多元统计分析习题分为三部分思考题验证题和论文题
多元统计分析实验报告
第二部分:实验过程记录(可加页) (包括实验原始数据记录,实验现象记录,实验过程发现的问题
等) 操作步骤: 1、 执行“分析”—“比较均值”—“单因素方差分析” ; 2、 在弹出的单因素方差分析对话框中,将时期选为因子,将 X1、X2、X3、X4 选为因变量; 3、 单击“对比” ,选择“多项式” ,在后面的下拉菜单中选择“线性” ,然后继续; 4、 单击“两两比较” ,选择“LSD”和“S-N-K” ,显著性水平默认为 0.05,然后继续; 5、 单击“选项” ,选择“方差同质性检验”和“均值图” ,然后继续,点击“确定”后即可输出结果。
12
题目:研究者提出,随着时间的推移头骨尺寸会发生变化,这是外来移民与原住民人口民族融合的证据。表 6.13 是古埃及三个时期的男性头骨的四个观测值得观测数据,这是个观测变量是: X1=头骨最大的最大宽度 X2=头骨高度 X3=头骨底穴至齿槽的长度 X4=头骨鼻梁高度 对古埃及头骨数据构造单因子 MANOVA 表, a=0.05.并构造 95%联合置信区间来判断在三个时期中哪个分 令 量的均值发生了改变。同常的 MANOVA 假设对这些数据是不是合理的?请解释。 部分数据如下:
实验课程名称:多元统计分析-均值向量检验
实验项目名称 实 验 者 同 组 者
均值向量检验习题 均值向量检验习题 6.24
专业班级
实验成绩 实验成绩 组 别 年 月 日
实验日期
一部分:实验预习报告(包括实验目的、意义,实验基本原理与方法,主要仪器设备及耗材,实验
方案与技术路线等) 实验目的:深入了解方差分析及方差分析的概念,掌握方差分析的基本原理;掌握方差分析的过程;增强实 践能力,能够动手用统计软件解决实际问题,熟练掌握方差分析的基本操作。 实验原理:多个正态总体均值向量检验(多元方差分析) 设 有 k 个 p 元 正 态 总 体 N p ( µ1 , Σ), L , N p ( µ k , Σ) , 从 每 个 总 体 抽 取 独 立 样 品 个 数 分 别 为
(完整版)多元统计分析思考题答案
《多元统计分析》思考题答案记得老师课堂上说过考试内容不会超出这九道思考题,如下九道题题目中有错误的或不清楚的地方,欢迎大家指出、更改、补充。
1、 简述信度分析答题提示:要答可靠度概念,可靠度度量,克朗巴哈α系数、拆半系数、单项与总体相关系数、稀释相关系数等(至少要答四个系数,至少要给出两个指标的公式)答:信度(Reliability )即可靠性,它是指采用同样的方法对同一对象重复测量时所得结果的一致性程度。
信度指标多以相关系数表示,大致可分为三类:稳定系数(跨时间的一致性),等值系数(跨形式的一致性)和内在一致性系数(跨项目的一致性)。
信度分析的方法主要有以下四种:1)、重测信度法这一方法是用同样的问卷对同一组被调查者间隔一定时间重复施测,计算两次施测结果的相关系数。
重测信度属于稳定系数。
重测信度法特别适用于事实式问卷,如果没有突发事件导致被调查者的态度、意见突变,这种方法也适用于态度、意见式问卷。
由于重测信度法需要对同一样本试测两次,被调查者容易受到各种事件、活动和他人的影响,而且间隔时间长短也有一定限制,因此在实施中有一定困难。
2)、复本信度法复本信度法是让同一组被调查者一次填答两份问卷复本,计算两个复本的相关系数。
复本信度属于等值系数。
复本信度法要求两个复本除表述方式不同外,在内容、格式、难度和对应题项的提问方向等方面要完全一致,而在实际调查中,很难使调查问卷达到这种要求,因此采用这种方法者较少。
3)、折半信度法折半信度法是将调查项目分为两半,计算两半得分的相关系数,进而估计整个量表的信度。
折半信度属于内在一致性系数,测量的是两半题项得分间的一致性。
这种方法一般不适用于事实式问卷(如年龄与性别无法相比),常用于态度、意见式问卷的信度分析。
在问卷调查中,态度测量最常见的形式是5级李克特(Likert )量表。
进行折半信度分析时,如果量表中含有反意题项,应先将反意题项的得分作逆向处理,以保证各题项得分方向的一致性,然后将全部题项按奇偶或前后分为尽可能相等的两半,计算二者的相关系数。
(完整版)多元统计分析试题及答案
2009学年第2学期 考试科目:多元统计分析 考试类型:(闭卷) 考试时间:100 分钟学号 姓名 年级专业一、填空题(5×6=30)22121212121~(,),(,),(,),,1X N X x x x x x x ρμμμμσρ⎛⎫∑==∑=⎪⎝⎭+-1、设其中则Cov(,)=____.10312~(,),1,,10,()()_________i i i i X N i W X X μμμ='∑=--∑、设则=服从。
()1234433,492,3216___________________X x x x R -⎛⎫ ⎪'==-- ⎪ ⎪-⎝⎭=∑、设随机向量且协方差矩阵则它的相关矩阵4、__________, __________,________________。
215,1,,16(,),(,)15[4()][4()]~___________i p p X i N X A N T X A X μμμμ-=∑∑'=--、设是来自多元正态总体和分别为正态总体的样本均值和样本离差矩阵,则。
二、计算题(5×11=50)(),123设X=x x x 的相关系数矩阵通过因子分析分解为211X h =的共性方差111X σ=的方差21X g =1公因子f 对的贡献121330.93400.1280.9340.4170.8351100.4170.8940.02700.8940.44730.8350.4470.1032013R ⎛⎫- ⎪⎛⎫⎛⎫ ⎪-⎛⎫ ⎪ ⎪⎪=-=-+ ⎪ ⎪ ⎪ ⎪⎝⎭ ⎪ ⎪ ⎪⎝⎭⎝⎭ ⎪⎪⎝⎭12332313116421(,,)~(,),(1,0,2),441,2142X x x x N x x x x x μμ-⎛⎫⎪'=∑=-∑=-- ⎪ ⎪-⎝⎭-⎛⎫+ ⎪⎝⎭、设其中试判断与是否独立?11262(90,58,16),82.0 4.310714.62108.946460.2,(5)( 115.6924)14.6210 3.17237.14.5X S μ--'=-⎛⎫ ⎪==-- ⎪ ⎪⎝⎭0、对某地区农村的名周岁男婴的身高、胸围、上半臂围进行测量,得相关数据如下,根据以往资料,该地区城市2周岁男婴的这三个指标的均值现欲在多元正态性的假定下检验该地区农村男婴是否与城市男婴有相同的均值。
多元统计复习资料
多元统计分析考试内容最后成绩作业50% 考试50% 他们班这样 不知咱们班什么情况 估计也差不多 考试一共八道题 分三大类(卷面值100分 最后折合成50分) 一 计算题 (每题12分)1 计算性的判别分析题 主要用Fisher 判别法 要掌握公式的方法原理2 聚类分析题 主要应用两种聚类法:系统聚类法和模糊聚类法题中会给出距离或相关系数矩阵直接计算 老师强调要看清题意 不要做无用功! 3如何将非线性函数形式用线性回归的方法将其线性化 写出其过程 可能不涉及计算 二 简答(简答哦 不要长篇大论免得后面的题没时间做 主要作概略性总结即可)在这一部分中主要有三道题(分值分别10 10 12)老师没有具体给出三道题的题目 只是举了些例子 回答问题的主要思路是:统计分析方法的基本思想,基本原理与应用,在应用中要注意的问题 个别要回答与其他方法的对比 举的主要例子有(个人以为前两个比较重要):1 回归分析模型:回归方程的基本假定,涉及到回归分析方程系数为何作显著性检验 统计性的依据是什么(方差分析) 给出一个回归分析方程如何作显著性检验2 判别分析:判别分析的优良性 两方面考虑:(1)组与组之间的差别是否显著有无必要作判别分析 (2)误判率下面的几个例子 主要也是按上面的思路回答 因子分析 聚类分析(不会四种方法一块考,会选其中某个或某两个) 主成分分析的基本思想 可以做什么应用及在应用中要选几个主成分 对应分析的基本思想 三 发挥题(每题16分)这个部分老师会给出问题的背景及所问的问题,个人结合自己所学的几种分析方法 选择适合的作分析 没有标准答案,只要能自圆其说即可 注意:第一步一定要先指出自己所用的分析方法 老师没有说具体会考什么题只是说不会考很专业的 自由发挥 简单提到一个例子就是教学评价的问题 也没有说用什么方法 他说不同的人会采用不同的方法 一道题不会只有一种解决方法.题量大,做不完1 计算题1.1 计算性的判别分析题 主要用Fisher 判别法 要掌握公式的方法原理处理概率分布未知的判别问题中的最著名的方法。
多元统计学多元统计分析试题(A卷)(答案)
《多元统计分析》试卷1、若),2,1(),,(~)(n N X p =∑αμα 且相互独立,则样本均值向量X 服从的分布为2、变量的类型按尺度划分有_间隔尺度_、_有序尺度_、名义尺度_。
3、判别分析是判别样品 所属类型 的一种统计方法,常用的判别方法有__距离判别法_、Fisher 判别法、Bayes 判别法、逐步判别法。
4、Q 型聚类是指对_样品_进行聚类,R 型聚类是指对_指标(变量)_进行聚类。
5、设样品),2,1(,),,('21n i X X X X ip i i i ==,总体),(~∑μp N X ,对样品进行分类常用的距离有:明氏距离,马氏距离2()ijd M =)()(1j i j i x x x x -∑'--,兰氏距离()ij d L =6、因子分析中因子载荷系数ij a 的统计意义是_第i 个变量与第j 个公因子的相关系数。
7、一元回归的数学模型是:εββ++=x y 10,多元回归的数学模型是:εββββ++++=p p x x x y 22110。
8、对应分析是将 R 型因子分析和Q 型因子分析结合起来进行的统计分析方法。
9、典型相关分析是研究两组变量之间相关关系的一种多元统计方法。
一、填空题(每空2分,共40分)1、设三维随机向量),(~3∑μN X ,其中⎪⎪⎪⎭⎫ ⎝⎛=∑200031014,问1X 与2X 是否独立?),(21'X X 和3X 是否独立?为什么?解: 因为1),cov(21=X X ,所以1X 与2X 不独立。
把协差矩阵写成分块矩阵⎪⎪⎭⎫⎝⎛∑∑∑∑=∑22211211,),(21'X X 的协差矩阵为11∑因为12321),),cov((∑='X X X ,而012=∑,所以),(21'X X 和3X 是不相关的,而正态分布不相关与相互独立是等价的,所以),(21'X X 和3X 是独立的。
多元统计学多元统计分析试题(A卷)(答案)
《多元统计分析》试卷1、若),2,1(),,(~)(n N X p =∑αμα 且相互独立,则样本均值向量X 服从的分布为2、变量的类型按尺度划分有_间隔尺度_、_有序尺度_、名义尺度_。
3、判别分析是判别样品 所属类型 的一种统计方法,常用的判别方法有__距离判别法_、Fisher 判别法、Bayes 判别法、逐步判别法。
4、Q 型聚类是指对_样品_进行聚类,R 型聚类是指对_指标(变量)_进行聚类。
5、设样品),2,1(,),,('21n i X X X X ip i i i ==,总体),(~∑μp N X ,对样品进行分类常用的距离有:明氏距离,马氏距离2()ijd M =)()(1j i j i x x x x -∑'--,兰氏距离()ij d L =6、因子分析中因子载荷系数ij a 的统计意义是_第i 个变量与第j 个公因子的相关系数。
7、一元回归的数学模型是:εββ++=x y 10,多元回归的数学模型是:εββββ++++=p p x x x y 22110。
8、对应分析是将 R 型因子分析和Q 型因子分析结合起来进行的统计分析方法。
9、典型相关分析是研究两组变量之间相关关系的一种多元统计方法。
一、填空题(每空2分,共40分)1、设三维随机向量),(~3∑μN X ,其中⎪⎪⎪⎭⎫ ⎝⎛=∑200031014,问1X 与2X 是否独立?),(21'X X 和3X 是否独立?为什么?解: 因为1),cov(21=X X ,所以1X 与2X 不独立。
把协差矩阵写成分块矩阵⎪⎪⎭⎫⎝⎛∑∑∑∑=∑22211211,),(21'X X 的协差矩阵为11∑因为12321),),cov((∑='X X X ,而012=∑,所以),(21'X X 和3X 是不相关的,而正态分布不相关与相互独立是等价的,所以),(21'X X 和3X 是独立的。
应用多元统计分析课后习题答案详解北大高惠璇部分习题解答课件
则
W X X X X ( ( 1 2 ) ) X X ( ( 1 1 ) ) X X ( ( 1 2 ) ) X X ( (2 2 ) ) W W 1 21 1 W W 1 2 2 2 , 即
W 1 1 X ( 1 ) X ( 1 )W ,2 2 X ( 2 ) X ( 2 )
性质4 分块Wishart矩阵的分布:设X(α) ~ Np(0,Σ) (α
=1,…,n)相互独立,其中
又已知随机矩阵
1211
12 r 22pr
W n 1X ()X ( ) W W 1 21 1W W 1 2 2 2p r r~ W p(n , )
因 X H ~ 0 下 N p(0 ,1 n 0 ),n (X 0 )H ~ 0 下 N p(0 , 0 )
所以由§3“一﹑2.的结论1”可知
2ln~2(p).
20
第三章 多元正态总体参数的检验
3-6 (均值向量各分量间结构关系的检验) 设总体
X~Np(μ ,Σ )(Σ >0),X(α) (α =1,…,n)(n>p)为 来自p维正态总体X的样本,记μ =(μ 1,…,μ p)′.C 为k×p常数(k<p),rank(C)=k,r为已知k维向量.试给出 检验H0:Cμ =r的检验统计量及分布.
6
第三章 多元正态总体参数的检验
证明 记rk(A)=r.
若r=n,由AB=O,知B= On×n,于是 X′AX与X′BX
若r=0时,则A=0,则两个二次型也是独 立的. 以下设0<r<n.因A为n阶对称阵,存在正 交阵Γ,使得
7
第三章 多元正态总体参数的检验
其中λi≠0为A的特征值(i=1,…,r).于是
多元统计分析的重点和内容和方法
一、什么是多元统计分析❖多元统计分析是运用数理统计的方法来研究多变量(多指标)问题的理论和方法,是一元统计学的推广。
❖多元统计分析是研究多个随机变量之间相互依赖关系以及内在统计规律的一门统计学科。
二、多元统计分析的内容和方法❖1、简化数据结构(降维问题)将具有错综复杂关系的多个变量综合成数量较少且互不相关的变量,使研究问题得到简化但损失的信息又不太多。
(1)主成分分析(2)因子分析(3)对应分析等❖2、分类与判别(归类问题)对所考察的变量按相似程度进行分类。
(1)聚类分析:根据分析样本的各研究变量,将性质相似的样本归为一类的方法。
(2)判别分析:判别样本应属何种类型的统计方法。
例5:根据信息基础设施的发展状况,对世界20个国家和地区进行分类。
考察指标有6个:1、X1:每千居民拥有固定电话数目2、X2:每千人拥有移动电话数目3、X3:高峰时期每三分钟国际电话的成本4、X4:每千人拥有电脑的数目5、X5:每千人中电脑使用率6、X6:每千人中开通互联网的人数❖3、变量间的相互联系一是:分析一个或几个变量的变化是否依赖另一些变量的变化。
(回归分析)二是:两组变量间的相互关系(典型相关分析)❖4、多元数据的统计推断点估计参数估计区间估计统 u检验计参数 t检验推 F检验断假设相关与回归检验卡方检验非参秩和检验秩相关检验❖1、假设检验的基本原理小概率事件原理❖ 小概率思想是指小概率事件(P<0.01或P<0.05等)在一次试验中基本上不会发生。
反证法思想是先提出假设(检验假设H0),再用适当的统计方法确定假设成立的可能性大小,如可能性小,则认为假设不成立;反之,则认为假设成立。
❖ 2、假设检验的步骤 (1)提出一个原假设和备择假设❖ 例如:要对妇女的平均身高进行检验,可以先假设妇女身高的均值等于 160 cm (u=160cm )。
这种原假设也称为零假设( null hypothesis ),记为 H 0 。
多元统计分析重点.doc
多元统计分析重点宿舍版第一讲:多元统计方法及应用;多元统计方法分类(按变量、模型、因变量等) 多元统计分析应用选择题:①数据或结构性简化运用的方法有:多元回归分析,聚类分析,主成分分析,因子分析 ②分类和组合运用的方法有:判别分析,聚类分析,主成分分析 ③变量之间的相关关系运用的方法有:多元回归,主成分分析,因子分析, ④预测与决策运用的方法有:多元回归,判别分析,聚类分析 ⑤横贯数据:{因果模型(因变量数):多元回归,判别分析相依模型(变量测度):因子分析,聚类分析多元统计分析方法选择题:①多元统计方法的分类:1)按测量数据的来源分为:横贯数据(同一时间不同案例的观测数据),纵观数据(同样案例在不同时间的多次观测数据) 2)按变量的测度等级(数据类型)分为:类别(非测量型)变量,数值型(测量型)变量3)按分析模型的属性分为:因果模型,相依模型 4)按模型中因变量的数量分为:单因变量模型,多因变量模型,多层因果模型第二讲:计算均值、协差阵、相关阵;相互独立性第三讲:主成分定义、应用及基本思想,主成分性质,主成分分析步骤主成分定义:何谓主成分分析 就是将原来的多个指标(变量)线性组合成几个新的相互无关的综合指标(主成分),并使新的综合指标尽可能多地反映原来的指标信息。
主成分分析的应用 :(1)数据的压缩、结构的简化;(2)样品的综合评价,排序主成分分析概述——思想:①(1)把给定的一组变量X1,X2,…XP ,通过线性变换,转换为一组不相关的变量Y1,Y2,…YP 。
(2)在这种变换中,保持变量的总方差(X1,X2,…Xp 的方差之和)不变,同时,使Y1具有最大方差,称为第一主成分;Y2具有次大方差,称为第二主成分。
依次类推,原来有P 个变量,就可以转换出P 个主成分(3)在实际应用中,为了简化问题,通常找能够反映原来P 个变量的绝大部分方差的q (q<p )个主成分。
主成分性质:1)性质1:主成分的协方差矩阵是对角阵:(2)性质2:主成分的总方差等于原始变量的总方差(3)性质3:主成分Yk 与原始变量Xi 的相关系数为:ρ(YK,Xi )=√λ√σiitki,并称之为因子负荷量(或因子载荷量)。
(完整版)多元统计分析课后练习答案
第1章 多元正态分布1、在数据处理时,为什么通常要进行标准化处理?数据的标准化是将数据按比例缩放,使之落入一个小的特定区间。
在某些比较和评价的指标处理中经常会用到,去除数据的单位限制,将其转化为无量纲的纯数值,便于不同单位或量级的指标能够进行比较和加权。
其中最典型的就是0-1标准化和Z 标准化。
2、欧氏距离与马氏距离的优缺点是什么?欧氏距离也称欧几里得度量、欧几里得度量,是一个通常采用的距离定义,它是在m 维空间中两个点之间的真实距离。
在二维和三维空间中的欧氏距离的就是两点之间的距离。
缺点:就大部分统计问题而言,欧氏距离是不能令人满意的。
每个坐标对欧氏距离的贡献是同等的。
当坐标表示测量值时,它们往往带有大小不等的随机波动,在这种情况下,合理的方法是对坐标加权,使变化较大的坐标比变化较小的坐标有较小的权系数,这就产生了各种距离。
当各个分量为不同性质的量时,“距离”的大小与指标的单位有关。
它将样品的不同属性之间的差别等同看待,这一点有时不能满足实际要求。
没有考虑到总体变异对距离远近的影响。
马氏距离表示数据的协方差距离。
为两个服从同一分布并且其协方差矩阵为Σ的随机变量与的差异程度:如果协方差矩阵为单位矩阵,那么马氏距离就简化为欧氏距离,如果协方差矩阵为对角阵,则其也可称为正规化的欧氏距离。
优点:它不受量纲的影响,两点之间的马氏距离与原始数据的测量单位无关。
由标准化数据和中心化数据计算出的二点之间的马氏距离相同。
马氏距离还可以排除变量之间的相关性的干扰。
缺点:夸大了变化微小的变量的作用。
受协方差矩阵不稳定的影响,马氏距离并不总是能顺利计算出。
3、当变量X1和X2方向上的变差相等,且与互相独立时,采用欧氏距离与统计距离是否一致?统计距离区别于欧式距离,此距离要依赖样本的方差和协方差,能够体现各变量在变差大小上的不同,以及优势存在的相关性,还要求距离与各变量所用的单位无关。
如果各变量之间相互独立,即观测变量的协方差矩阵是对角矩阵, 则马氏距离就退化为用各个观测指标的标准差的倒数作为权数的加权欧氏距离。
应用多元统计分析试题及答案
一、填空题:1、多元统计分析是运用数理统计方法来研究解决多指标问题的理论和方法.2、回归参数显著性检验是检验解释变量对被解释变量的影响是否著.3、聚类分析就是分析如何对样品(或变量)进行量化分类的问题。
通常聚类分析分为 Q型聚类和 R型聚类。
4、相应分析的主要目的是寻求列联表行因素A 和列因素B 的基本分析特征和它们的最优联立表示。
5、因子分析把每个原始变量分解为两部分因素:一部分为公共因子,另一部分为特殊因子。
6、若()(,), Px N αμα∑=1,2,3….n且相互独立,则样本均值向量x服从的分布为_x~N(μ,Σ/n)_。
二、简答1、简述典型变量与典型相关系数的概念,并说明典型相关分析的基本思想。
在每组变量中找出变量的线性组合,使得两组的线性组合之间具有最大的相关系数。
选取和最初挑选的这对线性组合不相关的线性组合,使其配对,并选取相关系数最大的一对,如此下去直到两组之间的相关性被提取完毕为止。
被选出的线性组合配对称为典型变量,它们的相关系数称为典型相关系数。
2、简述相应分析的基本思想。
相应分析,是指对两个定性变量的多种水平进行分析。
设有两组因素A和B,其中因素A包含r个水平,因素B包含c个水平。
对这两组因素作随机抽样调查,得到一个rc的二维列联表,记为。
要寻求列联表列因素A和行因素B的基本分析特征和最优列联表示。
相应分析即是通过列联表的转换,使得因素 A 和因素B具有对等性,从而用相同的因子轴同时描述两个因素各个水平的情况。
把两个因素的各个水平的状况同时反映到具有相同坐标轴的因子平面上,从而得到因素A、B的联系。
3、简述费希尔判别法的基本思想。
从k个总体中抽取具有p个指标的样品观测数据,借助方差分析的思想构造一个线性判别函数系数:确定的原则是使得总体之间区别最大,而使每个总体内部的离差最小。
将新样品的p 个指标值代入线性判别函数式中求出 值,然后根据判别一定的规则,就可以判别新的样品属于哪个总体。
多元统计分析习题与答案
多元统计分析习题与答案多元统计分析是一种在社会科学研究中广泛应用的方法,它通过同时考虑多个变量之间的关系,帮助研究者更全面地理解和解释现象。
在本文中,我将分享一些多元统计分析的习题和答案,希望能够帮助读者更好地掌握这一方法。
习题一:相关分析假设你正在研究一个学生的学习成绩和他们每天花在学习上的时间之间的关系。
你收集了100个学生的数据,学习成绩用分数表示,学习时间用小时表示。
以下是你的数据:学习成绩(X):75, 80, 85, 90, 95, 70, 65, 60, 55, 50学习时间(Y):5, 6, 7, 8, 9, 4, 3, 2, 1, 0请计算学习成绩和学习时间之间的相关系数,并解释其含义。
答案一:首先,我们需要计算学习成绩和学习时间之间的协方差和标准差。
根据公式,协方差可以通过以下公式计算:协方差= Σ((X - X平均) * (Y - Y平均)) / (n - 1)其中,X和Y分别表示学习成绩和学习时间,X平均和Y平均表示它们的平均值,n表示样本数量。
标准差可以通过以下公式计算:标准差= √(Σ(X - X平均)² / (n - 1))根据以上公式,我们可以得出学习成绩和学习时间之间的协方差为-22.5,标准差分别为18.03和2.87。
然后,我们可以通过以下公式计算相关系数:相关系数 = 协方差 / (X标准差 * Y标准差)根据以上公式,我们可以得出相关系数为-0.93。
由于相关系数接近于-1,可以得出结论:学习成绩和学习时间之间存在强烈的负相关关系,即学习时间越长,学习成绩越低。
习题二:多元线性回归假设你正在研究一个人的身高(X1)、体重(X2)和年龄(X3)对其收入(Y)的影响。
你收集了50个人的数据,以下是你的数据:身高(X1):160, 165, 170, 175, 180, 185, 190, 195, 200, 205体重(X2):50, 55, 60, 65, 70, 75, 80, 85, 90, 95年龄(X3):20, 25, 30, 35, 40, 45, 50, 55, 60, 65收入(Y):5000, 5500, 6000, 6500, 7000, 7500, 8000, 8500, 9000, 9500请利用多元线性回归分析,建立一个预测人的收入的模型,并解释模型的结果。
多元统计分析思考题
《多元统计分析思考题》第1章回归分析1、回归分析是怎样的一种统计方法,用来解决什么问题?回归分析是统计学的一个重要分支,它基于观测数据建立变量之间的某种依赖关系,分析数据的内在规律,并可用于预报、控制等方面。
当自变量的个数大于1时称为多元回归,当因变量个数大于1时称为多重回归。
2、线性回归模型中线性关系指的是什么变量之间的关系?自变量与因变量之间一定是线性关系形式才能做线性回归吗?为什么?线性关系指的是自变量和因变量之间的关系。
多重线性回归中要求前提条件是线性——自变量和因变量之间的关系是线性的、独立性——各观测值之间是独立的、正态性——指自变量取不同值时,因变量服从正态分布、方差齐性——指自变量取不同值时,因变量的方差相同3、实际应用中,如何设定回归方程的形式?(P36)①假设方程的线性关系为:,其中是未知参数,是不可观测的随机误差且服从正态分布②估计未知参数,需要进行n次独立观测,得到n组样本数据4、多元线性回归理论模型中,每个系数(偏回归系数)的含义是什么?称为(偏)回归系数,随机因变量对各个自变量的回归系数,表示各自变量对随机变量的影响程度。
5、经验回归模型中,参数是如何确定的?有哪些评判参数估计的统计标准?最小二乘估计两有哪些统计性质(P37)?要想获得理想的参数估计值,需要注意一些什么问题?称为经验回归方程,这里是的最小二乘估计。
评判参数估计的统计标准有无偏性、有效性、一致性。
想要获得理想的参数估计值,需要尽量分散的取自变量,另外,样本数据个数n越大Var()越小。
6、理论回归模型中的随机误差项的实际意义是什么?为什么要在回归模型中加入随机误差项?建立回归模型时,对随机误差项作了哪些假定?这些假定的实际意义是什么?随机误差又称为偶然误差(accidental error)。
由于测试过程中诸多因素随机作用而形成的具有抵偿性的误差。
它是不可避免的,可以设法将其减少,但又不能完全消除。
随机误差具有统计性,在多次重复测量中,绝对值相同的正、负误差出现的机会大致相同,大误差出现的机会比小误差出现的机会少。
多元统计分析思考题答案
《多元统计分析》思考题答案记得老师课堂上说过考试内容不会超出这九道思考题,如下九道题题目中有错误的或不清楚的地方,欢迎大家指出、更改、补充。
1、 简述信度分析答题提示:要答可靠度概念,可靠度度量,克朗巴哈α系数、拆半系数、单项与总体相关系数、稀释相关系数等(至少要答四个系数,至少要给出两个指标的公式)答:信度(Reliability )即可靠性,它是指采用同样的方法对同一对象重复测量时所得结果的一致性程度。
信度指标多以相关系数表示,大致可分为三类:稳定系数(跨时间的一致性),等值系数(跨形式的一致性)和内在一致性系数(跨项目的一致性)。
信度分析的方法主要有以下四种:1)、重测信度法这一方法是用同样的问卷对同一组被调查者间隔一定时间重复施测,计算两次施测结果的相关系数。
重测信度属于稳定系数。
重测信度法特别适用于事实式问卷,如果没有突发事件导致被调查者的态度、意见突变,这种方法也适用于态度、意见式问卷。
由于重测信度法需要对同一样本试测两次,被调查者容易受到各种事件、活动和他人的影响,而且间隔时间长短也有一定限制,因此在实施中有一定困难。
2)、复本信度法复本信度法是让同一组被调查者一次填答两份问卷复本,计算两个复本的相关系数。
复本信度属于等值系数。
复本信度法要求两个复本除表述方式不同外,在内容、格式、难度和对应题项的提问方向等方面要完全一致,而在实际调查中,很难使调查问卷达到这种要求,因此采用这种方法者较少。
3)、折半信度法折半信度法是将调查项目分为两半,计算两半得分的相关系数,进而估计整个量表的信度。
折半信度属于内在一致性系数,测量的是两半题项得分间的一致性。
这种方法一般不适用于事实式问卷(如年龄与性别无法相比),常用于态度、意见式问卷的信度分析。
在问卷调查中,态度测量最常见的形式是5级李克特(Likert )量表。
进行折半信度分析时,如果量表中含有反意题项,应先将反意题项的得分作逆向处理,以保证各题项得分方向的一致性,然后将全部题项按奇偶或前后分为尽可能相等的两半,计算二者的相关系数。
应用多元统计分析试题及答案
一、填空题:1、多元统计分析是运用数理统计方法来研究解决多指标问题的理论和方法.2、回归参数显著性检验是检验解释变量对被解释变量的影响是否著.3、聚类分析就是分析如何对样品(或变量)进行量化分类的问题。
通常聚类分析分为 Q型聚类和R型聚类。
4、相应分析的主要目的是寻求列联表行因素A 和列因素B 的基本分析特征和它们的最优联立表示。
5、因子分析把每个原始变量分解为两部分因素:一部分为公共因子,另一部分为特殊因子。
6、若()(,), Px N αμα∑=1,2,3….n且相互独立,则样本均值向量x服从的分布为_x~N(μ,Σ/n)_。
二、简答1、简述典型变量与典型相关系数的概念,并说明典型相关分析的基本思想。
在每组变量中找出变量的线性组合,使得两组的线性组合之间具有最大的相关系数。
选取和最初挑选的这对线性组合不相关的线性组合,使其配对,并选取相关系数最大的一对,如此下去直到两组之间的相关性被提取完毕为止。
被选出的线性组合配对称为典型变量,它们的相关系数称为典型相关系数。
2、简述相应分析的基本思想。
相应分析,是指对两个定性变量的多种水平进行分析。
设有两组因素A和B,其中因素A包含r个水平,因素B包含c个水平。
对这两组因素作随机抽样调查,得到一个rc的二维列联表,记为。
要寻求列联表列因素A和行因素B 的基本分析特征和最优列联表示。
相应分析即是通过列联表的转换,使得因素A 和因素B具有对等性,从而用相同的因子轴同时描述两个因素各个水平的情况。
把两个因素的各个水平的状况同时反映到具有相同坐标轴的因子平面上,从而得到因素A 、B 的联系。
3、简述费希尔判别法的基本思想。
从k 个总体中抽取具有p 个指标的样品观测数据,借助方差分析的思想构造一个线性判别函数 系数:确定的原则是使得总体之间区别最大,而使每个总体内部的离差最小。
将新样品的p 个指标值代入线性判别函数式中求出 值,然后根据判别一定的规则,就可以判别新的样品属于哪个总体。
多元统计分析课后练习答案
多元统计分析课后练习答案第1章多元正态分布1、在数据处理时,为什么通常要进行标准化处理?数据的标准化就是将数据按比例翻转,并使之掉入一个大的特定区间。
在某些比较和评价的指标处置中经常可以使用,除去数据的单位管制,将其转变为无量纲的纯数值,易于相同单位或量级的指标能展开比较和平均值。
其中最典型的就是0-1标准化和z标准化。
2、欧氏距离与马氏距离的优缺点是什么?欧氏距离也表示欧几里得度量、欧几里得度量,就是一个通常使用的距离定义,它就是在m维空间中两个点之间的真实距离。
在二维和三维空间中的欧氏距离的就是两点之间的距离。
缺点:就大部分统计问题而言,欧氏距离是不能令人满意的。
每个坐标对欧氏距离的贡献是同等的。
当坐标表示测量值时,它们往往带有大小不等的随机波动,在这种情况下,合理的方法是对坐标加权,使变化较大的坐标比变化较小的坐标有较小的权系数,这就产生了各种距离。
当各个分量为不同性质的量时,“距离”的大小与指标的单位有关。
它将样品的不同属性之间的差别等同看待,这一点有时不能满足实际要求。
没有考虑到总体变异对距离远近的影响。
马氏距离表示数据的协方差距离。
为两个服从同一分布并且其协方差矩阵为σ的随机变量与的差异程度:如果协方差矩阵为单位矩阵,那么马氏距离就简化为欧氏距离,如果协方差矩阵为对角阵,则其也可称为正规化的欧氏距离。
优点:它不受量纲的影响,两点之间的马氏距离与原始数据的测量单位无关。
由标准化数据和中心化数据计算出的二点之间的马氏距离相同。
马氏距离还可以排除变量之间的相关性的干扰。
缺点:误导了变化微小的变量的促进作用。
受到协方差矩阵不稳定的影响,马氏距离并不总是能够成功排序出来。
3、当变量x1和x2方向上的变差相等,且与互相独立时,采用欧氏距离与统计距离是否一致?统计数据距离区别于欧式距离,此距离必须倚赖样本的方差和协方差,能彰显各变量在变差大小上的相同,以及优势存有的相关性,还建议距离与各变量所用的单位毫无关系。
应用多元统计分析试题及答案.doc
一、填空题:1、多元统计分析是运用数理统计方法来研究解决多指标问题的理论和方法.2、回归参数显著性检验是检验解释变量对被解释变量的影响是否著.3、聚类分析就是分析如何对样品(或变量)进行量化分类的问题。
通常聚类分析分为 Q型聚类和 R型聚类。
4、相应分析的主要目的是寻求列联表行因素A 和列因素B 的基本分析特征和它们的最优联立表示。
5、因子分析把每个原始变量分解为两部分因素:一部分为公共因子,另一部分为特殊因子。
6、若()(,), Px N αμα∑:=1,2,3….n且相互独立,则样本均值向量x服从的分布为_x~N(μ,Σ/n)_。
二、简答1、简述典型变量与典型相关系数的概念,并说明典型相关分析的基本思想。
在每组变量中找出变量的线性组合,使得两组的线性组合之间具有最大的相关系数。
选取和最初挑选的这对线性组合不相关的线性组合,使其配对,并选取相关系数最大的一对,如此下去直到两组之间的相关性被提取完毕为止。
被选出的线性组合配对称为典型变量,它们的相关系数称为典型相关系数。
2、简述相应分析的基本思想。
相应分析,是指对两个定性变量的多种水平进行分析。
设有两组因素A和B,其中因素A包含r个水平,因素B包含c个水平。
对这两组因素作随机抽样调查,得到一个rc的二维列联表,记为。
要寻求列联表列因素A和行因素B的基本分析特征和最优列联表示。
相应分析即是通过列联表的转换,使得因素 A 和因素B具有对等性,从而用相同的因子轴同时描述两个因素各个水平的情况。
把两个因素的各个水平的状况同时反映到具有相同坐标轴的因子平面上,从而得到因素A、B的联系。
3、简述费希尔判别法的基本思想。
从k个总体中抽取具有p个指标的样品观测数据,借助方差分析的思想构造一个线性判别函数系数:确定的原则是使得总体之间区别最大,而使每个总体内部的离差最小。
将新样品的p 个指标值代入线性判别函数式中求出 值,然后根据判别一定的规则,就可以判别新的样品属于哪个总体。
多元统计分析
多元统计分析习题集(一)一、填空题1.若()(,),(1,2,,)p X N n αμα∑= 且相互独立,则样本均值向量X 服从的分布是____________________。
2.变量的类型按尺度划分为___________、____________、_____________。
3.判别分析是判别样品_____________的一种方法,常用的判别方法有_____________、_____________、_____________、_____________。
4.Q 型聚类是指对_____________进行聚类,R 型聚类指对_____________进行聚类。
5.设样品12(,,,),(1,2,,)i i i ip X X X X i n '== ,总体(,)p X N μ∑ ,对样品进行分类常用的距离有____________________、____________________、____________________。
6.因子分析中因子载荷系数ij a 的统计意义是_________________________________。
7.主成分分析中的因子负荷ij a 的统计意义是________________________________。
8.对应分析是将__________________和__________________结合起来进行的统计分析方法。
9.典型相关分析是研究__________________________的一种多元统计分析方法。
二、计算题 1.设3(,)X N μ∑ ,其中410130002⎛⎫ ⎪∑= ⎪ ⎪⎝⎭,问1X 与2X 是否独立?12(,)X X '与3X 是否独立?为什么?2.设抽了5个样品,每个样品只测了一个指标,它们分别是1,2,4.5,6,8。
若样品间采用绝对值距离,试用最长距离法对其进行分类,要求给出聚类图。
多元统计思考题及答案
多元统计分析思考题第一章 回归分析1、回归分析是怎样的一种统计方法,用来解决什么问题答:回归分析作为统计学的一个重要分支,基于观测数据建立变量之间的某种依赖关系,用来分析数据的内在规律,解决预报、控制方面的问题;2、线性回归模型中线性关系指的是什么变量之间的关系自变量与因变量之间一定是线性关系形式才能做线性回归吗为什么答:线性关系是用来描述自变量x 与因变量y 的关系;但是反过来如果自变量与因变量不一定要满足线性关系才能做回归,原因是回归方程只是一种拟合方法,如果自变量和因变量存在近似线性关系也可以做线性回归分析;3、实际应用中,如何设定回归方程的形式答:通常分为一元线性回归和多元线性回归,随机变量y 受到p 个非随机因素x1、x2、x3……xp 和随机因素的影响,形式为:01p βββ⋅⋅⋅是p+1个未知参数,ε是随机误差,这就是回归方程的设定形式;4、多元线性回归理论模型中,每个系数偏回归系数的含义是什么答:偏回归系数01p βββ⋅⋅⋅是p+1个未知参数,反映的是各个自变量对随机变量的影响程度;5、经验回归模型中,参数是如何确定的有哪些评判参数估计的统计标准最小二乘估计法有哪些统计性质要想获得理想的参数估计值,需要注意一些什么问题答:经验回归方程中参数是由最小二乘法来来估计的;评判标准有:普通最小二乘法、岭回归、主成分分析、偏最小二乘法等;最小二乘法估计的统计性质:其选择参数满足正规方程组,1选择参数01ˆˆββ分别是模型参数01ββ的无偏估计,期望等于模型参数; 2选择参数是随机变量y 的线性函数要想获得理想的参数估计,必须注意由于方差的大小表示随机变量取值的波动性大小,因此自变量的波动性能够影响回归系数的波动性,要想使参数估计稳定性好,必须尽量分散地取自变量并使样本个数尽可能大;6、理论回归模型中的随机误差项的实际意义是什么为什么要在回归模型中加入随机误差项建立回归模型时,对随机误差项作了哪些假定这些假定的实际意义是什么答:随机误差项的引入使得变量之间的关系描述为一个随机方程,由于因变量y 很难用有限个因素进行准确描述说明,故其代表了人们的认识局限而没有考虑到的偶然因素;7、建立自变量与因变量的回归模型,是否意味着他们之间存在因果关系为什么答:不是,因果关系是由变量之间的内在联系决定的,回归模型的建立只是一种定量分析手段,无法判断变量之间的内在联系,更不能判断变量之间的因果关系;8、回归分析中,为什么要作假设检验检验依据的统计原理是什么检验的过程是怎样的答:因为即使我们已经建立起了模型,但是尚且不知这个回归方程是否能够比较好地反映所描述的变量之间的影响关系,必须进行统计学上的假设检验;假设性检验原理可以用小概率原理解释,通常认为小概率事件在一次试验中几乎不可能发生的,即对总体的某个假设是真实的,那么不支持这一个假设事件在一次试验中是几乎不可能发生的,要是这个事件发生了,我们就有理由怀疑这一假设的真实性,拒绝原假设;检验过程:1提出统计假设H0和H1;2构造一个与H相关的统计量,称其为检验统计量;3根据其显着性水平 的值,确定一个拒绝域;4作出统计决断;9、回归诊断可以大致确定哪些问题回归分析有哪些基本假定如果实际应用中不满足这些假定,将可能引起怎样的后果如何检验实际应用问题是否满足这些假定对于各种不满足假定的情形,分别采用哪些改进方法答:回归诊断解决:1回归方程的线性假定;2是否存在多重共线性;3误差项的正态性假定;4误差项的独立性假设;5误差项同方差假定;6是否存在数据异常;原基本假定H:1假设回归方程不显着;2假设回归系数不显着;引起后果:与模型误差相比,自变量对因变量的影响是不重要的模型误差太大、自变量对y的影响确实太小;如何检验:用F统计量或者P值法来检验方程的显着性;改进方法:1对于模型的误差太大,我们要想办法缩小误差,检查是否漏掉了重要的自变量,或检查自变量与y的非线性关系;2对于自变量对y影响较小,此时应该放弃回归分析方法;10、回归分析中的R2有何意义它能用来衡量模型优劣吗答:R2是回归平方和与总离差平方和之比,作为评判一个模型拟合度的标准,称为样本决定系数,其值越接近1,意味着模型的拟合优度越高;但是其不是衡量模型优劣唯一标准,增加自变量会使得自由度减少,因此需要引入自由度修正的复相关系数;这些都需要视具体的情况而定;11、如何确定回归分析中变量之间的交互作用存在交互作用时,偏回归系数的意义与不存在交互作用的情形下是否相同为什么答:交互作用是指因素之间联合搭配对试验指标的影响作用,存在交互作用是,偏回归系数肯定与不存在是的系数不同,毕竟变量之间有相互影响的关系;12、有哪些确定最优回归模型的准则如何选择回归变量答:1修正的复相关系数2aR达到最大;2预测平方和达到最小;3定义Cp 统计量值小,选择pC p小的回归方程;4赤池信息量达到最小;按照以上准则进行回归变量的选择;13、在怎样的情况下需要建立标准化的回归模型标准化回归模型与非标准化模型有何关系形式有否不同答:在多元线性回归分析中,由于涉及到的变量量纲不同,差别很大,需要对变量进行中心化和标准化,数据中心化处理相当于将坐标原点移至样本中心坐标系的平移不改变直线的斜率;标准化处理后建立的回归方程模型比非标准化的回归方程少一个常数项,系数存在关系;14、利用回归方法解决实际问题的大致步骤是怎样的答:1根据预测目标,确定自变量和因变量;2建立回归预测模型;3进行相关分析;4检验回归预测模型,计算预测误差;5计算并确定预测值;15、你能够利用哪些软件实现进行回归分析能否解释全部的软件输出结果答:目前会用的软件是SPSS和matlab,关于地球物理的软件如grapher也可以进行回归分析;对于SPSS的一些输出结果,还是不太理解;第二章判别分析1、判别分析的目的是什么答:在自然科学和社会科学研究中,研究对象用某种方法已经划分为若干类别,当得到一个新的样本数据时,要确定该样本属于已知的哪一类;2、有哪些常用的判别分析方法这些方法的基本原理或步骤是怎样的它们各有什么特点或优劣之处答:1距离判别法:根据已知分类数据,分别计算各类的重心,即是分类的均值;判别方法是—对于任意一个样品,若它与第i类的重心距离最近,就认为它来自第i类;特点是对各类数据分布并无特定的要求2Fisher判别法:其基本思想是投影,将k组m元数据投影到某一个方向,使得投影后组与组之间尽可能分开,其中利用了一元方差分析的思想导出判别函数;其特点是对总体的分布没有特殊要求,是处理概率分布未知的一种方法;3逐步判别法:逐步引入一个“最重要”的变量进入判别式,同时对先引入判别式的一些变量进行检验,如果判别能力随着引入新变量而变得不显着,则将它从判别式中剔除,直到没有新的变量能够进入,依然没有旧变量需要剔除为止;3、判别分析与回归分析有何异同之处答:1相同点:这两种方法都有关于数据预测的功能;不同点:这个估计太多了,一般来讲判别分析功能是将样品归类,回归分析是探究样品对因变量的变动影响;4、判别分析对变量与样本规模有何要求答:判别分析对总体分布没有要求,但是判别分析的假设之一是要求每一个变量不能是其他判别变量的线性组合,即不能存在多重共线性;5、如何度量判别效果有哪些影响判别效果的因素答:通过评价判别准则来度量判别效果,常用方法:1误判率回代法;2误判率交叉确认估计;影响因素是个总体之间的差异程度,各个总体之间差异越大,就越有可能建立有效的判别准则,如果差异太小,则判别分析的意义不大;当各个总体服从多元正态分布,我们可以根据各总体的均值向量是否相等进行统计检验;当然也可以检验各总体的协方差矩阵是否相等来采用判别函数;6、逐步判别是如何选择判别变量的基本思想或步骤是什么答:在判别分析中,并不是观测变量越多越好,而是选择主要变量进行判别分析,将各个变量在分析中起的不同作用,将影响力比较低的变量保留在判别式中,会增加干扰,影响效果;因此选择显着判别力的变量来建立判别式就是逐步判别法;基本思想:其与逐步回归法类似,都是采用“有进有出”的算法,即逐步引入一个“最重要”的变量进入判别式,同时对先引入的判别式进行检验,如果其判别能力随着新引入的变量显着性降低,则该因素应该被剔除,直到变量全部进入为止;7、判别分析有哪些现实应用举例说明;答:判别分析在实际中的应用无处不在;例如我们根据各种经济指标把各个国家分为发达国家和发展中国家,通过这些指标成功的判定了一个国家的经济发展水平;第三章聚类分析1、聚类分析的目的是什么与判别分析有何异同这种方法有哪些局限或欠缺答:把某些方面相似的东西进行归类,以便从中发现规律性,达到认识客观事物规律的目的;其与判别分析相同的地方是都是研究分组的问题;不同的是各自对于预先分组对象不一样,聚类分析是未知类别,判别分析是已知类别;2、有哪些常用的聚类统计量答:1Q型统计量:对样本进行聚类,用“距离”来描述样本之间的接近程度;R型统计量:对变量进行聚类,用“相似系数”来度量变量之间的近视程度;3、系统谱系聚类法的基本思想是怎样的它包含哪些具体方法答:先将待聚类的n个样品或变量各自看成一类,共有n类,然后按照事先选定的聚类方法计算每两类之间的聚类统计量,即某种距离或者相似系数,将关系最密切的两类并为一类,其余不变,即的n-1类,再按照前面的计算方法计算新类与其他类之间的距离或者相似系数,再将关系最密切的两类归为一类,其余不变,即得n-2类,继续下去,每次重复都减少一类,直到所有样品或者变量都归于一类;4、聚类分析对变量与样本规模有何要求有哪些因素影响分类效果要想减少不利因素的影响,可以采取哪些改进方法答:聚类分析要求其样本规模较大,需要变量之间相关性较弱,变量个数小于样本数;5、实际应用问题,如何确定分类数目答:按理来说聚类分析的分类数目是事先不知道的,但是在实际应用中,应该根据相关专业知识确定分类数目,结合聚类统计量参考确定,并使用误判定理具体分析;6、快速聚类法K—均值法的基本思想或步骤是怎样的答:如果待分类样品比较多,应先给出一个大概的分类,然后不断对其进行修正,一直到分类结果比较合理为止;7、有序样品的最优分别法的基本思想或步骤是怎样的答:将n个样品看成一类,然后根据分类的误差函数逐渐增加分类,寻求最优分割,用分段的方法找出使组内离差平方和最小的分割点;8、应用聚类分析解决实际问题的基本步骤是怎样的应该注意哪些方面的问题答:1n个变量样品各自成一类,一共有n类,计算两两之间的距离,构成一个对称矩阵;2选择这个对称矩阵中主对角元素以外的上或者下三角部分中的最小元素,合成的新类,并计算其与其他类之间的距离;3划去与新类有关的行和列,将新类与其余类别的距离组成新的n-1阶对称矩阵;4再重复以上步骤,直到n个样品聚为一个大类;5记录下合并类别的编号以及所对应的距离,绘制聚类图;6决定类的个数和聚类结果;第四章主成分分析与典型相关分析1、主成分分析的基本思想是什么在低维情况下,如何利用几何图形解释主成分的意义答:构造原始变量的适当线性组合,使其产生一系列互不相关的新变量,从中选出少量的几个新变量并使它们含有足够多的原始变量的信息,从而使这几个新变量代替原始变量分析问题和解决问题提供了可能;几何解释,可以借用平面上旋转坐标系方法来达到降维的目的;2、什么是主成分的贡献率与累计贡献率实际应用时,如何确定主成分的个数答:主成分中,描述第k个主成分提取的信息占据原来变量总信息的比重,称为第k个主成分的贡献率;若将前m个主成分提取的总信息的比重相加,称为主成分的累计贡献率;实际应用中,通常选取前m个主成分的累积贡献率达到一定的比列来确定主成分的个数;3、主成分有哪些基本性质答:1每一个主成分都是原始变量的线性组合;2主成分的数目大大小于原始变量的数目;3主成分保留了原始变量所包含的绝大部分信息;4各个主成分之间互不相关;4、对于任何情形的多个变量,都可以采取主成分方法降维吗为什么答:肯定不是,必须要满足适合主成分分析的要求才可以降维;举个简单的例子,其适用范围是各个变量之间应该具有比较强的相关性,如果多个变量均为各项同性,则主成分分析效果不明显;5、怎样的情况下需要计算标准化的主成分答:因为实际问题的变量有很多量纲,不同的量纲会引起各个变量的取值的分散程度差异较大,总体方差将主要受到方差较大的变量的控制;如果用协方差矩阵 求主成分,则优先照顾方差大的变量,可能会得到不合理的结果,因此为了消除量纲的影响,需要计算标准化的主成分;6、主成分有哪些应用答:它的主要作用是降维,因此应用范围比较广泛,举个例子,衡量一个城市的综合发展指数涉及到的变量参数相当多,但是如果运用主成分的思想,只需要考虑较少的变量样品就好,一般选择GDP指数、环境指数、人口、面积等;7、如何解释主成分的实际含义答:主成分的实际意义需要结合到实际应用中,其往往不是最终目的,重要的是利用降维的思想来综合分析原始信息,利用有限的主成分来解释规律,从而进行相关研究;8、典型相关分析的基本思想是什么有何实际用途答:是研究两组变量间的相互依赖关系,把两组变量之间的关系变为研究两个新变量的相关,而又不抛弃原来变量的信息;因为这两组变量所代表的内容不同,可以直接考虑其相关关系来反映两组变量之间的整体相关性;例如工厂考察使用原料质量对生产产品质量的影响,需要对产品各种各样质量指标与所使用的原料指标之间的相关关系进行评判;9、典型相关分析与回归分析、判别分析、主成分分析、因子分析有何关联试比较这些方法的异同之处;答:这是一个涉及面很大的问题,总的来讲这些方法的存在能够帮助我们对于客观数据现象的相关关系有一个更加深刻的了解,有的是对另外一种方向的优化与推广,有的本质思想与另外一种分析方法很接近,异同点可以根据教科书进行两两比对;10、典型相关分析有哪些基本假定答:线性假定影响典型相关分析的两个方面,首先任意两个变量间的相关系数是基于线性关系的;如果这个关系不是线性的,一个或者两个变量需要变换;其次,典型相关是变量间的相关,如果关系不是线性的,典型相关分析将不能测量到这种关系;11、如何解释典型相关函数的实际意义答:1典型权重标准化系数;2典型荷载结构系数;3典型交叉载荷;用以上三种参数来使多个变量与多个变量的相关性转化为两个变量的相关性;12、典型相关方法中冗余度分析的意义是什么答:冗余度主要说明典型变量对各组观测变量总方差的代表比例和解释比例;第五章因子分析与对应分析1、因子分析是怎样的一种统计方法它的基本目的和用途是什么答:其根据相关性大小将变量分组,使得同组内的变量之间相关性较高,不同组的相关性较低,每组变量代表一个基本结构,用一个不可观测的综合变量表示,这个基本结构成为公共因子,对所研究的问题就可以用最少的个数的不可观测的所谓公共因子的线性函数与特殊因子之和来描述原来观测的每一个分量;目的:利用降维的思想,从研究原始变量相关矩阵内部结构出发,把一些具有错综复杂关系的变量归结为少数几个综合因子;用途:对变量进行分类,根据因子得分值在其轴所构成的空间中吧变量点画出来,从而分类;2、因子分子中的KMO统计量与巴特莱特球形性检验的目的是什么答:KMO统计量:通过比较各个变量之间简单相关系数和偏相关系数的大小判断变量间的相关性,相关性强时,偏相关系数远小于简单相关系数,KMO值接近1.一般KMO>非常适合做因子分析;而大于都可以,但是一下不适合;巴特莱特球形检验:用于检验相关矩阵是否是单位矩阵,及各个变量是否是独立的;它以变量的相关系数矩阵为出发地点,如果统计量数值较大,且相伴随的概率值小于用户给定的显着性水平,则应该拒绝原假设;反之,则认为相关系数矩阵可能是一个单位阵,不适合做因子分析;3、因子分析有哪些类型它们有何区别Q型因子分析与聚类分析有何异同答:Q型和R型两种;Q型:对样本进行因子分析,R型:对变量进行因子分析;Q型因子分析可以认为是考虑指标的重要性,保留哪些去掉哪些;Q型聚类分析考虑的是指标的相关性,哪几类指标可能组成一类,使得组内距离尽可能小,组间距离尽可能大; 4、因子分析中的变量类型是怎样的因子分析对变量数目有没有要求对样本规模有没有要求答:被描述的变量一般来讲都是可观测的随机变量;变量必须是标准化的;样品的数目大于变量的数目;5、因子分析有怎样的基本假定对样本特点或性质有何要求答:各个共同因子之间不相关,特殊因子之间也不相关,共同因子与特殊因子之间也不相关;样本之间相关性越强越好;6、因子分析模型中,因子载荷、变量共同度、方差贡献等统计量的统计意义是什么答:1因子载荷:指综合因子与公共因子的相关关系,表示其依赖公共因子的程度,反映了第i个变量对第j个公共因子的相对重要性,也是其间的密切程度,也是其公共因子的权;2变量共同度:指因子载荷矩阵中各行元素的平方和,表示x的第i个分量对于公共因子的每一个分量的共同依赖程度;3方差贡献:指因子载荷矩阵第j列各个元素的平方和,是衡量公共因子相对重要性的指标;7、因子分析与主成分分析有何区别与联系它们分别适用于怎样的情况答:联系:均是降维的处理变量样品的方法;区别:因子分析是把变量表示成各个因子的线性组合,而主成分分析是把主成分表示成变量的线性组合;因子分析重点是解释各个变量之间的协方差,主成分分析是解释变量的总方差;因子分析需要一些假定,共同因子之间不相关,特殊因子之间不相关,以上两者也不相关,而主成分分析不需要假设;因子分析中因子不是独特的,可以旋转得到不同的因子,主成分分析中对于给定的协方差和相关矩阵特殊值,成分是独特的;因子个数需要分析者指定,而主成分中成分的数量是一定的;8、如何确定公共因子数目如何解释公共因子的实际意义答:用方差累计贡献率,一般只要前几个达到80%即可,或者碎石图也可以确定;公共因子的含义,与实际问题相关,表示变量之间内部错综复杂的关联性;9、怎样的情况下,需要作因子旋转答:如果求出主因子解,但是主因子代表的变量不是很突出,容易使因子的含义模糊不清,需要做旋转;10、有哪些估计因子得分的方法因子得分的估计是普通意义下的参数估计吗为什么答:回归估计法、巴特莱特估计法、汤姆逊估计法;不是普通意义下的参数估计,需要用公共因子F用变量的线性组合来表示;11、对应分析的基本思想或原理是什么试举例说明它的应用;答:为了克服因子分析的不足之处,寻求R型和Q型变量的内在联系,将两者统一起来,将样品和变量反映到相同的坐标轴上进行解释;比如对某一行业的经济效益进行综合性评价,要研究企业与企业的信息,指标与指标的内部结构、企业与指标的内在联系,这三个方面是一个密不可分的整体;12、对应分析中总惯量的意义是什么答:代表总体两个变量相互联系的总信息量,可以反映某种变量特征属性的接近程度,及时对数据组分进行约束;。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《多元统计分析》习题分为三部分:思考题、验证题和论文题
思考题
第一章绪论
1﹑什么是多元统计分析?
2﹑多元统计分析能解决哪些类型的实际问题?
第二章聚类分析
1﹑简述系统聚类法的基本思路。
2﹑写出样品间相关系数公式。
3﹑常用的距离及相似系数有哪些?它们各有什么特点?
4﹑利用谱系图分类应注意哪些问题?
5﹑在SAS和SPSS中如何实现系统聚类分析?
第三章判别分析
1﹑简述距离判别法的基本思路,图示其几何意义。
2﹑判别分析与聚类分析有何异同?
3﹑简述贝叶斯判别的基本思路。
4﹑简述费歇判别的基本思路。
5﹑简述逐步判别法的基本思想。
6﹑在SAS和SPSS软件中如何实现判别分析?
第四章主成分分析
1﹑主成分分析的几何意义是什么?
2﹑主成分分析的主要作用有那些?
3﹑什么是贡献率和累计贡献率,其意义何在?
4﹑为什么说贡献率和累计贡献率能反映主成分中所包含的原始变量的信息?
5﹑为什么要用标准化数据去估计V的特征向量与特征值?
6﹑证明:对于标准化数据有S=R。
7﹑主成分分析在SAS和SPSS中如何实现?
第五章因子分析
1﹑因子得分模型与主成分分析模型有何不同?
2﹑因子载荷阵的统计意义是什么?
3﹑方差旋转的目的是什么?
4﹑因子分析有何作用?
5﹑因子模型与回归模型有何不同?
6﹑在SAS和SPSS中如何实现因子分析?
第六章对应分析
1﹑简述对应分析的基本思想。
2﹑简述对应分析的基本原理。
3﹑简述因子分析中Q型与R 型的对应关系。
4﹑对应分析如何在SAS和SPSS中实现?
第七章典型相关分析
1﹑典型相关分析适合分析何种类型的数据?
2﹑简述典型相关分析的基本思想。
3﹑典型变量有哪些性质?
4﹑典型相关系数和典型变量有何意义?
5﹑典型相关分析有何作用?
6 ﹑在SAS和SPSS中如何实现典型相关分析?
验证题
第二章聚类分析
1、为了更深入了解我国人口的文化程度,现利用1990年全国人口普查数据对全国30个省、直辖市、自治区进行聚类分析。
分析选用了三个指标:(1)大学以上文化程度的人口占全部人口的比例(DXBZ);(2)初中文化程度的人都占全部人口的比例(CZBZ);(3)文盲半文盲人口占全部人口的比例(WMBZ),分别用来反映较高、中等、较低文化程度人口的状况。
计算样品之间的相似系数,使用最长距离法、重心法和Ward法,将上机结果按样品号画出聚类图,并根据聚类图将30个样品分为四类。
2、根据信息基础设施的发展状况,对世界20个国家和地区进行分类。
只要采用6个指标:(1)Call—每千人拥有电话线数,(2)movecall—每千户居民蜂窝移动电话数,(3)fee—高峰时期每三分钟国际电话的成本,(4)Computer—每千人拥有的计算机数,(5)mips—每千人中计算机功率(每秒百万指令),(6)net—每千人互联网络户主数。
计算样本之间的距离采用欧式距离,用最长距离法、重心法、离差平方和法进行计算。
3、按照城乡居民消费水平,对我国30个省市自治区分类。
第三章 判别分析
1、从1995年世界各国人文发展指数的排序中,选取高发展水平、中等发展水平的国家各五个作为两组样本,另选四个国家作为待判样品做距离判别分析。
2、对全国30个省市自治区1994年影响各地区经济增长差异的制度变量:1x —经济增长率(%)、
—非国有化水平(%)、3x —开放度(%)、4x —市场化程
度(%)作判别分析。
3、为了解全国各地职工生活费用上涨水平,对29个省市自治区九项指标作判别分析。
第四章 主成分分析
1、对全国30个省市自治区经济发展基本情况的八项指标作主成分分析。
2、对30个省市自治区工业企业经济效益作综合评价。
3、对我国城市居民生活费支出作主成分分析。
第五章 因子分析
1、利用1995年的数据对我国社会发展状况进行综合考察。
2、对我国30个省市自治区的农业生产情况作因子分析。
从农业生产条件和生产结果济效益出发,选取六项指标分别为:1X —乡村劳动力人口(万人),2X —人均经营耕地面积(亩),3X —户均生产性固定资产原值(元),4X —家庭基本纯收入(元),5X —人均农业总产值(千元/人),6X —增加值占总产值比重(%)。
3、对1979-1988年中国人民银行资金来源的10项指标作因子分析。
第六章 对应分析
1、用对应分析研究我国部分省份的农村居民家庭人均消费支出结构。
选取7个变量:1X —食品支出比重,2X —衣着支出比重,3X —居住支出比重,4X —家庭设备及服务支出比重,5X —医疗保健支出比重,6X —交通和通讯支出比重,7X —文教娱乐、用品及服务支出比重。
样品为10个:山西、内蒙古、辽宁、吉林、黑龙江、海南、四川、贵州、甘肃、青海。
2、对全国31个省市自治区按各种经济类型资产占总资产比重(%),利用1997年数据作对应分析。
选取6个变量:1X —国有经济/总资产,2X —集体经济/总资产,3X —联营经济/总资产,4X —股份制经济/总资产,5X —外商投资经济/总资产,6X —港澳台经济/总资产
3、用对应分析研究1991年全国各地区独立核算工业企业的经济效益情况。
第七章 典型相关分析
1、对某高中一年级男生38人进行体力测试(共有七项指标)及运动能力测试(共有五项指标),试对两组指标作典型相关分析。
体力测试指标:1X —反复横向跳(次),2X —纵跳(cm),3X —背力(kg),4X —握力(kg),5X —台阶试验(指数),6X —立定体前屈(cm),7X —俯卧上体后仰(cm)。
运动能力测试的指标为:8X —50米跑(秒),9X —跳远(cm),10X —投球(m),11X —引体向上(次),12X —耐力跑(秒)。
2、全国30个省市自治区农村居民收入和支出的典型相关分析。
反映农村居民收入的变量取4个:1X —劳动者报酬(元),2X —家庭经营收入(元),3X —转移性收入(元),4X —财产性收入(元)。
反映农村居民生活费支出的变量取8个:5X —食品支出(元), 6X —衣着支出(元),7X —居住支出(元),8X —家庭设备及服务支出(元),9X —医疗保健支出(元),10X —交通和通讯支出(元),11X —文教、娱乐用品及服务支出(元),12X —其它商品及服务支出(元)。
3、社会经济综合发展水平与邮电发展状况的典型相关分析。
论 文 题
通过论文题,可以让学生掌握如何在图书馆查阅数据,录入数据,并根据论文要求对数据进行预处理,使学生了解各分析方法适合解决的问题类型,能够运用所学的多元统计分析方法解决实际数据分析问题。
1、自拟题目,论文中的数据处理方法至少选用对应分析、典型相关分析中的一种。
2、自拟题目,论文中的数据处理方法至少选用主成分分析、因子分析中的一种。
3、自拟题目,论文中的数据处理方法至少选用聚类分析、判别分析中的一种。