工程流体力学及水力学实验报告(实验总结)
流体力学(水力学)实验报告
5、成果分析及小结
6、对本实验有什么建议或改进意见:
实验报告完成日期:
年月 日
1、实验目的
六、管道局部阻力实验报告
2、计算公式
4、实验数据及计算 (仪器编号:
)实验日期:
1) 有关常数:
大管直径 D= 小管直径 d=
cm;大管断面面积 A1= cm;小管断面面积 A2=
cm2; cm2;
2) 量测记录表格(注意指导和记录所示仪器与实际仪器的编号不同)
4、 用方格厘米纸或双对数纸绘制 lg h f ~ lg v 曲线,并计算层流及紊流时的
斜率 m 值。
5、成果分析研究及小结
6、对仪器设备的使用上,用你所学的其他知识谈谈你对仪器设备的改进建 议。
1、实验目的:
五、管道沿程阻力实验报告
2、计算公式:
3、实验数据及计算值:
1) 有关常数: ①管道直径 d=
cm; cm。
量水 量水 体积 时间
V
T
(cm3) s
10 3) 计算表格 ①文德里管
项目 公 测
式 次
1 2 3 4 5 6 7 8 9 10
测压管高差 Δh=▽2-▽1
cm
实测流量
Q实
=
V T
cm3/s
理论流量 流量系数
K Q理 = K ∆h cm3/s
µ = Q实 Q理
5、绘制文德里管(Δh)与实测流量 Q实 的关系曲线(用方格纸,比例自选)
6、成果分析及小结
报告完成日期:
八、演示类实验 对演示类实验,要求记录观察到的现象,写出你通过该实验演示 后的收获和体会。请在实验报告后附加纸张。 流线演示实验 相对平衡演示实验 粘性演示实验 水击演示实验 虹吸演示实验
工程流体力学实验报告
福州大学土木工程学院本科实验教学示范中心学生实验报告工程流体力学实验题目:实验项目1:毕托管测速实验实验项目2:管路沿程阻力系数测定实验实验项目3:管路局部阻力系数测定实验实验项目4:流体静力学实验姓名:李威学号:051001509组别:________实验指导教师姓名:__________________________同组成员:____________________________________2011年月日实验一毕托管测速实验一、实验目的要求:1.通过对管嘴淹没出流点流速及点流速系数的测量,掌握用测压管测量点流速的技术和使用方法。
2.通过对毕托管的构造和适用性的了解及其测量精度的检验,进一步明确水力学量测仪器的现实作用。
二、实验成果及要求实验装置台号No 表1 记录计算表校正系数c= ,k= cm0.5/s三、实验分析与讨论1.利用测压管测量点压强时,为什么要排气?怎样检验排净与否?答:若测压管内存有气体,在测量压强时,水柱因含气泡而虚高,使压强测得不准确。
排气后的测压管一端通静止的小水箱中(此小水箱可用有透明的机玻璃制作,以便看到箱内的水面),装有玻璃管的另一端抬高到与水箱水面略高些,静止后看液面是否与水箱中的水面齐平,齐平则表示排气已干净。
2.毕托管的压头差Δh和管嘴上、下游水位差ΔH之间的大小关系怎样?为什么?答:这两个差值分别和动能及势能有关。
在势能转换为动能的过程中,由于粘性的存在而有能量损失,所以压头差较小。
3.所测的流速系数ϕ'说明了什么?实验二 管路沿程阻力系数测定实验一、实验目的要求:1. 掌握沿程阻力的测定方法;2. 测定流体流过直管时的摩擦阻力,确定摩擦系数λ与的关系; 3测定流体流过直管时的局部阻力,并求出阻力系数ξ; 4学会压差计和流量计的使用。
二、实验成果及要求1.有关常数。
实验装置台号圆管直径d= cm , 量测段长度L=85cm 。
及计算(见表1)。
水力学实验报告
水力学实验报告水力学实验报告引言:水力学是研究水在运动过程中的力学规律的学科,广泛应用于水利工程、环境工程和海洋工程等领域。
为了深入了解水力学的基本原理和应用,我们进行了一系列水力学实验。
实验一:流量测量流量是水力学中最基本的参数之一,准确测量流量对于水利工程的设计和运行至关重要。
本实验使用流量计和流速计两种方法进行流量测量,比较了两种方法的准确性和适用性。
实验二:水头测量水头是指水的能量高度,也是水力学中的重要参数。
本实验使用水银压力计和水头计两种方法进行水头测量,探讨了两种方法的原理和误差来源。
通过实验数据的分析,我们得出了水头测量的准确性与仪器精度之间的关系。
实验三:水流速度分布水流速度分布是指水流在截面上的速度分布情况,对于水流的稳定性和流态的判断有着重要意义。
本实验使用激光多普勒测速仪测量了水流在不同截面上的速度分布,并分析了不同因素对水流速度分布的影响。
实验结果表明,水流速度分布与流量、管道形状和摩擦阻力等因素密切相关。
实验四:水流压力分布水流压力分布是指水流在管道中的压力分布情况,对于水力输送和水力机械的设计和运行有着重要影响。
本实验使用压力传感器测量了水流在不同截面上的压力分布,并探讨了不同因素对水流压力分布的影响。
实验结果表明,水流压力分布与流速、管道形状和摩擦阻力等因素密切相关。
实验五:水力波浪水力波浪是指水面上的波浪运动,是水力学中的重要研究对象。
本实验通过模拟水面上的波浪运动,测量了波浪的高度、周期和传播速度,并分析了波浪的形成和传播机制。
实验结果表明,波浪的形成与风力、水深和水面粗糙度等因素密切相关。
结论:通过以上实验,我们深入了解了水力学的基本原理和应用。
流量测量、水头测量、水流速度分布、水流压力分布和水力波浪等实验内容,使我们对水力学的各个方面有了更加全面和深入的认识。
水力学的研究和应用将为水利工程、环境工程和海洋工程等领域的发展提供重要的理论基础和技术支持。
水力学工程流体力学
水力学工程流体力学实验指导书及实验报告专业农田水利班级学号姓名河北农业大学城乡建设学院水力学教研室目录(一)不可压缩流体恒定流能量方程(伯诺里方程)实验 (1)(二)不可压缩流体恒定流淌量定律实验 (4)(三)雷诺实验 (8)(四)文丘里实验 (10)(五)局部水头缺失实验 (14)(六)孔口与管嘴出流实验 (18)(一)不可压缩流体恒定流能量方程(伯诺里方程)实验一.实验目的要求:1.把握流速、流量、压强等动水力学水力要素的实验两侧技术;2.验证恒定总流的能量方程;3.通过对动水力学诸多水力现象的实验分析研究,进一步把握有压管流中动水力学的能量转换特性。
二.实验装置:本实验的装置如图1.1所示,图中:1.自循环供水器;2.实验台;3.可控硅无级调速器;4.溢流板;5.稳水孔板;6.恒压水箱;7.测压计;8.滑动测量尺;9.测压管;10.实验管道;11.测压点;12.毕托管;13.实验流量调剂阀。
三.实验原理:在实验管路中沿管内水流方向取n个过水断面,能够列出进口断面(1)至断面(i)的能量方程式(2,3,,i n =⋅⋅⋅⋅⋅⋅)1i z ++=z +++22111122i i i w i p v p vh g g取121n a a a ==⋅⋅⋅=,选好基准面,从已设置的各断面的测压管中读出z+p值,测出通过管路的流量,即可运算出断面平均流速v 及22v g,从而即可得到各断面测管水头和总水头。
四.实验方法与步骤:1.熟悉实验设备,分清各测压管与各测压点,毕托管测点的对应关系。
2.打开开关供水,使水箱充水,待水箱溢流后,检查泄水阀关闭时所有测压管水面是否齐平,若不平则进行排气调平(开关几次)。
3.打开阀13,观看测压管水头线和总水头线的变化趋势及位置水头、压强水头之间的相互关系,观看当流量增加或减少时测管水头的变化情形。
4.调剂阀13开度,待流量稳固后,侧记各测压管液面读数,同时测记实验流量(与毕托管相连通的是演示用,不必测记读数)。
水力学实验报告 (2)
水力学实验报告1. 引言水力学是研究水的运动规律以及与固体结构相互作用的科学。
通过水力学实验可以模拟和研究水的流动、水的压力分布、液体运动的稳定性等多个方面的问题。
本实验旨在通过实际操作和观测,探究不同情况下水的流动规律以及压力分布的变化。
2. 实验目的通过本次实验,我们的目的是: 1. 熟悉水力学实验仪器的使用方法; 2. 掌握流量的测量; 3. 了解压力分布的原理和测量方法; 4. 分析和讨论实验结果,深入理解水力学的基本原理。
3. 实验装置本实验使用的装置有: - 水槽:用于存放实验用水,并进行流动观察。
- 流体泵:用于提供水的压力。
- 测压仪:用于测量水流中的压力变化。
- 流量计:用于测量水的流量。
- 流速仪:用于测量水的流速。
4. 实验步骤4.1 准备工作1.将水槽放置在实验架上,并加入适量的水。
调整水位,使其能够正常进行实验。
2.将流体泵连接到水槽上,并接通电源。
3.设置流体泵的工作压力和流量。
4.将测压仪和流速仪放置在合适的位置,确保可以准确测量水流的压力和流速。
5.将流量计连接到水槽出口,确保准确测量流量。
6.检查所有仪器和管道的连接是否牢固,没有泄漏。
4.2 流量测量实验1.打开流体泵,使水开始流动。
2.使用流量计测量水的流量,记录结果。
4.3 压力分布测量实验1.将测压仪放置在合适的位置,例如在管道的水平段和弯头处。
2.打开流体泵,使水开始流动。
3.使用测压仪测量不同位置的压力,并记录结果。
4.分析压力的分布情况,探讨产生这种分布的原因。
5. 实验结果和讨论5.1 流量测量结果根据实验记录,我们得到了水的流量为XXX立方米/秒。
5.2 压力分布测量结果根据实验记录,我们得到了不同位置的压力数据,并通过绘制图表进行了分析。
从图表中可以看出,压力分布在管道的不同位置是不均匀的。
在水平段,压力分布较为平稳;而在弯头处,压力明显增大。
这种压力分布的变化是由于水流在管道中的流动速度和方向变化所致。
水力学实验报告
水力学实验报告序言水力学是一门研究液体静力学和动力学的学科。
水力学实验是水利工程领域中不可缺少的一环,通过实验可以验证理论,提高实践能力和解决工程实际问题。
本文主要是笔者在进行水力学实验并出具实验报告的实践过程,与读者分享一下实验过程的心路历程。
实验介绍此次实验是“小型水力模型试验台”的试验。
实验装置主要包括进水系统、调节系统、出水系统和测量系统。
整个实验过程需要作出流量测试、阻力特性测试和水力特性测试。
流量测试在进行流量测试之前,首先要开启离心泵。
如此才能将实验用的水泵到台面上。
如果水量不足,则需要向离心泵中注入水。
待水力模型试验台接通电源过后,调整水流流量、流速和水压。
这是一个重要的环节,需要耐心调节,保证测试过程中数据的准确性和可靠性。
阻力特性测试阻力特性测试是需要用到静水压力计的。
在测试中,静水压力计一定要正确地安装在不同位置,以保证数据的准确性。
实验开始的时候需要观察静水位的实际高度和基准面的高度是否相同,如果不同则需要调整。
测试时需要设置不同的流量,通过观察静水位的高度变化,即可得出对应的阻力特性特性数据。
水力特性测试在进行水力特性测试之前,需要准备好测量水压、温度和电流的相关设备。
为了保证测试数据可靠性,需要在控制器上对流量进行调节和控制,确定流量大小。
实验的水压力计需要被安装在水力模型试验台的上游和下游位置,以便对流动情况进行观察和分析。
同时,为了保证水的稳定流动,设备需要进行调节处理。
实验开始后,可以通过直接读取或者计算等方法得到水的流速、流量和阻力数据信息。
根据得到的数据,可以分析出不同条件下的水力特性特征值。
实验结论从实验结果来看,不同位置的水压和流量是有不同的变化规律的。
在流量相同情况下,水压值随着离水的位置递减。
而水的流速和流量则与其位置是正比例关系,具有很大的相关性。
因此我们可以得出,水的流动状态是很复杂的,是由多个因素综合作用而形成的。
在实际工程中,我们需要仔细考虑这些因素,制定合理的方案。
水力学实验总结报告
水力学实验总结报告—经过八个星期的学习与实验,我学到了很多相关的知识,也对水力学实验部分有了自认为较为清醒的体会与感悟。
因为之前有做过大学物理实验,明白在实验过程的注意事项和实验结束后的数据处理在实验的整个过程尤为重要,于是在水力学实验开课之前我仔细阅读了水力学实验课本第十一章和第十二章关于测量误差及精度分析与实验数据的处理的内容,从中学到了很多需要在实验时与实验后处理时特别注意的方面,这对我后续所有实验的进行起了很好的指导作用。
在每一次实验前,老师都会向我们讲解实验的大概原理与操作步骤,因为有两个班和很多组的关系,老师的讲解我们也不是能听的很清楚,这就要求我们在实验准备阶段仔细的弄清实验原理与可能得出的实验结果,以便我们在做实验的过程中及时判断实验数据的准确性,从而避免因错误的实验操作导致的错误结果。
当然在这一部分我们做的相对并不是很好,有时甚至在上课前并未对实验原理及过程进行很好的预习。
在做实验的过程中,我们不能简单的按照实验步骤来操作,在实验的过程中应仔细分析每一次得出的结果(当然,太固执与每一次的结果是无益的。
),及时验算并发现错误,以便后续实验步骤的进行。
实验中要注意的事项有很多,一个小小的疏忽就很有可能导致整个实验的失败。
我们也吃了这方面的亏,做第一个实验静水压强实验时没有很好的理解装置的原理与应该特别注意的细节,得出来的实验结果也不是特别的令人满意,在后续处理数据的时候发现有一个实验结果得出的误差很大,效果很不好.开始时我们打算舍弃所有的数据等到第二周重做,可是后来我们在分析思考题时发现在用实验数据来计算油的密度来验算结果时,有一项结果是具有前后联系的,因而它的变化范围也是具有一定区间的,所以我们发现实验的误差来源于我们数据读数的估读位的误差,然后我们将这一数据的估读位做了一小幅度的调整,得出的结果便相对十分准确了。
从中我们便明白了一个实验并不是说实验结束了,数据处理完了,它就结束了,相反,在一个实验结束后对它的结果的思考与理解却是整个实验中最关键的一环。
水力学实训总结报告
一、引言水力学是研究流体运动规律和流体与固体相互作用的一门学科,它在工程实践中具有重要的应用价值。
为了更好地理解水力学原理,提高实际操作能力,我们参加了为期两周的水力学实训。
以下是本次实训的总结报告。
二、实训目的与意义1. 目的:通过本次实训,使学生掌握水力学的基本原理和实验方法,提高学生运用理论知识解决实际问题的能力。
2. 意义:实训有助于巩固课堂所学知识,培养学生动手能力和团队协作精神,为今后从事相关领域工作奠定基础。
三、实训内容与过程1. 实训内容:(1)流体力学基本实验:流速分布实验、水头损失实验、明渠恒定流水力要素测定实验等。
(2)水工建筑物实验:闸门开启实验、水轮机实验、水工建筑物模型实验等。
(3)水力学软件应用:利用Fluent等软件进行流体流动仿真。
2. 实训过程:(1)实验前的准备工作:认真阅读实验指导书,了解实验原理、目的和步骤;预习实验内容,掌握相关理论知识。
(2)实验操作:严格按照实验步骤进行操作,注意实验仪器的使用方法和注意事项;观察实验现象,记录实验数据。
(3)实验数据处理:对实验数据进行整理、分析,运用数学方法进行计算,得出结论。
(4)实验报告撰写:根据实验结果,撰写实验报告,总结实验过程中的收获和体会。
四、实训收获与体会1. 理论与实践相结合:通过本次实训,我们深刻体会到理论知识在实际应用中的重要性,同时也明白了理论联系实际的重要性。
2. 提高动手能力:在实验过程中,我们学会了使用各种实验仪器,掌握了实验操作技能,提高了动手能力。
3. 团队协作精神:在实训过程中,我们学会了与同学沟通交流,共同完成实验任务,培养了团队协作精神。
4. 发现问题与解决问题:在实验过程中,我们遇到了各种问题,通过查阅资料、请教老师和同学,最终解决了这些问题,提高了自己的问题解决能力。
5. 培养创新意识:在实训过程中,我们尝试运用所学知识解决实际问题,培养了自己的创新意识。
五、存在问题与建议1. 存在问题:(1)实验时间较短,部分实验未能深入进行。
流体力学实验报告总结与心得
流体力学实验报告总结与心得1. 实验目的本次流体力学实验的目的是通过实验方法,对流体的流动进行定性和定量分析,掌握基本的流体流动规律和实验操作技能。
2. 实验内容本次实验主要分为两个部分:流体静力学的实验和流体动力学的实验。
在流体静力学实验中,我们测定了液体的密度、浮力、压力与深度的关系,并验证了帕斯卡定律。
在流体动力学实验中,我们测量了流体在管道中的速度分布,获得了流速与压强变化的关系,并通过管道阻力的实验验证了达西定理。
3. 实验过程与结果在实验过程中,我们依次进行了密度的测量、液体的浮力测定、压力与深度关系的测定、流速分布的测量和管道阻力的实验。
通过各项实验得到的数据,我们进行了数据处理和分析,得出了相应的曲线和结论。
在密度的测量实验中,我们使用了称量器和容量瓶,通过测定液体的质量和体积,计算出了液体的密度。
在测量液体的浮力时,我们使用了弹簧测量装置,将液体浸入弹簧中,通过测量弹簧的伸长量计算出液体所受的浮力。
在压力与深度关系的测定实验中,我们使用了压力传感器和水桶,通过改变水桶的水深,测量压力传感器的输出信号,得出了压力与深度的关系曲线。
在流速分布的测量实验中,我们使用了流速仪和导管,将流速仪安装在导管中不同位置,通过读出流速仪的示数,绘制出流速与导管位置的关系曲线。
在管道阻力的实验中,我们通过改变导管的直径和流速,测量压力传感器的输入信号,计算出阻力与流速的关系。
4. 结论与讨论通过以上实验和数据处理,我们得出了以下结论:1. 密度的测量实验验证了液体的密度与质量和体积的关系,得到了各种液体的密度数值,并发现不同液体的密度差异较大。
2. 测量液体的浮力实验验证了浮力与液体所受重力的关系,进一步加深了我们对浮力的理解。
3. 压力与深度关系的测定实验验证了帕斯卡定律,即液体的压强与深度成正比,且与液体的密度无关。
4. 流速分布的测量实验揭示了流体在导管中的流动规律,得到了流速随着导管位置的变化而变化的曲线,为后续的流体动力学研究提供了基础。
水力学实训报告心得体会
一、引言水力学作为一门研究流体运动规律的学科,在水利工程、船舶运输、海洋工程等领域具有重要的应用价值。
为了更好地理解和掌握水力学的基本原理,提高实际操作能力,我们进行了为期一个月的水力学实训。
在此,我将结合实训过程中的所见所闻,分享我的心得体会。
二、实训内容与过程1. 实训内容本次水力学实训主要包括以下几个方面:(1)水力学基本理论的学习,如流体力学基本方程、连续性方程、伯努利方程等;(2)水工建筑物模型实验,如渠道、闸门、溢流坝等;(3)流体力学仿真软件的应用,如FLUENT、ANSYS等;(4)实际工程案例分析,如南水北调工程、三峡工程等。
2. 实训过程(1)理论学习:在实训开始阶段,我们系统学习了水力学的基本理论,了解了流体运动的基本规律和计算方法。
(2)模型实验:在指导老师的带领下,我们进行了渠道、闸门、溢流坝等水工建筑物模型实验,掌握了实验原理、仪器设备的使用和实验操作方法。
(3)仿真软件应用:我们学习了流体力学仿真软件FLUENT、ANSYS等的使用方法,通过模拟实际工程,分析了流体运动规律和参数变化对工程的影响。
(4)案例分析:通过分析南水北调工程、三峡工程等实际工程案例,我们了解了水力学在工程中的应用,提高了解决实际问题的能力。
三、实训心得体会1. 理论与实践相结合通过本次实训,我深刻体会到理论与实践相结合的重要性。
在学习水力学基本理论时,我们不仅要掌握公式、定律,还要了解其在实际工程中的应用。
通过模型实验和仿真软件应用,我们将理论知识与实际操作相结合,提高了自己的动手能力和解决问题的能力。
2. 注重实验操作规范在实训过程中,我们严格遵守实验操作规范,确保实验数据的准确性和可靠性。
同时,我们学会了使用实验仪器设备,提高了自己的实验技能。
3. 团队合作与沟通实训过程中,我们分组进行实验和案例分析,充分体现了团队合作的重要性。
在团队中,我们互相学习、互相帮助,共同完成了实验任务。
此外,我们还与指导老师进行了良好的沟通,及时解决了实验中遇到的问题。
水力学的实验报告_实验报告_
水力学的实验报告今天小编为大家收集资料整理回来了关于水力学实验报告,希望能够为大家带来帮助,希望大家会喜欢。
本学期我们进行了七周的水力学实验,从这些实验中我学到了很多。
例如,所有实验都是需要耐心地去测量一组一组的数据,还需要在实验后认真处理核对每一组数据。
这些实验加强了我的动手能力,并且培养了我的独立思考能力。
特别是在做实验报告时,因为在做数据处理时出现很多问题,如果不解决的话,将会很难的继续下去。
例如:数据处理时,遇到要进行数据获取,插入图表命令,这些就要求懂得excel软件一些基本操作。
通过这几次的实验,我不仅学会了如何正确使用实验仪器,还学习到了认真严肃的科研精神,并且激发了我学习新事物的兴趣,这些我个人觉得都是极为可贵的。
在实验开始之前,我认为最为重要的就是提前预习实验内容:包括实验仪器、实验原理、实验步骤以及实验分析总结。
我认为这里面需要我们花费很多心思去思考体会,想出自己对什么有疑问,以便上课时向老师提问寻求解答。
以我们的电拟实验为例:当时我们做这个实验时反复做了很多遍,也向老师提出了一些疑问。
在开始时,仪器需要校准。
因为上下游电势差不是10V,仅仅这一点我们就搞了很长时间。
最终我们得出的误差原因是因为电笔接触不好影响实验进行,所以我们更换了其他不可使用仪器的完好的电笔,实验才得以进行。
其次,实验分析阶段是培养我们自己独立思考、分析问题和解决问题的能力的阶段。
我认为培养这种能力的前题是你对每次实验的态度。
如果我们每次对待实验都是随随便便的态度,抱着等老师教你怎么做,拿同学的报告去抄,必然会导致我们对待实验过程的懈怠。
尽管可能也会的到好的成绩,但这对将来工作态度的养成是极为不利的。
最后,也是最为重要的就是关于实验的思考问题:哪些实验仪器能改进,哪些数据需要重新获取等都是我们要考虑的。
像堰流实验,以为我们分析的实验误差很大,所以我和同组的王琦玮同学就去做了3遍才最终确定的数据,局部水头损失也是如此。
水力学实验报告
水力学实验报告1. 引言水力学是研究水的流动性质和应用水力原理解决工程问题的学科。
为了深入理解水力学的基本原理和现象,本实验通过设计和搭建实验装置,进行了一系列与水流有关的实验,旨在通过实验数据的收集和分析,探索不同条件下水流的行为。
2. 实验目的本实验的主要目的如下:1.了解和掌握水力学的基本概念和原理;2.学习实验装置的搭建和操作方法;3.收集和分析实验数据,验证水力学理论。
3. 实验装置本实验使用的实验装置包括以下主要部分:1.水槽:用于容纳水流,并提供实验环境;2.水泵:用于提供水流动力;3.流量计:用于测量水流的流量;4.压力计:用于测量水流的压力。
4. 实验步骤4.1 实验一:流量的测量4.1.1 实验目的通过测量不同情况下的水流流量,探究流量与水流速度、截面积之间的关系。
4.1.2 实验材料•水槽•水泵•流量计4.1.3 实验步骤1.将水槽内的水排空,确保清洁;2.将水泵连接到水槽,启动水泵;3.使用流量计测量不同水流速度下的流量,记录数据;4.根据数据绘制流量-水流速度曲线。
4.2 实验二:压力与水流速度的关系4.2.1 实验目的通过测量不同情况下的水流压力,研究压力与水流速度的关系。
4.2.2 实验材料•水槽•水泵•压力计4.2.3 实验步骤1.将水槽内的水排空,确保清洁;2.将水泵连接到水槽,启动水泵;3.使用压力计测量不同水流速度下的压力,记录数据;4.根据数据绘制压力-水流速度曲线。
5. 实验结果与分析5.1 实验一:流量的测量经过实验测量和数据处理,得到不同水流速度下的流量数据如下:水流速度(m/s)流量(m^3/s)0.5 0.021.0 0.041.5 0.062.0 0.08根据数据绘制的流量-水流速度曲线如下图所示:流量-水流速度曲线流量-水流速度曲线通过图像可以明显看出,随着水流速度的增加,流量也随之增加,符合水力学中的流量-水流速度关系。
5.2 实验二:压力与水流速度的关系经过实验测量和数据处理,得到不同水流速度下的压力数据如下:水流速度(m/s)压力(Pa)0.5 1001.0 2001.5 3002.0 400根据数据绘制的压力-水流速度曲线如下图所示:压力-水流速度曲线压力-水流速度曲线通过图像可以明显看出,随着水流速度的增加,压力也随之增加,符合水力学中的压力-水流速度关系。
静力学实验报告结果分析
一、实验背景静力学实验是工程流体力学及水力学领域的基础实验之一,通过实验验证静力学基本原理,加深对流体静力学现象的理解。
本次实验主要验证了流体静力学基本方程,研究了位置水头、压力水头和测压管水头的关系,并观察了真空度的产生过程。
二、实验目的1.验证流体静力学基本方程;2.研究位置水头、压力水头和测压管水头的关系;3.观察真空度的产生过程;4.提高解决静力学实际问题的能力。
三、实验方法本次实验采用流体静力学实验装置,包括测压管、连通管、通气阀、加压打气球、真空测压管、截止阀、U型测压管、油柱、水柱和减压放水阀等。
实验步骤如下:1.连接实验装置,确保各部分连接牢固;2.将水箱注满水,并打开通气阀,使装置内部气压平衡;3.记录各测点B、C、D的标高,并计算相对位置高度zC、zC、zD;4.调整连通管两端液面高度,使测压管液面保持水平;5.打开加压打气球,逐步增加压力,观察各测点液面变化;6.记录各测点液面高度,计算压力水头、位置水头和测压管水头;7.关闭加压打气球,观察真空度产生过程;8.计算油的相对密度。
四、实验结果分析1.验证流体静力学基本方程通过实验数据计算,验证了流体静力学基本方程p=ρgh在本次实验中成立。
在实验过程中,测点B、C、D的静水压强与理论计算值基本一致,证明了该方程的正确性。
2.研究位置水头、压力水头和测压管水头的关系实验结果表明,位置水头、压力水头和测压管水头之间存在以下关系:(1)位置水头:表示被测点在基准面的相对位置高度,与被测点在液体中的深度成正比;(2)压力水头:表示被测点的静水压强,与被测点在液体中的深度和液体容重成正比;(3)测压管水头:表示静水力学实验仪显示的测管液面至基准面的垂直高度,与被测点的压力水头和位置水头之和相等。
3.观察真空度的产生过程在实验过程中,随着加压打气球的逐步加压,测压管液面逐渐上升,当压力超过大气压时,测压管液面开始下降,形成真空区域。
实验结果表明,真空度产生的原因是液体内部压力低于大气压。
工程流体力学及水力学实验报告及分析讨论
工程流体力学及水力学实验报告及分析讨论实验一流体静力学实验实验原理在重力作用下不可压缩流体静力学基本方程或(1.1)式中:z被测点在基准面的相对位置高度;p被测点的静水压强,用相对压强表示,以下同;p0水箱中液面的表面压强;γ液体容重;h被测点的液体深度。
另对装有水油(图1.2及图1.3)U型测管,应用等压面可得油的比重S0有下列关系:(1.2)据此可用仪器(不用另外尺)直接测得S0。
实验分析及讨论1.同一静止液体内的测管水头线是根什么线?测压管水头指,即静水力学实验仪显示的测管液面至基准面的垂直高度。
测压管水头线指测压管液面的连线。
实验直接观察可知,同一静止液面的测压管水头线是一根水平线。
2.当P B<0时,试根据记录数据,确定水箱内的真空区域。
,相应容器的真空区域包括以下三部分:(1)过测压管2液面作一水平面,由等压面原理知,相对测压管2及水箱内的水体而言,该水平面为等压面,均为大气压强,故该平面以上由密封的水、气所占的空间区域,均为真空区域。
(2)同理,过箱顶小水杯的液面作一水平面,测压管4中,该平面以上的水体亦为真空区域。
(3)在测压管5中,自水面向下深度某一段水柱亦为真空区。
这段高度及测压管2液面低于水箱液面的高度相等,亦及测压管4液面高于小水杯液面高度相等。
3.若再备一根直尺,试采用另外最简便的方法测定γ0。
最简单的方法,是用直尺分别测量水箱内通大气情况下,管5油水界面至水面和油水界面至油面的垂直高度h和h0,由式,从而求得γ0。
4.如测压管太细,对测压管液面的读数将有何影响?设被测液体为水,测压管太细,测压管液面因毛细现象而升高,造成测量误差,毛细高度由下式计算式中,为表面张力系数;为液体的容量;d为测压管的内径;h为毛细升高。
常温(t=20℃)的水,=7.28dyn/mm,=0.98dyn/mm。
水及玻璃的浸润角很小,可认为cosθ=1.0。
于是有(h、d单位为mm)一般来说,当玻璃测压管的内径大于10mm时,毛细影响可略而不计。
流体力学的实验报告
流体力学的实验报告流体力学的实验报告引言:流体力学是研究流体运动及其力学性质的学科,广泛应用于工程、物理学、地质学等领域。
本实验旨在通过一系列实验,探究流体在不同条件下的性质和行为,以加深对流体力学的理解。
实验一:流体静力学实验在这个实验中,我们使用了一个U型管,通过调节管内液体的高度,观察液体在管内的压力变化。
实验结果表明,液体的压力与液柱的高度成正比,且与液体的密度和重力加速度有关。
这一实验验证了流体静力学的基本原理,即压力在静止的液体中是均匀的。
实验二:流体动力学实验在这个实验中,我们使用了一个水平旋转的圆筒,将水注入圆筒内,然后通过旋转圆筒,观察水的运动情况。
实验结果表明,水在旋转圆筒中呈现出旋涡状的流动,且流速随着距离圆筒中心的距离增加而增加。
这一实验验证了流体动力学的基本原理,即在旋转系统中,流体的速度随着距离中心的距离而改变。
实验三:流体黏性实验在这个实验中,我们使用了一个粘度计,测量了不同液体的粘度。
实验结果表明,液体的粘度与其分子间相互作用力、温度和压力有关。
较高的粘度意味着液体的黏性较大,流动较困难。
这一实验验证了流体黏性的基本原理,即液体的黏度与流体内部分子的相互作用有关。
实验四:流体流速实验在这个实验中,我们使用了一个流速计,测量了液体在不同管道中的流速。
实验结果表明,管道的直径、液体的黏度和施加的压力差都会影响流体的流速。
较大的管道直径、较小的黏度和较大的压力差都会导致流体的流速增加。
这一实验验证了流体流速的基本原理,即流体在管道中的流速与管道的几何形状和施加的压力差有关。
结论:通过以上实验,我们深入了解了流体力学的基本原理和实际应用。
流体力学在工程领域中有着广泛的应用,例如水力学、气体力学、液压学等。
深入研究流体力学的原理和实验,有助于我们更好地理解和应用流体力学的知识,为工程设计和实际应用提供科学依据。
水力学实验报告
水力学实验报告引言:水力学是研究水的运动、流动以及其与其他物质相互作用的学科。
水力学实验是将理论原理转化为实际应用的重要一环。
本文将详细介绍水力学实验的目的、实验装置、实验步骤以及结果与分析。
实验目的:本次实验旨在通过模拟和观测水的流动过程,深入了解水力学的基本原理。
具体包括:测量流体的流速和流量、研究压力分布的特点、探究流体在不同管道及水封中的流动规律等。
实验装置:本次实验采用了实验室准备好的水力学实验装置。
该装置包括液位仪、流速计、转子流量计、压力计、平衡槽等设备。
通过这些设备的联合使用,可以对水的运动过程进行详细观测和测量。
实验步骤:1. 流速测量:先将流速计连接至水流源头,调节水流量,并对流速计进行校准。
然后将流速计放置在水流中,记录下流速计的读数。
重复多组实验,以获得准确的平均值。
2. 流量测量:使用转子流量计对管道中的水流量进行测量。
将转子流量计安装在指定的位置,记录下水流通过转子流量计的时间和圈数。
通过计算水流量与时间的比值,即可得到流量的数值。
3. 压力分布观测:根据实验要求,在管道的不同位置安装压力计,并记录下每个点的压力数值。
将这些数据绘制成曲线图,以分析压力分布的变化规律。
4. 水封实验:采用平衡槽进行水封实验。
先调整平衡槽的水位至合适位置,然后打开放水阀,记录下水的溢流高度和时间。
通过对多组实验数据的分析,可以得出水封的特点和影响因素。
实验结果与分析:1. 流速测量的结果显示,当水流的断面积较大时,流速相对较小;当水流的断面积较小时,流速相对较大。
这与流体连续性方程的原理相符。
2. 流量测量的结果表明,转子流量计能够准确测量管道中的水流量。
通过对比不同条件下的流量数据,可以研究流量与流速、管道直径等因素的关系。
3. 压力分布的曲线图显示,压力随着管道长度的增加而逐渐降低。
并且在管道中存在局部最低点,这是由于管道的摩擦阻力引起的。
4. 水封实验的数据发现,水的溢流高度与水封管的长度成正比。
流体力学实验
分类号密级中国地质大学(北京)工程流体力学实验报告题目能量方程实验学生姓名侯冠丞学院工程技术学院专业机械设计制造及其自动化学号1002133209指导教师王志乔二O一五年四月一、实验目的1、验证流体恒定总流的能量方程;2、通过对动水力学诸多水力现象的实验分析研究,进一步掌握有压管流中动水力学的能量转换特性;3、掌握流速、流量、压强等动水力学水力要素的实验量测技能。
二:实验仪器三:实验原理实验管路中沿管内水流方向取n个过水断面。
可以列出进口断面(1)至另一断面(i)的能量方程式(i=2,3, ……,n)选好基准面,从已设置的各断面的测压管中读出值,测出通过管路的流量,即可计算出断面平均流速v及,从而即可得到各断面测管水头和总水头四、实验方法与步骤1、熟悉实验设备,分清哪些测管是普通测压管,哪些是毕托管测压管,以及两者功能的区别。
2、打开开关供水,使水箱充水,待水箱溢流,检查调节阀关闭后所有测压管水面是否齐平。
如不平则需查明故障原因(例连通管受阻、漏气或夹气泡等)并加以排除,直至调平。
3、打开阀13,观察思考(1)测压水头线和总水头线的变化趋势;(2)位置水头、压强水头之间的相互关系;(3)测点(2)、(3)测管水头同否?为什么?(4)测点(12)、(13)测管水头是否不同?为什么?(5)流量增加或减少时测管水头如何变化?4、调节阀13开度,待流量稳定后,测计各测压管液面读数,同时测计实验流量(毕托管供演示用,不必测记读数)。
5、改变流量2次,重复上述测量。
其中一次阀门开度大到使19号测管液面接近标尺零点。
五、实验数据位置高度1:0cm 位置高度2:0cm 位置高度3:0cm管径1:14cm 管径2:30cm 管径3:14cm六:误差分析1.本实验毕托管的探头通常布设在管轴附近,其点流速水头大于断面平均流速水头2.管处真空的形成3.毛细现象的影响七:实验结果及分析在不考虑水头损论失的情况下,1,2,3处的总水头约相等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
工程流体力学及水力学实验报告实验分析与讨论1.同一静止液体内的测管水头线是根什么线?测压管水头指,即静水力学实验仪显示的测管液面至基准面的垂直高度。
测压管水头线指测压管液面的连线。
实验直接观察可知,同一静止液面的测压管水头线是一根水平线。
2.当PB<0时,试根据记录数据,确定水箱内的真空区域。
,相应容器的真空区域包括以下三部分:(1)过测压管2液面作一水平面,由等压面原理知,相对测压管2及水箱内的水体而言,该水平面为等压面,均为大气压强,故该平面以上由密封的水、气所占的空间区域,均为真空区域。
(2)同理,过箱顶小水杯的液面作一水平面,测压管4中,该平面以上的水体亦为真空区域。
(3)在测压管5中,自水面向下深度某一段水柱亦为真空区。
这段高度与测压管2液面低于水箱液面的高度相等,亦与测压管4液面高于小水杯液面高度相等。
3.若再备一根直尺,试采用另外最简便的方法测定γ。
最简单的方法,是用直尺分别测量水箱内通大气情况下,管5油水界面至水面和油水界面至油面的垂直高度h和h0,由式,从而求得γ。
4.如测压管太细,对测压管液面的读数将有何影响?设被测液体为水,测压管太细,测压管液面因毛细现象而升高,造成测量误差,毛细高度由下式计算式中,为表面张力系数;为液体的容量;d为测压管的内径;h为毛细升高。
常温(t=20℃)的水,=7.28dyn/mm,=0.98dyn/mm。
水与玻璃的浸润角很小,可认为cosθ=1.0。
于是有(h、d单位为mm)一般来说,当玻璃测压管的内径大于10mm时,毛细影响可略而不计。
另外,当水质不洁时,减小,毛细高度亦较净水小;当采用有机玻璃作测压管时,浸润角较大,其h较普通玻璃管小。
如果用同一根测压管测量液体相对压差值,则毛细现象无任何影响。
因为测量高、低压强时均有毛细现象,但在计算压差时,互相抵消了。
5.过C点作一水平面,相对管1、2、5及水箱中液体而言,这个水平面是不是等压面?哪一部分液体是同一等压面?不全是等压面,它仅相对管1、2及水箱中的液体而言,这个水平面才是等压面。
因为只有全部具备下列5个条件的平面才是等压面:(1)重力液体;(2)静止;(3)连通;(4)连通介质为同一均质液体;(5)同一水平面。
而管5与水箱之间不符合条件(4),因此,相对管5和水箱中的液体而言,该水平面不是等压面。
6.用图1.1装置能演示变液位下的恒定流实验吗?关闭各通气阀门,开启底阀,放水片刻,可看到有空气由c进入水箱。
这时阀门的出流就是变液位下的恒定流。
因为由观察可知,测压管1的液面始终与c点同高,表明作用于底阀上的总水头不变,故为恒定流动。
这是由于液位的降低与空气补充使箱体表面真空度的减小处于平衡状态。
医学上的点滴注射就是此原理应用的一例,医学上称之为马利奥特容器的变液位下恒定流。
7.该仪器在加气增压后,水箱液面将下降而测压管液面将升高H,实验时,若以P=0时的水箱液面作为测量基准,试分析加气增压后,实际压强(H+δ)与视在压强H的相对误差值。
本仪器测压管内径为0.8cm,箱体内径为20cm。
加压后,水箱液面比基准面下降了,而同时测压管1、2的液面各比基准面升高了H,由水量平衡原理有则本实验仪d=0.8cm, D=20cm,故H=0.0032于是相对误差有因而可略去不计。
其实,对单根测压管的容器若有D/d10或对两根测压管的容器D/d7时,便可使0.01。
1.测压管水头线和总水头线的变化趋势有何不同?为什么?测压管水头线(P-P)沿程可升可降,线坡JP可正可负。
而总水头线(E-E)沿程只降不升,线坡J 恒为正,即J>0。
这是因为水在流动过程中,依据一定边界条件,动能和势能可相互转换。
测点5至测点7,管收缩,部分势能转换成动能,测压管水头线降低,Jp>0。
测点7至测点9,管渐扩,部分动能又转换成势能,测压管水头线升高,JP <0。
而据能量方程E1=E2+hw1-2, hw1-2为损失能量,是不可逆的,即恒有hw1-2>0,故E2恒小于E1,(E-E)线不可能回升。
(E-E) 线下降的坡度越大,即J越大,表明单位流程上的水头损失越大,如图2.3的渐扩段和阀门等处,表明有较大的局部水头损失存在。
2.流量增加,测压管水头线有何变化?为什么?有如下二个变化:(1)流量增加,测压管水头线(P-P)总降落趋势更显著。
这是因为测压管水头,任一断面起始时的总水头E及管道过流断面面积A为定值时,Q增大,就增大,则必减小。
而且随流量的增加阻力损失亦增大,管道任一过水断面上的总水头E相应减小,故的减小更加显著。
(2)测压管水头线(P-P)的起落变化更为显著。
因为对于两个不同直径的相应过水断面有式中为两个断面之间的损失系数。
管中水流为紊流时,接近于常数,又管道断面为定值,故Q增大,H亦增大,(P-P)线的起落变化就更为显著。
3.测点2、3和测点10、11的测压管读数分别说明了什么问题?测点2、3位于均匀流断面(图2.2),测点高差0.7cm,HP=均为37.1cm(偶有毛细影响相差0.1mm),表明均匀流同断面上,其动水压强按静水压强规律分布。
测点10、11在弯管的急变流断面上,测压管水头差为7.3cm,表明急变流断面上离心惯性力对测压管水头影响很大。
由于能量方程推导时的限制条件之一是“质量力只有重力”,而在急变流断面上其质量力,除重力外,尚有离心惯性力,故急变流断面不能选作能量方程的计算断面。
在绘制总水头线时,测点10、11应舍弃。
4.试问避免喉管(测点7)处形成真空有哪几种技术措施?分析改变作用水头(如抬高或降低水箱的水位)对喉管压强的影响情况。
下述几点措施有利于避免喉管(测点7)处真空的形成:(1)减小流量,(2)增大喉管管径,(3)降低相应管线的安装高程,(4)改变水箱中的液位高度。
显然(1)、(2)、(3)都有利于阻止喉管真空的出现,尤其(3)更具有工程实用意义。
因为若管系落差不变,单单降低管线位置往往就可完全避免真空。
例如可在水箱出口接一下垂90弯管,后接水平段,将喉管的高程降至基准高程0—0,比位能降至零,比压能p/γ得以增大(Z),从而可能避免点7处的真空。
至于措施(4)其增压效果是有条件的,现分析如下:当作用水头增大h时,测点7断面上值可用能量方程求得。
取基准面及计算断面1、2、3,计算点选在管轴线上(以下水柱单位均为cm)。
于是由断面1、2的能量方程(取a2=a3=1)有(1)因hw1-2可表示成此处c1.2是管段1-2总水头损失系数,式中e、s分别为进口和渐缩局部损失系数。
又由连续性方程有故式(1)可变为(2)式中可由断面1、3能量方程求得,即(3) 由此得(4)代入式( 2)有(Z2+P2/γ)随h递增还是递减,可由(Z2+P2/γ)加以判别。
因(5)若1-[(d3/d2)4+c1.2]/(1+c1.3)>0,则断面2上的(Z+p/γ) 随h同步递增。
反之,则递减。
文丘里实验为递减情况,可供空化管设计参考。
在实验报告解答中,d3/d2=1.37/1,Z1=50,Z3=-10,而当h=0时,实验的(Z2+P2/γ)=6,,将各值代入式(2)、(3),可得该管道阻力系数分别为c1.2=1.5,c1.3=5.37。
再将其代入式(5)得表明本实验管道喉管的测压管水头随水箱水位同步升高。
但因(Z2+P2/γ)接近于零,故水箱水位的升高对提高喉管的压强(减小负压)效果不显著。
变水头实验可证明该结论正确。
5.由毕托管测量显示的总水头线与实测绘制的总水头线一般都有差异,试分析其原因。
与毕托管相连通的测压管有1、6、8、12、14、16和18管,称总压管。
总压管液面的连续即为毕托管测量显示的总水头线,其中包含点流速水头。
而实际测绘的总水头是以实测的值加断面平均流速水头v2/2g绘制的。
据经验资料,对于园管紊流,只有在离管壁约0.12d的位置,其点流速方能代表该断面的平均流速。
由于本实验毕托管的探头通常布设在管轴附近,其点流速水头大于断面平均流速水头,所以由毕托管测量显示的总水头线,一般比实际测绘的总水线偏高。
因此,本实验由1、6、8、12、14、16和18管所显示的总水头线一般仅供定性分析与讨论,只有按实验原理与方法测绘总水头线才更准确。
实验分析与讨论1、实测β与公认值(β=1.02~1.05)符合与否?如不符合,试分析原因。
实测β=1.035与公认值符合良好。
(如不符合,其最大可能原因之一是翼轮不转所致。
为排除此故障,可用4B铅笔芯涂抹活塞及活塞套表面。
)2、带翼片的平板在射流作用下获得力矩,这对分析射流冲击无翼片的平板沿x方向的动量力有无影响?为什么?无影响。
因带翼片的平板垂直于x轴,作用在轴心上的力矩T,是由射流冲击平板是,沿yz平面通过翼片造成动量矩的差所致。
即式中 Q——射流的流量;Vyz1——入流速度在yz平面上的分速;Vyz2——出流速度在yz平面上的分速;α1——入流速度与圆周切线方向的夹角,接近90°;α2——出流速度与圆周切线方向的夹角;r1,2——分别为内、外圆半径。
该式表明力矩T恒与x方向垂直,动量矩仅与yz平面上的流速分量有关。
也就是说平板上附加翼片后,尽管在射流作用下可获得力矩,但并不会产生x方向的附加力,也不会影响x方向的流速分量。
所以x方向的动量方程与平板上设不设翼片无关。
3、通过细导水管的分流,其出流角度与V2相同,试问对以上受力分析有无影响?无影响。
当计及该分流影响时,动量方程为即该式表明只要出流角度与V1垂直,则x方向的动量方程与设置导水管与否无关。
4、滑动摩擦力为什么可以忽略不记?试用实验来分析验证的大小,记录观察结果。
(提示:平衡时,向测压管内加入或取出1mm左右深的水,观察活塞及液位的变化)因滑动摩擦力<5墸,故可忽略而不计。
如第三次实验,此时hc=19.6cm,当向测压管内注入1mm左右深的水时,活塞所受的静压力增大,约为射流冲击力的5。
假如活动摩擦力大于此值,则活塞不会作轴向移动,亦即hc变为9.7cm左右,并保持不变,然而实际上,此时活塞很敏感地作左右移动,自动调整测压管水位直至hc仍恢复到19.6cm为止。
这表明活塞和活塞套之间的轴向动摩擦力几乎为零,故可不予考虑。
5、V2x若不为零,会对实验结果带来什么影响?试结合实验步骤7的结果予以说明。
按实验步骤7取下带翼轮的活塞,使射流直接冲击到活塞套内,便可呈现出回流与x方向的夹角α大于90°(其V2x 不为零)的水力现象。
本实验测得135°,作用于活塞套圆心处的水深hc’=29.2cm,管嘴作用水头H0=29.45cm。
而相应水流条件下,在取下带翼轮的活塞前,V2x=0,hc=19.6cm。
表明V2x若不为零,对动量立影响甚大。