→y x yx y x ; 提示:分母有理化;答案:2(2)xxy y x )sin(lim0→→; 答案:0(3)()yxy x y x 1cos1sinlim 30+→→. 提示:无穷小与有界函数之积仍是无穷小; 答案:04.证明极限yx y x y x -+→→00lim不存在:提示:令(x, y ) 沿不同的路径kx y =趋向于原点,极限等于不同的值.5.函数yx z -=1在何处是间断的?答案:在位于xOy 平面的直线y = x 上.6.讨论函数⎪⎩⎪⎨⎧=+≠++=0,00,222222yx y x y x xy z 的连续性.提示:选取直线kx y =, 则2222)0,0(),(l 22)0,0(),(1im limkkkx x kxy x xykxy y x kxy y x +=+=+=→=→随着k 的变化而变化,即22)0,0(),(limyxxyy x +→不存在,函数在除)0,0(外任一点都连续.7.求下列函数的偏导数: (1) 22yx y x z +-+=;答案:221yx x xz +-=∂∂,221yx y yz +-=∂∂(2)yx z tanln =; 答案:yx yx y xz cossin1=∂∂,yx y x y x yz cossin2-=∂∂(3)yx z arctan =;答案:)1(22yyx x yxxz +=∂∂,)1(2ln 2yyx x x yz +=∂∂(4))sec(xy z =;答案:)sec()tan(xy xy y xz ⋅=∂∂,)sec()tan(xy xy x yz ⋅=∂∂8.设⎪⎩⎪⎨⎧=+≠++=0,00,),(4444442yx y x y x xyy x f ,证明函数),(y x f 在)0,0(处偏导数存在,但不连续.简解: 000lim)0,0()0,(lim )0,0(0=-=-=→→xxf x f f x x x ,同理0)0,0(=y f ; 但0≠k 时,442)0,0(),(limy x xykxy y x +=→∞=+==→443)0,0(),(limkxx kxkxy y x ,所以函数在)0,0(处不连续.基本训练21.求下列函数的二阶偏导数: (1) yxz 2=,求22xz ∂∂,yx z ∂∂∂2;答案:2222)12(2--=∂∂y xy y xz ,)ln 21(2122x y xyx z y +=∂∂∂-(2) x y y x z sin sin 33+=,求yx z∂∂∂2;答案:x y y x cos 3cos 322+(3) )l n(xy x z =,求yx z ∂∂∂23.答案:02.设222zy x r ++=,证明rzr yr xr 2222222=∂∂+∂∂+∂∂.简解: rx zyxxxr =++=∂∂222,322222rz yrxr x r xr +=∂∂⋅-=∂∂,同理可得,32222rz xyr +=∂∂32222ry x zr +=∂∂,因此rrz y x zr yr xr 2)(23222222222++=∂∂+∂∂+∂∂3.求下列函数的全微分:(1) y x z arcsi n =; 答案:22||x y y xdyydx --(2))ln(22y x z +=,求)1,1(dz ; 答案:dy dx +(3) zy x u =. 答案:⎥⎦⎤⎢⎣⎡++xdz y xdy z dx x yzx yz ln ln4.求函数32y x z =当2=x ,1-=y ,02.0=∆x ,01.0-=∆y 时的全增量及全微分.答案:.2.0,20404.0-=-=∆dz z*5.设有一圆柱,它的底圆半径r 由2cm 增加到05.2cm ,其高h 由10cm 减少到8.9cm ,试确定其体积的近似变化.6.设22uv v u z -=,而y x u cos =,y x v sin =,求xz ∂∂,yz ∂∂.答案:)sin (cos 2sin 232y y y x xz -=∂∂,)cos(sin)sin (cos 2sin 3333y x x y y y x yz +++-=∂∂7.设xy z =,而t e x =,t e y 21-=,求dtdz . 答案:t t e e ---.8.设)arctan(xy z =,而xe y =,求dxdz . 答案:xxex x e 221)1(++.基本训练31.设1)(2+-=a z y eu ax,而x a y sin =,x z cos =,求dxdu . 答案:x e ax sin .2.设())4(32y x y x z ++=,求xz ∂∂,yz ∂∂.两边取对数 答案:()())32ln(3232)4(2414y x y x y x y x xz yx y x +++++=∂∂+-+,()())32ln(32432)4(3414y x y x y x y x yz yx y x +++++=∂∂+-+4.设)(u xF xy z +=,而xy u =,)(u F 为可导函数,求证xy z yz yx z x+=∂∂+∂∂.解答: 因为xyu xy xu 1,2=∂∂-=∂∂,故)()()()(u F x y u F y xu u F x u F y xz '-+=∂∂'++=∂∂)()(u F x yu u F x x yz'+=∂∂'+=∂∂,所以 xy z xy u xF xy u F y xy u F y u xF xy yzyx zx+=++='++'-+=∂∂+∂∂))(()()()(5.求下列函数的一阶偏导数(其中f 具有一阶偏导数):(1))(zx yz xy f u ++=;答案:)()(xz yz xy f z y xu ++'+=∂∂,)()(xz yz xy f z x yu++'+=∂∂,)()(xz yz xy f y x zu ++'+=∂∂(3)),,(xyz xy x f u =.答案:321f yz f y f xu '+'+'=∂∂,32f xz f x yu '+'=∂∂,3f xy zu '=∂∂6.设)(22y x f y z -=,其中)(u f 为可导函数,试求yz y xz x ∂∂+∂∂11.简解: 因为)()(22)()(2222222222y xfy x f xy x y xf y xfy xz --'-=⋅-'--=∂∂,)()(2)()()2()()(222222222222222y xfy x f yy xf y xfy y x f y y xf yz --'+-=--⋅-'--=∂∂,所以yz y xz x ∂∂+∂∂11)()(222222y xfy x f y --'-=)()(2)(22222222y xyfy x f y y xf --'+-+)(122y x yf -=.7.求下列函数的二阶偏导数(其中f 有二阶连续的偏导数): (1) )(222z y x f u ++=,求22xu ∂∂;答案:)(4)(22222222z y x f x z y x f ++''+++'.(2)⎪⎪⎭⎫ ⎝⎛=y x x f u ,,求22y u ∂∂; 答案:2242232f yx f yx ''+'.(3) ),sin (22y x y e f z x +=,求yx z ∂∂∂2;简解:因为 212s i n f x f y e xz x'+'=∂∂, 所以)2c o s (2)2c o s (s i n c o s 2221121112f y f y e x f y f y e y e f y e yx z x xx x ''+''+''+''+'=∂∂∂ y e f f xy f y x y y e y y e f x x x cos 4)cos sin (2cos sin 12212211'+''+''++''=.(4) ),,(y x u f z =,yxe u =,求yx z ∂∂∂2;答案:1232113112f e f f xe f e f xe y y y y '+''+''+''+''8.设)()(t x t x y μψμϕ-++=,其中ϕ,ψ是任意的二次可导函数,求证: 22222xy ty ∂∂=∂∂μ.简证:因为 )()(t x t x ty μψμμϕμ-'-+'=∂∂,)()(2222t x t x ty μψμμϕμ-''++''=∂∂又 )()(t x t x xy μψμϕ-'++'=∂∂,)()(22t x t x xy μψμϕ-''++''=∂∂所以22222xy ty ∂∂=∂∂μ.基本训练41.设xy yx arctan ln22=+,求dxdy .提示:原方程就是xy y x arctan)ln(2122=+,对方程两边关于x 求导;也可以用隐函数的求导方法求解,令xy y xz y x F arctan)ln(21),,(22-+=, 利用隐函数存在定理的求导公式来解. 答案:yx y x -+.2.设03333=-++axyz z y x ,求xz ∂∂,yz ∂∂.答案:axyz xayz xz --=∂∂22,axyz yaxz yz --=∂∂22.3.设0=-xyz e z ,求xz ∂∂,yz ∂∂.简解:令xyz e z y x F z -=),,(,则yz F x -=,xz F y -=, xy e F z z -= xz F y -= 所以xz ∂∂xy eyzxy eyzzz-=---=,yz ∂∂xyexzxy exzzz-=---=因此yx z ∂∂∂2=--∂∂--∂∂+=2)()())((xy e x yz eyz xy e yz y z zzz()zy x e xyz zexy e z xz22223)(1---4.证明由方程0),(=--bz cy az cx ϕ(),(v u ϕ具有连续的偏导数,a ,b ,c 为常数)所确定的函数),(y x f z =满足关系式c yz bx z a=∂∂+∂∂.简解:(方法一)方程两边微分得,0)()(212121ϕϕϕϕϕϕ'+''+'=⇒=-⋅'+-⋅'b a dy c dx c dz dz b dy c dz a dx c因此211ϕϕϕ'+''=∂∂b a c xz ,212ϕϕϕ'+''=∂∂b a c yz ,得c yz bxz a=∂∂+∂∂.(方法二) 记),,(bz cy az cx F --=ϕ 则,211ϕϕϕ'+''=-=∂∂b a c F Fxz zx.212ϕϕϕ'+''=-=∂∂b a c F Fxz zy5.设023=+-y xz z ,求22xz ∂∂,22y z ∂∂.答案:3222)23(16x z xz xz --=∂∂,3222)23(6x z zyz --=∂∂7.设223),,(z y x z y x f u ==,其中),(y x z z =是由方程03333=-++xyz z y x 所确定的函数,求)1,0,1(-∂∂xu .简解:令 xyz z y x z y x F 3),,(333-++=, 则,332yz x F x -= xy z F z 332-=;xyz xyz xyz yz x xz --=---=∂∂22223333,所以xz z y x z y x xu ∂∂⋅+=∂∂2322223.232223222xyz xyz z y x z y x --⋅+=基本训练51.求曲线2y x =,3x z =在)1,1,1(处的切线与法平面方程.答案:切线方程611121-=-=-z y x ,法平面方程962=++z y x2.求出曲线t x =,2t y =,3t z =上的点,使在该点的切线平行于平面42=++z y x .简解:曲线上任一点处的切线的方向向量为 ()23,2,1t t s =,已知平面的法向量为()1,2,1=n . 由题意得 0=⋅n s ,即 03412=++t t ,解得1-=t 或31-=t ,故所求的点为)1,1,1(--,或⎪⎭⎫ ⎝⎛--271,91,313.求曲线⎩⎨⎧+==++222226y x z z y x 在点)2,1,1(处的切线方程. 提示:曲线可以表示为 ⎪⎪⎩⎪⎪⎨⎧===2sin 2cos 2z t y tx ,曲线上点)2,1,1(处也就是4π=t 时的切线的方向向量为)0,1,1(-=s.答案:切线方程⎩⎨⎧=--+=-++0222062z y x z y x 或⎪⎩⎪⎨⎧=--=--021111z y x4.求曲面xy z arctan=在⎪⎭⎫⎝⎛4,1,1π处的切平面和法线方程.答案:切平面方程022=-+-πz y x , 法线方程241111π-=--=-z y x5.求曲面273222=-+z y x 在点)1,1,3(处的切平面与法线方程.答案:切平面方程0279=--+z y x , 法线方程111193--=-=-z y x6.在曲面222y x z +=上求一点,使该点处的法线垂直于平面0142=+++z y x ,并写出法线方程.答案:所求点为),3,1,1(-- 法线方程134121-=+=+z y x .7.求曲面2222z yx +=上平行于平面01422=+-+z y x 的切平面方程.答案:切平面方程012=+-+z y x8.求下列函数在指定点处沿指定方向的方向导数: (1) y e y e z yxcos si n +=,在点⎪⎭⎫⎝⎛2,0π沿向量}1,2{-; 提示:方向l 的方向余弦为51cos ,52cos -==βα;ye xz xs i n =∂∂,y e y e y e yz yyxsin cos cos -+=∂∂,βαπππc o s c o s )2,0()2,0()2,0(yz xz lz ∂∂+∂∂=∂∂522πe +=.(2) z e xy u +=,在点)0,1,1(处沿从点)1,2,4(-到)0,1,5(的方向.提示:ze zu x yu y xu =∂∂=∂∂=∂∂,,,方向l 的方向向量)1,1,1(-=s;所以方向l 的方向余弦为:31cos ,31cos ,31cos =-==γβα;代入方向导数公式可得γβαcos cos cos )0,1,1()0,1,1()0,1,1()0,1,1(zu yu xu lu ∂∂+∂∂+∂∂=∂∂31=9.设从x 轴正向到方向l 的转角为θ,求函数332y xy x u +-=在点)1,1(M 处沿方向l 的方向导数lu ∂∂.问θ为何值时,方向导数lu ∂∂:1)具有最大值;2)具有最小值;3)等于零.提示:2232,23yy xu x x xu +-=∂∂-=∂∂,1)1,1()1,1(=∂∂=∂∂yu xu ,)4sin(2sin cos )1,1(πθθθ+=+=∂∂lu ,所以当4πθ=时,lu ∂∂最大;当45πθ=时,lu ∂∂最小;当43πθ=或47πθ=时,0=∂∂lu .10.设z y x xy z y x u 62332222---+++=,求)0,0,0(f grad 及)1,1,1(f grad .答案:k j i f 623)0,0,0(---=grad ,j f 3)1,1,1(=grad11.设22y xy x z +-=,求在点)1,1(处的梯度,并问函数z 在该点沿什么方向使方向导数:1)取最大值;2)取最小值;3)等于零.答案:j i z +=)1,1(grad ,函数z 在)1,1(处沿j i +方向lz ∂∂取最大值,沿j i --方向lz ∂∂取最小值,沿j i +-或j i -方向lz ∂∂取值为零.基本训练61.问函数z xy u 2=在点)2,1,1(-P 处沿什么方向的方向导数最大?并求方向导数的最大值.提示:22,2,xy zu xyz yu z y xu =∂∂=∂∂=∂∂,4,2)2,1,1()2,1,1(-=∂∂=∂∂--yu xu ,1)2,1,1(=∂∂-zu ,所以kj i u +-=42grad 是方向导数取最大值的方向, 此方向导数的最大值为21||=u grad .2.求下列函数的极值:(1) 22324y xy x x z -+-=; 答案: 极大值为0)0,0(=f(2) y y ye x e z -+=cos )1(; 答案: 极大值为2)0,2(=πk f , ,2,1,0±±=k 3.求函数22y x z +=在条件1=+by a x 下的极值.答案:极小值为2222222222,b a b a b a ba b a ab f +=⎪⎪⎭⎫ ⎝⎛++ 4.建造容积为一定的矩形水池.问怎样设计,才能使建筑材料最省.简解:设水池的长宽高分别为z y x ,,,令)(22),,,(V xyz zx yz xy z y x L --++=λλ, 关于λ,,,z y x 求偏导,求得驻点为)4,2,2(333V V V ,这是唯一可能极值点,由问题的实际意义得,所用的建筑材料存在极小值,故长宽高分别为3334,2,2V V V 时,建筑材料最省.5.在椭圆4422=+y x 上求一点,使其到直线0632=-+y x 的距离最短.提示:目标函数为 13632),(-+=y x y x f ,条件函数为44),(22-+=y x y x ϕ.为了求目标函数的最值,可设)44()632(),,(222-++-+=y x y x y x L λλ,求得可能极值点为)53,58(,)53,58(--, 代入, 比较得所求点⎪⎭⎫ ⎝⎛53,58. 6.设有一槽形容器,底是半圆柱形,其长为H ,截面是半径为R 的半圆,横放在水平面上,其表面积为常数0S ,试求R 与H 的值,使其容积最大.简解:令)(21),,(022S R RH H R H R L -+-=ππλπλ,求得唯一可能极值点为:)32,3(),(0ππS S H R =;因此当π30S R =,π32S H =时,容积最大.7.在平面023=-z x 上求一点,使得它到点)1,1,1(A 、点)4,3,2(B 的距离平方之和为最小.提示:目标函数为2222)2()1()1()1(),,(-+-+-+-=x z y x z y x f 22)4()3(-+-+z y)16543(2222+---++=z y x z y x ,条件函数为z x y x 23),(-=ϕ,答案是点⎪⎭⎫⎝⎛2663,2,1321.本篇自测A 卷一、填空题1.答案:),(y x f 2.答案:不存在3.提示:分式函数在分母为0处间断,答案为:πn x =,或πm y =,(n ,,2,1,0±±=m ). 4.答案:⎩⎨⎧==0),(0),(0000y x f y x f y x二、单项选择题 1. 答案:B2.提示:函数),(y x f 在一点连续、偏导数存在、可微之间有如下关系全微分存在 ⇔ 点存在偏导数在点连续在函数点可微函数在点连续在偏导数P P P P ⇓⇒⇓故答案为B.3.提示:参见第2小题提示,答案为A .4.提示:令3),,(-+-=xy z e z y x F z ,则y F x =,x y F =,1-=z z e F 所以曲面在点)0,1,2(处法向量为:)0,2,1(,从而可得C 为正确答案.三、计算题1. 提示:有界函数与无穷小的乘积仍为无穷小, 答案为0.2. 答案:)1(21yyy x x yxxz +=∂∂-,)1(2ln yyyx x x x yz +=∂∂3. 提示:两边取对数得()y x y x z ++=2ln )2(ln , 两边关于y 求偏导得122ln(2)2z x y x y z yx y∂+=++∂+.故答案为:()⎥⎦⎤⎢⎣⎡+++++=∂∂+y x y x y x y x yz yx 22)2ln(222.4. 答案:321f y f f xz '+'+'=∂∂,321f x f f yz '+'-'=∂∂5.答案:)22()(122323zzze z y z xy zey xy e ---.6.答案:2222y x y x +-. 7.答案:22212f xy f ''-''. 8.答案:dydx 5252-.9.提示:令09632=-+=∂∂x xxz , 得3-=x 或1=x ,令0632=+-=∂∂y yyz , 得0=y 或2=y ;所以驻点为 )2,1(),0,1(),2,3(),0,3(--, 利用二元函数极值的充分条件可求得极小值为5)0,1(-=f ,极大值为31)2,3(=-f .四、应用题1. 简解:设切点为),,(z y x ,则切点处的方向向量)3,2,1(2x x s =,已知平面的法向量)1,2,1(=n.由题意得 s 与n 垂直, 即 0=⋅n s, 所以03412=++x x , 解得1x =-或13x =-. 故所求点为:)1,1,1(--或⎪⎭⎫ ⎝⎛--271,91,31.2. 简解: 令)1()1543(),,,,(222-++-+++=y x z y x z z y x L μλμλ,分别求关于μλ,,,,z y x 的偏导数得,52,24,23λμλμλ+=+=+=z L y L x L x y x1543-++=z y x L λ,122-+=y x L μ解得可能极值点为:⎪⎭⎫ ⎝⎛1235,53,54⎪⎭⎫ ⎝⎛--1285,53,54. 比较z 的大小得所求点为: ⎪⎭⎫⎝⎛1235,53,54.3. 简解: 设第一卦限内的内接点为),,(z y x , 由空间解析几何知识得: 直角平行六面体的长宽高分别为z y x 2,2,2, 体积xyz V 8=; 故令).1(8),,,(222222-+++=cz by ax xyz z y x L λλ答案为:长、宽、高分别为32a ,32b ,32c 时,有最大体积 abc V 338=.五、证明题1.简解: )(z y x z ϕ+= 两边关于x ,y 求偏导得xz z y xz ∂∂'+=∂∂)(1ϕ,yz z y z yz ∂∂'+=∂∂)()(ϕϕ,解得 )(11z y x z ϕ'-=∂∂,)(1)(z y z yz ϕϕ'-=∂∂, 又 xzz f xu ∂∂'=∂∂)(, yz z f yu ∂∂'=∂∂)(所以xu z yu ∂∂=∂∂)(ϕ.2. 简证: 令 ⎪⎭⎫⎝⎛----=c z b y cz ax f z y x F ,),,(,则cz f F cz f F y x -'=-'=21,, 2221)()()()(c z b y f c z a x f F z ---⋅'+---⋅'=.所以曲面上任一点),,(z y x 处的法向量为:),)()(,,(2121cz b y f cz a x f f f ---⋅'+---⋅'''故点),,(z y x 处的切平面为,0)]()()([)()(2121=----⋅'+---⋅'+-⋅'+-⋅'z Z cz b y f cz a x f y Y f x X f即 .0)])(())([()])(())([(21=-----⋅'+-----⋅'z Z b y c z y Y f z Z a x c z x X f 不论z y x ,,取何值,c Z b Y a X ===,,总能使上式恒成立;即切平面总通过点),,(c b a .本篇自测B 卷一、填空题1.答案:}104|),{(222<+<≤y x x y y x 且. 2.提示:分子有理化,原式41241lim)24(44lim000=++=++-+=→→→→xy xy xy xy y x y x .3.提示:混和偏导数连续,则它们相等;答案为: = .4.提示:函数可微分, 则方向导数存在(显然偏导数连续也保证方向导数存在). 答案为: 函数可微分.二、单项选择题 1.提示:令xy v y x u =+=,,则1u x v=+,1uv y v=+ 代入得21(,)1v f u v u v-=+,故答案为B2.简解:xb x a f b x a f x ),(),(lim--+→xb a f b x a f xb a f b x a f x x ---+-+=→→),(),(lim),(),(lim),(2b a f x =.3.提示:切点为)0,1,1(, 方向向量为)1,1,1(-,所以答案为D.*4.简解:偏导数存在,不一定可微,故A 错误;由题设条件知曲面),(y x f z =的法向量为}1,1,3{--,故B 错误;曲线⎩⎨⎧==0),(y y x f z 在点))0,0(,0,0(f 的一个切向量为{1,0,}{1,0,3}x f =,故C正确;也可以根据曲线的切向量与曲面的法向量互相垂直来判定答案C 正确而D 错误..三、计算题 1.提示: 因为xy yxy x xy y xy x xy =++≤+-≤22222222)()(0⎪⎪⎭⎫ ⎝⎛-≤+-≤22222221)(0y x y x y x xy 或,由夹逼准则得0)(lim2222=+-→→yxy x xy y x .2.答案:⎪⎭⎫⎝⎛'-⎪⎭⎫ ⎝⎛+'x y f xy x y f xy f )(.3.简解:21)(f x f xz '+''=∂∂ϕ, 所以))(()())((222112112f y f x f y f yx z'''+''-+''''+''-=∂∂∂ψϕψ 221211)()1)()(()(f y f y x f x '''+''-''+'''-=ψψϕϕ. 4.提示:两边关于x 求偏导得:)(222xy x y f x x y f x zzx -⎪⎭⎫⎝⎛'+⎪⎭⎫ ⎝⎛=∂∂+,zx x y f x y x y f xz 22-⎪⎭⎫⎝⎛'-⎪⎭⎫ ⎝⎛=∂∂.也可以令⎪⎭⎫ ⎝⎛-++=x y xf z y x z y x F 222),,(,利用隐函数求偏导公式来计算.5.答案:⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛++⎪⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛+dz y z x dy x y z dx z x y z y x xzyln ln ln 6. 简解:(解法一)利用全微分的形式不变性,方程两边求微分得:0)()()(21=++-+'++'zdz ydy xdx dz dy F dz dx F , 所以 z F F dy F y dx F x dz -'+''-+'-=2121)()(.(解法二)方程两边关于x 求偏导得: 0)1(21=∂∂--∂∂'+∂∂+'xz zx x z F x z F ,解得 z F F F x x z-'+''-=∂∂211,同理得 z F F F y y z-'+''-=∂∂212, 所以 z F F dy F y dx F x dz -'+''-+'-=2121)()(. *7.简解:方程组两边对x 求偏导得: ⎪⎩⎪⎨⎧=∂∂+∂∂-=∂∂-∂∂-022022x v v x u u y x v u v x u x解关于xu ∂∂,xv ∂∂的二元一次方程组得)(24222v u uyxv xu ++=∂∂,)(24222v u vyxu xv +-=∂∂.四、应用题1. 简解:曲面上任一点),,(z y x 处切平面的法向量为 )1,2,2(-=y x n, 又已知直线的方向向量为: )2,1,0()2,0,1(⨯=s)1,2,2(--= 由题意, s n//, 即112222-=-=-y x .解得1,1==y x ,代入曲面方程得2=z ,故所求的切平面方程为0)2()1(2)1(2=---+-z y x ,即 0222=--+z y x .*2.简解:x y yh y x xh +-=∂∂+-=∂∂2,2,00),(00),(2,20000x y y h y x x h y x y x +-=∂∂+-=∂∂,所以j y x i x y y x h )2()2(),(000000-+-=grad ,沿梯度j y x i x y y x h )2()2(),(000000-+-=grad方向的方向导数最大,最大值为 00202000855),(y x y x y x g -+=. 令xyy x y x L 855),,(22-+=λ)75(22--+-xy yxλ,由拉格朗日乘数法得)5,5(1-M ,)5,5(2-M ,),35,35(3M )35,35(3--M 为),(00y x g 的可能极值点,计算相应函数值并比较得)5,5(1-M 或)5,5(2-M 可作为攀登的起点.五、证明题 1. 简证:因为=∂∂xz [])]()([2)()(2ax y ax y a ax y ax y a -+++-'-+'ψψϕϕ,[])]()([21)()(21ax y ax y ax y ax y yz --++-'++'=∂∂ψψϕϕ;[])]()([2)()(22222ax y ax y aax y ax y axz -'-+'+-'++''=∂∂ψψϕϕ,[])]()([21)()(2122ax y ax y ax y ax y yz -'-+'+-'++''=∂∂ψψϕϕ.所以022222=∂∂-∂∂yz axz .*2.简证:因为 ()22|||)|2(02/12/3222/32222xy xy yx yxyx =≤+≤, 又022||lim2/10=→→xy y x ,所以 ()0lim2/3222200=+→→yx yx y x ,注意到0)0,0(=f ,因此函数在点)0,0(处连续;因为0)0,(≡x f ,所以0)0,0()0,(lim )0,0(0=-=→x f x f f x x , 同理 0)0,0(=y f ;考虑极限 ρρ)0,0(),(limf y x f -→()22222)0,0(),(limy x yx y x +=→,其中22yx+=ρ,若沿直线kx y =取极限,则()22242242)0,0(),()1(1limk kxk xk kxy y x +=+=→随着k 的变化而变化,表明上述极限不存在,因此函数在点)0,0(处不可微.。

高等数学第九章多元函数微分学试题及答案

高等数学第九章多元函数微分学试题及答案

第九章 多元函数微分学§9.1 多元函数的概念、极限与连续性一、多元函数的概念1.二元函数的定义及其几何意义设D 是平面上的一个点集,如果对每个点()D y x P ∈,,按照某一对应规则f ,变量z 都有一个值与之对应,则称z 是变量x ,y 的二元函数,记以()y x f z ,=,D 称为定义域。

二元函数()y x f z ,=的图形为空间一卦曲面,它在xy 平面上的投影区域就是定义域D 。

例如 221y x z --=,1:22≤+y x D , 此二元函数的图形为以原点为球心,半径为1的上半球面,其定义域D 就是 xy 平面上以原点为圆心,半径为1的闭圆。

2.三元函数与n 元函数()z y x f u ,,= ()Ω∈z y x ,,空间一个点集称为三元函数()n x x x f u ,,21 = 称为n 元函数它们的几何意义不再讨论,在偏导数和全微分中会用到三元函数。

条件极值中,可能会遇到超过三个自变量的多元函数。

二、二元函数的极限设函数),(y x f 在区域D 内有定义,),(000y x P 是D 的聚点,如果存在常数A ,对于任意给定的0>ε,总存在0>δ,当),(y x P 满足δ<-+-=<20200)()(0y y x x PP 时,恒有ε<-A y x f ),(成立。

则记以()A y x f y y x x =→→,lim 0或()()()A y x f y x y x =→,lim00,,。

称当()y x ,趋于()00,y x 时,()y x f ,的极限存在,极限值A ,否则称为极限不存在。

值得注意:这里()y x ,趋于()00,y x 是在平面范围内,可以按任何方式沿任意曲线趋于()00,y x ,所以二元函数的极限比一元函数的极限复杂;但考试大纲只要求知道基本概念和简单的讨论极限存在性和计算极限值,不像一元函数求极限要求掌握各种方法和技巧。

(完整版)多元函数微分学及其应用习题解答

(完整版)多元函数微分学及其应用习题解答

(((x 2 + y 2 ≤ 1, x+ y }(1- (t + 4) 2 解:令 t=xy , lim = lim= lim 2=- t →0 t →0习题 8-11. 求下列函数的定义域:(1) z =解: x -x - y ;y ≥ 0, y ≥ 0 ⇒ D ={x, y ) y ≥ 0, x ≥ y }x(2) z = ln( y - x) +;1 - x2 - y 2解: y - x ≥ 0, x ≥ 0,1 - x 2 - y 2 ⇒ D ={ x , y ) y > x ≥ 0 且 x2+ y 2 < 1}(3) u = R 2 - x 2 - y 2- z 2 +1x 2 + y 2+ z 2 - r 2(R > r > 0) ;解: 0 ≤ R 2 - x 2 - y 2 - z 2,0 < x 2 + y 2 + z 2 - r 2 ⇒⇒ D = {x , y , z ) r 2< x 2 + y 2 + z 2 ≤ R 2}(4) u = arccoszx 2 + y 2。

解:z2 2 ≠ 0 ⇒ D = {x, y ) z ≤x 2 + y 2 且 x 2 + y 2≠ 02. 求下列多元函数的极限::(1) lim ln( x + e y )x →1 x 2 + y 2y →0;解: limx →1y →0ln( x + e y ) x 2 + y 2 = ln(1+ 1)1= ln 2(2) lim 2 - xy + 4x →0xy y →0;1- 2 - xy + 4 2 t + 4 1 x →0xy t 1 4 y →01 / 28x →0 y →0x →0lim x +y = , m 不同时,极值也不同,所以极限不存在 。

(3) lim sin xyx →0x y →5;sin xy sin xy解: lim = 5lim = 5x →0 x 5xy →5y →01 - cos( x2 + y 2 ) (4) lim( x 2 + y 2 )e x 2 y 2;x →0 y →0解:Q 1 - cos( x 2 + y 2 ) = 2(sinx 2 + y 2 2)2 ,∴ l im x →0 y →01 - cos( x2 + y 2 ) 1= 2 ⋅ ⋅ 0 = 0( x 2 + y 2 )e x 2 y 2 2(5) lim( x 2 + y 2 ) xy 。

第九章 多元函数微分法及其应用

第九章  多元函数微分法及其应用

第九章 多元函数微分法及其应用§9.1多元函数的基本概念1.填空选择(1)设()22,y x y x f +=,()22,y x y x g -=,则()2[,,]f g x y y = 。

(2)设()y x f y x z -++=,且当0=y 时,2x z =,则=z 。

(3)设()xy y x z -+=22arcsin ,其定义域为 。

(4)若22),(y x x y y x f -=+,则(,)_________f x y =。

(5)下列极限中存在的是( )A . y x y x y x +-→→)1(lim 00;B . 24200lim y x y x y x +→→; C .22200lim y x y x y x +→→; D . 2200lim y x xy y x +→→. 2.求下列各极限:(1)22(,)(2,0)lim x y x xy y x y→+++; (2)(,)(0,0)lim x y →;(3)22(,)(0,0)1lim ()sin x y x y xy →+; (4)()()xyxy y x 42lim 0,0,+-→;(5)1(,)(0,1)lim (1)x x y xy →+; (6)22(,)(,)lim ()x y x y x y e --→+∞+∞+。

3.证明极限(,)(0,0)lim x y x yx y →+-不存在。

4. 指出下列函数在何处间断:(1)22ln()z x y =+;(2)x y x y z 2222-+=。

§9.2偏导数1.填空选择(1)设()y x y y x y x f arctan arctan ,22-⋅=,则()=∂∂y x f ,0 。

(2)设()()⎪⎩⎪⎨⎧=≠=000sin ,2xy xy xyy x y x f ,则()=1,0x f 。

(3)已知函数()22,y x y x y x f z -=-+=,则=∂∂+∂∂yz x z 。

多元函数微分习题

多元函数微分习题
∂z 答案: = 1 + 2 3 ∂l 3 答案: cos φ = 22
33、求函数 z = x 2 + y 2 在点(1,2)处沿从点(1,2)到点 ( 2, 2 + 3 ) 的方向的方向导数。 34、求函数 z = ln( x + y ) 在抛物线 y 2 = 4 x 上的点(1,2)处沿着这抛物线在该点处偏向 x 轴正向的切线方向的方向导数.
11、验证 y = e
− kn 2 t
sin nx 满足:
∂y ∂2 y =k 2 . ∂t ∂x
12、求下列函数的全微分: (1) z =
y x2 + y2
;(2) u =
y z x + − x y z
答案:(1) .dz =
− x ( ydx − dy ) (x 2 + y 2 )3
;
(3).df (1,1,1) = dx − dy ( 2).dz = −(
答案: ∆z = −0.119, dz = −0.125. 14、求下列复合函数的一阶偏导数或全导数: (1) 设 z = u 2 + v 2 , 而 u = x + y , v = x − y , 求 : (2) 设 z = u 2 ln v ,而 u =
∂z ∂z , ∂x ∂y
x ∂z ∂z . , v = 3 x − 2 y ,求 , y ∂x ∂y
答案:
π . 4
9、设 T=2 π
l , g
y x
求证:
l
∂T ∂T +g = 0. ∂l ∂g
∂2z ; ∂x∂y
10、(1) z = arctan , 求:
∂2z 1 − 2 xy 答案: 2 = 2 ∂x (x + y 2 )2

(完整版)第九章多元函数微分法及其应用答案.doc

(完整版)第九章多元函数微分法及其应用答案.doc

第九章 多元函数微分法及其应用一、填空题1.若 f ( x, y) x 2 y 2 xy tan x,则 f (tx , ty ) t 2 x 2 t 2 y 2 t 2xy tanxt 2 f ( x, y) .y y 2.若 f ( x)x 2 y 21 u2.y( y 0) ,则 f (x)y3.函数 z arcsin y的定义域为 {( x, y) || y| 1且x0} .xx14. lim(1 xy) sin xy e .xy5.若 ze xyyx 2,则zxe xy x 2 .y6.若 f ( x, y) 5x 2 y 3 ,则 f x (0,1) 10xy 3 |(0,1) 0 .7.若 u ln(1 x 2y 22) ,则 du22 ( xdx ydy zdz) .zx 2y 2zyyy8.设 z e x ,则 dzy e x dx 1e x dy .x 2 x9.已知 z sin( y e x) ,而 y x 3,则dz(3x 2 e x )cos( x 3 e x ) .dx10. 已知 ze x 2 y,而 x sin t , y t 3,则 dzsin t 2 t 3(cost 6t 2).dte11. 设 zln(1 x2y 2) , 则 dz x 11dx2dy .y 23312. 设 zu 2v , 而 u x cos y, v x sin y , 则 z 3x 2 cos 2 ysin y ,xz 32y 2sin 2y) .yx cos y(cos13.若 z f (x, y) 在区域 D 上的两个混合偏导数2z,2z 连续 ,则在 D 上x yy x2z2z.x yy x14.函数 z f (x, y) 在点 (x 0 , y 0 ) 处可微的 必要 条件是 z f ( x, y) 在点 ( x 0 , y 0 ) 处的偏导数存在 .(填“充分”、“必要”或“充分必要” )15.函数 z f (x, y) 在点 (x 0 , y 0 ) 可微是 zf (x, y) 在点 (x 0 , y 0 ) 处连续的 充分 条件 . (填“充分”、“必要”或“充分必要” )16.设 f ( x, y, z) xy 2 z 3 ,其中 z z( x, y) 是由方程 x 2 y 2 z 2 3xyz 0所确定的 隐函数,则 f x (1,1,1) 2 . 二、选择题1.二元函数 zlnx 2 4arcsin x 21的定义域是 ( A ) y 2y 2( A ){( x, y) |1 x 2y 24};( ) {( x, y) |1 x 2 y 24} ;B (C ){( x, y) |1 x 2y 24}; ( ) {( x, y) |1 x 2 y 24} .D2. 设函数 z ln( xy) , 则z( C )x(A )1;(B ) x;(C ) 1;( D ) y.yyxx3. 设函数 z sin( xy 2) , 则z( D )x( A )2; ( ) xy cos(xy 2( ) 22) ; ( ) 2 2xy cos(xy ) B ) ;Cy cos(xy D y cos( xy ) .4. 设函数 z 3xy, 则z( D )x( A ) 3xy( ) xy ; (C ) xy 1 ; (D ) 3xyln 3y ; 3 ln3 xy3 y .B5. 设函数 z1 , 则 z( C )xyy( A )1 ; ( ) 1 ; (C ) 12 ; ( ) 1 2 .2Bx 2yxyDxyx y6. 设函数 z sin xy , 则2z( A )x2( A )y 2sin xy ;2sin xy ;( ) 2 sin xy ; ( D ) x 2sin xy .( B ) yCx 7. 设二元函数 zx y, 则 dz ( B )x y( A )2( xdx ydy) ; (B )2( xdy ydx) ;( C )2( ydyxdx) ; (D )2( ydx xdy) .(x y)2( x y) 2( x y)2( x y)28. 设函数 y f ( x) 是由方程 y xeyx 0 确定 , 则dy(B )dx( A ) e y y;(B ) ey1y ;(C ) ey1y ;(D ) e yy.1 xe 1 xe1 xe1 xe9. 设函数 zf (x, y) 是由方程 x2y3xyz20 确定 , 则z( B)x( A )2x yz 2 ; ( B )2x yz 2; (C )3y 2xz 2; ( D ) 3y 2xz 2 .2xyz2xyz2xyz2xyz 10. 若函数 f ( x, y) 在点 ( x 0 , y 0 ) 处不连续,则 ( C)( A ) lim f (x, y) 必不存在;(B )0 , y 0 ) 必不存在;xx 0 yy 0( C ) f (x, y) 在点 (x 0 , y 0 ) 必不可微;( D ) f x ( x 0 , y 0 ), f y (x 0, y 0 ) 必不存在 .f(x11.考虑二元函数 f (x, y) 的下面 4 条性质:①函数 f ( x, y) 在点 ( x 0 , y 0 ) 处连续;②函数 f ( x, y) 在点 ( x 0 , y 0 ) 处两个偏导数连续;③函数 f ( x, y) 在点 ( x 0 , y 0 ) 处可微;④函数 f ( x, y) 在点 ( x 0 , y 0 ) 处两个偏导数存在 .则下面结论正确的是(A )(A )②③ ①;( B )③ ②①;(C )③ ④ ①;D )③ ① ④。

多元函数微分法及其应用习题

多元函数微分法及其应用习题

多元函数微分法及其应用习题一、主要内容平面点集和区域多元函数概念多元函数的极限极限运算多元连续函数的性质多元函数连续的概念全微分概念方向导数全微分的应用复合函数求导法则高阶偏导数偏导数概念全微分形式的不变性隐函数求导法则多元函数的极值微分法在几何上的应用1、区域(1)邻域(2)区域连通的开集称为区域或开区域.(3)聚点(4)n维空间2、多元函数概念定义类似地可定义三元及三元以上函数.3、多元函数的极限(1)定义中的方式是任意的;(2)二元函数的极限也叫二重极限说明:(3)二元函数的极限运算法则与一元函数类似.4、极限的运算5、多元函数的连续性6、多元连续函数的性质(1)最大值和最小值定理在有界闭区域D上的多元连续函数,在D上至少取得它的最大值和最小值各一次.(2)介值定理在有界闭区域D上的多元连续函数,如果在D上取得两个不同的函数值,则它在D上取得介于这两值之间的任何值至少一次.7、偏导数概念8、高阶偏导数纯偏导混合偏导定义二阶及二阶以上的偏导数统称为高阶偏导数.9、全微分概念函数连续函数可导函数可微偏导数连续多元函数连续、可导、可微的关系10、全微分的应用主要方面:近似计算与误差估计.以上公式中的导数称为全导数.11、复合函数求导法则无论是自变量的函数或中间变量的函数,它的全微分形式是一样的.12、全微分形式不变性13、隐函数的求导法则隐函数的求导公式14、微分法在几何上的应用(1)空间曲线的切线与法平面切线方程为法平面方程为(2)曲面的切平面与法线切平面方程为法线方程为15、方向导数记为三元函数方向导数的定义梯度的概念梯度与方向导数的关系16、多元函数的极值定义多元函数取得极值的条件定义一阶偏导数同时为零的点,均称为多元函数的驻点.驻点极值点注意条件极值:对自变量有附加条件的极值.二、典型例题例1解例2解例3解于是可得,例4解例5解例6解分析:得测验题测验题答案设是平面上的一个点,是某一正数,与点距离小于的点的全体,称为点的邻域,记为,设E是平面上的一个点集,P是平面上的一个点,如果点P的任何一个邻域内总有无限多个点属于点集E,则称P为E的聚点.设为取定的一个自然数,我们称元数组的全体为维空间,而每个元数组称为维空间中的一个点,数称为该点的第个坐标.设是平面上的一个点集,如果对于每个点,变量按照一定的法则总有确定的值和它对应,则称是变量的二元函数,记为(或记为).当时,元函数统称为多元函数.定义设函数的定义域为是其聚点,如果对于任意给定的正数,总存在正数,使得对于适合不等式的一切点,都有成立,则称为函数当,时的极限,记为(或这里).定义设元函数的定义域为点集是其聚点且,如果则称元函数在点处连续.设是函数的定义域的聚点,如果在点处不连续,则称是函数的间断点.定义设函数在点的某一邻域内有定义,当固定在而在处有增量时,相应地函数有增量,如果存在,则称此极限为函数在点处对的偏导数,记为同理可定义函数在点处对的偏导数,为记为,,或.,,或.如果函数在区域内任一点处对的偏导数都存在,那么这个偏导数就是、的函数,它就称为函数对自变量的偏导数,记作,,或.同理可以定义函数对自变量的偏导数,记作,,或.函数的二阶偏导数为如果函数在点的全增量可以表示为,其中A,B不依赖于而仅与有关,,则称函数在点可微分,称为函数在点的全微分,记为,即=.定理如果函数及都在点可导,函数在对应点具有连续偏导数,则复合函数在对应点可导,且其导数可用下列公式计算:.如果及都在点具有对和的偏导数,且函数在对应点具有连续偏导数,则复合函数在对应点的两个偏导数存在,且可用下列公式计算..隐函数存在定理1设函数在点的某一邻域内具有连续的偏导数,且,,则方程在点的某一邻域内恒能唯一确定一个单值连续且具有连续导数的函数,它满足条件,并有.隐函数存在定理2设函数在点的某一邻域内有连续的偏导数,且,,则方程在点的某一邻域内恒能唯一确定一个单值连续且具有连续偏导数的函数,它满足条件,并有,.隐函数存在定理3设、在点的某一邻域内有对各个变量的连续偏导数,且,,且偏导数所组成的函数行列式(或称雅可比式)在点不等于零,则方程组、在点的某一邻域内恒能唯一确定一组单值连续且具有连续偏导数的函数,,它们满足条件,,并有定理如果函数在点是可微分的,那末函数在该点沿任意方向L的方向导数都存在,且有,其中为轴到方向L的转角.(其中)定义设函数在平面区域D内具有一阶连续偏导数,则对于每一点,都可定出一个向量,这向量称为函数在点的梯度,记为.函数在某点的梯度是这样一个向量,它的方向与取得最大方向导数的方向一致,而它的模为方向导数的最大值.梯度的模为.设函数在点的某邻域内有定义,对于该邻域内异于的点:若满足不等式,则称函数在有极大值;若满足不等式,则称函数在有极小值;极大值、极小值统称为极值.使函数取得极值的点称为极值点.定理1(必要条件)设函数在点具有偏导数,且在点处有极值,则它在该点的偏导数必然为零:,.定理2(充分条件)设函数在点的某邻域内连续,有一阶及二阶连续偏导数,则在点处是否取得极值的条件如下:(1)时有极值,当时有极大值,当时有极小值;(2)时没有极值;(3)时可能有极值.又,,令第二步对于每一个驻点,求函数极值的一般步骤:第三步定出的符号,再判定是否是极值. 求出实数解,得驻点.第一步解方程组求出二阶偏导数的值.拉格朗日乘数法要找函数在条件下的可能极值点,先构造函数,其中为某一常数,可由解出,其中就是可能的极值点的坐标. 选择题:二元函数的定义(A);(B);(C);(D).2、设,则().(A);(B);(C);(D).3、().(A)0;(B)1;(C)2;(D).4、函数在点处连续,且两个偏导数存在是在该点可微的().(A)充分条件,但不是必要条件;(B)必要条件,但不是充分条件;(C)充分必要条件;(D)既不是充分条件,也不是必要条件.5、设则在原点处().(A)偏导数不存在;(B)不可微;(C)偏导数存在且连续;(D)可微.6、设其中具有二阶连续偏导数.则().(A);(B);(C);(D).7、曲面的切平面与三个坐标面所围成的四面体的体积V=(). (A);(B);(C);(D).8、二元函数的极值点是().(A)(1,2);(B)(1.-2);(C)(-1,2);(D)(-1,-1).9、函数满足的条件极值是().(A)1;(B)0;(C);(D).10、设函数在点的某邻域内可微分,则在点处有().二、讨论函数的连续性,并指出间断点类型.三、求下列函数的一阶偏导数:1、;2、;3、.四、设,而是由方程所确的函数,求.五、设,其中具有连续的二阶偏导数,求.设,试求和.设轴正向到方向的转角为求函数在点(1,1)沿方向的方向导数,并分别确定转角使这导数有(1)最大值;(2)最小值;(3)等于零.求平面和柱面的交线上与平面距离最短的点.九、在第一卦限内作椭球面的切平面,使该切平面与三坐标面所围成的四面体的体积最小,求这切平面的切点,并求此最小体积.一、1、A;2、B;3、B;4、B;5、D;6、C;7、A;8、A;9、D;10、B.二、(1)当时,在点函数连续;(2)当时,而不是原点时,则为可去间断点,为无穷间断点.三、1、,;2、.3、.四、.五、.六、七、八、九、切点.。

第九章 多元函数微分法及其应用例题课件.ppt.-文档资料

第九章 多元函数微分法及其应用例题课件.ppt.-文档资料

例13.证明函数
f
x,
y
x2y2
若x2y20
0
若x2y20
分别对每个自变量 x 或 y (另一
个看作常数)都连续,但作为二元
函数在原点 0 ,0 不连续。
例14.求函数
f
x,ysinx2
1 y2
1
的间断点。
例15. 求
lim x y x, y 1,2 xy
例16.求
xy 11
lim
则方程 F x ,y ,z= 0 在 点 x 0 ,y 0 ,z 0 的某
一邻域内恒能唯一确定一个连续且具有
连续偏导数的函数 z f x, y,它满足条
件 z0 f x0,y0,并有 z Fx , z Fy
x Fz y Fz
例2.设
x2+y2+z24z0
2z
求 x2

例3.设 Z zx, y 为由
x, y0,0
xy
§9-2偏导数
例1.求函数
x2y2 当x0 或y0
f
x,
y
1
当xy0
例2.求
Z x2sin2y
的偏导数。
例3.设
Zxyx0,x1
求证
x z 1 z 2z y x lnx y
例4.求
r x2 y2 z2
的偏导数。
例5.求
Zx23xyy2
在点 1 , 2 处的偏导数。
x,y 0,0
例10.求
x2y2
xyl im
xy x2 y2
例11.设 f x,ysinx ,
证明 f x, y 是 R 2 上的连续
函数。
例12.为了使函数在原点 0 , 0

多元函数微分法及其应用(全例题)

多元函数微分法及其应用(全例题)

162 多元函数微分法及其应用(全例题)一、内容提要多元函数微分法是一元函数微分法的推广,有许多相似之处,学习时应注意对比,搞清异同. 1.基本概念与定理设函数)(P f U =,点P 可以是n ,,3,2,1 维的.当2≥n 时,称此函数为多元函数. ① 二元函数),(y x f z =在几何上表示空间一张曲面.② 二元函数),(y x f z =在点),(000y x P 处的极限、连续、偏导数、全微分的定义及关系. 极限 A y x f yy x x =→→),(l i m 0:当,0,0>∃>∀δε 成立时,有 |),(| )()(02020εδρ<-<-+-=<A y x f y y x x注意 定义中的),(y x 是以任意方式趋于点),(00y x .连续 ),(),(lim 0000y x f y x f y y x x =→→偏导数);(,),(),(lim),(000000000y y xy x f y x x f y x f xzx x P =∆-∆+==∂∂→∆固定)(,),(),(lim),(000000000x x yy x f y y x f y x f yzy y P =∆-∆+==∂∂→∆固定高阶偏导数 一阶偏导数),(),,(y x f y x f y x 的偏导数,称为函数),(y x f 的二阶偏导数.⎪⎭⎫ ⎝⎛∂∂∂∂==∂∂x z x y x f x zxx ),(22,⎪⎭⎫⎝⎛∂∂∂∂==∂∂∂x z y y x f y x z xy),(2, ⎪⎪⎭⎫ ⎝⎛∂∂∂∂==∂∂y z y y x f y zyy ),(22,⎪⎪⎭⎫ ⎝⎛∂∂∂∂==∂∂∂y z x y x f x y z yx ),(2. 类似,可定义三阶以上的偏导数.可微 若全增量),(),(0000y x f y y x x f z -∆+∆+=∆可表示为)(ρo y B x A z +∆+∆=∆,其中22)()(y x ∆+∆=ρ,则称),(y x f z =在点),(000y x P 可微.而y B x A ∆+∆为函数),(y x f z =在点),(000y x P 的全微分,记作y B x A z d y x∆+∆=),(00定理1 若函数),(y x f z =的二阶混合偏导数),(y x f xy 及),(y x f yx 在区域D 内连续,则在该区域内),(y x f xy ),(y x f yx =.定理2 若函数),(y x f z =在点),(y x 可微, 则必在该点连续.定理3 若函数),(y x f z =在点),(y x 可微,则该函数在点),(y x 的两个一阶偏导数存在.定理4 若函数),(y x f z =在点),(y x 有一阶连续偏导数,则函数在该点可微. 且dy y x f dx y x f dz y x ),(+),(=2.多元函数的求导运算 多元复合函数求导① ).,(),,(),,(y x v y x u v u f z ψϕ===若则偏导数为:;xvv z x u u z x z ∂∂⋅∂∂+∂∂⋅∂∂=∂∂.y v v z y u u z y z ∂∂⋅∂∂+∂∂⋅∂∂=∂∂163② ).(),(),,(t y t x y x f z ψϕ===若则全导数为:.dtdy y z dt dx x z dt dz ⋅∂∂+⋅∂∂= ③ ).,(),,(),,,,(y x v y x u v u y x f z ψϕ===若则偏导数为 x v v f x u u f x f x z ∂∂⋅∂∂+∂∂⋅∂∂+∂∂=∂∂; .yvv f y u u f y f y z ∂∂⋅∂∂+∂∂⋅∂∂+∂∂=∂∂ 注意,x f x z ∂∂∂∂与yfy z ∂∂∂∂与的区别. )],(),,(,,[ y x y x y x f z x zψϕ=∂∂是在复合函数中视 y 为常量,对x 求导. ),,,( v u y x f z x f=∂∂是在四元函数中视y,u,v 为常量,对x 求导. )],(),,(,,[ y x y x y x f z y zψϕ=∂∂是在复合函数中视 x 为常量,对y 求导. ),,,( v u y x f z yf=∂∂是在四元函数中视x,u,v 为常量,对y 求导. 隐函数求导① ),(0),,(y x z z z y x F ==确定的隐函数由方程满足隐函数定理的条件,则;z x F F x z -=∂∂ .zy F F y z-=∂∂ ② ),(),( 0),,(0),,(x y y x z z z y x G z y x F ==⎩⎨⎧==确定的隐函数由方程组则方程两边分别对x 求导,得到关于dxdzdx dy ,的方程组,解出即可. 3.应用 (1) 几何应用①空间曲线处的点在对应),,( )()()(:0000z y x M t t z t y t x ⎪⎩⎪⎨⎧===Γωψϕ的切线与法平面方程. 切向量为 )}(),(),({000t t t ωψϕ'''= 切线方程)(00t x x ϕ'-)(00t y y ψ'-=)(00t z z ω'-= 法平面方程 0))(())(())((000000=-'+-'+-'z z t y y t x x t ωψϕ ②空间曲面处上点),,(0),,(:000z y x M z y x F =∑的切平面与法线方程. 法向量为 ),,({000z y x F x =),,(,000z y x F y )},,(,000z y x F z切平面方程 0))(,,())(,,())(,,(000000000000=-+-+-z z z y x F y y z y x F x x z y x F z y x 法线方程),,(0000z y x F x x x -),,(0000z y x F y y y -=),,(0000z y x F z z z -=对于曲面0),(),,( ),,(=-==z y x f z y x F y x f z 可表示为. (2) 函数极值定理6 (必要条件) 设函数),(),(00y x M y x f z 在点=有偏导数并取得极值,则164 ,0),(00=y x f x .0),(00=y x f y定理7(充分条件)设函数),(),(00y x M y x f z 在点=某邻域内连续并有一阶及二阶连续偏导数,且,0),(00=y x f x .0),(,00=y x f y 记,),(00A y x f xx =,),(00B y x f xy =,),(00C y x f yy = 则当02>-B AC 时,有极值,且⎩⎨⎧><有极小值有极大值,0,0A A ;当02<-B AC 时,无极值;当02=-B AC 时,情况不定. 多元函数的条件极值求函数),,(z y x f u =在满足条件:0),,(,0),,(==z y x z y x ψϕ下的条件极值. 构造拉格朗日函数),,(),,(),,(),,(z y x z y x z y x f z y x F μψλϕ++= 解方程组 ⎪⎪⎪⎩⎪⎪⎪⎨⎧=====0),,(0),,(0),,(0),,(0),,(z y x z y x z y x F z y x F z y x F z y x ψϕ 得可能极值点(x,y,z ).再进一步讨论极值点的充分性.许多情况下可借助于问题的实际意义来判定.二、例题解析1. 多元函数的基本概念例8.1求下列各函数的定义域 (1) z=y x -; (2) z=ln )(x y -+221yx x --;(3) 22arccosyx z u +=分析 二元函数的定义域一般是平面区域,三元函数的定义域一般是空间区域.这些点集可用使函数有定义的自变量所应满足的不等式或不等式组表示.解 (1) 0≥y 且 0≥-y x ,即 y x ≥,得 D=(){}y x y y x ≥≥,0|,(2)⎪⎩⎪⎨⎧>--≥>-010,022y x x x y得 {}1,,0|),(22<+>≥=y x x y x y x D .(3) 022≠+y x 且22yx z +1≤得 {}0,|),,(22222≠++≤=y x y x z z y x D例8.2 设⎪⎭⎫ ⎝⎛+x y y x f ,=22y x -,求),(y x f .解(方法 一)令,u y x =+xy =v ,则有 x =v u +1,v uv y +=1165由原式 f⎪⎭⎫ ⎝⎛+x y y x ,=22y x - 知 ()v u f ,=21⎪⎭⎫ ⎝⎛+v u 21⎪⎭⎫ ⎝⎛+-v uv =v v u +-1)1(2 故 ),(y x f =yy x +-1)1(2 (y 1-≠)(方法二)因⎪⎭⎫ ⎝⎛+x y y x f ,=22y x -=))((y x y x -+=yx yx y x +-+.)(2=()x y x y y x +-+112故 ),(y x f =yyx +-⋅112. (1-≠y ) 例8.3 求下列各极限:(1) 10lim→→y x 221y x xy +- ; (2) xyxy y x 42lim0+-→→ ; (3) yxy y x sin lim 02→→ ; (4) 22)()cos(1lim 222200y x y x ey x y x ++-→→.分析 求多元函数的极限可利用多元函数的连续性及一元函数求极限的一些方法.解 (1) 用函数的连续性.10lim →→y x 221y x xy +-=1001+-=1 . (2)用一元函数求极限的方法(分子有理化).xyxy y x 42lim+-→→=)42()4(4lim0+++-→→xy xy xy y x =421lim0++-→→xy y x =41-. (3) 用一元函数的重要极限.yxy y x sin lim 02→→=221sin lim 02=⋅=⋅→→x xy xyy x .(4)()()=++-→→22222200cos 1limyxy x e y xy x 22422sin2lim 2222222200y x y x e y x y x y x +⋅⎪⎪⎭⎫ ⎝⎛++→→.0021=⋅= 例8.4 证明极限 ()222220limy x y x y x y x -+→→不存在.分析 因为二重极限A y x f y y x x =→→),(lim 00存在,是指),(y x P 以任意方式趋于),(000y x P 时,函数都无限接近某常数A .所以,证明极限不存在,只要P 以某一特殊方式趋于0P 时,函数不趋于某一确定值;或以两种不同方式趋于0P 时,函数趋于不同的值,便可断定函数的极限不存在.证(方法一) 若点),(y x P 沿直线x y =趋于()0,0,则()1limlim440222220==-+→=→xx y x y x y x x xy x ;若点),(y x P 沿直线x y 2=趋于)0,0(,则.044lim)(lim24402222220=+=-+→=→xx x y x y x y x x xy x 所以极限不存在.166 (方法二) 若点),(y x P 沿直线kx y =趋于()0,0,则22424222220)1(lim)(lim2x k x k x k y x y x y x x kxy x -+=-+→=→22220)1(lim2k x k x k x -+=→⎩⎨⎧≠==1,01,1k k 所以极限不存在. 例8.5 设=),(y x f ⎪⎩⎪⎨⎧=+≠++0,00,222222y x y x y x xy证明),(y x f 在)0,0( 处不连续,但两个一阶偏导数存在.证 0)0,0(=f , 当()y x ,沿直线kx y =趋于)0,0(时2222201lim),(lim kk xk x kx y x f x kxy x +=+=→=→当k 取不同值时,极限值不同.故),(lim 00y x f y x →→不存在.所以),(y x f 在)0,0(处不连续.但根据偏导数的定义知000lim )0,0()0,0(lim )0,0(00=∆-=∆-∆+=→∆→∆x xf x f f x x x ;000lim )0,0()0,0(lim)0,0(00=∆-=∆-∆+=→∆→∆y yf y f f y y y . 所以),(y x f 在)0,0(处两个一阶偏导数存在.本例说明,对于多元函数,偏导数存在未必连续.例8.6 证明:函数22y x z +=在)0,0(处连续,但两个一阶偏导数不存在.证 因)0,0(在),(y x f 的定义域内,所以),(y x f 在)0,0(处连续. 又因||)0,(2x x x f ==在0=x 处不可导,所以)0,0('x f 不存在; 同样||),0(2y y y f ==在0=y 处不可导,所以)0,0('y f 不存在.例8.7 设||),(xy y x f z ==,证明),(y x f 在)0,0(处一阶偏导数存在,但不可微. 分析 要证函数),(y x f 在)0,0(处是否可微,只须检验极限:[]ρρyf x f z y x ∆+∆-∆→)0,0()0,0(lim''0是否为0, 其中22)()(y x ∆+∆=ρ. 若极限为0,则函数),(y x f 在)0,0(处可微,否则不可微.证 因,0),0(,0)0,(==y f x f 由定义知0)0,0(,0)0,0(''==y x f f 但 ()()[]()()2222''||||0,00,0y x y x yx y x yf x f z y x ∆+∆∆⋅∆=∆+∆∆⋅∆=∆+∆-∆ρ当())0,0(,→∆∆y x 时,上式极限不存在.(取路径x k y ∆=∆) 因此,),(y x f 在)0,0(处不可微. 2. 多元函数微分法例8.8 求下列函数的偏导数 (1)()y xy z +=1;(2) zy x u =;(3) z y x u )arctan(-=.分析 多元函数对其中一个变量求偏导时,只需将其余变量视为常量,利用一元函数的求导公式或求导法则求导即可.解 (1) .)1(.)1(121--+=+=∂∂y y xy y y xy y xz()()⎥⎦⎤⎢⎣⎡+++=∂∂=∂∂++xy x y xy e e y y z xy y xy y 1.)1ln(1ln 1ln ⎥⎦⎤⎢⎣⎡++++=xy xy xy xy y 1)1ln()1(167(2) ,1-=∂∂z y x z y x u ,ln 11ln x x zz x x y u z yz y =⋅⋅=∂∂ .ln ln 22x x z y z y x x z u z yz y -=⎪⎭⎫⎝⎛-⋅⋅=∂∂(3) ()()z z y x y x z x u 211-+-=∂∂-; ()()zz y x y x z y u 211-+--=∂∂-; ()()()z zy x y x y x z u 21ln -+--=∂∂. 例8.9 设,arcsin)1(),(yxy x y x f -+=求).1,(x f x 分析 本题是求函数),(y x f 在点)1,(x 处关于x 的偏导数,由定义知,固定,1=y x x f =)1,(,再对x 求导即可.解 因x x f =)1,(,所以 .1)1,(=x f x例8.10 (1)设xy z =,求 22x z ∂∂;22yz∂∂;y x z∂∂∂2.(2)设ϕϕ,),()(1f y x y xy f xz ++=具有二阶连续导数,求y x z ∂∂∂2.(98年考研题)解 (1),ln y y xzx =∂∂ .1-⋅=∂∂x y x y z y y x z x x z x 222ln ⋅=⎪⎭⎫ ⎝⎛∂∂∂∂=∂∂, ()2221--=⎪⎪⎭⎫ ⎝⎛∂∂∂∂=∂∂x y x x y z y y z ; ().1ln 1ln 112+=⋅+=⎪⎭⎫ ⎝⎛∂∂∂∂=∂∂∂--y x y y y y xy x z y y x z x x x (2) x z ∂∂),()()(12y x y xy f x y xy f x+'+'+-=ϕ⎪⎭⎫⎝⎛∂∂∂∂=∂∂∂x z y y x z 2 )()()()(1)(2y x y y x xy f x x y xy f x xy f xx +''++'+''+'+'-=ϕϕ).()()(y x y y x xy f y +''++'+''=ϕϕ例8.11 求下列函数的全微分: (1) ;22y x y z +=(2) yz x u =.解 (1) 因为()();22123222322yxxyyxxy x z +-=+⋅⋅-=∂∂168 ().2223222222222yxx y x y x y y y x yz+=++⋅-+=∂∂所以 ()()2322y x xdy ydx x dy y zdx x z dz ++-=∂∂+∂∂=. )2(因为 1-⋅=∂∂yz x yz x u ;z x x yu yz ⋅⋅=∂∂ln ;y x x z uyz ⋅⋅=∂∂ln 所以 dz zu dy yu dx xu du ∂∂+∂∂+∂∂=.ln ln 1xdz x y xdy x z dx x yz yz yz yz ⋅+⋅+⋅=-3 多元复合函数求导例8.12 求下列函数的偏导数或全导数.(1) ,ln 2v u z = ,yxu = ,23y x v -= 求 x z ∂∂;.y z ∂∂ (2) ),arcsin(y x z -= ,3t x = ,43t y =求 .dt dz分析 多元复合函数求导时,先画出复合线路图,再按图写出求导公式.这种方法对复杂的复合情形尤为有利.解(1)x vv z x u u z x z ∂∂⋅∂∂+∂∂⋅∂∂=∂∂ 31ln 22⋅+⋅=v u y v u)23ln(22y x y x -=)2(ln 222-⋅+⎪⎪⎭⎫ ⎝⎛-⋅=∂∂⋅∂∂+∂∂⋅∂∂=∂∂v u y x v u y vv z y u u z y z 3ln(232x y x --= ()2dt dy y z dt dx x z dt dz ⋅∂∂+⋅∂∂=22212)(113)(11t y x y x ⋅---+⋅--=.)43(1)41(3232t t t ---=例8.13 设f 具有一阶连续偏导,),,(22xy e y x f u -=求xu∂∂;.y u ∂∂ 说明 抽象函数求偏导时一定要设中间变量.解 令.,22xy e t y x s =-=则),(t s f u =y e tf x s fx t t f x s s f x u xy ⋅⋅∂∂+⋅∂∂=∂∂⋅∂∂+∂∂⋅∂∂=∂∂2 .2'2'1f ye xf xy += x e tf y s f y t t f y s s f y u xy ⋅⋅∂∂+-⋅∂∂=∂∂⋅∂∂+∂∂⋅∂∂=∂∂)2( .2'2'1f xe yf xy +-= 例8.14 设f 具有二阶连续偏导数,,,⎪⎪⎭⎫ ⎝⎛=y x xy f z 求.,,22222y z y x z x z ∂∂∂∂∂∂∂分析 求多元函数的高阶偏导数,关键在于牢记多元复合函数的各阶偏导数仍是与原来函数同类型的函数,即以原中间变量为中间变量,原自变量为自变量的多元复合函数.高阶偏导数可采用简便记法,如'2'1,f f 分别表示f 对第一、第二中间变量的偏导数,"12f 表示f 先对第一、再对第二中间变量的二阶混合偏导数.当高阶偏导数连续时,应将混合偏导数并项.解 令 ,,yxv xy u ==则).,(v u f z =.1'2'1yf y f x v v f x u u f x z ⋅+⋅=∂∂⋅∂∂+∂∂⋅∂∂=∂∂169.2'2'1⎪⎪⎭⎫ ⎝⎛-⋅+⋅=∂∂⋅∂∂+∂∂⋅∂∂=∂∂y x f x f yv v f y u u f y z x f y x f y f y f y x x z∂∂⋅+∂∂=⎪⎪⎭⎫ ⎝⎛⋅+⋅∂∂=∂∂'2'1'2'12211 ⎪⎪⎭⎫⎝⎛∂∂⋅∂∂+∂∂⋅∂∂⋅+⎪⎪⎭⎫ ⎝⎛∂∂⋅∂∂+∂∂⋅∂∂⋅=x v v f x u u f y x v v f x u u f y '2'2'1'11⎪⎪⎭⎫ ⎝⎛⋅+⋅⋅+⎪⎪⎭⎫ ⎝⎛⋅+⋅⋅=y f y f y y f y f y 111"22"21"12"11 .12"222"12"112f y f f y ++= y f y f y y f y f f y f y y y x z ∂∂+-∂∂⋅+=⎪⎪⎭⎫ ⎝⎛⋅+⋅∂∂=∂∂∂'2'22'1'1'2'12111 ⎪⎪⎭⎫ ⎝⎛∂∂∂∂+∂∂⋅∂∂+⋅-⎪⎪⎭⎫ ⎝⎛∂∂⋅∂∂+∂∂⋅∂∂⋅+=y v v f y u u f y f y y v v f y u u f y f '2'2'22'1'1'111 ⎪⎪⎭⎫ ⎝⎛⋅-⋅+⋅-⎪⎪⎭⎫ ⎝⎛⋅-⋅⋅+=2"22"21'222"12"11'111y x f x f y f y y x f x f y f .1"223"11'22'1f y x xyf f y f -+-= y f y x f y x y f x f y x f x y y z∂∂⋅-⋅+∂∂⋅=⎪⎪⎭⎫ ⎝⎛⋅-⋅∂∂=∂∂'22'23'1'22'1222 ⎪⎪⎭⎫ ⎝⎛∂∂⋅∂∂+∂∂⋅∂∂⋅-⋅+⎪⎪⎭⎫ ⎝⎛∂∂⋅∂∂+∂∂⋅∂∂⋅=y v v f y u u f y x f y x y v v f y u u f x '2'22'23'1'12⎪⎪⎭⎫ ⎝⎛⋅-⋅-+⎪⎪⎭⎫ ⎝⎛-⋅⋅="222"212'23"122"112f y x x f y x f y x f y x x f x .22'23"2242"1222"112f y x f y x f y x f x ⋅+⋅+⋅-⋅= 常见错解 ,01'2'122=⎪⎪⎭⎫ ⎝⎛⋅+⋅∂∂=∂∂f y f y x x z.11'22'1'2'12f y f f y f y y y x z -=⎪⎪⎭⎫ ⎝⎛⋅+⋅∂∂=∂∂∂ .2'23'22'122f y x f y x f x y y z ⋅=⎪⎪⎭⎫ ⎝⎛⋅-⋅∂∂=∂∂ 错误的原因是把'2'1,f f 误认为常量. 例8.15 设,),,,(yxe u y x u f z ==其中f具有二阶连续偏导,求.2yx z∂∂∂ 分析 对抽象的多元复合函数求二阶偏导,首先要搞清楚函数的结构.解 '2'1f e f xf x u u f x z y +⋅=∂∂+∂∂⋅∂∂=∂∂)('2'12f e f yy x z y +⋅∂∂=∂∂∂y f y f e f e y y ∂∂+∂∂⋅+⋅='2'1'1)()("23"21"13"11'1f xe f f xe f e f e y y y y +⋅++⋅⋅+⋅=."23"21"13"112'1f f xe f e f xe f e y y y y +⋅+⋅+⋅+⋅=4 隐函数求导对隐函数求导时,首先要根据题目中要求对哪些变量求导,确定哪些是自变量,哪些变量函数.例8.16 设),cos(2yz x x +=求.zy∂∂分析 由题目要求知,方程确定隐函数),(z x y y =,即y 是z x ,的函数. 解(方法一)(两边求导法) 方程两边对z 求偏导,得170 ⎪⎭⎫ ⎝⎛∂∂⋅+⋅+-=z y z y yz x )sin(02 所以 .zy z y -=∂∂ (方法二)(公式法) 设F 0)cos(),,(2=-+=x yz x z y x . .)sin( ,)sin(22y yz x F z yz x F z y ⋅+-=⋅+-= 所以.zyF F z y y z -=-=∂∂ 例8.17 设,ln y z z x =求.,yzx z ∂∂∂∂ 解(方法一) 设.ln ),,(yzz x z y x F -=则 ,1 ,12yy z z y F z F y x =⎪⎪⎭⎫ ⎝⎛-⋅-== .122z z x z z x F z +-=--=所以 .12z x z zz x z F F x z zx +=+--=-=∂∂ .)(122z x y z z z x y F F y z z y +=+--=-=∂∂ (方法二)等式两边对x 求偏导,得,2y x zz y z x z x z ∂∂⋅=∂∂⋅- 得 ,z x z x z +=∂∂等式两边对y 求偏导,得,22yzy yzz y y z z x -⋅∂∂⋅=∂∂⋅-得.)(2z x y z y z +=∂∂ (方法三) 原方程化为)ln (y nz z x -=,令 )ln (ln ),,(y z z x z y x F --=. 则.11ln 111ln 1z x zz x y z y z F F x zzx +=+=+=---=-=∂∂ .)(ln11ln 2z x y z y z y zy z y z F F y z z y +=+=---=-=∂∂注 用隐函数求导公式求x F 时,要视z y ,为常数,同样求z y F F ,时,要分别把z x ,及y x ,看成常数.而在等式两边对x 或y 求偏导时(方法二),应视z 为y x ,的函数,不能把z 看成常数.例8.18 设333a xyz z =-,求yx z ∂∂∂2.分析 求隐函数的高阶偏数,一般都用隐函数求导公式求一阶偏导数,再用复合函数求导法求二阶及二阶以上的偏导数.解 设(),3,,33a xyz z z y x F --=则有 ,3yz F x -= xz F y 3-=, xy z F z 332-=.xy z yz xy z yz F F x z z x -=---=-=∂∂22333 .2xy z xzF F y z zy -=-=∂∂171()22222)(2xy z x y z z yz xy z y z y z xy z yz y y x z -⎪⎪⎭⎫ ⎝⎛-∂∂⋅--⎪⎪⎭⎫ ⎝⎛∂∂⋅+=⎪⎪⎭⎫ ⎝⎛-∂∂=∂∂∂ ()22222)(2xy z x xy z xz z yz xy z xy z xz y z -⎪⎪⎭⎫⎝⎛--⋅--⎪⎪⎭⎫ ⎝⎛-⋅+= 322224)()2(xy z y x xyz z z ---=. 例8.19 设),(),,(),,(y x z z z x y y z y x x ===都是由方程0),,(=z y x F 所确定的具有连续偏导数的函数,证明:.1-=∂∂⋅∂∂⋅∂∂xz z y y x 证 因,x y F F y x -=∂∂ ,y z F F z y -=∂∂ .z x F F x z -=∂∂所以 1-=⎪⎪⎭⎫ ⎝⎛-⋅⎪⎪⎭⎫ ⎝⎛-⋅⎪⎪⎭⎫ ⎝⎛-=∂∂⋅∂∂⋅∂∂z x y z x y F F F F F F x z z y y x 注 偏导数yxz y x z ∂∂∂∂∂∂,,均是一个整体记号,不能看作分子与分母之商.例8.20 设),(v u Φ具有连续偏导数,证明由方程0),(=--Φbz cy az cx 所确定的函数),(y x f z =满足方程.c yzb x z a=∂∂+∂∂ 分析 将Φ看成以z y x ,,为自变量的复合函数,中间变量为,,bz cy v az cx u -=-=由复合函数求导法则求出;,,z y x ΦΦΦ再由隐函数求导公式求出.,yzx z ∂∂∂∂解 . , ,0),(bz cy v az cx u v u -=-==Φ;;'2'1Φ⋅=∂∂⋅∂Φ∂=ΦΦ⋅=∂∂⋅∂Φ∂=Φc y v v c xu u y x'2'1Φ-Φ-=∂∂⋅∂Φ∂+∂∂⋅∂Φ∂=Φb a zv v z u u z'2'1'1'2'1'1Φ+ΦΦ=Φ-Φ-Φ-=ΦΦ-=∂∂b a c b a c x zz x .'2'1'2Φ+ΦΦ=ΦΦ-=∂∂b a c y zz y 所以 .'2'1'2'1c b a bc ac y z b x z a =Φ+ΦΦ+Φ=∂∂+∂∂ 例8.21 求由下列方程组所确定的函数的导数或偏导数.(1) 设⎪⎩⎪⎨⎧=+++=203222222z y x yx z 求 .,dx dz dx dy(2) 设⎩⎨⎧=+=0),,()(z y x F y x xf z ,其中F f ,分别具有一阶连续导数和一阶连续偏导数,求 .dx dz(3)设⎪⎩⎪⎨⎧-=+=),(),(2y v x u g v y v ux f u 其中g f ,具有一阶连续偏导数,172 求.,xv x u ∂∂∂∂ 分析 由三个变量两个方程所构成的方程组,一般确定两个一元函数,即其中两个变量是第三个变量的一元函数,如(1)、(2), dx dz dx dy ,可通过解关于dxdzdx dy ,的线性方程组完成. 由四个变量两个方程所构成的方程组,一般确定两个二元函数,即其中两个变量确定为另两个变量的二元函数,如(3), x v x u ∂∂∂∂,可通过解关于xvx u ∂∂∂∂,的线性方程组完成. 解(1)此方程组可确定两个一元隐函数),(x y y =)(x z z =.方程两边对x 求导,得⎪⎪⎩⎪⎪⎨⎧=⋅+⋅+⋅+=064222dx dz z dx dy y x dxdy y x dx dz 即 ⎪⎪⎩⎪⎪⎨⎧-=+-=-x dx dz z dx dy y x dx dzdx dy y 3222 在0263212≠+=-=y yz zy y J 条件下,有()();132162663121++-=+--=---=z y z x y yz x xz z x x J dx dy .132622221+=+=--=z xy yz xy x y x y J dx dz (2)方程两边对x 求导,z y ,为x 的一元函数,得⎪⎪⎩⎪⎪⎨⎧=++'++=0)1(dx dz F dx dy F F f dxdy x f dx dzz y x 整理得 ⎪⎪⎩⎪⎪⎨⎧-=+'+=+'-x z y F dxdzF dxdy F f x f dxdzf dx dy x解得 )0(,)(≠'+'+'-'+=z y z y x y F f x F Ff x F Ff x F f x f dx dz (3)此方程组确定两个二元函数:),,(y x u u = ).,(y x v v = 方程两边对x 求偏导,得⎪⎪⎩⎪⎪⎨⎧∂∂⋅⋅+⎪⎭⎫ ⎝⎛-∂∂=∂∂∂∂⋅+⎪⎭⎫ ⎝⎛∂∂⋅+=∂∂.21'2'1'2'1x v vy g x u g x v x v f x u x u f x u 即 ⎪⎪⎩⎪⎪⎨⎧=∂∂-+∂∂⋅-=∂∂⋅+∂∂-'1'2'1'1'2'1)12()1(g x v vyg x u g uf xv f x u xf 在 0)12)(1(121'1'2'2'1'2'1'2'1≠⋅---=--=g f yvg xf yvg g f xf J 条件下, ;)12)(1()12(121'1'2'2'1'1'2'2'1'2'1'2'1g f yvg xf g f yvg uf yvg g f uf J x u ⋅---⋅---=--=∂∂ ()()()'1'2'2'1'1'1'1'1'1'1'1121111g f yvg xf uf xf g g g uf xf J x v ⋅----+=--=∂∂ 5 微分法的应用例8.22 求曲线2sin 4,cos 1,sin t z t y t t x =-=-=在点⎪⎭⎫⎝⎛-22,1,12π处的切线及法平面方程.173解 该点对应参数,20π=t切向量为 {}{}2,1,1)(),(),(0'0'0'==→t z t y t x T 所求切线方程为 22211112-=-=+-z y x π法平面方程为 0)22(2)1(12=-+-+⎪⎭⎫⎝⎛+-z y x π即 .422+=++πz y x 例8.23 求曲线32,,t z t y t x ===上的点,使在该点的切线平行于平面 .42=++z y x解 曲线的切向量为 {},3,2,12t t T =→平面42=++z y x 的法向量为 {}.1,2,1=→n 由题意知→→⊥n T ,即.0=⋅→→n T 亦即,03412=++t t 得 ,31,121-=-=t t 则所求点坐标为 )1,1,1(--和.271,91,31⎪⎭⎫⎝⎛--例8.24(1)求曲面2132222=++z y x 在点)2,2,1(-的法线方程; (2)求椭球面12222=++z y x 上平行于平面02=+-z y x 的切平面方程.(1)解 设,02132),,(222=-++=z y x z y x F 则,2)2,2,1(=-x F ,8)2,2,1(-=-y F ,12)2,2,1(=-z F 故所求的法线方程为624211-=-+=-z y x (2)分析 根据已知条件,先求出切点坐标.解 设,012),,(222=-++=z y x z y x F 法向量为 {}z y x n 2,4,2=→已知平面的法向量为{},2,1,11-=→n 由已知条件知 221412zy x =-= 即z y z x 41,21-==,将其代入椭球面方程.01422222=-+⎪⎭⎫⎝⎛-⋅+⎪⎭⎫ ⎝⎛z z z 得,1122±=z 于是切点为 ⎪⎪⎭⎫ ⎝⎛-1122,11221,1121M ,,,,⎪⎪⎭⎫ ⎝⎛--1122112211122M 切平面方程为 02112=-+-z y x 和.02112=++-z y x 例8.25 在曲面xy z =上求一点,使这点处的法线垂直于平面093=+++z y x ,并写出这法线的方程.解 令().0,,=-=z xy z y x F 法向量为{}.1,,-=→x y n 已知平面法向量为{},1,3,11=→n 由题意知,→n ∥→1n ,即 1131-==x y .3,1,3=-=-=∴z y x 即所求点为)3,1,3(--,法线方程为 .133113-=+=+z y x 例8.26 试证曲面 a z y x =++ (0>a )上任何点处的切平面在各坐标轴上的截距之和等于a .证 ,0),,(=-++=a z y x z y x F 则法向量为 .21,21,21⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧=→z y x n曲面上任一点),,(000z y x M 处的切平面方程为0)(1)(1)(1000000=-+-+-z z z y y y x x x174 即a z y x z z y y x x =++=++0000,化为截距式得,10=++az z ay y ax x所以,截距之和为.000a a a az ay ax =⋅=++例8.27求函数xyz u =在点)2,1,5(处沿从点()2,1,5到点)14,4,9(的方向的方向导数. 解 {}{},12,3,4214,14,59=---=→l .131691234||222==++=→l1312cos ,133cos ,134cos ===γβα1312133134cos cos cos xy xz yz z u y u x u l u +⋅+⋅=∂∂+∂∂+∂∂=∂∂γβα 所以. ()1398513121013321342,1,5=⨯+⨯+⨯=∂∂l u . 例8.29 求函数())4)(6(,22y y x x y x f --=的极值.解 解方程组⎪⎩⎪⎨⎧=--==--=0)24)(6(0)4)(26(2'2'y x x f y y x f yx ,得驻点(0,0),(6,0),(0,4),(6,4),(3,2). 又 )24)(26(),4(2""y x f B y y f A xy xx --==--==,),6(2"x x f C yy --==列表常见错解 求得驻点()()()()().2,3,4,6,4,0,0,6,0,0后直接断定在这些点处取得极值.实际上,驻点未必是极值点.例8.30 在xoy 面上求一点,使它到0,0==y x 及0162=-+y x 三直线的距离平方之和为最小.分析 本题是无条件极值问题.解 设所求点的坐标为),(y x ,则此点到0,0==y x 及0162=-+y x 的距离分别为 |||,|y x 及,21|162|2+-+y x而距离平方和为 5)162(222-+++=y x y x z由 ()()⎪⎪⎩⎪⎪⎨⎧=-++=∂∂=-++=∂∂01625420162522y x y yz y x x x z , 即⎩⎨⎧=-+=-+03292083y x y x 得 ⎪⎪⎩⎪⎪⎨⎧==51658y x ,得唯一驻点⎪⎭⎫ ⎝⎛516,58, 由由题意知,到三直线距离平方和最小的点一定存在,故⎪⎭⎫⎝⎛516,58即是.例8.31 抛物面22y x z +=被平面1=++z y x 截成一椭圆,求原点到这椭圆的最长与最短距离.分析 本题是条件极值问题.175解 设椭圆上点的坐标为),,(z y x ,则原点到椭圆上这一点的距离平方为 ,2222z y x d ++=其中z y x ,,要同时满足.1,22=+++=z y x y x z 令拉格朗日函数: )1()(),,(2221222-+++--+++=z y x y x z z y x z y x F λλ由方程组 ⎪⎪⎪⎩⎪⎪⎪⎨⎧=++=+=++==+-==+-=10202202222212121z y x zy x z F y y F x x F z y x λλλλλλ 解得 32,231 =±-==z y x由题意可知这种距离的最大值和最小值一定存在,而恰好找到两个可能极值点,所以距离最大值和最小值在这两点处取得.因 .359)32(2312222222 =+⎪⎪⎭⎫⎝⎛±-⋅=++=z y x d 所以 3591+=d 为最长距离,3592-=d 为最短距离.6 综合题例8.32 求 2222lim y x y x y x xy⎪⎪⎭⎫⎝⎛++∞→+∞→解 因为x xy y x ,222≥+>0,y >0.所以 0<,2122≤+y x xy 0<22222122y x y x y x xy ⎪⎭⎫⎝⎛≤⎪⎪⎭⎫⎝⎛+又因 02122=⎪⎭⎫ ⎝⎛+∞→+∞→y x y x lim ,所以 2222y x y x y x xy⎪⎪⎭⎫⎝⎛++∞→+∞→lim 0=.例8.33 设⎪⎩⎪⎨⎧=+≠++=0,00,),(2222222y x y x y x yx y x f ,求).,(),,(y x f y x f y x解 当022≠+y x 时,()22222222222222223222222)()()(2)(,)(2)(2)(2),(y x y x x y x yy x y x x y x f y x xy y x xy x y x xy y x f y x +-=+⋅-+=+=+⋅-+=当022=+y x 时,0lim )0,0(),0(lim )0,0(00lim )0,0()0,(lim)0,0(0000=∆-=∆-∆==∆-=∆-∆=→∆→∆→∆→∆y y f y f f x xf x f f y y y x x x则 ⎪⎩⎪⎨⎧=+≠++=0,00,)(2),(22222223y x y x y x xy y x f x176 ⎪⎩⎪⎨⎧=+≠++-=0,00,)()(),(2222222222y x y x y x y x x y x f y例8.34 函数,)0,(,1)0,(,2),,('22x x f x f yf y x f z y ===∂∂=求).,(y x f解 ,222=∂∂y f两边对y 积分得+=∂∂y yf2).(x ϕ 由条件x x f y =)0,('得.)(x x =ϕ即 x y y x f y +=2),(' 两边再对y 积分,得 )(),(2x xy y y x f ψ++=. 由条件1)0,(=x f 知,1)(=x ψ所以.1),(2++=xy x y x f例8.35 设,⎪⎭⎫⎝⎛⋅+⎪⎪⎭⎫ ⎝⎛⋅=x y g x y x f y u 其中g f ,均有二阶连续导数,求 .222y x u y x u x ∂∂∂+∂∂ 分析 ⎪⎪⎭⎫ ⎝⎛y x f 可视为由y xt t f =),(复合而成的复合函数, f 对t 的一阶、二阶导数可分别简记为.,"'f f 即 .1'''y f x t f f x ⋅=∂∂⋅=对⎪⎭⎫⎝⎛x y g 也类似. 解x g x g x f y x u ∂∂⋅++∂∂⋅=∂∂⎪⎭⎫⎝⎛-⋅⋅++⋅⋅=2''1x y g x g y f y .''g x y g f ⋅-+= ⎪⎭⎫ ⎝⎛⋅-+∂∂=∂∂''22g x y g f x x u⎪⎭⎫ ⎝⎛-⋅''⋅-'⋅+⎪⎭⎫ ⎝⎛-⋅'+⋅''=2221x y g x y g x y x y g y f g x y f y''⋅+''⋅=321 x g x g x y g x y x f y x u 111'"'2"2⋅-⋅⋅-⋅+⎪⎪⎭⎫ ⎝⎛-⋅=∂∂∂"2"2g x y f y x ⋅-⋅-= 所以 .01"2"2"32"222=⎪⎪⎭⎫ ⎝⎛⋅-⋅-+⎪⎪⎭⎫ ⎝⎛⋅+⋅=∂∂∂+∂∂g x yf y x yg x y f y x y x uy x ux 例8.36 设z 是由方程ze z y x =-+所确定的y x ,的函数,求.2yx z∂∂∂ 解 令z z y x z e F F F e z y x z y x F --===--+=1,1,1,),,(.)1()1(11.11,1111322z zz z z zz y zz z x e e e y z e e y y x z e F F y z e e F F x z +-=+∂∂⋅-=⎪⎭⎫ ⎝⎛+∂∂=∂∂∂+=-=∂∂+=---=-=∂∂ 例8.37 设),(y x z z =由方程0,=⎪⎪⎭⎫⎝⎛++x z y y zx F 所确定,且()v F u,具有连续偏导数 ,则.yzy x z x xy z ∂∂⋅+∂∂⋅+=177证明 ⎪⎭⎫ ⎝⎛-⋅+=2'2'1x z F F F x ='1F -'22F xz⋅; .1111;'2'1'2'1'12'2'22'1F xF y x F y F F F y z F F y z F F z y ⋅+⋅=⋅+⋅=⋅-=+⎪⎪⎭⎫⎝⎛-⋅= .11,11'2'1'22'1'2'1'12'2'2'1'1'2'2'1'22'1yxyF xF F y zF F xF y F y z F F F y z yF xF xyF F x yz F xF y F x z F F F x z z y z x ⋅+-=⋅+⋅⋅--=-=∂∂+-=⋅+⋅⋅--=-=∂∂ 所以 ''''''''2122121122yF xF F xy xzF yF xF yF x yzF xy y zy x z x xy +-++-+=∂∂+∂∂+()().'2'1'2'1'2'1z xy z xy yF xF yF xF xy yF xF z xy =-+=++-++=例8.38 设函数),(u f z =方程dt t p u u x y⎰+=)()(ϕ确定u 是y x ,的函数,其中)(),(u u f ϕ连续且可微,1)('≠u ϕ求.)()(yz x p x z y p ∂∂+∂∂ 解 yuu f y z x u u f x z u f z ∂∂⋅=∂∂∂∂⋅=∂∂=)( ,)(),('', 方程两边对x 求偏导,得)()('x p x u u x u +∂∂=∂∂ϕ,即 .)(1)('u x p x u ϕ-=∂∂ 所以.)()()(''u x p u f x z ϕ-⋅=∂∂1 方程两边对y 求偏导,得)()('y p y u u y u -∂∂⋅=∂∂ϕ,即 .)(1)('u y p y u ϕ--=∂∂ 所以).()()(''u f u y p y z ⋅--=∂∂ϕ1 故 y z x p x z y p ∂∂+∂∂)()(.0)()(1)()()()(1)()(''''=⋅--⋅+⋅-⋅=u f u y p x p u f u x p y p ϕϕ 例8.39求抛物面22y x z +=的一个切平面,使切平面与直线⎩⎨⎧=+=+2212z y z x 垂直.解 已知直线方向向量 {}.1,2,2210201--==→→→→kj ia 抛物面在点()z y x ,,处切平面的法向量为: {}1,2,2-=→y x n .由题意知,→a ∥.→n 即 112222-=-=-y x 得211===z y x ,, 切点为 ).2,1,1( 所求切平面方程为 ,0)2()1(2)1(2=-+----z y x即 .0222=++--z y x例8.40 求球面6222=++z y x 与抛物面22y x z +=的交线在点()2,1,1处的切线方程.178 分析 本题主要是求切向量.因方程组⎪⎩⎪⎨⎧+==++222226y x z z y x 确定了交线⎪⎩⎪⎨⎧===)()(x z x y x x ψϕ .所以可用方程两边对x 求导的方法,解含有dxdzdx dy ,的方程组.从而得切向量 ()(){}.,,10'0'x x T ψϕ=→解 在方程22222,6y x z z y x +==++两边分别对x 求导,得⎪⎪⎩⎪⎪⎨⎧+==++dx dy y x dx dz dx dz z dx dy y x 220222 即⎪⎪⎩⎪⎪⎨⎧-=--=+xdxdz dx dy y x dx dz z dx dy y 22 解得 ,0 ,22=--+=dx dz yz y xz x dx dy所以 ()().0 ,12,1,12,1,1=-=dxdzdx dy 切向量{}0,1,1-=→T , 所求切线方程为⎪⎩⎪⎨⎧=---=-021111z y x , 即⎩⎨⎧==-+202z y x .三、自测试题(时间:120分钟,满分:100分)(一) 填空题(每小题3分,共15分) 1. 函数)1ln()arccos(22y x y x z --++= 的定义域是 .2. 设y xu arctan =, 则=du .3. 曲线⎪⎩⎪⎨⎧+==4422y x z y 在点M )5,4,2(处的切线方程是 .4. =++→→2201)ln(lim y x e x y y x .5. 函数22324y xy x x z -+-=的驻点为 ;极值点为 . (二) 选择题(每小题3分,共15分)1.函数),(y x f 在点),(00y x 处可微,是),(y x f 在),(00y x 可导的() ()A 充要条件;()B 充分条件;()C 必要条件;()D 以上都不对.2. 函数22y xy x z +-=在点()1,1处沿⎭⎬⎫⎩⎨⎧=→41,41l 的方向导数().()A 最大;()B 最小;()C 1; ()D 0.3. 设()⎪⎩⎪⎨⎧=≠++=)0,0(),(,0)0,0(),(,1sin )(,2222y x y x yx y x y x f 则()=0,0'y f()A 0 ;()B 1 ;()C 2;()D .1-4. 椭球面163222=++z y x 上点()3,2,1--处的切平面与平面1=z 的夹角为( ).()A 4π;()B 167arccos ;()C 227arccos ;()D 223arccos .1795. 设,23z xy u -=点M )1,2,1(-,则). (=M gradu()A {}2,4,2;()B {}3,4,2--;()C 62;()D 63.(三) 计算下列各题(每小题12分,共48分)1 设z y x u =,求.,,z uy u x u ∂∂∂∂∂∂2. 设)sin()arctan(z x e y x u xy z +⋅+-=求.du3.设方程1=++zx yz xy 确定隐函数),(y x z z =,求.22y z ∂∂4.设),(22xye y xf z -=,求.22xz ∂∂ (f 具有二阶连续偏导).(四) 求曲面3=+-xy z e z 在点()0,1,2处的切平面与法线方程.(10分)(五) 设一矩形的周长为2.现让它绕其一边旋转,求所得圆柱体体积为最大时矩形的面积及圆柱体体积.(12分)参考答案(一) }111|),.{(122<+≤+≤-y x y x y x 且;).0,0();2,2(),0,0.(5 ;2ln .4 ;403.3 ;.222⎩⎨⎧==+-+-y z x y x xdyydx (二) ..5 ;.4 ;.3 ;.2 ;.1B D A A B(三) ;.11-=∂∂z y z x y x u ;ln 1x z x y y uz y z -=∂∂.ln ln y x x y z u z y z =∂∂ dx z x e z x y e y x y x z du xyxy zz ⎥⎥⎦⎤⎢⎢⎣⎡++++-+-=-)(cos )sin()(1)(.221 dy z x x e y x y x z xy z z ⎥⎥⎦⎤⎢⎢⎣⎡++-+--+-)sin()(1)(21 .)cos()(1)ln()(2dz z x e y x y x y x xyzz ⎥⎥⎦⎤⎢⎢⎣⎡++-+--+ .)()(2.3222y x z x yz ++=∂∂.442.422221211222122f e y f xye f x f e y f xz xy xy xy ''+''+''+'+'=∂∂ (四) 切平面方程为:.04-2=+y x 法线方程为: ⎩⎨⎧==--0032z y x(五) 矩形面积为:;92=s 最大体积为:.274π=V。

第九章多元函数微分法及其应用习题

第九章多元函数微分法及其应用习题


练习 9—2 1.计算下列各题: (1) u = arctan( x − y ) ,求 u y , u z ;
z
偏导数
(2)设
f ( x, y) = ∫
x2 + y 2 x
et dt ,求 f x (1, 2) ;
(3) 设 z = sin y + f (sin x − sin y ) ,其中 f (u ) 可微,求 z y ;
2
(B) a
∂z ∂z + b =1. ∂x ∂y
(C) b
(D) a
∂z ∂z −b =1. ∂x ∂y ∂2 z = ∂x 2
(5)设 z = z ( x, y ) 由方程 x + y + z − 4 z = 0 确定,
2 2
2 2 (A) x + (2 − 3z ) . (2 − z )
(B)
: 2.求下列函数的偏导数(其中 f 具有一阶连续偏导数) (1) u = f ( , ) ;
x y y z
(2) u = f ( x, xy , xy sin z ) .
2
3.设 z = xy + yF (u ) ,而 u =
x ∂z ∂z + y −z. , F (u ) 为可导函数,计算: x y ∂x ∂y
=0.005x2y,已知甲,乙两种原料的单价分别为 1 元,2 元,现用 150 元购料,问购进两
种原料各多少,使产量 f ( x, y ) 最大?最大产量是多少?
总 习 题 九 1.填空题: ⑴ 设z =
1 ∂2z = f ( xy ) + yϕ ( x + y ),f,ϕ 具有二阶连续导数,则 ∂x∂y x

第九章多元函数微分法及其应用+单元自测题答案(1)

第九章多元函数微分法及其应用+单元自测题答案(1)

第九章 多元函数微分法及其应用1、 填空题1) 设()xy y x z -+=22arcsin ,其定义域为(){}0,1,22≥>≤+x y y xy x2) 函数223z x xy y =++的偏导数x z =y x 32+,y z =y x 23+3) 函数xyz e =在点(2,1)处的全微分dz =dy e dx e 222+4) 设sin z uv t =+,而,cos t u e v t ==,则dzdt=t t u ve t cos sin +- 5) ()y x f z ,=在点()y x ,的偏导数x z ∂∂及yz ∂∂存在是()y x f ,在该点可微分的 必要 条件 6)()()xy xy y x 42lim0,0,+-→=41-7) 函数xy x y z 2222-+=在(){}02,2=-x y y x 间断8) 设2lnx y z +=,则在点()1,1,10M 的法线方程为111111--=-=-z y x9) 曲面1232222=++z y x 上点()1,2,1-处的切平面方程为()()()0162812=-++--z y x10) 设()222ln zy x u ++=在点()2,2,1-M 处的梯度=M gradu()2,2,192- 11) 设()xz y x z y x f ++=2,,,则()z y x f ,,在()1,0,1沿方向→→→→+-=k j i l 22的方向导数为35 2、 求ln()z x x y =+的二阶偏导数解:y x x y x x z +++=∂∂)ln( yx xy z +=∂∂2222)(2)(1y x y x y x y y x x z ++=+++=∂∂ 222)()(1y x yy x x y x y x z +=+-+=∂∂∂ 22)(y x y x y z +=∂∂∂ 222)(y x xy z +-=∂∂ 3、 sin uz e v =,而,u xy v x y ==+,求z x ∂∂和z y∂∂ 解:)cos()sin(cos sin y x e y x ye v e v ye xv v z x u u z x z xy xy u u +++=+=∂∂∂∂+∂∂∂∂=∂∂ )cos()sin(cos sin y x e y x xe v e v xe yv v z y u u z y z xy xy u u +++=+=∂∂∂∂+∂∂∂∂=∂∂ 4、 已知20xyzez e --+=,求z x ∂∂,z y ∂∂,22xz∂∂解:令z xy e z e z y x F +-=-2),,( 则xy x ye F --= xyy xeF --= z z e F +-=2所以 2-=-=∂∂-z xy z x e ye F F x z 2-=-=∂∂-zxyz y e xe F F y z 322222222)2(])2[()2(2)2()2()2(-+--=-----=-∂∂---=∂∂-------z xy z z xy z z xyz xy z xy z zxyz xye e e e e y e e ye e ye e e y e x z eye e ey x z5、 设0,1,xu yv yu xv -=⎧⎨+=⎩求,,,u u v vx y x y ∂∂∂∂∂∂∂∂ 解:将方程的两边对X 求导并移项,得⎪⎩⎪⎨⎧-=∂∂+∂∂-=∂∂-∂∂vx v x xu y u x v y x ux 在条件下022≠+=-y x x y y x 则22y x yv xu xy y x x v yu x u ++-=----=∂∂22y x xvyu xy y x v y u x xv +-=---=∂∂将方程的两边对y 求导并移项,得⎪⎪⎩⎪⎪⎨⎧-=∂∂+∂∂=∂∂-∂∂u y v x yu y v yv y y ux 在条件下022≠+=-y x xy y x22y x yu xv x y y x x u y v y u +-=---=∂∂22y x yvxu xy y x u y vxyv++-=--=∂∂6、 求曲线⎩⎨⎧=-+-=-++0453203222z y x x z y x 在点()1,1,1处的切线及法平面方程.解:⎪⎩⎪⎨⎧-=+--=+2532322dx dz dx dy x dx dz z dx dyy则z y z x z y z x dx dy 61041015532252223++-=---=z y xy z y xy dx dz 610694532223232+-+-=----=169)1,1,1(=dxdy 161)1,1,1(-=dxdz 故所求切线方程为:1)1(169)1(1611--=-=-z y x 所求法平面方程为:0)1()1(9)1(16=---+-z x x7、 求旋转抛物面221z x y =+-在点(2,1,4)处的切平面及法线方程. 解:令1),,(22--+=z y x z y x F 则}1,2,2{},,{-==y x F F F n z y x}1,2,4{)4,1,2(-=n切平面方程:0)4()1(2)2(4=---+-z y x法线方程:142142--=-=-z y x 8、 求函数2yz xe =在点(1,0)P 处沿从点(1,0)P 到点)1,2(Q 的方向的方向导数.解:}1,1{=PQ 则与PQ 同向的单位向量是}22,22{1)0,1(2)0,1(==∂∂ye xz22)0,1(2)0,1(==∂∂yxe yz故方向导数为223)0,1(=∂∂lz9、 问函数z xy u 2=在点()2,1,1-P 处沿什么方向的方向导数最大?并求此方向导数的最大值.解:→→→+-=k j i g r a d u 42是方向导数取最大值的方向,此方向导数的最大值为21=gradu10、求函数y x y x y x f 44),(22+-+=的极值解:⎩⎨⎧=+==-=042042y f x f yx 得驻点(2,-2)2=xx f 0=xy f 2=yy f 在(2,-2)点002>>-A B AC 且函数在(2,-2)有极小值 -811、欲选一个无盖的长方形水池,已知底部造价为每平方米a 元,侧面造价为每平方米b 元,现用A 元造一个容积最大的水池,求它的尺寸. 解:设长为x 宽为y 高为z问题可看作xyz V =在条件byz bxz axy A 22++=下的最值 令())22(,,,A byz bxz axy xyz z y x F -+++=λλ⎪⎪⎩⎪⎪⎨⎧++==++==++==++=)(22)(022)(02)1(024  3 2 byz bxz axy A y b x b xy F z b x a xz F z b y a yz F z yx λλλλλλ 由(1)—(2)可得 y x =或)-y x (与实际意义矛盾,舍去可推出=-=λa z 将y x =代入(3)得 λb y x 4-==(5) 将(5)代入(1)得到 λa z 2-= (6) 将(5)(6)代入(4)可以得到 2248abA=λ,分别代入(5)(6)可得 a A y x 3==宽长,aA b a z 32=高 12、抛物面22y x z +=被平面1=++z y x 截成一椭圆,求原点到这个椭圆的最长与最短距离.解:问题可看作2222z y x d ++=在条件⎩⎨⎧=+++=122z y x y x z 下的最值,令()()()1,,,,22222-+++-++++=z y x u z y x z y x u z y x F λλ⎪⎪⎪⎩⎪⎪⎪⎨⎧=-+++==+-==++==++=)(01)()(02)(022)1(022225  4 3 2 z y x y x z u z F u y y F u x x F z y x λλλ 由(1)(2)知 )1(2λμ+-==y x (6),由(3)得 2μλ-=z (7)由(4)(5)得x x 2122-= (8) 将(6)(7)代入(8)得到)31)(1(±-+=λμ (9)将(9)代入(1)得到 231 -==y x (10) 由(5)得到 3221±=-=x z (11)将(10)(11)代入 2222z y x d ++=求得最长距离为:359+,最短距离为:359-。

第9章 多元函数微分法及其应用(题库)

第9章 多元函数微分法及其应用(题库)

共计 8 页
24.(8-5)已知 ln x y arctan
2 2
dy y ,求 . x dx
25.(8-5)设 x y z 4 z 0 ,求
2 2 2
z . x
x t sin t 26.(8-6)曲线 y 1 cos t 在点 1,1, 2 2 处的切线方程是( 2 t z 4sin 2
z . x
11.(8-2)求 z x 3 xy y 在点 1, 2 处的偏导数
2 2
z . y
12.(8-2)已知理想气体的状态方程 pV RT ( R 为常数) ,求 A.
p ( V
).
RT V2
3 2
B.
R p
3
C.
V R
D. 1
2 z 13.(8-2)设 z x y 3 xy xy 1 ,求 2 . x
45.(8-8)某工厂要制一个体积 2 m 的有盖的长方体水箱,问长、宽、高各取多少尺寸, 可使用料最省?最省为多少?
3
第 9 章 多元函数微分法及其应用(题库)
第 7 页
共计 8 页
B 组 提高题
xy 2 2 1. 设 f x, y x y 0
x, y 0, 0 x, y 0, 0
第 9 章 多元函数微分法及其应用(题库)
第 4 页
共计 8 页
C.
x 1 y 2 z 2 1 0
2 2
D. x 2 y 4 0 ).
30.(8-6)旋转抛物面 z x y 1 在点 2,1, 4 处切平面的一般方程为( A. 4 x 2 2 y 1 z 4 0 C. 4 x 2 y z 6 0

多元函数微分法及其应用习题

多元函数微分法及其应用习题
多元函数微分法及其应用 习
• 多元函数微分法概述 • 多元函数极值问题 • 多元函数微分法的几何意义 • 多元函数微分法的应用实例 • 习题解析与解答
01
多元函数微分法概述
定义与性质
定义
多元函数微分法是研究多元函数在某 点附近的变化的一种方法,包括偏导 数、全微分、方向导数和梯度等概念 。
性质
习题二解析与解答
总结词
抽象思维能力
详细描述
这道题目考察了学生的抽象思维能力,需要 学生通过分析问题,将实际问题转化为数学 模型,并运用多元函数微分法进行求解。通 过解答这道题目,学生可以培养自己的抽象
思维能力,提高数学建模的能力。
习题二解析与解答
要点一
总结词
综合应用能力
要点二
详细描述
这道题目考察了学生对多元函数微分法的综合应用能力, 需要学生将理论知识与实际问题相结合,通过解决实际问 题来提高自己的应用能力。通过解答这道题目,学生可以 加深对多元函数微分法的理解,提高自己的综合应用能力 。
多元函数极值问题
无约束极值问题
无约束极值问题是指在定义域内, 函数值不受任何限制的极值问题。 求解无约束极值问题通常采用梯 度法、牛顿法等。
梯度法的基本思想是通过不断迭 代,沿着函数值下降最快的方向 逼近极值点。在每一步迭代中, 都需要计算函数的梯度,并根据 梯度信息更新迭代点。
牛顿法的基本思想是通过不断迭 代,逼近函数的零点,从而找到 极值点。在每一步迭代中,需要 计算函数的Hessian矩阵(二阶 导数矩阵)和梯度向量,并根据 这些信息更新迭代点。
多元函数的微分法具有一系列性质, 如可加性、可乘性和可线性化等,这 些性质在解决实际问题中具有重要应 用。
偏导数与全微分

多元函数微分学及应用经典例题

多元函数微分学及应用经典例题

. 解方程组
.
解得
,
,
.

任意一个成立时, 都有
. 所以, 当边长为
有最大体积
.
十七. 求原点到曲面
的最短距离.
解. 设曲面上达到最短距离的点为(x , y , z ), 则
达到最小值.

, 由(3) 若 = 1
代入(1), (2) 得 得到
, 解得
. 代入曲面方程
,
,
由(3) 若
由(3) 解得
. 由(1), (2) 得到
. 代入曲面方程
, 得到
,
,
,
所以所求的最短距离为
.
十八. 当
时, 求函数 上的最大值, 并证明对任意的成立不等式
在球面
解. 构造函数
,
解得
因为在球面上当
.
所以当
时, u 达到最大值.
对于任意正实数
,令
. 原题条件极值问题转化为
注意到
. 于是

.
五. 设
, 其中 f 具有二阶连续偏导数, 求
.
解.
=
六. 已知
.
解.
=
=
=
七. 设
确定, 求
.
解. 以上两式对 x 求导, 得到关于
的方程组
由克莱姆法则解得
,
八. 设
解.
=
于是
=
= 0
九. 设
, 其中 f ( u , v ) 具有二阶连续偏导数,
二阶可导, 求
.
解.
=
十. 已知
,
,
p ( t ) 连续, 试求
.
解.

多元函数微分法及其应用(习题和详细解答)

多元函数微分法及其应用(习题和详细解答)

多元函数微分法及其应用(习题)(A)1.填空题(1)若()y x f z ,=在区域D 上的两个混合偏导数y x z ∂∂∂2,x y z∂∂∂2 ,则在D 上,xy zy x z ∂∂∂=∂∂∂22。

(2)函数()y x f z ,=在点()00,y x 处可微的 条件是()y x f z ,=在点()00,y x 处的偏导数存在。

(3)函数()y x f z ,=在点()00,y x 可微是()y x f z ,=在点()00,y x 处连续的 条件。

2.求下列函数的定义域(1)y x z -=;(2)22arccos yx z u +=3.求下列各极限(1)x xy y x sin lim 00→→; (2)11lim 00-+→→xy xyy x ; (3)22222200)()cos(1lim y x y x y x y x ++-→→4.设()xy x z ln =,求y x z ∂∂∂23及23y x z∂∂∂。

5.求下列函数的偏导数 (1)xyarctgz =;(2)()xy z ln =;(3)32z xy e u =。

6.设u t uv z cos 2+=,t e u =,t v ln =,求全导数dt dz 。

7.设()z y e u x -=,t x =,t y sin =,t z cos =,求dtdu。

8.曲线⎪⎩⎪⎨⎧=+=4422y y x z ,在点(2,4,5)处的切线对于x 轴的倾角是多少? 9.求方程1222222=++cz b y a x 所确定的函数z 的偏导数。

10.设y x ye z x 2sin 2+=,求所有二阶偏导数。

11.设()y x f z ,=是由方程y z z x ln =确定的隐函数,求x z ∂∂,yz∂∂。

12.设x y e e xy =+,求dxdy。

13.设()y x f z ,=是由方程03=+-xy z e z确定的隐函数,求x z ∂∂,y z ∂∂,yx z∂∂∂2。

第九章习题多元函数的微分法及其应用

第九章习题多元函数的微分法及其应用

第九章习题多元函数的微分法及其应⽤第九章多元函数的微分法及其应⽤⼀、填空题:1. 极限=-+→→xy xy y x 24lim 00 。

2. 若221ln ),(y x y x f ++=,则=)1,1(df 。

3. 设),(y x z z =由⽅程x xyz e z sin =-确定,则xz ??= 。

4. 设函数2sin z y e u x ++=,则梯度=)2,0,0(gradu 。

5. 曲线1,cos ,sin -==+=t e z t y t t x 在点(0,1,0)处的切线⽅程是。

⼆、选择题:1. 函数),(y x f z =在点),(00y x 处两个⼀阶偏导数为零是),(y x f 在点),(00y x 取到极值的()。

(A )充分但⾮必要条件(B )必要但⾮充分条件(C )充分必要条件(D )⾮充分、⾮必要条件2. 下列命题正确的是()。

(A )若函数),(y x f 在点),(00y x 处两个⼀阶偏导数都存在,则),(y x f 在该点连续(B )若函数),(y x f 在点),(00y x 处连续,则在该点处),(y x f 的两个⼀阶偏导数都存在(C )若函数),(y x f 的两个⼀阶偏导函数在点),(00y x 处连续,则),(y x f 在该点可微(D )若函数),(y x f 在点),(00y x 处可微,则),(y x f 的两个⼀阶偏导函数在该点处连续3. 曲⾯72=+-xy z e z在点()2,3,0处的切平⾯⽅程为()。

(A) 12223=-+z y x (B) 12223=++z y x(C) 1223=-+z y x (D) 1223=++z y x4. 考察⼆元函数(,)f x y 的下列四条性质①),(y x f 在点),(00y x 处连续②),(y x f 在点),(00y x 的邻域内偏导函数在该点连续③),(y x f 在点),(00y x 处可微④),(y x f 在点), (00y x 处偏导数都存在若⽤""P Q →表⽰由性质P 推出性质Q ,则正确的是()。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(B) f ( x, y ) 在 D 内必连续. (D)以上结论都不对.
(C) f ( x, y ) 在 D 内必可微. 2.求下列函数的全微分: (1) z = ln(tan
y ); x
(2)
u = x yz

3. 设 z = f (e sin y ) , f 可微,求 dz .
x
练习 9—4 1.计算下列各题:
练习 9—5
x
隐函数求导公式
1.设 sin y + e − xy = 0 确定了函数 y = y ( x ) ,用两种方来自求2dy . dx
2.计算下列各题: (1)设 e
− xy
− 2 z + e − z = 0 ,求
∂z ∂z , ; ∂x ∂y
(2)设
x z = ln ,求 z x , z y . z y
多元复合函数的求导法则
(1) z = arcsin( x − y ),x = 3t,y = 4t ,求
3
dz ; dt
(2) 设 z = u + vw ,而 u = x + y,v = x ,w = xy ,求 dz ;
2 2
(3) u =
e ax ( y − z ) du ,而 y = a sin x,z = cos x, 求 . 2 dx a +1
2
∂2 f > 0. ∂x 2
(3)设 f ( x, y ) 在点 ( x0 , y0 ) 处有偏导数存在,则 lim
h →0
f ( x0 + 2h, y0 ) − f ( x0 − h, y0 ) = h
'
(A) 0.
(B) 3 f x ( x0 , y0 ) .
'
(C)2 f x ( x0 , y0 ) .
y x −x 2 2 . (B) e ln( x + y ) . (C) . (D) arctan(1 + xy ) . x+ y x
4x − y 2
2.求下列函数的定义域: (1) z =
ln(1 − x 2 − y 2 )

(2) z =
x− y .
3.求下列极限: (1) lim
x →0 y →1
y x
练习 9—7 1.填空题:
2 2 2
方向导数与梯度 . .
(1)函数 u = ln( x + y + z ) 在点 M (1, 2, −2) 处的梯度 gradu (2)函数 r =
x 2 + y 2 + z 2 ,则梯度 gradr
2
(3)函数 u = ln( x + 数
2 2
y 2 + z 2 ) 在点 A(1, 0,1) 处沿点 A 指向点 B (3, −2, 2) 方向的方向导
(D) f x ( x0 , y0 ) .
'
(4)设 z = z ( x, y ) 是由方程 F ( x − az , y − bz ) = 0 所定义的隐函数,其中 F (u , v) 是变量
u, v 的任意可微函数, a, b 为常数,则必有
(A) b
∂z ∂z + a =1. ∂x ∂y ∂z ∂z − a =1. ∂x ∂y

练习 9—2 1.计算下列各题: (1) u = arctan( x − y ) ,求 u y , u z ;
z
偏导数
(2)设
f ( x, y) = ∫
x2 + y 2 x
et dt ,求 f x (1, 2) ;
(3) 设 z = sin y + f (sin x − sin y ) ,其中 f (u ) 可微,求 z y ;
2 3
(B)
x −1 y +1 z = = . 4 −4 −1 x −1 y +1 z = = . 4 4 −1
(C)
(D)
(3) 在曲线 x = t , y = −t , z = t 的所有切线中,与平面 x + 2 y + z = 4 平行的切线 (A)只有 1 条. (B)至少有 3 条. (C)只有 2 条. (D)不存在.
(A)连续,偏导数存在. (C)不连续,偏导数存在.
2 3
(B)连续,偏导数不存在. (D)不连续,偏导数不存在. .
(7)函数 u = xy + yz 在点 M (2, −1,1) 处的梯度 gradu 等于 (A) −
1 . 3
G
(B) −5 .
(C) (1, −3, −3) .
(D) (−1, −3, −3) .
第九章
1.选择题:
多元函数微分法及其应用
练习 9—1
2
多元函数的基本概念
(1) 设 f ( x + y, x − y ) = xy + y ,则 f ( x, y ) = (A)
x ( x − y ) . (B) xy + y 2 . 2
(C)
x ( x + y) . 2
(D) x − xy .
2
e x cos y = (2) lim x →1 1 + x 2 + y 2 y →0
练习 9—8 多元函数的极值及其求法 1.求 f ( x, y ) = ( x + y + 2 y )e 极值点及极值.
2 2x
x2 y2 + ≤ 1 上的最大值和最小值. 2.求函数 z = x + 3 y − 2 x 在闭域 D: 9 4
2 2
乙两种原料的数量 x,y 之间有关系式 f ( x, y ) 3. 设生产某种产品的数量 f ( x, y ) 与所用甲、
2.求曲线 x = cos t , y = sin t , z = 2t 在点 (
2 2 π , , ) 处的切线及法平面方程. 2 2 2
3.为使平面 3 x − ky − 3 z + 16 = 0 与曲面 3 x + y + z = 16 相切,求 k .
2 2 2
4.证明曲面 z = xf ( ) 在任一点处的切平面都通过原点.
∂f ∂f , 均存在是 f ( x, y ) 在 ( x0 , y0 ) 处连续的 ∂x ∂y
(C)充分必要.
条件
(B)必要. .
(D)既不充分也不必要.
∂f >0,则 ∂x
(A) f ( x, y ) 关于 x 为单调递增 . (C )
(B) f ( x, y ) > 0 . (D) f ( x, y ) = x( y + 1) .
3.设 ⎨
⎧x = u + v ⎩y = u + v
2 2
,求
∂u ∂u , . ∂x ∂y
2 ⎧ dz dy ⎪x + y + z + z = 0 ,求 , . 4.设 ⎨ 2 3 dx dx ⎪ ⎩x + y + z + z = 0
练习 9—6 1.选择题:
多元函数微分学的几何应用
(1)曲面 z = F ( x, y, z ) 的一个法向量为 . (A) ( Fx′, Fy′ , Fz′ − 1 ) (C) ( Fx′, Fy′, Fz′ ) .
x 2 − (2 − z ) 2 . (2 − z )3
(C)
x 2 − (2 + z ) 2 x 2 + (2 − z ) 2 . . ( D ) (2 + z )3 (2 + z )3
⎧ xy , ( x, y ) ≠ (0,0) ⎪ (6) 二元函数 f ( x, y ) = ⎨ x 2 + y 2 ,在点 (0,0) 处 ⎪ ( x, y ) = (0,0) ⎩ 0,
=0.005x2y,已知甲,乙两种原料的单价分别为 1 元,2 元,现用 150 元购料,问购进两
种原料各多少,使产量 f ( x, y ) 最大?最大产量是多少?
总 习 题 九 1.填空题: ⑴ 设z =
1 ∂2z = f ( xy ) + yϕ ( x + y ),f,ϕ 具有二阶连续导数,则 ∂x∂y x
3.求曲线 r = f ( t ) = (1 − cos t ) i + ( t − sin t ) j + 4sin
(A) 0. (3)下列极限存在的为 (A)lim
x →0 y →0
(B)1.
(C)
1 . e
(D)
e . 2
x 1 1 x2 . (B)lim . (C)lim x sin .(D)lim . x →0 x + y x →0 x →0 x + y x+ y x+ y y →0 y →0 y →0
(4)有且仅有一个间断点的函数为 (A)
ln( x + e y )
x2 + y2

(2) lim
1 + y + ex ; x → 0 arctan x 2 + y 2 ( ) y →1
(3) lim x + y
2 x →0 y →0
(
2
) arcsin
1 . xy
(4) lim
x →0 y →0
1 − cos x 2 + y 2
ln (1 + x 2 + y 2 )
2 2
(B) ( Fz′ − 1, Fy′ − 1, Fz′ − 1 ) . (D) ( − Fz′,− Fy′ ,1 ) .
(2)旋转抛物面 z = 2 x + 2 y − 4 在点(1, −1 ,0)处的法线方程为 (A)
相关文档
最新文档