静力学第3章+力系的平衡
工程力学(静力学与材料力学)第三章力偶系详解
FB
r M2 0 ∑ M = 0 , FA sin
M 2 2r FA
M2 = 4M1 = 8kNm
2M 1 FO FB FA 8kN r
• 作业3-1,3-4,3-8
考虑CB部分为二力构件,得:
FC FA FB FC
例3-4
图示机构自重不记。圆轮上的销子 A 放在 摇杆 BC上的光滑导槽内。M 1 = 2kNm,OA = r = 0.5m 。图示位置OA⊥OB,α = 30°,且系统平衡。 求作用于摇杆 BC 上力偶的矩 M 2 及 O、B 支座的反 力。 解:受力分析
M1
R
F1
M
F2
2
M1 + M2 = rBA×F1 + rBA×F2 = rBA×( F1 + F2 ) = rBA×R = M
如有n个力偶,按上法依次合成, 最后得一力偶,合力偶矩矢为 M = M1 +M2 + … +Mn = ∑M I
B
rBA
A
F2
F1
任意个力偶可以合成为一个 合力偶,这个合力偶矩矢等于各 分力偶矩矢的矢量和。 M = M 1+ M 2+ … + M n = ∑M i
性质三
证:
力偶没有合力
仍用反证法,即假定力偶有合力,那么总可 找到一个与此力大小相等,方向相反而作用线 共线的力与此力平衡,即力与力偶相平衡。与 性质二矛盾。
性质一、二和三告诉我们力偶只能与力偶等 效而不能与单个力等效。
•力偶只能与力偶相平衡 力偶只能与力偶相平衡
§3-4 力偶系的合成
设有两个力偶,由性质一,将 力偶中两力分别移到两力偶作用面 交线上的两点 A 和 B,可得到两个 汇交力系,其合力分别为R 、 R ’ 。
3静力学第三章习题答案
第三章 部分习题解答3-10 AB ,AC 和DE 三杆连接如图所示。
杆DE 上有一插销H 套在杆AC 的导槽内。
试求在水平杆DE 的一端有一铅垂力F 作用时,杆AB 所受的力。
设DE BC HE DH DB AD ===,,,杆重不计。
解:假设杆AB ,DE 长为2a 。
取整体为研究对象,受力如右图所示,列平衡方程:∑=0C M02=⋅a F By0=By F取杆DE 为研究对象,受力如图所示,列平衡方程:∑=0HM0=⋅-⋅a F a F DyF F Dy =∑=0B M 02=⋅-⋅a F a F DxF F Dx 2=取杆AB 为研究对象,受力如图所示,列平衡方程:∑=0y F0=++By Dy Ay F F FF F Ay -=(与假设方向相反)∑=0A M02=⋅+⋅a F a F Bx DxF F Bx -=(与假设方向相反) ∑=0B M02=⋅-⋅-a F a F Dx AxF F Ax -=(与假设方向相反)3-12AD AC AB ,,和BC 四杆连接如图所示。
在水平杆AB 上作用有铅垂向下的力F 。
接触面和各铰链均为光滑的,杆重不计,试求证不论力F 的位置如何,杆AC 总是受到大小等于F 的压力。
解:取整体为研究对象,受力如图所示,列平衡方程:∑=0C M0=⋅-⋅x F b F DF bx F D =F CF C yF DF CxF CyF BxF ByF DxF DyF HyF BxF ByF DyF DxF Ax F Ay取杆AB 为研究对象,受力如图所示,列平衡方程:∑=0A M0=⋅-⋅x F b F BF bx F B =杆AB 为二力杆,假设其受压。
取杆AB 和AD 构成的组合体为研究对象,受力如图所示,列平衡方程:∑=0E M02)2(2)(=⋅--⋅+⋅+bF x b F b F F AC D B解得F F AC =,命题得证。
注意:销钉A 和C 联接三个物体。
第3章 静力学平衡问题 (2)
例题
(2)再研究轮
FOx FOy FʹB
M
O
(F ) 0
FB cos R M 0
F
F
解得:
x
0
0
FOx FB sin 0
FB cos FOy 0
y
M FP R
FOx FP tg
FOy FP
【负号表示力的方向与图中所设方向相反】
由图示几何关系,在Rt△BFE和 Rt△EDA中
BD=BE+DE=1.2 2+
1.8 2
≈2.97(m)
∑ MA(F) =0 M-FA×BD=0
解得 FA=M/BD=269.36(N) FC=FA=269.36N
B
解法二:以整体作为研究对象, 画出受力图。
C
M FCy
FAx
FCx
列平衡方程
∑ Fx=0 ∑ Fy=0
§3-1 平面力系的平衡条件与平衡方程
例题
M A (F ) 0 : MB (F ) 0 MC (F ) 0
解得:
2 3M FA 3a 3P 3
FC
3 aM 0 2
3 a FA aP M 0 2 2 3 a FB a P M 0 2 2
FAx=FCx=190.48kN
【3-5】为了测定飞机螺旋桨所受的空气阻力偶,可将飞机水平放
置,其一轮搁置在地秤上。当螺旋桨未转动时,测得地秤所受的压
力为4.6 kN;当螺旋桨转动时,测得地秤所受的压力为6.4 kN。已 知两轮间的距离l=2.5 m。试求螺旋桨所受的空气阻力偶的力偶矩 M 的数值。
B
α
FNC
∑ MB(F) =0
基础篇 单元三 平面力系的平衡
当物系平衡时,系统内的每一部分都是平衡的。既可以选 择整个物系为研究对象,也可以选择其中的某几个或某一个物 体作为研究对象。
单元三 平面力系的平衡
课题三 物体系统的平衡
对于一般的静定物系平衡问题,应首先画出整体、局部或单 个物体的受力图,再从有已知力且未知量数少于或等于独立平衡 方程数的物体着手分析,便可解除全部未知量。若物系内分离体 均不符合可解条件,必须寻找有局部可解条件的分离体。
课题一 平面任意力系的平衡
单元三 平面力系的平衡
课题一 平面任意力系的平衡
由平衡方程可知,平面任意力系平衡的解析条件为:力系 中各力在两个任选的坐标轴上投影的代数和等于零,各力对力 系作用面内任意一点之矩的代数和等于零。除基本形式之外, 平面任意力平衡方程还可表示为二力矩形式。
M M
座的约束力。
解 (1)取齿轮轴为研究对象,画其受力图,如图3-2b。
(2)建立直角坐标系Axy,如图3-2b所示,列平衡方程求解
单元三 平面力系的平衡
课题一 平面任意力系的平衡
Fx 0 F FBx 0
解得 FBx F
M A(F) 0 FA 3a F 2a 2Fa Fa 0 解得 FA F
3 kN 11.4kN 2
将FT代入式(b)得 FAy G1 G2 FT sin 2.1kN
本题也可用二力矩式求解。
单元三 平面力系的平衡
课题一 平面任意力系的平衡
例3-3 减速器中的齿轮轴B端可分别简化为固定铰支座,
A端可简化为可定铰支座,如图3-2a所示。已知F、a,求两支
解 取工件为研究对象。工件在水平面受三个力偶和两个螺 栓的水平约束力的作用,三个力偶合成后仍为一力偶,若工件 平衡,必有一约束力偶与它相平衡,因此螺栓A和B的水平力 FNA和FNB必组成一力偶,方向如图3-5b所示,且FNA=FNB 。列 平衡方程
理论力学-3-力系的平衡
z
F2
O
F1
F
z
0
M F 0 M F 0
x y
自然满足,且
M F 0
z
M F 0
O
平面力系平衡方程的一般形式
于是,平面力系平衡 方程的一般形式为: z O y
Fx 0 Fy 0 M F 0 o
其中矩心 O 为力系作用面 内的任意点。
静不定次数:静不定问题中,未知量的个数与独立的平 衡方程数目之差。
多余约束:与静不定次数对应的约束,对于结构保持静 定是多余的,因而称为多余约束。 关于静不定问题的基本解法将在材料力学中介绍。
P A m a B q
解:对象:梁 受力:如图 方程:
C
b
F F
0, FAx P cosq 0, FAx P cosq # FAy FB P sin q 0 1 y 0, M A F 0, m FBa Pa bsinq 0 2
B A
FR FR
x
A
B
FR
A、B 连线不垂直于x 轴
B A
FR
x
3.3 平面力系的平衡方程 “三矩式” M A = 0, MB = 0 , MC = 0。
C B A C B A
FR FR
满足第一式? 满足第二式? 满足第三式?
B A
FR
FR
A、B、C 三点不 在同一条直线上
C A
B
M (F ) 0 Fy 0
A
FQ (6 2) FP 2 FB 4 W (12 2) 0
FQ FA FP FB W 0
工程力学3-力系的平衡条件和平衡方程
例1 例1 求图示刚架的约束反力。
解:以刚架为研究对象,受力如图。
F x0:F A xq b0
P a A
q
b
F y0:F A yP0
P
MA(F)0:
MA
MAPa12q b2 0
FAx
A
FAy
q
解之得:
FAx qb
FAy P
MAPa 1 2qb 2
例2 例2 求图示梁的支座反力。
解:以梁为研究对象,受力如图。
坐标,则∑Fx=0自然满足。于是平面 平行力系的平衡方程为:
O
F2
x
F y 0 ; M O ( F ) 0
平面平行力系的平衡方程也可表示为二矩式:
M A ( F ) 0 ; M B ( F ) 0
其中AB连线不能与各力的作用线平行。
[例5] 已知:塔式起重机 P=700kN, W=200kN (最大起重量), 尺寸如图。求:①保证满载和空载时不致翻倒,平衡块
解: 1.分析受力
建立Oxy坐标系。 A处约束力分量为FAx和FAy ;钢 索的拉力为FTB。
解: 2.建立平衡方程
Fx=0
MAF= 0
- F Q 2 l- F W xF T Blsi= n0
FTB= FPlxs+ iF nQ2 l= 2FlWxFQ
FAx F TBco = s0
Fy=0
F A = x 2 F W x l F Q l co= s3 3 F lW 0xF 2 Q
[例1] 已知压路机碾子重P=20kN, r=60cm, 欲拉过h=8cm的障碍物。 求:在中心作用的水平力F的大小和碾子对障碍物的压力。
解: ①选碾子为研究对象 ②取分离体画受力图
力系的平衡.ppt
2m
Fix 0
FAx FBx FT1
2 0 4 16
E FAx
FAz A FAy
D
4m
FBz
FT FT2
B FBx
y
FT1 C
FAx
30 100 6 6
2 100N 20
x
P
Fiy 0
FAy FT1
4 20
0
FAy
30 100 6 6
n
M B (Fi ) 0 M C (Fi ) 0
i 1
i 1
(AB连线不 垂直于x轴)
(A、B、C 三点不共线)
(2)平面力偶系:(各力偶Mi作用面相互平行即可)
n
Mi 0
i 1
一个独立方程!
(3)平面平行力系:
设各力与 y 轴平行
n
Fiy 0
i1
n
M A (Fi ) 0
M2 Mi
FR Fi 0
平衡方程仅有 MO Mi 0
O
M1
即 Mix 0, Miy 0, Miz 0 M3
(3)空间平行力系 —3个独立方程
z
F2
Fi
设各力平行于z 轴,则有
Fix 0, Fiy 0, Miz 0 x
平衡方程仅有
F3 O
F1
Fiz 0, Mix 0, Miy 0 y (4)其他
例如:空间各力与某轴 l 相交 ——仅有5个独
l
立的平衡方程
各力对 l 轴之矩恒为零
2.平面任意力系的平衡方程
第三章流体静力学(流体的平衡)
1.流体的平衡:绝对平衡、相对平衡 2.流体平衡时的压强 3.流体平衡的条件 3.1.平衡的微分方程 ∂ p dx ∂ p dx −∂ p dydz − p dydz = dxdydz ∂x 2 ∂x 2 ∂x 表面力: −∇ p dxdydz d 体积力: f b =∇ p 绝对平衡方程: f x 方向表面力: p −
∫ gy sin dA= g sin ∫ y dA= g y c sin A= P c A
A A
设压力中心坐标为
x D , y D = x C f , y C e ,其中 f 和 e 称为纵向和横向偏心矩。
则总合力对形心坐标轴的力矩:
F e =∫ dF = g sin ∫ y dA F f =∫ dF = g sin ∫ y dA∇ p d r =0
d 考虑到绝对平衡方程,得出等压面的微分方程: f b r = 0 ,即在等压面上体力处处与等压面 垂直。
3.3.流体平衡的必要条件
b =∇× 由绝对平衡方程得 ∇× f 1 −1 ∇ p = 2 ∇ ×∇ p
−1 ∇ p⋅∇ ×∇ p =0 3 ⋅∇ × f =0 流体平衡的必要条件 f b b b⋅∇ × f b = 于是 f
均质流体 =constant
≡0 ∇× f b
−∇ =
1 ∇p
=
−p
非均质流体:正压流体 = p ,如等温或绝热气体 定义压力函数 P p : ∇ P =
=∇ P 由绝对平衡方程得, f b 4.流体静力学基本方程(静力学规律)
由 P =− gz C 得
∇p p ≡0 ,故 f 有势,势函数 =− P p ∇× f b b
理论力学第3章 力系的平衡
基础部分——静力学第3 章力系的平衡主要内容:§3-7 重心即:力系平衡的充分必要条件是,力系的主矢和对任一点3-2-1 平衡方程的一般形式∑=iF F R ∑=)(i O O F M M 已知∑=iF F R ∑=)(i O O F M M 投影式:平衡方程i即:力系中所有力在各坐标轴上投影的代数和分别等于零;所有力对各坐标轴之矩的代数和分别等于零。
说明:¾一般¾6个3个投影式,3个力矩式;¾一般形式基本形式3-2-2 平面一般力系的平衡方程xy zOF1F2Fn平面内,¾一般形式¾3个2个投影式,1个力矩式;¾ABAzzCC附加条件:不垂直附加条件:不共线Bx二矩式的证明必要性充分性合力平衡AA 点。
B 点。
过ABBx故必有合力为零,力系平衡证毕平面问题3个3个 解题思路BAMFo45l l[例3-1] 悬臂梁,2解:M A 校核:0)(=∑F MB满足!解题思路?AyF AxF[例3-2] 伸臂梁F AxF AyF BF q 解:0=∑x F 0)(=∑F AM3(F −+0=∑yF3(F −+(F −+0)(=∑F AM=∑yF0=∑x F F AxF AyF BF q 思考:如何用其他形式的平衡方程来求解?0=∑x F 3(F −+0)(=∑F AMF AxF F BF q 0)(=∑F BM(F −+二矩式思考练习][练习FFlll F ACB DlllACB DM=F l[思考][思考]lll F ACB DlllACB DF见书P54例3-1—约束lllACB DF—约束CBADEFM—约束—约束—整体平衡局部平衡CB ADEFM研究对象的选取原则¾仅取整体或某个局部,无法求解;¾一般先分析整体,后考虑局部;¾尽量做到一个方程解一个未知力。
qCBAm2m2m2m2MBCM[例3-3] 多跨梁,求:如何选取研究对象?F CqF CFAxF AyM ABAqF'BxF'ByM A F Ax F AyF Bx F By解:先将分布力用合力来代替。
理论力学3
第3章 力系的平衡
3.4 例 题 分 析
Theoretical Mechanics
返回首页
第3章 力系的平衡
3.4 例 题 分 析
例3-1 外伸梁ABC上作用有均布载荷q=10 kN/m,集中力 F=20 kN,力偶矩m=10 kNm,求A、B支座的约束力。
解:画受力图
m A F 0 FNB 4 q 4 2 m F sin 6 0
m = 0
三力平衡汇交定理 刚体受不平行的三个力作用而平衡时,此三力的作用线 必共面,且汇交于一点。
Theoretical Mechanics
返回首页
第3章 力系的平衡
3.1.5 静定问题与超静定问题
3.1 主要内容
•物体系统:由若干个物体通过适当的约束相互连 接而成的系统 。 •静定问题:单个物体或物体系未知量的数目正好 等于它的独立的平衡方程的数目。
M y F 0
Fx 0, Fy 0, Fz 0
结论:各力在三个坐标轴上投影的代数和以及 各力对此三轴之矩的代数和都必须同时等于零。
Theoretical Mechanics
返回首页
第3章 力系的平衡
1. 空间汇交力系 如果使坐标轴的原点与各力的汇交点重合,则有 Mx≡My≡Mz≡0,即空间汇交力系平衡方程为
F
F
选刚架为研究对象 画受力图
FA FD
Theoretical Mechanics
返回首页
第3章 力系的平衡
解:几何法
F
3.4 例 题 分 析
选刚架为研究对象 画受力图
FA FD FA
作力多边形,求未知量
选力比例尺F=5 kN/cm作封
静力学:第三章-平面任意力系(1)详解
合力
合力
3.3 平面任意力系的平衡
平面任意力系平衡的充要条件:力系的主矢和对任
意点的主矩都等于零。
平面任意力系的平衡方程:
一般式
二矩式
三矩式
Fx Fy
0 0
MO 0
F x
0
M A 0
M B 0
M A 0 M B 0 M C 0
两个取矩点连线, 不得与投影轴垂直
三个取矩点, 不得共线
解得: P3max=350kN
P3
P1
P2
75kN P3 350kN A
B
FA
FB
当 P3=180kN 时(平面平行力系):
M A 0 4 P3 2 P1 14 P2 4 FB 0 P3
P1
P2
Fy 0 FA FB P1 P2 P3 0
解得: FA=210kN FB=870kN
平面任意力系的平衡方程只有三个,只能求三 个未知数。
三个特例:
平面汇交力系: Fx 0, Fy 0 平面力偶系: M o 0
平面平行力系: Fy 0, M o 0 或者 M A 0, M B 0
3.4 物体系统的平衡
静定问题:系统未知量数目等于独立的平衡方程数目。 超静定问题(静不定问题):系统未知量数目超过独
其中:M B M B (F ) Fd
3.2 平面任意力系向作用面内一点简化
主矢:矢量和 FR Fi 主矩: 代数和 M O M O (Fi )
主矢与简化中心无关,而主矩一般与简化中心有关.
主矩简化什么情况下与简化位置无关?
平面任意力系应用:平面固定端约束
=
=
平面任意力系的简化结果
(1) FR 0, M O 0
工程力学 第3章 力系的平衡
6
解 :1. 受力分析, 确定平衡对象 圆弧杆两端 A 、 B 均为铰链,中间无外力作用,因此圆弧杆为二力杆。 A 、 B 二处的 约束力 FA 和 FB 大小相等、 方向相反并且作用线与 AB 连线重合。 其受力图如图 3-6b 所示。 若 以圆弧杆作为平衡对象,不能确定未知力的数值。所以,只能以折杆 BCD 作为平衡对象。 ' 折杆 BCD , 在 B 处的约束力 FB 与圆弧杆上 B 处的约束力 FB 互为作用与反作用力, 故 二者方向相反; C 处为固定铰支座,本有一个方向待定的约束力,但由于作用在折杆上的 ' 只有一个外加力偶,因此,为保持折杆平衡,约束力 FC 和 FB 必须组成一力偶,与外加力 偶平衡。于是折杆的受力如图 3-6c 所示。 2.应用平衡方程确定约束力 根据平面力偶系平衡方程(3-10) ,对于折杆有 M + M BC = 0 (a) 其中 M BC 为力偶( FB , FC )的力偶矩代数值
图 3-8 例 3-3 图
解 :1. 选择平衡对象 本例中只有平面刚架 ABCD 一个刚体(折杆) ,因而是唯一的平衡对象。 2 受力分析 刚架 A 处为固定端约束, 又因为是平面受力, 故有 3 个同处于刚架平面内的约束力 FAx、 FAy 和 MA 。 刚架的隔离体受力图如图 3-8b 所示。 其中作用在 CD 部分的均布荷载已简化为一集中 力 ql 作用在 CD 杆的中点。 3. 建立平衡方程求解未
习 题
本章正文 返回总目录
2
第 3 章 力系的平衡
§3-1 平衡与平衡条件
3-1-1 平衡的概念
物体静止或作等速直线运动,这种状态称为平衡。平衡是运动的一种特殊情形。
平衡是相对于确定的参考系而言的。例如,地球上平衡的物体是相对于地球上固定参 考系的, 相对于太阳系的参考系则是不平衡的。 本章所讨论的平衡问题都是以地球作为固定 参考系的。 工程静力学所讨论的平衡问题,可以是单个刚体,也可能是由若干个刚体组成的系统, 这种系统称为刚体系统。 刚体或刚体系统的平衡与否,取决于作用在其上的力系。
第3章 静力学平衡问题
FQ Cx FN
习题 3-11b 解图
取节点C为研究对象,见习题3-11b解图,
∑ Fy = 0 : F'BC cosα = FN
∴ FN
=
FP cosα 2 sin α
=
FP 2 tan α
=
3 × 15 2×2
= 11.25kN
3-12 蒸汽机的活塞面积为0.1m2,连杆AB长2m,曲柄BC长0.4m。在图示位置时, 活塞两侧的压力分别为p0=6.0×105Pa, p1=1.0×105Pa, ∠ABC=90D 。试求连杆AB作用于曲柄 上 的 推 力 和 十 字 头 A对 导 轨 的压力(各部件之间均为光滑接触)。
图(b):ΣMi = 0
∴ 由对称性知
FRB
=
M d
(←)
FRA
=
M d
(→)
FBy = FAy = 0
FBx
=
M d
M
FB
3-10 固定在工作台上的虎钳如图所示,虎钳丝杠将一铅垂力 F=800N 施加于压头上, 且沿着丝杠轴线方向。压头钳紧一段水管。试求压头对管子的压力。
习题 3-10 图
FNB
FNC FN
10
由几何关系得 cosα = 4500 = 0.9 , 5000
列平衡方程
sin α = 0.436
∑ MO (F ) = 0 : 2FA × 4500 −F Wcosα × 5000 +F Wsinα ×1250 = 0
解得 FA = 27.25 kN
∑ Fx = 0 : FOx = FW sin α = 27.03kN ∑ Fy = 0 : FOy = FW cosα − 2FA = 1.3kN
3章力系的平衡方程及应用
A
FAx
3m
P
1m
2m
由: 解得:
3 3FAy 3P 4 P 0 1
l
P1
FT 17.33kN FAx 15.01kN FAy 5.33kN
• 结果均为正,表明实际受力方向与假设方向相同。 • 为使平衡方程尽可能包含较少的未知量,避免联立求 解,通常将矩心取在两个未知力的交点。
M A (Fi ) 0 M B (Fi ) 0 M C (Fi ) 0
限制条件:A、B、C矩心不能在同一直线上(共线)。
y
C B A O
FR
因为平衡方程
满足,但不能排除图 示不平衡的情形。
x
3.1 空间任意力系的平衡条件和平衡方程
• 以上三种形式的平衡方程均为平衡的 必要与充分条件。
F X 0
x
F Y 0
y
•两个独立平衡方程,可以求解两个未知数。
3.1 空间任意力系的平衡条件和平衡方程 2. 空间平行力系的平衡方程
z
F1 F2
O x
y
F
iz
0
M x ( Fi ) 0
M y ( Fi ) 0
可以求解三个未知数。
F3
Fn F4
平面平行力系的平衡方程
3.1 空间任意力系的平衡条件和平衡方程
六个方程相互独立。联立,可求解六个未知量。 由平衡条件导出的方程称为平衡方程的基本形式。 • • 空间任意力系平衡方程:基本形式、四矩 应当注意:每一种形式最多只能列6个独立 式、五矩式和六矩式。
平衡方程,解6个未知数,任何多于6个的方程都
是这些方程的线性组合。
y
(Fi ) 0
工程力学03章静力学平衡问题
FP
l
l
FP
l
l
M
q
M
q
2l l
2l l
A
FAx A MA
解:1.选择研究对象。
FAy
2 受力分析,画出受力图如图所示。
8
2l l
FP
l
l
M
FAx
A MA
FAy
3. 建立平衡方程求解未知力 应用平衡方程
Fx = 0, FAx ql 0
q Fy = 0, FAy FP 0
MA= 0,
B
C
M1
A 60o
M2
60o D
20
解: 取杆AB为研究对象画受力图。
杆AB只受力偶的作用而平衡且C处为光滑面约束,则A 处约束反力的方位可定。
B
B FA = FC = F,
M1
A 60o
C
C AC = a
FC
Mi = 0
M2 M1
60o D A
FA
a F - M1 = 0
M1 = a F (1)
的各坐标轴上投影的代数和及所有力对
各轴之矩的代数和均等于零
Fx 0 Fy 0 Fz 0
M M
x y
(F ) (F )
0 0
M
z
(F
)
0
26
§3-3 简单的刚体系统平衡问题
一、刚体系统静定与静不定的概念
1、静定问题:一个静力平衡问题,如果系统中未知量 的数目正好等于独立的平衡方程数,单用平衡方程就 能解出全部未知量。
y
4. 联立求解,得
FAB 54.5KN FBC 74.5KN
第三章 力系的平衡
HOHAI UNIVERSITY ENGINEERING MECHANICS
例1: 作AB和CD示力图
HOHAI UNIVERSITY ENGINEERING MECHANICS
解: AB示力图 FAx FAy
A D C B
F
A
B F'RD FRD D
F
CD示力图
FRD D C C FRC
FRC
C
4.物体间的内约束力不应该画出。
§3-3 汇交力系的平衡
一、汇交力系平衡的充分必要条件
HOHAI UNIVERSITY ENGINEERING MECHANICS
FR F1 F2 Fn 0
二、汇交力系的平衡方程
空间汇交力系: 平面汇交力系:
FRx =Fix=0
FRy =Fiy=0
两个构件用光滑圆 柱形销钉连接起来,称 为铰链连接(铰接)
四、活动铰支座
HOHAI UNIVERSITY ENGINEERING MECHANICS
上摆
组成分析
销钉 底板 只能限制物体与支座接触处向着支承面或 离开支承面的运动。 运动分析
滚轮
受力分析
HOHAI UNIVERSITY ENGINEERING MECHANICS
(A、B的连线不垂直于x轴)
HOHAI UNIVERSITY ENGINEERING MECHANICS
连杆的约束力沿着连杆 中心线,指向不定
F'B
空间铰
HOHAI UNIVERSITY ENGINEERING MECHANICS
六、球铰
HOHAI UNIVERSITY ENGINEERING MECHANICS
第三章 刚体平衡
力偶系:作用在物体上的若干个力偶
简化
力偶系
合成
合力偶
合力偶的力偶矩 = 力偶系中各力偶的力偶矩的代数和
M M1 M 2 M n M
平面力偶系的平衡条件: 所有力偶的力偶矩的代数和等于零
M M1 M 2 M n 0
F
q
B FBx F’Bx B F’By
q
C
FAx
A FAy
D
FD
FBy
FC
梁ADB段的受力图
梁BC段的受力图
14
第一节 静力学基本概念及原理
F
q
C
FAx
A FAy
D
FD
B
FC
整体受力图
15
第一节 静力学基本概念及原理
例3-5 不计三铰拱桥的自重与 摩擦,画出左、右拱AB,CB 的受力图与结构整体受力图。
M O M1 M 2 M n M O ( F1 ) M O ( F2 ) M O ( Fn ) M O ( Fi )
33
第三节 平面一般力系
平面一般力系向作用面内任一点 O 简化,可得一个力和一个 力偶,这个力等于该力系的主矢,作用线通过简化中心; 这个力偶 的力偶矩等于力系对于简化中心O点的主矩。
一、力线平移定理
力线平移定理: 作用于刚体上的力,可以平移到同一刚体 的任意指定点,但必须同时附加一力偶, 其力偶矩等于原来的力对该指定点的矩。
F′
F B d A F′′ M F′
=
B A
力线平移定理 是力系简化的 理论依据
M=±F. d=MB(F)
32
03-理论力学-第一部分静力学第三章空间力系
X
Y
Z
( yZ zY )i (zX xZ) j (xY yX )k
2 力对轴的矩
力使物体绕某一轴转动效应的度 量,称为力对该轴的矩。
16
力对轴的矩的定 义 M z (F ) MO (Fxy )
力系简化的计算 计算主矢的大小和方向
FRx X , FRy Y , FRz Z
FR FRx2 FRy2 FRz2
cos FRx ,
FR
cos FRy ,
FR
cos FRz
FR
计算主矩的大小和方向
MOx M x (F ) , MOy M y (F ) ,
MOz M z (F )
与 z 轴共面
18
力对轴的矩的解析式
先看对z轴的矩:
M z (F ) MO (Fxy )
M O (Fy ) MO (Fx )
Fy x y Fx
xY yX
类似地,有:
M x (F) yZ zY M y (F ) zX xZ M z (F ) xY yX
Fy
Fx
Fxy
力对轴的矩的 解析表达式
3
§3 - 1 空间汇交力系 本节的主要内容有:
★ 空间力的投影;
★空间汇交力系的合成与平衡。
1 力在直角坐标轴上的投影和力沿直角坐标轴的
分解
(1) ■直接投影法
X F cos
Y F cos
Z F cos
也称为一次投影法
4
■间接投影法
Fx y F sin X Fxy cos F sin cos Y Fxy sin F sin sin
力系的简化和平衡
z MO O x F'R y
FR Fi Fi
力系中各力的矢量和称为空间力系的 主矢。主矢与简化中心的位置无关。
空间力偶系可合成为一合力偶, 其矩矢MO:
MO MO (Fi )
力系中各力对简化中心之矩矢的矢量和称为力系对简化 中心的主矩。主矩与简化中心的位置有关。
3.1.2 (空间任意)力系向一点的简化 结论: 空间力系向任一点O简化, 可得一力和一 力偶, 这个力的大小和方向等于该力系的主矢, 作用线通过简化中心O; 这个力偶的矩矢等于该 力系对简化中心的主矩。
空间任意力系向一点简化的结果可能出现四种情况: (1) F'R=0, MO≠0 ; (2) F'R ≠ 0, MO = 0 ; (3) F'R ≠ 0, MO≠0 ;
′ Fn
O Mn
3.1.2 (平面任意)力系向一点简化 平面一般力系中各力的矢量和称为平面一般力 系的主矢。主矢与简化中心的位置无关。
FR FRx + FRy Fx i Fy j
FR ( Fx ) 2 ( Fy ) 2
Fx cos( FR , i ) FR Fy cos( FR , j ) FR
A
m
B q C
FAy
FB
求得的FAx和FAy为负, 说明与图中 假设方向相反。
例: 求图示刚架的约束反力。
P
A
解: 以刚架为研究对象, 受力如图。
a
q b
Fx 0 : FAx qb 0
Fy 0 : FAy P 0
M A (F ) 0 :
1 2 M A Pa qb 0 2
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
G FR = 0
G F2
G R
G F3
G F2
G F3
G F4 4
G R′
o o
G F4
G F1
R′ R
平面汇交力系的平衡方程 物体在平面汇交力系作用下平衡的必要和充分条件 G 是合力等于零。
FR = 0
FR = (∑ Fxi ) 2 + (∑ Fyi ) 2 = 0
解析条件是各力在x轴和y轴上投影的代数和分别为零。 平面汇交力系的平衡方程:
FA + FB − P 1−P 2 −P 3 =0
例: 长度为l的均质细长杆,其重量W集中在中点 处,现在被水平力FP限制在如图所示位置。忽略 A、B二处的摩擦力。求平衡时 θ 与W、l、β、 FP 之间的关系式。
B
W FP A
θ
C
β
解: 1.受力分析 以AB杆为研究对象,其受 力图如图 2. 根据平衡条件确定θ角与W、l、 β、 FP之间的定量关系 注意:本题仅需确定θ角,无需求 解约束力,所以可以利用力矩 平衡方程求解θ角。但力矩中 心需选在FA和FB定量作用线的 交点D。
M O = ∑ M O ( Fi )
因为
FR′ = ( ∑ Fx ) 2 + (∑ Fy ) 2
M O = ∑ M O ( Fi )
⎧∑ Fx = 0 ⎪ ⎪ ⎨∑ Fy = 0 ⎪ ⎪ ⎩∑ M o = 0
平面任意力系的平衡方程
平面任意力系平衡的解析条件: (1)各力在两个任选坐标轴上投影的代数和 分别等于零。 (2)各力对于任意一点的矩的代数和也等于零。
解得:
FBA = −7.32kN
∑F
y
=0
FBC − F1 cos 30D − F2 cos 60D = 0
解得:
FBC = 27.3kN
二、平面力偶系的平衡条件
平面力偶系总可以简化为图示情形。 若F=0,则力偶系平衡,而力偶矩等于 零。 反之,若已知合力偶矩等于零,则 或是F=0或是d=0,无论哪种情况,该 力偶系均平衡。因此可得结论: 平面力偶系平衡的必要与充分条件是:力偶系中各力 偶矩的代数和等于零。即:
y
XA YA
A
α x B G P G Q
例
悬臂吊车如图示,横梁AB长l=2.5m;重量P=1.2kN; 拉杆CB倾斜角α=450,质量不计。载荷Q=7.5kN; 求图示位置a=2m时,拉杆的拉力和铰链A的约束反力。
其他形式方程的求解
C
∑X =0 G ∑m (F ) = 0
X A − T cos α = 0 l T sin α ⋅ l − P ⋅ − Qa = 0 A 2 G l m F = 0 Q ( l − a ) + P ⋅ − YA ⋅ l = 0 ∑ B 2 求解结果相同:
由几何关系可得
sin α = 0.6
解得:
FAx = −58N
FAy = −56N
FC = 70N
FAx = −58N
FAy = −56N
FC = 70N
以杆 DE 为研究对象,受力图和坐标系如图所示。建立 平衡方程 ∑ M E ( F ) = 0 : FDx × 0.2 + FC′ sin α × 0.08 = 0
不是两个独立的方程
∑ Fx = 0
∑ Fy = 0
平面平行力系的方程为两个,有两种形式
⎧∑ Fy = 0 ⎨ ⎩∑ M A = 0
⎧∑ M A = 0 ⎨ ⎩∑ M B = 0
各力不得与投影轴垂直
A, B 两点连线不得与各力平行
例 求:
尺寸如图; 已知: P 1 = 200kN, P 2 = 700kN, (1)起重机满载和空载时不翻倒,平衡载重P3; (2)P3=180kN,轨道AB给起重机轮子的约束力。
∑F
y
= 0:
′ cos α = 0 FDy − FC FDx = −16.8N
解得: FDy = 56N
例
G 已知: OA=R,AB= l, F , 不计物体自重与摩擦,
系统在图示位置平衡; 求: 力偶矩M 的大小,轴承O处的约束力, 连杆AB受力,冲头给导轨的侧压力。 解: 1)取冲头B,画受力图。
第三章
力系的平衡
第三章
力系的平衡
§3-1 平面力系的平衡条件与平衡方程 §3-2 简单的刚体系统平衡问题 §3-3 考虑摩擦时的平衡问题
§3-1 平面力系的平衡条件与平衡方程
一、平面汇交力系的平衡条件 多个汇交力的合成:
n K K FR = F1 + F2 + " + Fn = ∑ Fi i =1 K FR- 该平面汇交力系的合力
W FP A D
B
θ
C
β
β
B W θ
E FP FA A
FB
θ
C
β
解:
l cosθ cosθ + l sin θ = l ( + sin θ ) tan β tan β
W FP A D
B
θ
C
β
DA = DE + EA =
l M F DA W = × − × cosθ ∑ D P 2 l cosθ = FP × l ( + sin θ ) − W × cosθ tan β 2 W = [ FP (cot β + tan θ ) − ] l cosθ = 0 2
G 解: 空载时, FB = 0,
为不安全状况
∑M
A
=0
4P3max-2P2=0 F3max=350kN
解得
75kN ≤ P3 ≤ 350kN
(2)P3=180kN时:
2m 2m
A
y
∑M
∑F
=0
4 P3 − 2 P2 − 14 P1 + 4 FB = 0
解得 解得
FB=870kN FA=210kN
=0
C
2. 写平衡方程
∑X =0 ∑Y = 0
X A − T cos α = 0 YA − P − Q + T sin α = 0
A
l 2
G l T sin α ⋅ l − P ⋅ − Qa = 0 ∑ mA F = 0 2 3. 解平衡方程
( )
a
l
α G P
T
B
G Q
⎛ l ⎞ T = ⎜ P ⋅ + Qa ⎟ l ⋅ sin α = 13.2kN ⎝ 2 ⎠ YA = 2.1kN X A = T cos α = 11.43kN
A A
A
C
A
A
A
l 2
B
A
G ∑ mA F = 0 G ∑ mB F = 0 G ∑ mC F = 0
a
l
α G P
T
B
( ) ( ) ( )
l T sin α ⋅ l − P ⋅ − Qa = 0 2 l Q ( l − a ) + P ⋅ − YA ⋅ l = 0 X A 2 l X A tan α ⋅ l − P ⋅ − Q ⋅ a = 0 2
静定问题
静不定问题
静定问题
静不定问题 静定问题 :当系统中的未知量数目等于独立平衡方程的 数目时,则所有未知数都能由平衡方程求出。 静不定问题 :结构的未知量的数目多于平衡方程的数目, 未知量就不能全部由平衡方程求出。
刚体系的平衡
刚体系平衡
刚体系中每一个刚体或部分处于平衡
选择每个刚体为研究对象列出平衡方程或选择刚 体系或某部分为研究对象,列出平衡方程
l T sin α ⋅ l − P ⋅ − Qa = 0 2
XA
A
l 2( )a源自lα G PT
B
G Q
3. 解平衡方程
y
YA
A
⎛ l ⎞ T = ⎜ P ⋅ + Qa ⎟ l ⋅ sin α = 13.2kN ⎝ 2 ⎠
α x B G P G Q
例
悬臂吊车如图示,横梁AB长l=2.5m;重量P=1.2kN; 拉杆CB倾斜角α=450,质量不计。载荷Q=7.5kN; 求图示位置a=2m时,拉杆的拉力和铰链A的约束反力。
结论: 平面汇交力系合成的结果是一个合力,其大小和方 向由力多边形的封闭边来表示,其作用线通过各力的 汇交点。即合力等于各分力的矢量和(或几何和)。
平面汇交力系平衡的必要和充分条件是: 物体在平面汇交力系作用下,合力等于零。 即力多边形封闭(各力首尾连接)。 用矢量表示为: 物体上受有4个力 G F1
三矩式
⎧∑ M A = 0 ⎪ ⎨∑ M B = 0 ⎪∑ M = 0 ⎩ C
A, B, C 三个取矩点,不得共线
五、平面平行力系的平衡方程 各力的作用线都在同一平面内且互相平行的力系
∑F
x
≡0
0 + 0 + 0 +" = 0
F1 cos θ − F2 cos θ + F3 cos θ + " = 0 F1 sin θ − F2 sin θ + F3 sin θ + " = 0
解: 取起重机,画受力图。 G FA = 0, (1) 满载时, 为不安全状况
∑M
B
=0
P3 min ⋅ 8 + 2 P2 − 10 P1 = 0
解得
P3min=75kN
2m 2m 2m 2m
例3-5
尺寸如图; 已知: P 1 = 200kN, P 2 = 700kN,
求: (1)起重机满载和空载时不翻倒,平衡载重P3; (2)P3=180kN,轨道AB给起重机轮子的约束力。
解:以三角形平板 ABC 为研究对象,受力图和坐 标系如图所示。建立平衡方程