第3章电容式传感器

合集下载

第3章电容式传感器

第3章电容式传感器

由图3Z C 7 可( 得R 到S 等1 效 阻R 2 抗R PZ2 C C,2) 即j(1 R 2 P R 2 C 2 C 2L )
P
P
式中2f为激励电源角频率
由于传感器并联电阻RP很大,上式经简化后得等效电容为
等效电容
CE1 C 2LC 1(C f/f)2
式中 f
1
0
为电路谐振. 频率
例如在图3-10(b)中a=1,=0。根据图3-9曲线知:k=0.25, =0, 因此输出电压USC=0.25E;图(c)中当
R 1 时,a1,900 根据图3-9曲线得到k=0.5, =0 jC
USC=0.5E;图3-10(c)和(d)线路形式相同,但是由于(d)图
中采用了差动式电容传感器,故输出电压USC=E ,比图 (c)的输出电压提高了一倍。
对于变极距型, 其静态灵敏度
KCC 0( 1 ) d d 1d/d
因△d/d <<1,上式可按 台劳级数展开而得
KC0[1d(d)2 ] d dd
KC0[1d(d)2 ] d dd
由上式可知,灵敏度与起始极间距d有关,而且不是常数, 是随被测量变化而改变。要提高灵敏度,应减小d,但δ过 小容易引起电容器击穿(空气的击穿电压3kV/mm)。
注意:1.上述各种电桥输出电压是在假设负载阻抗无限 大(即输出端开路)时得到的,
实际上由于负载阻抗的存在而使输出电压偏小。
2.电桥输出为交流信号,不能判断输入传感器信号的极 性,只有将电桥输出信号经交流放大后,再用相敏检波电 路和低通滤波器,才能得到反映输入信号极性的输出信号。
(四)运算法测量电路 它由传感器电容CX和固定电容 C。、以及运算放大器A组成。
④采用“驱动电缆”技 术(也称“双层屏蔽等位 传输”技术)。 见教材P60

电容式传感器的工作原理

电容式传感器的工作原理

电容式传感器的工作原理
首先,我们来了解一下电容的基本概念。

电容是指导体之间存储电荷的能力,
通常用C来表示,单位是法拉(F)。

电容的大小与导体间的距离和导体形状有关,可以用以下公式表示:
C = ε0 εr A / d。

其中,C为电容,ε0为真空中的介电常数(8.85×10^-12 F/m),εr为介质
的相对介电常数,A为导体间的有效面积,d为导体间的距离。

由此可见,电容与
导体间的距离和介质的介电常数密切相关。

在电容式传感器中,通常会有两个导体或电极,它们之间会形成一个电容。


目标物体靠近或远离电容式传感器时,导体间的距离会发生变化,从而导致电容的大小发生变化。

这种变化可以通过电路进行检测和测量,进而得到目标物体的信息。

电容式传感器可以应用于各种领域,如工业自动化、汽车制造、医疗设备等。

以工业自动化为例,电容式传感器可以用于检测物体的位置和形状,从而实现自动化生产线的控制和监测。

在汽车制造中,电容式传感器可以用于检测车辆的液位、压力等信息,保障车辆的安全和稳定运行。

在医疗设备中,电容式传感器可以用于监测患者的呼吸、心跳等生理参数,为医生提供诊断和治疗的依据。

总之,电容式传感器利用电容的变化来检测目标物体的信息,其工作原理基于
电容与距离、介质的关系。

通过合理设计电路和信号处理方法,可以实现对目标物体的准确检测和测量。

电容式传感器在工业、汽车、医疗等领域有着广泛的应用前景,将为各行业带来更高效、更安全、更便捷的解决方案。

高中物理 3.1电容传感器的结构原理

高中物理 3.1电容传感器的结构原理

2.角位移型电容式传感器
图3-4右图为角位移型电容式传感器的原理图。当被测量的变化引 起动极板有一角位移时,两极板间相互覆盖的面积就改变了,从而也 就改变了两极板间的电容量C,此时电容值为:
C

S (1
d

)

C0
(1

)
C C C0 C0
3.1电容传感器的结构原理
图。当被测量的变化引起动极板移动距离△x时,覆盖面
积S就发生变化,电容量C也随之改变,其值为:
C

b(a
d
x)

C0

b
d
x
C

C
C0

b
d
x

C0
x a
3.1电容传感器的结构原理
图3-4 变面积型电容传感器原理图
3.1电容传感器的结构原理
说明:
(1)由此可见电容C的相对变化△C/C0与直线位移△x呈线性关系, 其测量的灵敏度为:
3.1电容传感器的结构原理
当齿形极板的齿数为n,移动△x后,其电容为:
C

nb(a
d
x)

n(C0

b
d
x)
C

C
nC0


nb
d
x
灵敏度为:
K C n b
一般变极板间距离电容式传感器的起始电容在 20~100pF之间, 极板间距离在25~200μm的范围内, 最大位移应小于间距的1/10, 故
在微位移测量中应用最广。
3.1电容传感器的结构原理
(4)单变隙式电容的非线性误差: | d | 100 %

第三章 电容式传感器

第三章 电容式传感器

C d 2 C0 d0 非线性误差为: d 3 2 d0 d r 100% 100% d d0 d0
减小
C C0 A 2 2 2 灵敏度: S d d0 d0
提高一倍
18
差动式比单极式灵敏度提高一倍,且非线性误差大为减 小。由于结构上的对称性,它还能有效地补偿温度变化所 造成的误差。
弹性体
绝缘材料 定极板
极板支架
动极板
36
在弹性钢体上高度相同处打一排孔,在孔内形成一排平行 的平板电容,当称重时,钢体上端面受力,圆孔变形,每
个孔中的电容极板间隙变小,其电容相应增大。由于在电
路上各电容是并联的, 因而输出反映的结果 是平均作用力的变化, 测量误差大大减小 F
(误差平均效应)
电容式称重传感器
T1 T2 UA U 1 ,U B U1 T1 T2 T1 T2
UA、UB—A点和B点的矩形脉冲的直流分量; T1、T2 —C1和C2充电至Ur的所需时间; U1—触发器输出的高电位。
29
C1、C2的充电时间T1、T2为:
U1 T1 R1C1 ln U1 U r U1 T2 R2C2 ln U1 U r
0 A
dg
g
d0
云母片的相对介电常数是空气的7倍,其击穿电压不小于 1000 kV/mm,而空气的仅为3kV/mm。 有了云母片,极板间起始距离可大大减小,同时传感器的输 出特性的线性度得到改善。
12
13
14பைடு நூலகம்
差动电容式传感器
定极板 动极板 C1 d1 C2 d2 定极板
15
初始位置时,
3

电容式传感器可分为变极距型、变面积型和变介质型三 种类型。

电容式传感器PPT课件

电容式传感器PPT课件

l1
C 22 (l l1) 21l1
d
ln( D ) ln( D )
D
d
d
ε1—被测液体介电常数 ε2—空气的介电常数 D、d—两同心圆柱的直径
l—柱体的有效总长度 l1——浸入液体的实际高度
C
2
ln( D
)
(1
2
)l1
d
K C 2 (1 2 )
l1 ln( D d )
第二节 电容传感器测量电路
5、新型电容式指纹传感器
FPS110电容式指纹传感器表面集合了300×300个电容器, 其外面是绝缘表面,当用户的手指放在上面时,由皮肤来组成 电容阵列的另一面。电容器的电容值由于导体间的距离而降低, 这里指的是脊(近的)和谷(远的)相对于另一极之间的距离。 通过读取充、放电之后的电容差值,来获取指纹图像。该传感 器的生产采用标准CMOS技术,大小为15×15mm2,获取 的图像大小为300×300,分辨率为500DPI。FPS110提供有 与8位微处理器相连的接口,并且内置有8位高速A/D转换器, 可直接输出8位灰度图像。FPS110指纹传感器整个芯片的功 耗很低(<200mw),价格也比较便宜(人民币600元以 下)。下图为利用FPS110获取的指纹图象
5、新型电容式指纹传感器
电容传感器系列 创新应用
第五章小结
1、变极距型电容传感器 输出呈非线性关系,灵敏度与极距平方成反比, 适合检测微小位移。
2、变面积型电容传感器
输出与被测量呈线性关系,适合检测较大的位移。 3、变介质型电容传感器
输出与被测量呈线性关系,典型应用是检测液位。 4、检测电路
运算放大器检测电路和电桥检测电路
剂固定两个截面为T型的绝缘体,

电容式传感器的原理及应用

电容式传感器的原理及应用

电容式传感器的原理及应用电容式传感器是在工业生产中广泛使用的一种传感器,其原理是利用电容变化来测量被监测物理量的变化。

这种传感器的应用范围非常广泛,从机械振动到压力,从液位到温度,几乎涵盖了所有与工业生产有关的物理量。

1. 传感器的工作原理电容式传感器的工作原理非常简单。

它由两个平行金属板组成,可以是圆形、方形或矩形。

其中一个板作为固定板,另一个则可移动,与被测的对象相接触。

当被测物体发生变化时,移动板与固定板之间的电容量就会发生变化。

电容量的大小与金属板的面积、间距以及介质的介电常数有关。

一般来说,介电常数越大,电容量也越大。

电容的大小可以用下面的公式来计算:C = εA/d其中,C是电容量,A是金属板的面积,d是金属板之间的距离,ε是介电常数。

2. 传感器的应用电容式传感器的应用非常广泛。

以下是几个常见的应用:(1)机械振动机械振动是许多设备故障的根源。

电容式传感器可以用来检测机械振动的幅度和频率,从而帮助工程师预测设备运行状态。

(2)压力电容式传感器可以用来测量压力的大小。

例如,在液压系统中,传感器可以用来监测液体压力,从而帮助确保系统正常工作。

(3)液位电容式传感器可以用来测量液体的液位。

例如,在油罐中,传感器可以用来监测油位,从而确保油罐中的油量不会过低或过高。

(4)温度电容式传感器可以用来测量物体的温度。

例如,在发动机中,传感器可以用来监测发动机的温度,从而确保发动机不会过热。

3. 传感器的局限性电容式传感器有一些局限性。

首先,它们只适用于测量固体或液体的物理量,而不能用来测量气体的物理量。

其次,它们只能测量电容量的变化,而无法直接测量物理量的大小。

最后,它们需要校准,以确保精度。

4. 结论电容式传感器是一种简单而有效的传感器,适用于测量许多与工业生产有关的物理量。

它的工作原理非常简单,非常适合用来监测机器和设备的状态。

虽然它们有一些局限性,但将它们与其他传感器结合使用可以极大地提高监测系统的准确性和效率。

电容传感器(传感器原理与应用)

电容传感器(传感器原理与应用)

第三章 电容式传感器电容测量技术近几年来有了很大进展,它不但广泛用于位移、振动、角度、加速度等机械量的精密测量,而且,还逐步扩大应用于压力、差压、液面、料面、成分含量等方面的测量。

由于电容式传感器具有一系列突出的优点:如结构简单,体积小,分辨率高,可非接触测量等。

这些优点,随着电子技术的迅速发展,特别是集成电路的出现,将得到进一步的体现。

而它存在的分布电容、非线性等缺点又将不断地得到克服,因此电容式传感器在非电测量和自动检测中得到了广泛的应用。

第一节 电容式传感器的工作原理和结构 一、基本工作原理电容式传感器是一种具有可变参数的电容器。

多数场合下,电容是由两个金属平行板组成并且以空气为介质,如图3—1所示。

由两个平行板组成的电容器的电容量为dAC ε=(3—1)式中ε——电容极板介质的介电常数。

A ——两平行板所覆盖面积; d ——两平行板之间的距离; C ——电容量当被测参数使得式(3—1)中的d 、A 和r ε发生变化时,电容量C 也随之变化。

如果保持其中两个参数不变而仅改变另一个参数,就可把该参数的变化转换为电容量的变化。

因此。

电容量变化的大小与被测参数的大小成比例。

在实际使用中,电容式传感器常以改变平行板间距d 来进行测量,因为这样获得的测量灵敏度高于改变其他参数的电容传感器的灵敏度。

改变平行板间距d 的传感器可以测量微米数量级的位移,而改变面积A 的传感器只适用于测量厘米数量级的位移。

二、变极距型电容式传感器由式(3—1)可知,电容量c 与极板距离d 不是线性关系,而是如图3—2所示的双曲线关系。

若电容器极板距离由初始值do 缩小d ∆,极板距离分别为do 和do-d ∆,其电容量分别为C0和C1,即0d AC ε=(3—2)⎪⎪⎭⎫⎝⎛∆-⎪⎪⎭⎫ ⎝⎛∆+=⎪⎪⎭⎫ ⎝⎛∆-=∆-=2020********d d d d d A d d d Add AC εεε(3—3)当Ad 《Ju 时,1…菩*1,则式(3—3)可以简化为 一W一一这时c1与AJ 近似呈线性关系,所以改变极板距离的电容式传感器注注是设计成Ad 在极小的范围内变化。

传感器原理及应用第三版第3章

传感器原理及应用第三版第3章
Z2、Z3、Z4…固定值阻抗 E……内阻为零的电源电压 下面讨论输出端开路的情况下,电桥的 电压灵敏度K(均以复数形式表达)。
电桥初始平衡条件为: 则输出:
•上一页
•与书中公式差一符号,对 交流电无影响。
•下一页
•返 回
当Z1有一变化时,电桥失去平衡,其输出为Usc ;将平衡条件代入得下式:
令:
为传感器阻抗相对变化值
•上一页
•下一页
•返 回
3-3 电容式传感器的误差分析
第一节所讨论的传感器原理均是在理想条件下进行,没有考虑 如温度,电场边缘效应,寄生与分布电容等因素的影响,实际上它 们对精度影响很大,严重时使传感器无法工作,因此在设计时应予 考虑。
一、温度对结构尺寸的影响:
由于组成传感器各材料的温度膨胀系数不同,当环境温度变化 时,传感器各结构尺寸发生变化从而引起电容变化。
• 如果
或而
时,则
,即输出与输入同相
位 ,没有滞后;
• 如果

时, ,这时电桥为谐振电桥,但桥臂
元件必须是纯电感和纯电容组成。实际上不可能。
• 由图3-9b可知:对于不同的 值, 角随 变化。当 时

时, 趋于最大值 ,并且
。只有 时,
值均为零。因此在一般情况下电桥输出电压 与电源 之间总有
相位差,即 ,只有当桥臂阻抗模相等
变大)。
根据上面讨论,所以在实际应用中多采用差动结构,如下图,
当动片上移 ,则

同时C2减小 ,两者初值为C0
则有:
•上一页
•下一页
•返 回
差动输出电容为:
同样当
时,忽略高次项得:
其非线性误差 为:
•考虑问题: • C1、C2如何连接才能满足 该式,即形成差动输出。

机电一体化第三章

机电一体化第三章

M
U0
RL
RL
理想值
Rl2
实测值
RL>RL1>RL2
图3-14 永磁式测速机测量电路图 图3-15 直流测速机输出特性
11
直流测速机的特点是输出为线性,斜率大、线性好,但由于 有电刷和换向器,构造和维护比较复杂,摩擦转矩较大。
直流测速机在机电控制系统中,主要用作测速和校正元件。 在使用中,为了提高检测灵敏度,尽可能把它直接连接到电 机轴上。有的电机本身就已安装了测速机。测速电机输出的 模拟电压直接送到速度换比较器中用于速度控制。
发送器对准目标发射光束,发射的光束一般来源 于半导体光源,发光二极管(LED)、激光二极管 及红外发射二极管。接收器有光电二极管、光电 三极管、光电池组成。在其后面是检测电路,它 能滤出有效信号和应用该信号
23
输出
图3-21 透光型光电传感 器接口电路
在透光型光电传感器中, 发光器件和受光器件相 对放置,中间留有间隙。 当被测物体到达这一间 隙时,发射光被遮住, 从而接收器件(光敏元 件)便可检测出物体已 经到达。这种传感器的 接口电路如图3-21所示。
位置传感器分接触式和接近式两种。所谓接触 式传感器就是能获取两个物体是否已接触的信息 的一种传感器;而接近式传感器是用来判别在某 一范围内是否有某一物体的一种传感器。
14
一、接触式位置传感器
这类传感器用微动开关之类的触点器件便可构 成,它分以下两种。
1.由微动开关制成的位置传感器
它用于检测物体位置 ,有如图3-17所示的几种
16
二、接近式位置传感器
接近式位置传感器按其工作原理主要分:电磁式、 光电式、静电容式,基本工作原理可用图3-19表示 出来。

第3章 电容式传感器

第3章 电容式传感器

ε r1 ( L0 − L) + ε r 2 L
d0
当L=0时,传感器的初始电容
C0 =
ε 0 ε r1 L0 b0
d0
=
ε 0 L0 b0
d0
当被测电介质进入极板间L深度后,引起电容相对变化量为
∆C C − C 0 (ε r 2 − 1) L 电容变化量与电介质移动量L呈线性关系 = = C0 C0 L0
∆d 3 相对非线性误差为: = ( δ ) d0
∆d 2 ∆d ( ) = ( ) × 100% d0 d0
结论:差动式电容传感器,不仅使灵敏度提高一倍, 结论 而且非线性误差可以减小一个数量级。
3.2 电容式传感器的测量电路
一、等效电路 如图,C为传感器电容,RP 为并联电阻,它包括电极间 直流电阻和气隙中介质损耗 的等效电阻。串联电感L表 示传感器各连线端间的总电 感。串联电阻RS表示引线电 阻、金属接线柱电阻及电容 极板电阻之和。
C max − C min 87.07 pF − 41.46 pF = = 0.19 pF / L K= V 235.6 L
三、变极板间距(d)型
图中极板1固定不动,极板2为可动电极(动片),当动片随被测量 变化而移动时,使两极板间距变化,从而使电容量产生变化 。 设动片2未动时极板间距为d0,板间 介质为空气,初始电容为C0,则
d0 d1 ε0 ε1
变ε的电容传感器 ε
ε 0S ε 1S ⋅ 3 . 6π d 0 3 . 6π d 1 C 0 C1 S = C= = ε 0S d1 d 0 ε 1S C 0 + C1 3 . 6π ( + ) + 3 . 6π d 0 3 .6π d 1 ε1 ε 0

《传感器技术》教学课件第3章

《传感器技术》教学课件第3章
一般变极板间距离电容式传感器的起始电容在20~100pF之 间, 极板间距离在25~200μm 的范围内。最大位移应小于间距的 1/10, 故在微位移测量中应用最广。
14
2 、变面积型电容式传感器
图3-5是变面积型电 容传感器原理结构 示意图。 被测量通
b
a d
x S
过动极板移动引起
两极板有效覆盖面
a)平行板
b)扇形
c)圆筒形
1——定极板
2——动极板
图 3-6 变面积型电容传感器结构图 17
电容b
d
x
(3-8)
平行板电容传感器的灵敏度为
S C b
(3-9)
x d
可见,平板形电容传感器的输出特性是线性的,适合测
量较大的位移,其灵敏度 为常数。增大极板长度 或减小间
距 ,均可使灵敏度提高。极板宽度 的大小不影响灵敏度,
由运算放大器的原理可得:
U0
1 ( jwC x ) U 1 ( jwC )
C Cx
U
(3-18)
S
对于平板电容器,Cx d ,代入(3-18)后可得:
U0
UC
S
d
(3-19)
由式(3-19)可见,输出电压与d是线性关系,负 号表明输出与电源电压反相。这从原理上克服了变极 距型电容式传感器的非线性。但是仍然存在一定的非 线性误差。另外,为保证仪器精度,还要求电源电压U 的幅值和固定电容C值稳定。
24
变介电常数型电容传感器图3-8 如下所示:
a)
b)
例: 极板
带条
c)
滚轮
电容传感器测量
绝缘带条的厚度
25
若忽略边缘效应,圆筒式液位传感器如下图,传

2023大学_传感器原理及应用(王化祥著)课后答案下载

2023大学_传感器原理及应用(王化祥著)课后答案下载

2023传感器原理及应用(王化祥著)课后答案下载2023传感器原理及应用(王化祥著)课后答案下载前言绪论第一章传感器及其基本特性第一节传感器的定义、组成及分类第二节传感器的基本特性__小结习题与思考题第二章电阻应变式传感器第一节应变式传感器第二节应变式传感器的测量电路第三节压阻式传感器第四节应变式传感器的应用__小结习题与思考题第三章电容式传感器第一节电容式传感器的'工作原理与类型第二节电容式传感器的测量电路第三节电容式传感器的误差分析及补偿第四节电容式传感器的应用__小结习题与思考题第四章电感式传感器第一节自感式传感器第二节差动变压器式传感器第三节电涡流式传感器__小结习题与思考题第五章压电式传感器第一节压电效应与压电材料第二节压电传感器的等效电路和测量电路第三节引起/玉,E9式传感器测量误差的因素第四节压电传感器的应用__小结习题与思考题第一节磁电感应式传感器第二节霍尔传感器第三节磁敏电阻器第四节磁敏二极管和磁敏三极管第五节磁电传感器的应用__小结习题与思考题第七章热电式传感器第一节热电偶传感器第二节热电阻式传感器第三节半导体式热敏电阻第四节热电式传感器的应用__小结习题与思考题第八章光电传感器第一节光电效应第二节光电器件及其特性第三节红外传感器__小结习题与思考题第九章常用其他新型传感器第一节气体传感器第二节湿敏传感器第三节超声传感器第四节超导传感器第五节仿生传感器__小结习题与思考题第十章智能传感器第一节智能传感器概述第二节智能传感器的实现方式第三节智能传感器的应用第四节智能传感器的发展方向本?小结习题与思考题……第十一章传感器的标定与选用传感器原理及应用(王化祥著):基本信息点击此处下载传感器原理及应用(王化祥著)课后答案传感器原理及应用(王化祥著):目录作者:王桂荣,李宪芝主编出版社:中国电力出版社版次:1字数:500000印刷时间:-5-1ISBN:9787512304109。

第3章-电容式传感器

第3章-电容式传感器

结构形式二
电容传感器分类比较
§2电容式传感器的输出特性
差动电容传感器的结构如图3—4所示( )其输出特性 曲线如图3—5所示。在零点位臵上设臵一个可动的接 地中心电极,它离两块极板的距离均为d。当中心电极 在机械位移的作用下发生位移 d 时,则传感器电容 量分别为
1 C1 d 0 d d 0 1 d d0
d ) d0 A A C1 d d 2 (3—3) d 0 d d (1 ) d 0 (1 2 ) 0 d0 d0
A(1
d 2 当 d d0 时, 1 d 2 1 ,则式(3—3)可以简化为: 0 d
A(1
C1 d0 ) d0 C0 C0 d d0
(3—4)
C
C1
C2
0
d1
d2
d
图3-2 电容量与极板距离的关系 由图3—2可以看出,当 d 0 较小时,对于同样的 d变化所引起的电容变化量 C可以增大,从而使传感 器的灵敏度提高;
在实际应用中,为了提高传感器的灵敏度和克服某 些外界因素(例如电源电压、环境温度、分布电容等) 对测量的影响,常常把传感器做成差动的形式,其原 理如图3—4所示。
差动电容式传感器的相对非线性误差为:
C C C d ( ) ( ) 2 C0 实际 C0 线性 C0 d0 d 2 d 4 d 2 r ( ) ( ) ... ( ) C d d0 d0 d0 ( ) 2 C0 线性 d0
灵敏度
若略去高次项,则 C 与 C0
RS 代表串联损耗,即引线电阻,电容器支架和极板
的电阻。
电感L由电容器本身的电感和外部引线电感组成。 由等效电路可知,等效电路有一个谐振领率,通常 为几十兆赫,当工作频率等于或接近谐振频率时, 谐振频率破坏了电容的正常作用。因此,应该选择 低于谐振频率的工作频率,否则电容传感器不能正 常工作。

实验三 电容式传感器静、动态特性实验

实验三 电容式传感器静、动态特性实验

实验三电容式传感器静、动态特性实验一、实验目的:1. 了解电容式传感器结构及其特点。

2. 了解电容传感器的动态性能的测量原理与方法。

二、需用器件与单元:电容传感器、电容传感器实验模板、测微头、相敏检波、低通滤波模板、数显单元、直流稳压源、双踪示波器。

三、实验步骤:1、按实验二的图2-1安装示意图将电容传感器接于电容传感器实验模板上。

2、将电容传感器连线插入电容传感器实验模板,实验线路见图3-1。

图3-1 电容传感器位移实验接线图3、将电容传感器实验模板的输出端V01与数显表单元V i相接(插入主控箱V i孔),R w调节到中间位置。

4、接入±15V电源,旋动测微头推进电容传感器动极板位置,每间隔0.2mm记下位移X与输出电压值,填入表3-1。

5、根据表3-1的数据计算电容传感器的系统灵敏度S和非线性误差δf。

6、传感器安装图同实验二图2-1,按图3-1接线。

实验模板输出端V01 接滤波器输入端。

滤波器输出端V,接示波器一个通道(示波器X轴为20ms/div、Y轴示输出大小而变)。

调节传感器连接支架高度,使V01输出在零点附近。

7、主控箱低频振荡器输出端与振动源低频输入相接,振动频率选6~12Hz之间,幅度旋钮初始置0。

8、输入±15V电源到实验模板,调节低频振荡器的频率与幅度旋钮使振动台振动幅度适中,注意观察示波器上显示的波形。

9、保持低频振荡器幅度旋钮不变,改变振动频率,可以用数显表测频率(将低频振荡器输出端与数显Fin输入口相接,数显表波段开关选择频率档)。

从示波器测出传感器输出的V01峰-峰值。

保持低频振荡器频率不变,改变幅度旋钮,测出传感器输出的V01峰-峰值。

四、思考题:1、试设计利用ε的变化测谷物湿度的传感器原理及结构?能否叙述一下在设计中应考虑哪些因素?2、为了进一步提高电容传器灵敏度,本实验用的传感器可作何改进设计?如何设计成所谓容栅传感器?3、根据实验所提供的电容传感器尺寸,计算其电容量C O和移动0.5mm时的变化量,(本实验外圆半径R=8mm,内圆柱外半径r=7.25mm,外圆筒与内圆筒覆盖部分长度1=16mm。

传感器

传感器

在弹性钢体上高度相同处打一排孔,在孔内形成一排 平行的平板电容,当称重时,钢体上端面受力,圆孔
变形,每个孔中的电容极板间隙变小,其电容相应增
大。由于在电路上各电容是并联的,因而输出反映的
结果是平均作用力的变化,
测量误差大大减小
F
(误差平均效应)
图3-27 电容式称重传感器
传感器原理与应用——第三章
同轴双层电极电容式液位计。
内电极和与之绝缘的同轴金
属套组成电容的两极,外电 极上开有很多流通孔使液体 流入极板间。 1、2-内、外电极;
3-绝缘套; 4-流通孔
传感器原理与应用——第三章
以上介绍的两种是最一般的安装方法,在有些特殊
场合还有其它特殊安装形式,如大直径容器或介电
系数较小的介质,为增大测量灵敏度,通常也只用
计算点半径


传感器原理与应用——第三章
a2 而CA为:(积分求解过程省略) k 4 T ln 2 。 2 a b 2 2 1 4 T a a 1 CA ln 2 4 T ln 2 k 2 2 PH PL a b a b PH PL PH PL
传感器原理与应用——第三章
生物识别的技术核心在于如何获取这些生物特征,并
将其转换为数字信息,存储于计算机中,利用可靠的
匹配算法来完成验证与识别个人身份的过程。
传感器原理与应用——第三章
指纹识别
传感器原理与应用——第三章
19世纪初,科学研究发现了指纹的两个重要特征, 一是两个不同手指的指纹纹脊的式样不同,二是指纹
利用脉宽调制电路,将中心膜片接地,其输出U0
C1 C 2 CL CH U0 UQ UQ C1 C 2 CL CH
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
εg——云母的相对介电常数εg=7; ε0—
—空气的介电常数ε0=1; d0——空气隙厚度; dg——云母片的厚度。
第3章电容式传感器
一、工作原理与类型
云母片的相对介电常数是空气的7倍,其击穿电压不小于 1000 kV/mm,而空气仅为3 kV/mm。因此有了云母片,极板间起
始距离可大大减小。同时,式(5-5)中的dg/ε0εg项是恒定值,
这种传感器的灵敏度为:
KCC0 d d0
0rs
d02
此式表明:灵敏度K是极板间隙d0 的函数,d0越小,灵敏度越高。但非 线性误差将增大,且容易引起电容器 击穿或短路。为此常采用差动式结构, 极板间可采用高介电常数材料。
第3章电容式传感器
一、工作原理与类型
非线性误差为:
d d0
2
d d0
此式表明:灵敏
s—极板相对覆盖面积; δ—极板间距离; εr—相对介电常数; ε0 —真空介电常数, ε0 =8.85pF/m; ε—电容第极3章板电间容式介传质感的器介电数。
一、工作原理与类型
(二)类 型
三种基本类型:变极距(变间隙)(δ)型;变面积型(S)型;变
介电常(εr)型
第3章电容式传感器
一、工作原理与类型
量C0为:
C0
0 r S
d0
若电容器极板间距离由初始值d0缩小了Δd,电容量增大了ΔC,则
CC0
C 0rS
d0d
1C0d d0
C01dd02 1dd0
第3章电容式传感器
一、工作原理与类型
在上式中,若Δd/d0<<1时,1-(Δd/d0)2≈1,则式
C
C0
C0
d d0
此时ΔC与Δd近似呈线性关系,所以变极距型电容式传感器只 有在Δd/d0很小时,才有近似的线性关系。
度K是极板间隙d0的函
数,d0越小,灵敏度
越高。但非线性误差

d d0
100
将增大,且容易引起 电容器击穿或短路。 为此常采用差动式结
构,极板间可采用高
介电常数材料。
C C 0 dd 01 dd 0 dd 02 dd 03••• 第3章电容式传感器
一、工作原理与类型
C S dg d0 0 g 0
A 20h K 2( 0)
ln(r2 / r1)
ln(r2 / r1)
可见,传感器电容量C与被测液位高度hx成线性第关3章系电。容式传感器
一、工作原理与类型
3、变介电常数型电容传感器
变介电常数型电容式传感器大多用来测量电介质的厚度、液位,还可根 据极间介质的介电常数随温度、湿度改变而改变来测量介质材料的温度、湿 度等。若忽略边缘效应,单组式平板形厚度传感器如下图,传感器的电容量 与被厚度的关系为:
δx
厚度传感器
C
ab
(x)/0x/
C1
δx、ε、ε0——被测物的厚度和它的介电常数、空气的介电常数 。
第3章电容式传感器
一、工作原理与类型
2r2
▲ 若忽略边 缘效应,圆筒式 液位传感器如下 图,传感器的电
2r1
hx
h
C1 C2
C
容量与被液位的
关系为
液位传感器
Cl2 n r20 /(h r1)2l(n r 2/(r 0 1 ))h xA Kxh
1、变极距型电容传感器
C 1
d
2 变极距型电容传感器
C0
d C-d 特性曲线
图中极板1固定不动,极板2为可动电极(动片),当动片随 被测量变化而移动时,使两极板间距变化,从而使电容量产生
变化 ,其电容变化量ΔC为
第3章电容式传感器
一、工作原理与类型
当传感器的εr和S为常数,初始极距为d0时,可知其初始电容
第)工作原理
用两块金属平板作电极可构成电容器,当忽略边缘效应时,其 电容C为:
δ
S
CS r0 S
ε
δ、S和εr中的某一项或几项有 变化时,就改变了电容C0、δ或S的变 化可以反映线位移或角位移的变化, 也可以间接反映压力、加速度等的变 化;εr的变化则可反映液面高度、材 料厚度等的变化。
第3章 电容式传感器
1、电容式传感器的工作原理与类型 2、电容式传感器的测量电路 3、主要性能、优缺点和设计要点 5、电容式传感器的应用
第3章电容式传感器
电容式传感器介绍
电容器是电子技术的三大类无源元件(电阻、电感和电容) 之一,利用电容器的原理,将非电量转换成电容量,进而实现 非电量到电量的转化的器件或装置,称为电容式传感器,它实 质上是一个具有可变参数的电容器。
板移动引起两极板有效覆盖面积S改变,从而得到电容量的变化。
当动极板相对于定极板沿长度方向平移Δx时,则电容变化量为
CCC00r(adx)b
变面积型电容传感器原理图
式中C0=ε0εr ba/d 为初始电容。电 容相对变化量为
C x
C0
a
很明显,这种形式的传感器其电容量C
与水平位移Δx呈线性关第3系章。电容式传感器
C2
C
C3
第3章电容式传感器
一、工作原理与类型
若忽略边缘效应,单组式平板形线位移传感器如下图,传感器的电容
量与被位移的关系为
lx
l
平 板 形
C1 C2
C4
C
C3
C ( x)b /x 0 l x/b ( a / l0 x)
a、b、lx——固定极板长度和宽度及被测物进入两极板间的长度 ; δ——两固定极板间的距离;
它能使传感器的输出特性的线性度得到改善。 一般变极板间距离电容式传感器的起始电容在20~100pF之
间, 极板间距离在25~200μm 的范围内。最大位移应小于间距
的1/10,故在微位移测量中应用最广。
第3章电容式传感器
一、工作原理与类型
2、变面积型电容传感器
下图是变面积型电容传感器原理结构示意图。被测量通过动极
一、工作原理与类型
下图是电容式角位移传感器原理图。当动极板有一个角位
移θ时,与定极板间的有效覆盖面积就发生改变,从而改变了
两极板间的电容量。当θ=0时,则
C0
0 r S0
d0
εr——介质相对介电常数; d0——两极板间距离; S0——两极板间初始覆盖面积。
C0rS01
d0
C0
C0
可以看出,传感器的电容量C与第角3章位电移容θ式呈传线感器性关系。
优 点:测量范围大、灵敏度高、结构简单、适应性强、 动态响应时间短、易实现非接触测量等。由于材料、工艺,特 别是测量电路及半导体集成技术等方面已达到了相当高的水平, 因此寄生电容的影响得到较好地解决,使电容式传感器的优点 得以充分发挥。
应 用:压力、位移、厚度、加速度、液位、物位、湿 度和成分含量等测量之中。
相关文档
最新文档