初中数学各章节重难点及典型例题经典.doc

合集下载

新人教版九年级上册数学[随机事件和概率--知识点整理及重点题型梳理]

新人教版九年级上册数学[随机事件和概率--知识点整理及重点题型梳理]

新人教版九年级上册初中数学重难点有效突破知识点梳理及重点题型巩固练习随机事件和概率--知识讲解【学习目标】1、通过对生活中各种事件的判断,归纳出必然事件、不可能事件和随机事件的特点,并根据这些特点对有关事件作出准确判断;2、初步理解概率定义,通过具体情境了解概率意义.【要点梳理】要点一、必然事件、不可能事件和随机事件【 391875 名称:随机事件与概率初步:随机事件】1.定义:(1)必然事件在一定条件下重复进行试验时,在每次试验中必然会发生的事件,叫做必然事件.(2)不可能事件在每次试验中都不会发生的事件叫做不可能事件.(3)随机事件在一定条件下,可能发生也可能不发生的事件,称为随机事件.要点诠释:1.必然发生的事件和不可能发生的事件均为“确定事件”,随机事件又称为“不确定事件”;2.要知道事件发生的可能性大小首先要确定事件是什么类型.一般地,必然发生的事件发生的可能性最大,不可能发生的事件发生的可能性最小,随机事件发生的可能性有大有小,不同的随机事件发生的可能性的大小有可能不同.要点二、概率的意义概率是从数量上刻画了一个随机事件发生的可能性的大小.一般地,在大量重复试验中,如果事件A发生的频率会稳定在某个常数附近,那么这个常数就叫做事件A的概率(probability),记为.要点诠释:(1)概率是频率的稳定值,而频率是概率的近似值;(2)概率反映了随机事件发生的可能性的大小;(3) 事件A的概率是一个大于等于0,且小于等于1的数,,即,其中P(必然事件)=1,P(不可能事件)=0,0<P(随机事件)<1.【典型例题】类型一、随机事件1.(1)指出下列事件中,哪些是不可能事件?哪些是必然事件?哪些是随机事件?①若 a、b、c都是实数,则a(bc)=(ab)c;②没有空气,动物也能生存下去;③在标准大气压下,水在 90℃时沸腾;④直线 y=k(x+1)过定点(-1,0);⑤某一天内电话收到的呼叫次数为 0;⑥一个袋内装有形状大小完全相同的一个白球和一个黑球,从中任意摸出 1个球则为白球.【答案与解析】①④是必然事件;②③是不可能事件;⑤⑥是随机事件.【总结升华】准确掌握定义,依据定义判别.【 391875 名称:随机事件与概率初步:经典例题1】举一反三【变式1】下列事件是必然事件的是( ).A.明天要下雨;B.打开电视机,正在直播足球比赛;C.抛掷一枚正方体骰子,掷得的点数不会小于1;D.买一张彩票,一定会中一等奖.【答案】C.【变式2】下列说法中,正确的是( ).A.生活中,如果一个事件不是不可能事件,那么它就必然发生;B.生活中,如果一个事件可能发生,那么它就是必然事件;C.生活中,如果一个事件发生的可能性很大,那么它也可能不发生;D.生活中,如果一个事件不是必然事件,那么它就不可能发生.【答案】C.2. 在一个不透明的口袋中,装有10个除颜色外其它完全相同的球,其中5个红球,3个蓝球,2个白球,它们已经在口袋中搅匀了.下列事件中,哪些是必然发生的?哪些是不可能发生的?哪些是可能发生的?(1)从口袋中任取出一个球,它恰是红球;(2)从口袋中一次性任意取出2个球,它们恰好全是白球;(3)从口袋中一次性任意取出5个球,它们恰好是1个红球,1个蓝球,3个白球. 【答案与解析】(1)可能发生,因为袋中有红球;(2)可能发生,因为袋中刚好有2个白球;(3)不可能发生,因为袋中只有2个白球,取不出3个白球.【总结升华】了解并掌握三种事件的区别和联系.举一反三【变式】甲、乙两人做掷六面体骰子的游戏,双方规定,若掷出的骰子的点数大于3,则甲胜,若掷出的点数小于3,则乙胜,游戏公平吗?若不公平,请你设计出一种对于双方都公平的游戏.【答案】不公平,小于3的点数有1、2,大于3的点数有4、5、6,因此,它们的可能性是不同的,所以不公平.可设计掷出的点数为偶数时甲胜,掷出的点数为奇数时乙胜.类型二、概率3.(2015春•山亭区期末)一只口袋里放着4个红球、8个黑球和若干个白球,这三种球除颜色外没有任何区别,并搅匀.(1)取出红球的概率为,白球有多少个?(2)取出黑球的概率是多少?(3)再在原来的袋中放进多少个红球,能使取出红球的概率达到?【答案与解析】解:(1)设袋中有白球x个.由题意得:4+8+x=4×5,解得:x=8,答:白球有8个;(2)取出黑球的概率为:,答:取出黑球的概率是,(3)设再在原来的袋中放入y个红球.由题意得:3(4+y)=20+y,或2(4+y)=8+8,解得:y=4,答:再在原来的袋中放进4个红球,能使取出红球的概率达到.【总结升华】此题考查了概率公式的应用.用到的知识点为:概率=所求情况数与总情况数之比.举一反三【变式】(2014•宁波模拟)中央电视台“非常6+1”栏目中有个互动环节,在电视直播现场有三个“金蛋”三个“银蛋”其中只有一个“金蛋”内有礼物,银蛋也是如此.有一个打进电话的观众,选择并打开后得到礼物的可能性是()A.B.C.D.【答案】D.【 391875 名称:随机事件与概率初步:例6及思考题】投篮次数n8 10 12 9 16 10进球次数m 6 8 9 7 12 7进球频率nm(1)计算表中各场次比赛进球的频率;(2)这位运动员每次投篮,进球的概率约为多少? 【答案与解析】 (1)投篮次数n 8 10 12 9 16 10 进球次数m 6897127进球频率nm0.75 0.8 0.75 0.78 0.75 0.7 (2)P(进球)≈0.75.【总结升华】频率和概率的关系:当大量重复试验时,频率会稳定在概率附近. 举一反三【变式】某射手在同一条件下进行射击,结果如下表所示:射击次数(n) 10 20 50 100 200 500 击中靶心次数(m)9 19 44 91 178 451 击中靶心频率()(1)计算表中击中靶心的各个频率(精确到0.01);(2)这个射手射击一次,击中靶心的概率约是多少(精确到0.1)?【答案】 (1)击中靶心的各个频率依次是:0.90,0.95,0.88,0.91,0.89,0.90. (2)这个射手击中靶心的概率约为0.9.。

(完整版)初中数学分式章节知识点及典型例题解析

(完整版)初中数学分式章节知识点及典型例题解析

分式的知识点及典型例题分析1、分式的定义:例:下列式子中,y x +15、8a 2b 、-239a 、y x b a --25、4322b a -、2—a 2、m 1、65xy x 1、21、212+x 、πxy 3、y x +3、ma 1+中分式的个数为( ) (A ) 2 (B ) 3 (C ) 4 (D) 5 练习题:(1)下列式子中,是分式的有 .⑴275x x -+; ⑵ 123x -;⑶25a a -;⑷22x x π--;⑸22b b -;⑹222xy x y +。

(2)下列式子,哪些是分式?5a -; 234x +;3y y ; 78x π+;2x xy x y +-;145b-+。

2、分式有,无意义,总有意义:(1)使分式有意义:令分母≠0按解方程的方法去求解; (2)使分式无意义:令分母=0按解方程的方法去求解; 注意:(12+x ≠0)例1:当x 时,分式51-x 有意义; 例2:分式xx -+212中,当____=x 时,分式没有意义 例3:当x 时,分式112-x 有意义. 例4:当x 时,分式12+x x有意义例5:x ,y 满足关系 时,分式x yx y-+无意义; 例6:无论x 取什么数时,总是有意义的分式是( )A .122+x x B 。

12+x x C 。

133+x x D 。

25xx - 例7:使分式2+x x有意义的x 的取值范围为( )A .2≠x B .2-≠x C .2->x D .2<x例8:要是分式)3)(1(2-+-x x x 没有意义,则x 的值为( )A. 2 B 。

—1或—3 C 。

-1 D 。

3同步练习题:3、分式的值为零:使分式值为零:令分子=0且分母≠0,注意:当分子等于0使,看看是否使分母=0了,如果使分母=0了,那么要舍去.例1:当x 时,分式121+-a a的值为0 例2:当x 时,分式112+-x x 的值为0例3:如果分式22+-a a 的值为为零,则a 的值为( ) A. 2± B 。

初中数学目录及重难点分析(北师大版)

初中数学目录及重难点分析(北师大版)

初中数学(七年级内容属于基础知识,要求全面掌握)七年级上册第一章丰富的图形世界1 生活中的立体图形(中考常考项目选择题)2 展开与折叠3 截一个几何体4 从三个方向看物体的形状★第二章有理数及其运算1 有理数2 数轴3 绝对值4 有理数的加法5 有理数的减法6 有理数加减混合运算7 有理数的乘法8 有理数的除法9 有理数的乘方10 科学记数法(中考必考项选择或填空题前三题之一)11 有理数的混合运算12 用计算器进行运算第三章整式及其加减1 字母表示数2 代数式3 整式4 整式的加减5 探索与表达规律★第四章基本平面图形(中考几何题目的基础知识)1 线段射线直线2 比较线段的长短3 角4 角的比较5 多边形和圆的初步认识★第五章一元一次方程(中考应用题必考项目第二十题左右)1 认识一元一次方程2 求解一元一次方程3 应用一元一次方程——水箱变高了4 应用一元一次方程——打折销售5 应用一元一次方程——“希望工程”义演6 应用一元一次方程——追赶小明★第六章数据的收集与整理(中考抽样调查常考项目第十八题)1 数据的收集2 普查和抽样调查3 数据的表示4 统计图的选择七年级下册★第一章整式的乘除(中考填空题或选择题)1 同底数幂的乘法(重点掌握)2 幂的乘方与积的乘方(重点掌握)3 同底数幂的除法(重点掌握)4 整式的乘法5 平方差公式(重点掌握)6 完全平方公式(重点掌握)7 整式的除法★第二章相交线与平行线(中考几何证明题的关键知识点)1 两条直线的位置关系2 探索直线平行的条件3 平行线的特征4 用尺规作角(重点掌握)★第三章三角形1 认识三角形2 图形的全等3 探索三角形全等的条件4 用尺规作三角形(中考常考题型)5 利用三角形全等测距离第四章变量之间的关系(一次函数基础内容属于重点难点)1 用表格表示的变量间关系2 用关系式表示的变量间关系3 用图象表示的变量间关系★第五章轴对称(中考选择题常考项目常在第五题出现)1 轴对称现象2 探索轴对称的性质3 简单轴对称图形4 利用轴对称进行设计第六章频率与概率1 感受可能性2 频率的稳定性3 等可能事件的概率备注:七年级上册书内容是小学和初中知识的一个衔接,主要有从“算术数”到“有理数”的过渡,式子是由“数”到“式”的过渡,而方程方面,则是由“应用算术解法”到“代数解法”的过渡,几何图形是有“认识几何图形”到“初步研究几何图形”的过渡。

(完整版)初一年级数学经典例题

(完整版)初一年级数学经典例题

数学天地:初一年级数学核心题目赏析有理数及其运算篇【核心提示】有理数部分概念较多,其中核心知识点是数轴、相反数、绝对值、乘方. 通过数轴要尝试使用“数形结合思想”解决问题,把抽象问题简单化.相反数看似简单,但互为相反数的两个数相加等于0这个性质有时总忘记用..绝对值是中学数学中的难点,它贯穿于初中三年,每年都有不同的难点,我们要从七年级把绝对值学好,理解它的几何意义.乘方的法则我们不仅要会正向用,也要会逆向用,难点往往出现在逆用法则方面.【核心例题】例1计算:200720061......431321211⨯++⨯+⨯+⨯ 分析 此题共有2006项,通分是太麻烦.有这么多项,我们要有一种“抵消”思想,如能把一些项抵消了,不就变得简单了吗?由此想到拆项,如第一项可拆成2111211-=⨯,可利用通项()11111+-=+⨯n n n n ,把每一项都做如此变形,问题会迎刃而解.解 原式=)2007120061(......413131212111-++-+-+-)()()( =2007120061......41313121211-++-+-+- =200711- =20072006 例2 已知有理数a 、b 、c 在数轴上的对应点分别为A 、B 、C(如右图).化简b c b a a -+-+. 分析 从数轴上可直接得到a 、b 、c 的正负性,但本题关键是去绝对值,所以应判断绝对值符号内表达式的正负性.我们知道“在数轴上,右边的数总比左边的数大”,大数减小数是正数,小数减大数是负数,可得到a-b<0、c-b>0.解 由数轴知,a<0,a-b<0,c-b>0所以,b c b a a -+-+= -a-(a-b)+(c-b)= -a-a+b+c-b= -2a+c例3 计算:⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-⋅⋅⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-211311 (9811991110011)分析 本题看似复杂,其实是纸老虎,只要你敢计算,马上就会发现其中的技巧,问题会变得很简便.解 原式=2132......9897999810099⨯⨯⨯⨯⨯=1001 例4 计算:2-22-23-24-……-218-219+220.分析 本题把每一项都算出来再相加,显然太麻烦.怎么让它们“相互抵消”呢?我们可先从最简单的情况考虑.2-22+23=2+22(-1+2)=2+22=6.再考虑2-22-23+24=2-22+23(-1+2)=2-22+23=2+22(-1+2)=2+22=6.这怎么又等于6了呢?是否可以把这种方法应用到原题呢?显然是可以的.解 原式=2-22-23-24-……-218+219(-1+2)=2-22-23-24-……-218+219=2-22-23-24-……-217+218(-1+2)=2-22-23-24-……-217+218=……=2-22+23=6【核心练习】1、已知│ab-2│与│b-1│互为相反数,试求:()()......1111++++b a ab ()()200620061++b a 的值. (提示:此题可看作例1的升级版,求出a 、b 的值代入就成为了例1.) 2、代数式abab b b a a ++的所有可能的值有( )个(2、3、4、无数个) 【参考答案】1、20082007 2、3 字母表示数篇【核心提示】用字母表示数部分核心知识是求代数式的值和找规律.求代数式的值时,单纯代入一个数求值是很简单的.如果条件给的是方程,我们可把要求的式子适当n=1,S=1①n=2,S=5②③n=3,S=9变形,采用整体代入法或特殊值法.【典型例题】例1已知:3x-6y-5=0,则2x-4y+6=_____分析 对于这类问题我们通常用“整体代入法”,先把条件化成最简,然后把要求的代数式化成能代入的形式,代入就行了.这类问题还有一个更简便的方法,可以用“特殊值法”,取y=0,由3x-6y-5=0,可得35=x ,把x 、y 的值代入2x-4y+6可得答案328.这种方法只对填空和选择题可用,解答题用这种方法是不合适的.解 由3x-6y-5=0,得352=-y x 所以2x-4y+6=2(x-2y)+6=6352+⨯=328 例2已知代数式1)1(++-n n x x ,其中n 为正整数,当x=1时,代数式的值是 ,当x=-1时,代数式的值是 .分析 当x=1时,可直接代入得到答案.但当x=-1时,n 和(n-1)奇偶性怎么确定呢?因n 和(n-1)是连续自然数,所以两数必一奇一偶.解 当x=1时,1)1(++-n n x x =111)1(++-n n =3当x=-1时,1)1(++-n n x x =1)1()1()1(+-+--n n =1例3 152=225=100×1(1+1)+25, 252=625=100×2(2+1)+25352=1225=100×3(3+1)+25, 452=2025=100×4(4+1)+25……752=5625= ,852=7225=(1)找规律,把横线填完整;(2)请用字母表示规律;(3)请计算20052的值.分析 这类式子如横着不好找规律,可竖着找,规律会一目了然.100是不变的,加25是不变的,括号里的加1是不变的,只有括号内的加数和括号外的因数随着平方数的十位数在变.解 (1)752=100×7(7+1)+25,852=100×8(8+1)+25(2)(10n+5)2=100×n (n+1)+25(3) 20052=100×200(200+1)+25=4020025例4如图①是一个三角形,分别连接这个三角形三边的中点得到图②,再分别连接图②中间小三角形三边的中点,得到图③.S 表示三角形的个数.(1)当n=4时,S= ,(2)请按此规律写出用n 表示S 的公式.分析 当n=4时,我们可以继续画图得到三角形的个数.怎么找规律呢?单纯从结果有时我们很难看出规律,要学会从变化过程找规律.如本题,可用列表法来找,规律会马上显现出来的.解 (1)S=13(2)可列表找规律:所以S=4(n-1)+1.(当然也可写成4n-3.)【核心练习】1、观察下面一列数,探究其中的规律:—1,21,31-,41,51-,61 ①填空:第11,12,13三个数分别是 , , ;②第2008个数是什么?③如果这列数无限排列下去,与哪个数越来越近?.2、观察下列各式: 1+1×3 = 22, 1+2×4 = 32, 1+3×5 = 42,……请将你找出的规律用公式表示出来:【参考答案】1、①111-,121,1311-;②20081;③0. 2、1+n ×(n+2) = (n+1)2平面图形及其位置关系篇【核心提示】平面图形是简单的几何问题.几何问题学起来很简单,但有时不好表述,也就是写不好过程.所以这部分的核心知识是写求线段、线段交点或求角的过程.每个人写的可能都不一样,但只要表述清楚了就可以了,不过在写清楚的情况下要尽量简便.【典型例题】例1平面内两两相交的6条直线,其交点个数最少为______个,最多为______个.分析 6条直线两两相交交点个数最少是1个,最多怎么求呢?我们可让直线由少到多一步步找规律.列出表格会更清楚.解例2 两条平行直线m 、n 上各有4个点和5个点,任选9点中的两个连一条直线,则一共可以连( )条直线. A .20 B .36 C .34 D .22分析与解 让直线m 上的4个点和直线n 上的5个点分别连可确定20条直线,再加上直线m 上的4个点和直线n 上的5个点各确定的一条直线,共22条直线.故选D. 例3 如图,OM 是∠AOB 的平分线.射线OC 在∠BOM 内,ON 是∠BOC 的平分线,已知∠AOC=80°,那么∠MON 的大小等于_______. 分析 求∠MON 有两种思路.可以利用和来求,即∠MON=∠MOC+∠CON.也可利用差来求,方法就多了,∠MON=∠MOB-∠BON=∠AON-∠AOM=∠AOB-∠AOM-∠BON.根据两条角平分线,想办法和已知的∠AOC 靠拢.解这类问题要敢于尝试,不动笔是很难解出来的.解 因为OM 是∠AOB 的平分线,ON 是∠BOC 的平分线,所以∠MOB=21∠AOB ,∠NOB=21∠COB 所以∠MON=∠M OB-∠N OB=21∠AOB-21∠C OB=21(∠AOB-∠C OB )=21∠AOC=21×80°=40° 例4 如图,已知∠AOB=60°,OC 是∠AOB 的平分线,OD 、OE 分别平分∠BOC 和∠AOC. (1)求∠DOE 的大小; O AM C N O B AC D E 图1图2图3(2)当OC 在∠AOB 内绕O 点旋转时,OD 、OE 仍是∠BOC 和∠AOC 的平分线,问此时∠DOE 的大小是否和(1)中的答案相同,通过此过程你能总结出怎样的结论.分析 此题看起来较复杂,OC 还要在∠AOB 内绕O 点旋转,是一个动态问题.当你求出第(1)小题时,会发现∠DOE 是∠AOB 的一半,也就是说要求的∠DOE , 和OC 在∠AOB 内的位置无关.解 (1)因为OC 是∠AOB 的平分线,OD 、OE 分别平分∠BOC 和∠AOC.所以∠DOC=21∠BOC ,∠COE=21∠COA 所以∠DOE=∠DOC+∠COE=21∠BOC+21∠COA=21(∠BOC+∠COA )=21∠AOB 因为∠AOB=60°所以∠DOE =21∠AOB= 21×60°=30° (2)由(1)知∠DOE =21∠AOB ,和OC 在∠AOB 内的位置无关.故此时∠DOE 的大小和(1)中的答案相同.【核心练习】1、A 、B 、C 、D 、E 、F 是圆周上的六个点,连接其中任意两点可得到一条线段,这样的线段共可连出_______条.2、在1小时与2小时之间,时钟的时针与分针成直角的时刻是1时 分.【参考答案】1、15条2、分分或1165411921.一元一次方程篇【核心提示】一元一次方程的核心问题是解方程和列方程解应用题。

人教版初中七年级数学上册各章知识点总结及章节经典练习附答案

人教版初中七年级数学上册各章知识点总结及章节经典练习附答案

七年级上册各章知识点第一章《有理数》一、正数与负数1.正数与负数表示具有相反意义的量。

问:收入+10元与支出-10元意义相反吗?2.有理数的概念与分类①整数和分数统称有理数,能写成两个整数之比的数确实是有理数。

判定:有理数可分为正有理数和负有理数(错,还有0)②零既不是正数,也不是负数。

判定:0是最小的正整数(错),正整数负整数统称整数(错,还有0 ),正分数负分数统称分数(对)③有限小数和无穷循环小数因都能化成份数,故都是有理数。

判定:0是最小的有理数(错)④无穷不循环小数因为不能化成两个整数之比,固称为无理数,如π,π/2等。

判定:整数和小数统称有理数(错,整数和分数统称有理数)。

二、数轴1.数轴三要素:原点、正方向、单位长度(另:数轴是一条有向直线)2.作用:1)描点:数形结合;2)比较大小:沿着数轴正方向数在慢慢变大;3)直观反映互为相反数的两个点的位置关系;4)绝对值的几何意义;5)有理数都在数轴上,但数轴上的数并非都是有理数。

3.数轴上点的移动规律:“正加负减”向数轴正方向(或负方向)那么对应的数应加(或减)4.数轴上以数a 和数b 为端点的线段中点为a 与b 和的一半(如何用代数式表示?)三、相反数1. 概念:假设a+b=0,那么a 与b 互为相反数 特例:因为0+0=0,因此0的相反数是02.性质:①假设a 与b 互为相反数,那么a+b= 0②-a 不必然表示负数,但必然表示a 的相反数(仅仅相差一个负号)③假设a 与b 互为相反数且都不为零,a b= -1 ④除0之外,互为相反数的两个数老是成双成对的散布在原点双侧且到原点的距离相等。

⑤互为相反数的两个数绝对值相等,平方也相等。

即:a =a -,()22a a =- 四、绝对值1.概念:在数轴上表示数a 点到原点的距离,称为a 的绝对值。

记作a2.法那么:1)正数的绝对值等于它本身;2)0的绝对值是0;3)负数的绝对值是它的相反数。

初中数学基础知识及经典题型完整版(实用的中考专题复习指导书)

初中数学基础知识及经典题型完整版(实用的中考专题复习指导书)

综合知识讲解目录第一章绪论11.1初中数学的特点11.2怎么学习初中数学21.3如何去听课51.4几点建议6第二章应知应会知识点72.1代数篇72.2几何篇11第三章例题讲解17第四章兴趣练习294.1代数部分294.2几何部分45第五章复习提纲50第一章绪论1.1初中数学的特点1.2.3.4.5.6.7.8.9.10.11.12.13.14.15.16.1.2怎么学习初中数学1,培养良好的学习兴趣。

两千多年前孔子说过:“知之者不如好之者,好之者不如乐之者。

”意思说,干一件事,知道它,了解它不如爱好它,爱好它不如乐在其中。

“好”和“乐”就是愿意学,喜欢学,这就是兴趣。

兴趣是最好的老师,有兴趣才能产生爱好,爱好它就要去实践它,达到乐在其中,有兴趣才会形成学习的主动性和积极性。

在数学学习中,我们把这种从自发的感性的乐趣出发上升为自觉的理性的“认识”过程,这自然会变为立志学好数学,成为数学学习的成功者。

那么如何才能建立好的学习数学兴趣呢?(1)课前预习,对所学知识产生疑问,产生好奇心。

(2)听课中要配合老师讲课,满足感官的兴奋性。

听课中重点解决预习中疑问,把老师课堂的提问、停顿、教具和模型的演示都视为欣赏音乐,及时回答老师课堂提问,培养思考与老师同步性,提高精神,把老师对你的提问的评价,变为鞭策学习的动力。

(3)思考问题注意归纳,挖掘你学习的潜力。

(4)听课中注意老师讲解时的数学思想,多问为什么要这样思考,这样的方法怎样是产生的?(5)把概念回归自然。

所有学科都是从实际问题中产生归纳的,数学概念也回归于现实生活,如角的概念、直角坐标系的产生都是从实际生活中抽象出来的。

只有回归现实才能对概念的理解切实可*,在应用概念判断、推理时会准确。

2,建立良好的学习数学习惯。

习惯是经过重复练习而巩固下来的稳重持久的条件反射和自然需要。

建立良好的学习数学习惯,会使自己学习感到有序而轻松。

高中数学的良好习惯应是:多质疑、勤思考、好动手、重归纳、注意应用。

人教最新版初中数学知识点总结及每章重难点

人教最新版初中数学知识点总结及每章重难点

人教新版初中数学知识点总结(全面最新) ﻩ目录一、七年级数学(上)知识点1、有理数2、整式的加减3、一元一次方程4、图形的认识初步二、七年级数学(下)知识点5、相交线与平行线6、实数7、平面直角坐标系8、二元一次方程组9、不等式与不等式组10、数据的收集、整理与描述三、八年级数学(上)知识点11、三角形12、全等三角形13、轴对称14、整式的乘除与分解因式15、分式四、八年级数学(下)知识点16、二次根式17、勾股定理18、平行四边形19、一次函数20、数据的分析五、九年级数学(上)知识点21、一元二次方程22、二次函数23、旋转24、圆25、概率六、九年级数学(下)知识点26、反比例函数27、相似28、锐角三角函数29、投影与视图七年级数学(上)知识点第一章 有理数一. 知识框架二.知识概念1.有理数:(1)凡能写成)0p q ,p (pq ≠为整数且形式的数,都是有理数. (2)有理数的分类: ① ⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎩⎨⎧负分数负整数负有理数零正分数正整数正有理数有理数 ② ⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧负分数正分数分数负整数零正整数整数有理数 注意:0即不是正数,也不是负数;-a 不一定是负数,+a也不一定是正数;π不是有理数;2.数轴:数轴是规定了原点、正方向、单位长度的一条直线.3.相反数:(1)只有符号不同的两个数,互为相反数,即a 和- a 互为相反数;0的相反数还是0;(2) a+b =0 ⇔ a、b互为相反数.4.绝对值:(1)绝对值的意义是数轴上表示某数的点离开原点的距离;(2) ⎪⎩⎪⎨⎧<-=>=)0()0(0)0(a a a a a a 或⎩⎨⎧<-≥=)0a (a )0a (a a 或⎩⎨⎧≤->=)0()0(a a a a a ; 正数的绝对值是其本身,0的绝对值是0,负数的绝对值是它的相反数;绝对值的问题经常分类讨论,零既可以和正数一组也可以和负数一组;5.有理数比大小:两个负数比大小,绝对值大的反而小;数轴上的两个数,右边的数总比左边的数大;大数-小数 > 0,小数-大数 < 0.6.倒数:乘积为1的两个数互为倒数;注意:0没有倒数;若 a ≠0,那么a 的倒数是a1; 若a b=1⇔ a 、b 互为倒数;若ab=-1⇔ a 、b 互为负倒数.7. 有理数加法法则:(1)同号两数相加,取相同的符号,并把绝对值相加;(2)异号两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值;(3)一个数与0相加,仍得这个数.8.有理数加法的运算律:(1)加法的交换律:a+b=b+a ;(2)加法的结合律:(a+b )+c=a+(b+c).9.有理数减法法则:减去一个数,等于加上这个数的相反数;即a-b=a+(-b).10 有理数乘法法则:(1)两数相乘,同号为正,异号为负,并把绝对值相乘;(2)任何数同零相乘都得零;(3)几个数相乘,有一个因式为零,积为零;各个因式都不为零,积的符号由负因式的个数决定,负因数为奇数个时乘积为负,负因数为偶数个时乘积为正.11 有理数乘法的运算律:(1)乘法的交换律:a b=ba;(2)乘法的结合律:(ab )c =a(bc);(3)乘法的分配律:a(b+c)=a b+ac .12.有理数除法法则:除以一个数等于乘以这个数的倒数;注意:零不能做除数,无意义即a . 13.乘方的定义:(1)求相同因式积的运算,叫做乘方;(2)乘方中,相同的因式叫做底数,相同因式的个数叫做指数,乘方的结果叫做幂;14.有理数乘方的法则:(1)正数的任何次幂都是正数;(2)负数的奇次幂是负数;负数的偶次幂是正数;注意:当n为正奇数时: (-a )n=-an或(a -b)n =-(b-a)n , 当n为正偶数时: (-a )n =an 或(a -b)n =(b-a)n .--15.科学记数法:把一个大于10的数记成a×10n的形式,(其中1≤a<10)这种记数法叫科学记数法.16.近似数的精确位:一个近似数,四舍五入到那一位,就说这个近似数的精确到那一位.17.有效数字:从左边第一个不为零的数字起,到精确的位数止,所有数字,都叫这个近似数的有效数字.18.混合运算法则:先乘方,后乘除,最后加减.本章内容要求学生正确认识有理数的概念,在实际生活和学习数轴的基础上,理解正负数、相反数、绝对值的意义所在。

初中数学学习难点攻克(含学习方法技巧、例题示范教学方法)

初中数学学习难点攻克(含学习方法技巧、例题示范教学方法)

初中数学学习难点攻克第一篇范文在学生的初中学习阶段,数学作为一门基础学科,其重要性不言而喻。

然而,许多学生在学习数学的过程中,往往会遇到各种难点,从而影响了他们的学习效果。

本文旨在分析初中数学学习中的难点,并提出相应的攻克策略。

一、初中数学学习难点分析1.概念理解困难:初中数学涉及许多抽象的概念和理论,如函数、方程等,学生对这些概念的理解往往不够深入,容易产生混淆。

2.逻辑思维能力不足:数学是一门严谨的学科,需要学生具备良好的逻辑思维能力。

然而,许多学生在面对复杂问题时,往往缺乏条理清晰的思考方式。

3.运算能力欠佳:虽然随着计算器的普及,运算能力的重要性有所降低,但扎实的运算基础仍然是解决数学问题的关键。

4.缺乏解题技巧:在数学学习中,掌握一定的解题技巧和方法是提高解题效率的关键。

然而,许多学生在这一方面还不够熟练。

5.学习兴趣不足:兴趣是最好的老师。

然而,由于各种原因,部分学生对数学学习缺乏兴趣,这无疑增加了他们学习数学的难度。

二、初中数学学习难点攻克策略1.加强概念理解:教师应通过生动的案例、形象的教学手段,帮助学生深入理解数学概念。

同时,学生也应主动参与课堂讨论,积极提问,以加深对概念的理解。

2.培养逻辑思维能力:教师可以引导学生通过绘制思维导图、进行小组讨论等方式,培养学生的逻辑思维能力。

同时,学生也应注重在日常生活中锻炼自己的思维能力。

3.提高运算能力:学生应通过大量练习,熟练掌握各种运算方法和解题技巧。

此外,教师也应关注学生的运算错误,及时进行纠正和指导。

4.学习解题技巧:学生可通过参加各类数学竞赛、请教老师等方式,学习并掌握解题技巧。

同时,教师也应在课堂教学中穿插相关技巧的讲解和训练。

5.激发学习兴趣:教师应关注学生的个体差异,创设有趣、富有挑战性的教学情境,以激发学生的学习兴趣。

此外,家长也应积极支持孩子参加各类数学活动,培养他们的数学素养。

三、结语初中数学学习难点的攻克,需要教师、学生、家长共同努力。

人教版七年级数学下册15.实数全章复习与巩固(基础)典型例题(考点)讲解+练习(含答案).doc

人教版七年级数学下册15.实数全章复习与巩固(基础)典型例题(考点)讲解+练习(含答案).doc

【若缺失公式、图片现象属于系统读取不成功,文档内容齐全完整,请放心下载。

】实数全章复习与巩固(基础)责编:康红梅【学习目标】1.了解算术平方根、平方根、立方根的概念,会用根号表示数的平方根、立方根.2.了解开方与乘方互为逆运算,会用平方运算求某些非负数的平方根,会用立方运算求某些数的立方根,会用计算器求平方根和立方根.3.了解无理数和实数的概念,知道实数与数轴上的点一一对应,有序实数对与平面上的点一一对应;了解数的范围由有理数扩大为实数后,概念、运算等的一致性及其发展变化.4.能用有理数估计一个无理数的大致范围. 【知识网络】【要点梳理】【:389318 实数复习,知识要点】 类型项目平方根 立方根 被开方数 非负数任意实数符号表示a ±3a性质一个正数有两个平方根,且互为相反数;零的平方根为零; 负数没有平方根;一个正数有一个正的立方根; 一个负数有一个负的立方根; 零的立方根是零;重要结论⎩⎨⎧<-≥==≥=)0()0()0()(22a a a a a a a a a333333)(aa a a aa -=-==要点二:实数有理数和无理数统称为实数. 1.实数的分类 按定义分:实数⎧⎨⎩有理数:有限小数或无限循环小数无理数:无限不循环小数按与0的大小关系分:实数0⎧⎧⎨⎪⎩⎪⎪⎨⎪⎧⎪⎨⎪⎩⎩正有理数正数正无理数负有理数负数负无理数要点诠释:(1)所有的实数分成三类:有限小数,无限循环小数,无限不循环小数.其中有限小数和无限循环小数统称有理数,无限不循环小数叫做无理数.(2532等;②有特殊意义的数,如π;③有特定结构的数,如0.1010010001…(3)凡能写成无限不循环小数的数都是无理数,并且无理数不能写成分数形式.(4)实数和数轴上点是一一对应的.2.实数与数轴上的点一 一对应.数轴上的任何一个点都对应一个实数,反之任何一个实数都能在数轴上找到一个点与之对应.3.实数的三个非负性及性质:在实数范围内,正数和零统称为非负数。

初中数学各章节重难点

初中数学各章节重难点

初中数学各章节重难点第一章实数★重点★实数的有关概念及性质,实数的运算☆内容提要☆一、重要概念1.数的分类及概念数系表:说明:“分类”的原则:1)相称(不重、不漏)2)有标准2.非负数:正实数与零的统称。

(表为:x≥0)常见的非负数有:性质:若干个非负数的和为0,则每个非负担数均为0。

3.倒数:①定义及表示法②性质:A。

a≠1/a(a≠±1);B.1/a中,a≠0;C.0<a<1时1/a>1;a>1时,1/a<1;D.积为1。

4.相反数:①定义及表示法②性质:A。

a≠0时,a≠—a;B。

a与—a在数轴上的位置;C。

和为0,商为-1. 5.数轴:①定义(“三要素”)②作用:A。

直观地比较实数的大小;B.明确体现绝对值意义;C。

建立点与实数的一一对应关系。

6.奇数、偶数、质数、合数(正整数—自然数)定义及表示:奇数:2n—1偶数:2n(n为自然数)7.绝对值:①定义(两种):代数定义:几何定义:数a的绝对值顶的几何意义是实数a在数轴上所对应的点到原点的距离。

②│a│≥0,符号“││”是“非负数”的标志;③数a的绝对值只有一个;④处理任何类型的题目,只要其中有“││”出现,其关键一步是去掉“││"符号。

二、实数的运算1.运算法则(加、减、乘、除、乘方、开方)2.运算定律(五个-加法[乘法]交换律、结合律;[乘法对加法的]分配律)3.运算顺序:A.高级运算到低级运算;B。

(同级运算)从“左” 到“右”(如5÷ ×5);C.(有括号时)由“小”到“中”到“大”。

三、应用举例(略)附:典型例题1.已知:a、b、x在数轴上的位置如下图,求证:│x—a│+│x—b│=b—a.2。

已知:a—b=—2且ab〈0,(a≠0,b≠0),判断a、b的符号。

第二章代数式★重点★代数式的有关概念及性质,代数式的运算☆内容提要☆一、重要概念分类:1.代数式与有理式用运算符号把数或表示数的字母连结而成的式子,叫做代数式。

专题11 二次根式重难点题型分类(解析版)-初中数学七年级上学期重难点题型分类高分必刷题(人教版)

专题11 二次根式重难点题型分类(解析版)-初中数学七年级上学期重难点题型分类高分必刷题(人教版)

专题11 二次根式重难点题型分类-高分必刷题(原卷版)专题简介:本份资料包含《二次根式》这一章的全部重要题型,所选题目源自各名校期中、期末试题中的典型考题,具体包含五类题型:二次根式的双重非负性、二次根式的乘除、最简二次根式、二次根式的混合运算、二次根式的压轴题。

适合于培训机构的老师给学生作复习培训时使用或者学生考前刷题时使用。

题型一 二次根式的双重非负性第一层非负性:被开方数0≥1.(南雅)在函数y 中,自变量x 的取值范围是( ) A. 1x ≥-B. 1x >-且12x ≠C. 1x ≥-且12x ≠D. 1x >- 【解答】解:由题意得,x +1≥0且2x ﹣1≠0,解得x ≥﹣1且x ≠.故选:C .2.x 的取值范围是 . 【解答】解:x +1≥0,x ≠0,解得,x ≥﹣1且x ≠0,则式子有意义,则x 的取值范围是x ≥﹣1且x ≠0.3.(青竹湖)函数xx y 2-=中,自变量x 的取值范围是 . 【解答】解:根据题意得,x ﹣2≥0且x ≠0,解得x ≥2且x ≠0,所以,自变量x 的取值范围是x ≥2.4.(青竹湖)已知3y =,则yx的值为( ) 【解答】解:由题意可得:x =4,则y =3,则的值为:.故选:C .5.(雅礼)已知实数x 、y 满足0115=-+-y x ,则以x 、y 的值为两边长的等腰三角形的周长是 .【解答】解:根据题意得,x ﹣5=0,y ﹣11=0,解得x =5,y =11, ①5是腰长时,三角形的三边分别为5、5、11,不能组成三角形.②5是底边时,三角形的三边分别为5、11、11,能组成三角形,5+11+11=27;所以,三角形的周长为:27;故答案为27.第二层非负性:二次根式的计算结果为非负数,0,0a a a a a ≥⎧⇒==⎨-<⎩6. (长郡)如果()a a 21122-=-,则( ) A. 21<aB. 21≤aC. 21>aD. 21≥a 【解答】解:∵,∴1﹣2a ≥0,解得a ≤.故选:B .7.(广益)若13x <<,则4x -的值为( ) A.25x -B.3-C.52x -D.3【解答】解:由题意可知:x ﹣4<0,x ﹣1>0,∴原式=﹣(x ﹣4)+(x ﹣1)=3,故选:D .8. (长梅)已知实数a ,b 的结果是( )A.1a -B.1a --C.1a -D.1a +【解答】解:由数轴可得:﹣1<a <0,0<b <1,则﹣﹣=﹣a ﹣b ﹣(1﹣b )=﹣a ﹣1.故选:B .9.(长郡)已知a 、b 、c 是ABC ∆a b c +-的值为( )A.2aB.2bC.2cD.()2a c -【解答】解:∵三角形两边之和大于第三边,两边之差小于第三边,∴a ﹣b ﹣c <0,a +b ﹣c >0 ∴+|a +b ﹣c |=b +c ﹣a +a +b ﹣c =2b .故选:B .10.(青竹湖)实践与探索(1 ,= ;(2)观察第(1)的结果填空:当0a ≥= ,当0a <= ;(3,其中23x <<.【解答】解:(1)=3;=5;故答案为:3,5;(2)当a ≥0时=a ;当a <0时,=﹣a ;故答案为:a ,﹣a ;(3)∵2<x <3,∴x ﹣2>0、x ﹣3<0,原式=(x ﹣2 )﹣(x ﹣3)=1.题型二 二次根式的乘除11.(长梅)计算:= .【解答】解:原式=12.==12. (青竹湖) = .【解答】解:原式12.=13.(青竹湖)下列各数中,与2 )A .2B .2C .2-D 【解答】解:∵(2+)×(2﹣)=22﹣=1,∴2+与2﹣互为有理化因式.故选:B .14.0)x ≠的结果是( )A. B.- C.- D.【解答】解:由﹣x 3≥0知x ≤0,则原式=|x |=﹣x ,故选:D .15.(郡维)把根号外的因式移入根号内得( )C.D.【解答】解:∵成立,∴﹣>0,即m <0,∴原式=﹣=﹣.故选:D .题型三 最简二次根式16.(雅礼)下列根式中,不是最简二次根式的是( ) A. 7B. 3C.21D. 2【解答】解:C 、∵==;∴它不是最简二次根式故选:C .17.(青竹湖)下列根式中是最简二次根式的是( ))0a >【解答】解:(A )原式=,故A 不是最简二次根式;(C )原式=a,故C 不是最简二次根式; (D )原式=2,故D 不是最简二次根式;故选:B .18.(郡维)最简二次根式有( ) A.2个B.3个C.4个D.5个【解答】解:最简二次根式有;;,故选:B .19.)ABCD【解答】解:的被开方数是3,而、=2、的被开方数分别是5、2、2,所以它们不是同类二次根式,不能合并,即选项A 、B 、D 都不符合题意.=2的被开方数是3,与是同类二次根式,能合并,即选项C 符合题意.故选:C .20.a =________. 【解答】解:∵=2,∴a +1=2,∴a =1;故答案为:1.题型四 二次根式的混合运算21.(广益)已知1m =,1n =223m n mn ++= . 【解答】解:原式=22()2(1) 2.m n mn ++=+=22.(雅礼)(1)1213212-⎪⎭⎫ ⎝⎛--+(2)348312123÷⎪⎪⎭⎫ ⎝⎛+-. 【解答】解:(1)原式=;323232=--+(2)原式=(3×2﹣2×+4)÷=(6﹣+4)÷=(6﹣+4)÷=.23.0((3)π+- 【解答】解:原式=110.+=24.(广益)计算: ()220160112π-⎛⎫+-- ⎪⎝⎭【解答】解:原式=14225+-+=-25.(雅境)计算:(1)(2)计算:)21+.【解答】解:(1)原式=3=((2)原式=52317-+-=-26.(雅实)已知a =b =求值:(1)b aa b+; (2)22a b ab +.【解答】解:(1)原式=222(a b)212;a b abab ab++-==(2)原式=(a b)2ab +=⨯=27.(广益)先化简,再求值:322222222a b a b a aba ab b a b +-÷++-,其中2a =2b =。

初中数学教学重难点详解与习题

初中数学教学重难点详解与习题

初中数学教学重难点详解与习题数学作为科学的一支重要分支,对于学生的思维发展和逻辑推理能力的培养具有极为重要的作用。

然而,对于初中生来说,数学教学中的重难点常常令他们感到困惑。

为了帮助同学们更好地理解和掌握初中数学教学的重难点,本文将对一些常见的问题进行详细解析,并提供相应的习题。

一、整数运算1.1 加减法的应用整数加减法作为数学中最基本的运算之一,是解决实际问题的重要手段。

在加减法的应用中,需要注意正数和负数的概念,以及它们相加、相减的规则。

例如,高温与低温相差的温度问题、海拔高度的正负问题等。

【解析】:......【习题】:1. 用整数表示以下实际问题:(1)某地今年气温比去年低5摄氏度;(2)小明向北走了8公里;(3)某地距海平面高度为-50米。

二、代数式与方程式2.1 代数式的展开与因式分解代数式的展开与因式分解是解决代数问题的重要方法。

先来看展开式:【解析】:......【习题】:1. 展开以下代数式:(1)$(2a+3b)(3a-4b)$;(2)$(x-2)(x+4)$。

2.2 一元一次方程的解法一元一次方程在初中数学中占有重要地位,了解方程的基本概念、解法以及应用是必不可少的。

以下是一些常见的题型及其解法:【解析】:......【习题】:1. 解方程:(1)$3x-2=4x+5$;(2)$5x-3=2(2x+7)$。

三、几何相关知识3.1 点、线、面的认识在几何学中,点、线和面是最基本的概念。

理解这些概念对于后续的几何学学习至关重要。

以下是对点、线、面的详细解释:【解析】:......【习题】:1. 判断下列说法是否正确:(1)点是没有大小的;(2)线段是由两点确定的;(3)平行线永不相交。

3.2 三角形的性质三角形是平面几何中的重要图形,学习三角形的性质对于解决与三角形相关的问题至关重要。

以下是一些常见的三角形性质及其证明:【解析】:......【习题】:1. 用已知条件证明两角相等:已知$\triangle ABC$中,$AB=AC$,$AD$是$\triangle ABC$的高线。

初中数学人教版第二十二章二次函数的知识点和典型例题

初中数学人教版第二十二章二次函数的知识点和典型例题

初中数学人教版第二十二章二次函数的知识点和典型例题初中数学人教版第二十二章二次函数的知识点和典型例题: ✧ 相关概念及定义➢ 二次函数的概念:一般地,形如2y ax bx c =++〔a b c ,,是常数,0a ≠〕的函数,叫做二次函数。

这里需要强调:和一元二次方程类似,二次项系数0a ≠,而b c ,可以为零.二次函数的定义域是全体实数. ➢ 二次函数2y ax bx c =++的结构特征:⑴ 等号左边是函数,右边是关于自变量x 的二次式,x 的最高次数是2.⑵ a b c ,,是常数,a 是二次项系数,b 是一次项系数,c 是常数项. ✧ 二次函数各种形式之间的变换➢ 二次函数c bx ax y ++=2用配方法可化成:()k h x a y +-=2的形式,其中ab ac k a b h 4422-=-=,.➢ 二次函数由特殊到一般,可分为以下几种形式:①2ax y =;②k ax y +=2;③()2h x a y -=;④()k h x a y +-=2;⑤c bx ax y ++=2.✧ 二次函数解析式的表示方法➢ 一般式:2y ax bx c =++〔a ,b ,c 为常数,0a ≠〕; ➢ 顶点式:2()y a x h k =-+〔a ,h ,k 为常数,0a ≠〕;➢ 两根式:12()()y a x x x x =--〔0a ≠,1x ,2x 是抛物线与x 轴两交点的横坐标〕. ➢ 注意:任何二次函数的解析式都可以化成一般式或顶点式,但并非所有的二次函数都可以写成交点式,只有抛物线与x 轴有交点,即240b ac -≥时,抛物线的解析式才可以用交点式表示.二次函数解析式的这三种形式可以互化.✧ 二次函数2y ax bx c =++图象的画法➢ 五点绘图法:利用配方法将二次函数2y ax bx c =++化为顶点式2()y a x h k =-+,确定其开口方向、对称轴及顶点坐标,然后在对称轴两侧,左右对称地描点画图.一般我们选取的五点为:顶点、与y 轴的交点()0c ,、以及()0c ,关于对称轴对称的点()2h c ,、与x 轴的交点()10x ,,()20x ,〔假设与x 轴没有交点,那么取两组关于对称轴对称的点〕.➢ 画草图时应抓住以下几点:开口方向,对称轴,顶点,与x 轴的交点,与y 轴的交点.✧ 二次函数2ax y =的性质=+y ax c=-的性质:y a x h=-+的性质y a x h k✧ 抛物线2y ax bx c =++的三要素:开口方向、对称轴、顶点.➢ a 的符号决定抛物线的开口方向:当0>a 时,开口向上;当0<a 时,开口向下;a 相等,抛物线的开口大小、形状相同.➢ 对称轴:平行于y 轴〔或重合〕的直线记作2bx a=-.特别地,y 轴记作直线0=x .➢ 顶点坐标:),(ab ac a b 4422--➢ 顶点决定抛物线的位置.几个不同的二次函数,如果二次项系数a 相同,那么抛物线的开口方向、开口大小完全相同,只是顶点的位置不同.✧ 抛物线c bx ax y ++=2中,c b a ,,与函数图像的关系 ➢ 二次项系数a二次函数2y ax bx c =++中,a 作为二次项系数,显然0a ≠.⑴ 当0a >时,抛物线开口向上,a 越大,开口越小,反之a 的值越小,开口越大;⑵ 当0a <时,抛物线开口向下,a 越小,开口越小,反之a 的值越大,开口越大.总结起来,a 决定了抛物线开口的大小和方向,a 的正负决定开口方向,a的大小决定开口的大小.➢ 一次项系数b在二次项系数a 确定的前提下,b 决定了抛物线的对称轴. ⑴ 在0a >的前提下,当0b >时,02ba -<,即抛物线的对称轴在y 轴左侧; 当0b =时,02ba -=,即抛物线的对称轴就是y 轴;当0b <时,02ba->,即抛物线对称轴在y 轴的右侧.⑵ 在0a <的前提下,结论刚好与上述相反,即当0b >时,02ba ->,即抛物线的对称轴在y 轴右侧; 当0b =时,02ba -=,即抛物线的对称轴就是y 轴;当0b <时,02ba-<,即抛物线对称轴在y 轴的左侧.总结起来,在a 确定的前提下,b 决定了抛物线对称轴的位置.总结:➢ 常数项c⑴ 当0c >时,抛物线与y 轴的交点在x 轴上方,即抛物线与y 轴交点的纵坐标为正;⑵ 当0c =时,抛物线与y 轴的交点为坐标原点,即抛物线与y 轴交点的纵坐标为0;⑶ 当0c <时,抛物线与y 轴的交点在x 轴下方,即抛物线与y 轴交点的纵坐标为负.总结起来,c 决定了抛物线与y 轴交点的位置.总之,只要a b c ,,都确定,那么这条抛物线就是唯一确定的. ✧ 求抛物线的顶点、对称轴的方法➢ 公式法:a b ac a b x a c bx ax y 442222-+⎪⎭⎫ ⎝⎛+=++=,∴顶点是),(ab ac a b 4422--,对称轴是直线a b x 2-=.➢ 配方法:运用配方的方法,将抛物线的解析式化为()k h x a y +-=2的形式,得到顶点为(h ,k ),对称轴是直线h x =.➢ 运用抛物线的对称性:由于抛物线是以对称轴为轴的轴对称图形,所以对称轴的连线的垂直平分线是抛物线的对称轴,对称轴与抛物线的交点是顶点.用配方法求得的顶点,再用公式法或对称性进行验证,才能做到万无一失. ✧ 用待定系数法求二次函数的解析式➢ 一般式:c bx ax y ++=2.图像上三点或三对x 、y 的值,通常选择一般式.➢ 顶点式:()k h x a y +-=2.图像的顶点或对称轴,通常选择顶点式. ➢ 交点式:图像与x 轴的交点坐标1x 、2x ,通常选用交点式:()()21x x x x a y --=.✧ 直线与抛物线的交点➢ y 轴与抛物线c bx ax y ++=2得交点为(0, c ).➢ 与y 轴平行的直线h x =与抛物线c bx ax y ++=2有且只有一个交点(h ,c bh ah ++2).➢ 抛物线与x 轴的交点:二次函数c bx ax y ++=2的图像与x 轴的两个交点的横坐标1x 、2x ,是对应一元二次方程02=++c bx ax 的两个实数根.抛物线与x 轴的交点情况可以由对应的一元二次方程的根的判别式判定:①有两个交点⇔0>∆⇔抛物线与x 轴相交;②有一个交点〔顶点在x 轴上〕⇔0=∆⇔抛物线与x 轴相切; ③没有交点⇔0<∆⇔抛物线与x 轴相离.➢ 平行于x 轴的直线与抛物线的交点可能有0个交点、1个交点、2个交点.当有2个交点时,两交点的纵坐标相等,设纵坐标为k ,那么横坐标是k c bx ax =++2的两个实数根.➢ 一次函数()0≠+=k n kx y 的图像l 与二次函数()02≠++=a c bx ax y 的图像G 的交点,由方程组 2y kx ny ax bx c=+⎧⎨=++⎩的解的数目来确定:①方程组有两组不同的解时⇔l 与G 有两个交点; ②方程组只有一组解时⇔l 与G 只有一个交点;③方程组无解时⇔l 与G 没有交点. ➢ 抛物线与x 轴两交点之间的距离:假设抛物线c bx ax y ++=2与x 轴两交点为()()0021,,,x B x A ,由于1x 、2x 是方程02=++c bx ax 的两个根,故acx x a b x x =⋅-=+2121,()()a a ac b a ca b x x x x x x x x AB ∆=-=-⎪⎭⎫ ⎝⎛-=--=-=-=444222122122121✧ 二次函数图象的对称:二次函数图象的对称一般有五种情况,可以用一般式或顶点式表达➢ 关于x 轴对称2y ax bx c =++关于x 轴对称后,得到的解析式是2y ax bx c =---;()2y a x h k =-+关于x 轴对称后,得到的解析式是()2y a x h k =---; ➢ 关于y 轴对称2y ax bx c =++关于y 轴对称后,得到的解析式是2y ax bx c =-+;()2y a x h k =-+关于y 轴对称后,得到的解析式是()2y a x h k =++; ➢ 关于原点对称2y ax bx c =++关于原点对称后,得到的解析式是2y ax bx c =-+-;()2y a x h k =-+关于原点对称后,得到的解析式是()2y a x h k =-+-;➢ 关于顶点对称2y ax bx c =++关于顶点对称后,得到的解析式是222b y ax bx c a=--+-;()2y a x h k =-+关于顶点对称后,得到的解析式是()2y a x h k =--+.➢ 关于点()m n ,对称()2y a x h k =-+关于点()m n ,对称后,得到的解析式是()222y a x h m n k =-+-+- ➢ 总结:根据对称的性质,显然无论作何种对称变换,抛物线的形状一定不会发生变化,因此a 永远不变.求抛物线的对称抛物线的表达式时,可以依据题意或方便运算的原那么,选择适宜的形式,习惯上是先确定原抛物线〔或表达式的抛物线〕的顶点坐标及开口方向,再确定其对称抛物线的顶点坐标及开口方向,然后再写出其对称抛物线的表达式.✧ 二次函数图象的平移➢ 平移步骤:⑴ 将抛物线解析式转化成顶点式()2y a x h k =-+,确定其顶点坐标()h k ,; ⑵ 保持抛物线2y ax =的形状不变,将其顶点平移到()h k ,处,具体平移方法如下:➢【或左(h <0)】向右(h >0)【或左(h 平移|k|个单位平移规律在原有函数的根底上“h 值正右移,负左移;k 值正上移,负下移〞.概括成八个字“左加右减,上加下减〞.✧ 根据条件确定二次函数表达式的几种根本思路。

掌握初一数学:重难点题型全面解析

掌握初一数学:重难点题型全面解析

掌握初一数学:重难点题型全面解析引言初一下册数学内容丰富,涵盖了相交线和平行线、实数、平面直角坐标系、二元一次方程组、不等式和不等式组等多个重要知识点。

本文将对这些重难点题型进行详细解析,帮助学生更好地掌握初一数学。

一、相交线和平行线1.重难点解析:平行线的性质:平行线的性质是初中数学的重要内容,常以选择题和填空题形式出现。

1.例题:已知两条平行线被第三条直线所截,求对应角、内错角和同位角的关系。

2.解析:利用平行线的性质,找出对应角、内错角和同位角的相等关系。

2.平行线的判别方法:掌握平行线的判别方法是解题的关键。

1.例题:给出几组角度,判断哪些角度可以判定两条直线平行。

2.解析:根据平行线的判别方法,判断角度关系是否满足平行条件。

二、实数1.重难点解析:实数的概念和运算:实数的概念和运算是基础内容,常以计算题形式出现。

1.例题:计算给定实数的加减乘除。

2.解析:熟练掌握实数的运算规则,进行正确计算。

2.实数的分类:了解实数的分类及其性质。

1.例题:将给定的数分类为有理数或无理数。

2.解析:根据实数的定义和性质进行分类。

三、平面直角坐标系1.重难点解析:坐标系的基本概念:掌握平面直角坐标系的基本概念和应用。

1.例题:在坐标平面上标出给定点的坐标。

2.解析:理解坐标系的构成,正确标出点的位置。

2.函数图像的绘制:学会绘制简单函数的图像。

1.1.例题:绘制一次函数的图像。

2.解析:根据函数的解析式,确定函数图像的形状和位置。

四、二元一次方程组1.重难点解析:方程组的解法:掌握解二元一次方程组的方法,如代入法和加减法。

1.例题:解给定的二元一次方程组。

2.解析:选择合适的方法,逐步求解方程组。

2.应用题的解法:将实际问题转化为二元一次方程组进行求解。

1.例题:根据题意列出二元一次方程组并求解。

2.解析:理解题意,正确列出方程组并求解。

五、不等式和不等式组1.重难点解析:不等式的解法:掌握一元一次不等式和不等式组的解法。

专题03 一元一次方程重难点题型分类(解析版)-初中数学七年级上学期重难点题型分类高分必刷题(人教版

专题03 一元一次方程重难点题型分类(解析版)-初中数学七年级上学期重难点题型分类高分必刷题(人教版

专题03 高分必刷题-一元一次方程重难点题型分类(解析版)专题简介:本份资料包含《一元一次方程》这一章除应用题之外的全部重要题型,所选题目源自各名校期中、期末试题中的典型考题,具体包含七类题型:等式的性质、一元一次方程的定义、已知一元一次方程的解求参数、解一元一次方程、 同解或错解方程、含参方程解的个数问题、定义新运算类压轴题。

适合于培训机构的老师给学生作复习培训时使用或者学生考前刷题时使用。

题型一 等式的性质1.(青竹湖)运用等式的性质,下列等式变形错误的是( ) A .若x ﹣1=2,则x =3 B .若,则x ﹣1=2xC .若x ﹣3=y ﹣3,则x =yD .若3x =2x +4,则3x ﹣2x =4【解答】解:A 、若x ﹣1=2,根据等式的性质1,等式两边都加1,可得x =3,原变形正确,故这个选项不符合题意;B 、若x ﹣1=x ,根据等式的性质2,两边都乘以2,可得x ﹣2=2x ,原变形错误,故这个选项符合题意;C 、两边都加上3,可得:x =y ,原变形正确,故这个选项不符合题意;D 、两边都减去﹣2x ,可得:3x ﹣2x =4,原变形正确,故这个选项不符合题意; 故选:B .2.(师大)下列变形后的等式不一定成立的是( )A .若x y =,则x y +5=+5B .若x y =,则()x ya a a=≠0 C .若x y -3=-3,则x y = D .若mx my =,则x y = 【解答】解:A 、在等式x =y 的两边同时加上5,等式仍成立,即x +5=y +5,故本选项正确;B 、在等式x y =的两边同时除以以a (0≠a ),等式仍成立,即()x ya a a=≠0,故本选项正确;C 、在等式﹣3x =﹣3y 的两边同时除以﹣3,等式仍成立,即x =y ,故本选项正确;D 、若m =0时,x =y 不一定成立.故本选项错误; 故选:D .3.(广益)ma mb =,那么下列等式不一定成立的是( ) A.a b = B.66ma mb -=- C.118822ma mb -+=-+D.22ma mb +=+【解答】解:A、当m≠0时,由ma=mb两边除以m,得:a=b,不一定成立;B、由ma=mb,两边减去6,得:ma﹣6=mb﹣6,成立;C、由ma=mb,两边乘以﹣,再同时加上8,得:﹣ma+8=﹣mb+8,成立,D、由ma=mb,两边加上2,得:ma+2=mb+2,成立;故选:A.题型二一元一次方程的定义4.(青竹湖)已知下列方程,属于一元一次方程的有()①x﹣2=;②0.5x=1;③=8x﹣1;④x2﹣4x=8;⑤x=0;⑥x+2y=0.A.5个B.4个C.3个D.2个【解答】解:一元一次方程有0.5x=1,=8x﹣1,x=0,共3个,故选:C.5.(一中)已知关于x的方程(m﹣2)x|m﹣1|﹣3=0是一元一次方程,则m的值是()A.2B.0C.1D.0 或2【解答】解:由题意,得|m﹣1|=1,且m﹣2≠0,解得m=0,故选:B.6.(广益)关于x的方程(m﹣2)x|m|﹣1﹣2=0是一元一次方程,则m=.【解答】解:由题意,知|m|﹣1=1,且m﹣2≠0.解得m=﹣2.故答案是:﹣2.题型三已知一元一次方程的解去求参数7.(长郡)已知2-=的解,则a=________.x=是方程102x ax【解答】解:∵x=2是关于x的方程10﹣2x=ax的解,∴10﹣2×2=2a,解得a=3.故答案是:3.8.(西雅)方程﹣3(★﹣9)=5x﹣1,★处被盖住了一个数字,已知方程的解是x=5,那么★处的数字是()A.1B.2C.3D.4【解答】解:将x=5代入方程,得:﹣3(★﹣9)=25﹣1,解得:★=1,即★处的数字是1,故选:A.9.(长梅)如果y=3是方程2+(m﹣y)=2y的解,那么关于x的方程2mx=(m+1)(3x﹣5)的解是多少?【解答】解:当y =3时,2+m ﹣3=6,解得:m =7, 将m =7代入方程2mx =(m +1)(3x ﹣5)得:14x =8(3x ﹣5),即14x =24x ﹣40,解得:x =4.题型四 解一元一次方程10.(西雅)下列变形中:①将方程34x =-的系数化为1,得34x =-;②将方程52x =-移项得52x =-; ③将方程()()221331x x ---=去括号得42391x x ---=; ④将方程213132x x --=+去分母得()()221133x x -=--. 其中正确的变形有( ) A.0个B.1个C.2个D.3个【解答】解:①将方程3x =﹣4的系数化为1,得x =﹣,错误; ②将方程5=2﹣x 移项得x =2﹣5,错误;③将方程2(2x ﹣1)﹣3(x ﹣3)=1去括号得4x ﹣2﹣3x +9=1,错误; ④将方程=1+去分母得2(2x ﹣1)=6+3(x ﹣3),错误;故选:A .11.(青竹湖)下列方程变形中,正确的是( ) A .方程3x ﹣2=2x +1,移项得,3x ﹣2x =﹣1+2 B .方程3﹣x =2﹣5( x ﹣1),去括号得,3﹣x =2﹣5x ﹣1 C .方程,系数化为1得,t =1D .方程,去分母得,5( x ﹣1)﹣2x =1【解答】解:A 、方程3x ﹣2=2x+1,移项得:3x ﹣2x =1+2,不符合题意; B 、方程3﹣x =2﹣5(x ﹣1),去括号得:3﹣x =2﹣5x+5,不符合题意; C 、方程t =,系数化为1得:t =,不符合题意; D 、方程﹣=1,去分母得:5(x ﹣1)﹣2x =1,符合题意,故选:D . 12.(长郡)将方程212134x x -+=-去分母,得( ) A.()()421132x x -=-+B.()()421122x x -=-+C.()()21632x x -=-+D.()()4211232x x -=-+【解答】解:去分母得:4(2x ﹣1)=12﹣3(x +2),故选:D . 13.(一中)方程1134x x +-=去分母后,正确的是( ) A.4133x x -=- B.4133x x -=+ C.41233x x -=-D.41233x x -=+【解答】解:方程两边乘以12得:4x ﹣12=3(x +1),即4x ﹣12=3x +3, 故选:D .14.(长郡)解方程: (1)()331x x -=+(2)223246x x +--= 【解答】解:(1)去括号,得3x ﹣9=x +1,移项,得3x ﹣x =9+1,合并,得2x =10, 系数化为1,得x =5;(2)去分母,得3(x +2)﹣2(2x ﹣3)=24,去括号,得3x +6﹣4x +6=24, 移项,得3x ﹣4x =24﹣6﹣6,合并,得﹣x =12,系数化为1,得x =﹣12. 15.(青竹湖)解方程:(1) 1071453x x x +=-- (2)25123x x +-=-【解答】解:(1)10x +7=14x ﹣5﹣3x ,10x +3x ﹣14x =﹣5﹣7,﹣x =﹣12,x =12;(2)=1﹣,3(x +2)=6﹣2(x ﹣5),3x +6=6﹣2x +10,3x +2x =6+10﹣6,5x =10,x =2.16.(一中)解下列方程: (1)()()2441x x x --=-(2)2113322x x x --+=-【解答】解:(1)去括号得:x ﹣2x +8=4﹣4x ,移项合并得:3x =﹣4,解得:x =﹣; (2)去分母得:6x +2x ﹣1=6﹣x +1,移项合并得:9x =8,解得:x =.17.(广益)解下列方程:(1)2(21)(34)2x x +--= (2)3157146y y ---=【解答】解:(1)去括号得:4x +2﹣3x +4=2,移项合并得:x =﹣4;(2)去分母得:3(3y ﹣1)﹣12=2(5y ﹣7),去括号得:9y ﹣3﹣12=10y ﹣14, 移项合并得:﹣y =1,解得:y =﹣1.题型五 同解、错解方程18.(青竹湖)已知关于x 的方程325+=x m .若该方程的解与方程2158-=+x x 的解相同,则m 的值是( ) A.7B.-2C.1D.3【解答】解:2x ﹣1=5x +8,移项,得2x ﹣5x =8+1,合并同类项,得﹣3x =9,解得 x =﹣3. 把x =﹣3代入3x +2m =5,得3×(﹣3)+2m =5.移项,得2m =5+9.合并同类项,得2m =14,系数化为1,得m =7. 故选:A .19.(长郡)已知方程7236x x +=-与1x k -=的解相同,则231k -的值为( ) A .18B .20C .26D .26-【解答】解:由7x +2=3x ﹣6,得x =﹣2,由7x +2=3x ﹣6与x ﹣1=k 的解相同,得﹣2﹣1=k ,解得k =﹣3.则3k 2﹣1=3×(﹣3)2﹣1=27﹣1=26, 故选:C .20.(雅礼)一元一次方程解答题已知关于x 的方程23x m mx -=-与()1221x x -=-的解互为倒数,求m 的值.【解答】解:方程x ﹣1=2(2x ﹣1),去括号得:x ﹣1=4x ﹣2,解得:x =, 将x =3代入方程得,=3﹣,去分母得:9﹣3m =18﹣2m ,解得:m =﹣9.21.(青竹湖)在一元一次方程中,如果两个方程的解相同,则称这两个方程为同解方程; (1)若关于x 的两个方程24x =与1mx m =+是同解方程,求m 的值;(2)若关于x 的两个方程21x a =+与32x a -=-是同解方程,求a 的值;(3)若关于x 的两个方程()34513x m mn ++=与()19213x mn m -=-+是同解方程,求此时符合要求的正整数m ,n 的值.【解答】解:(1)解方程2x =4得x =2,把x =2代入mx =m +1得2m =m +1,解得m =1; (2)关于x 的两个方程2x =a +1与3x ﹣a =﹣2得x =,x =,∵关于x 的两个方程2x =a +1与3x ﹣a =﹣2是同解方程,∴=,解得a =﹣7;(3)解关于x 的两个方程5x +(m +1)=mn 与2x ﹣mn =﹣(m +1)得x =,x =,∵关于x 的两个方程5x +(m +1)=mn 与2x ﹣mn =﹣(m +1)是同解方程, ∴=,∴mn ﹣3m ﹣3=0,mn =3(m +1),∵m ,n 是正整数,∴m =3,n =4或m =1,n =6.22.(青竹湖)我们把解相同的两个方程称为同解方程.例如:方程:26x =与方程412x =的解都为3x =,所以它们为同解方程.(1)若方程2311x -=与关于x 的方程453x k +=是同解方程,求k 的值;(2)若关于x 的方程3[2()]43k x x x --=和3151128x k x+--=是同解方程,求k 的值;(3)若关于x 的方程223x a b -=和243x a b ++=是同解方程,求22214686a ab a b +++的值.【解答】解:(1)∵方程2x ﹣3=11与关于x 的方程4x +5=3k 是同解方程,∴2x ﹣3=11,解得x =7,把x =7代入方程4x +5=3k ,解得k =11,所以k 的值为11; (2)∵方程3[x ﹣2(x ﹣)]=4x 和﹣=1是同解方程,∴3[x ﹣2(x ﹣)]=4x 解得,x =,﹣=1解得,x =(27﹣2k ),∴=(27﹣2k ),解得k =;所以k 的值为;(3)∵方程2x ﹣3a =b 2和4x +a +b 2=3是同解方程,∴2x ﹣3a =b 2即4x ﹣6a =2b 2,∴4x =6a +2b 2,∵4x +a +b 2=3,∴6a +2b 2+a +b 2=3,即7a +3b 2=3,∴14a 2+6ab 2+8a +6b 2=2a (7a +3b 2)+7a +3b 2+a +3b 2=6a +3+a +3b 2=7a +3b 2+3=3+3=6. 所以14a 2+6ab 2+8a +6b 2的值为6.题型六 含参方程解的个数问题23.问当a 、b 满足什么条件时,方程bx a x -=-+152:(1)有唯一解;(2)有无数解;(3)无解。

初中数学知识要点及典型例题

初中数学知识要点及典型例题

初中数学知识要点及典型例题第一章实数第一讲实数的有关概念【回顾与思考】知识点:有理数、无理数、实数、非负数、相反数、倒数、数的绝对值课标要求:1.使学生复习巩固有理数、实数的有关概念.2.了解有理数、无理数以及实数的有关概念;理解数轴、相反数、绝对值等概念,了解数的绝对值的几何意义。

3.会求一个数的相反数和绝对值,会比较实数的大小4.画数轴,了解实数与数轴上的点一一对应,能用数轴上的点表示实数,会利用数轴比较大小。

考查重点:1.有理数、无理数、实数、非负数概念;2.相反数、倒数、数的绝对值概念;3.在已知中,以非负数a2、|a|、 a (a≥0)之和为零作为条件,解决有关问题。

实数的有关概念(1)实数的组成{}⎧⎧⎧⎫⎪⎪⎪⎪⎨⎪⎪⎪⎪⎨⎬⎩⎪⎪⎪⎪⎨⎪⎪⎪⎭⎩⎪⎧⎪⎨⎪⎩⎩正整数整数零负整数有理数有尽小数或无尽循环小数正分数实数分数负分数正无理数无理数无尽不循环小数 负无理数 (2)数轴:规定了原点、正方向和单位长度的直线叫做数轴(画数轴时,要注童上述规定的三要素缺一个不可),实数与数轴上的点是一一对应的。

数轴上任一点对应的数总大于这个点左边的点对应的数,(3)相反数实数的相反数是一对数(只有符号不同的两个数,叫做互为相反数,零的相反数是零).从数轴上看,互为相反数的两个数所对应的点关于原点对称.(4)绝对值⎪⎩⎪⎨⎧<-=>=)0()0(0)0(||a a a a a a从数轴上看,一个数的绝对值就是表示这个数的点与原点的距离(5)倒数实数a(a ≠0)的倒数是a1(乘积为1的两个数,叫做互为倒数);零没有倒数.【例题经典】理解实数的有关概念例1 ①a 的相反数是-15,则a 的倒数是_______.②实数a 、b 在数轴上对应点的位置如图所示:0a b则化简│b-a │=______.③去年市林业用地面积约为10200000亩,用科学记数法表示为约______________________.例2.(-2)3与-23( ).(A)相等 (B)互为相反数 (C)互为倒数 (D)它们的和为16 分析:考查相反数的概念,明确相反数的意义。

浙教版初中数学八年级下册知识点及典型例题-(1)

浙教版初中数学八年级下册知识点及典型例题-(1)

浙教版八年级下册知识点及典型例题第一章二次根式1.二次根式:一般地,式子 叫做二次根式.注意:(1)若 这个条件不成立,则a 不是二次根式;(2)a 是一个重要的非负数,即;a .2.重要公式:(1)=2)(a ,(2)⎩⎨⎧<≥==)0(_______)0(_______2a a a a ;注意使用)0a ()a (a 2≥=. 3.积的算术平方根:)0b ,0a (b a ab ≥≥⋅=,积的算术平方根等于积中各因式的算术平方根的积;注意:本章中的公式,对字母的取值范围一般都有要求. 4.二次根式的乘法法则:)0,0(_____≥≥=⋅b a b a .5.二次根式比较大小的方法: (1)利用近似值比大小;(2)把二次根式的系数移入二次根号内,然后比大小; (3) . 6.商的算术平方根:)0b ,0a (ba ba >≥=,商的算术平方根等于被除式的算术平方根除以除式的算术平方根.7.二次根式的除法法则: (1))0,0(_______>≥=b a ba; (2))0b ,0a (b a b a >≥÷=÷;(3)分母有理化:化去分母中的根号叫做分母有理化;具体方法是:分式的分子与分母同乘分母的有理化因式,使分母变为整式. 8.最简二次根式:(1)满足下列两个条件的二次根式,叫做最简二次根式,① 被开方数的因数是整数,因式是整式,② 被开方数中不含能开的尽的因数或因式;(2)最简二次根式中,被开方数不能含有小数、分数,字母因式次数低于2,且不含分母; (3)化简二次根式时,往往需要把被开方数先分解因数或分解因式; (4)二次根式计算的最后结果必须化为最简二次根式.9.二次根式化简题的几种类型:(1)明显条件题;(2)隐含条件题;(3)讨论条件题. 10.二次根式的混合运算:(1)二次根式的混合运算包括加、减、乘、除、乘方、开方六种代数运算,以前学过的,在有理数范围内的一切公式和运算律在二次根式的混合运算中都适用;(2)二次根式的运算一般要先 ,例如:化为同类二次根式才能合并;除法运算有时转化为 或 更为简便;使用 公式等.第二章 一元二次方程1. 认识一元二次方程:概念:只含有一个未知数,并且可以化为 (,,a b c 为常数, )的整式方程,叫一元二次方程。

初中数学各章节重难点解析

初中数学各章节重难点解析

初中数学各章节重难点解析初中数学是中学阶段的重点科目之一,它的学习对于学生掌握逻辑推理、数学思维以及科学方法论都有着重要的作用。

对于初中数学的课程内容而言,每一章节都存在着一些难点和重点。

本文将以此为切入点,对初中数学各章节的重难点进行解析。

一、代数基础1. 代数式的拼凑代数式的拼凑是一项非常重要的代数基础知识,其涉及到代数加减的本质。

学生要理解代数式的拼凑方法,需先明确代数表达式中各项的系数、变量和指数的含义和运算规律。

2. 同类项的合并同类项的合并是代数加减中必须掌握的知识点,它不仅需要学生掌握各种代数运算的方法和技巧,更需要学生夯实数学基础,深入理解代数表达式中的乘法分配率和同底数幂的乘法法则等原理,以便正确地将代数式中的同类项合并。

3. 多项式的乘法多项式的乘法是代数乘法中的一个重点,它是代数基础知识的延伸和深化。

学生在学习多项式的乘法过程中,需要充分利用分配率、结合律和交换律等代数基本法则,并结合示例进行理解和掌握。

二、线性方程组1. 线性方程组概念的理解线性方程组是初中数学中的重点难点之一,其概念涉及到系数矩阵和增广矩阵等概念,需要学生掌握线性方程组和矩阵的相关知识。

2. 解线性方程组的方法解线性方程组是初中数学中的难点问题之一,其解题过程涉及到消元法、代入法、加减法等多种方法,学生需要对这些方法有着深刻的理解和应用,并能在实际解题中熟练运用。

三、平面几何1. 平面几何基础知识平面几何是初中数学的重要组成部分,其基础知识包括点、直线、线段、圆等基本概念,以及平面角度、相似三角形、圆锥曲线等重要知识点。

掌握这些基础知识是理解整个章节的前提条件。

2. 定比分点和中点定理定比分点和中点定理是初中平面几何的两个重点难点问题,需要学生有着深刻的理解和应用。

学生在理解定比分点时,需要学习用向量法求定比点的方法,并掌握运用它们解决问题的技巧。

四、立体几何1. 确定棱台体积的方法确定棱台体积是初中立体几何中的一个重难点问题,它需要学生一定的记忆和计算能力。

初中数学7-9年级数学各单元重难点知识汇总

初中数学7-9年级数学各单元重难点知识汇总

初中数学7-9年级数学各单元重难点知识汇总九年级教材重难点分析各年级的常见现象初一学不好许多小学数学学科成绩很好的学生到了初中数学成绩会出现下滑,成绩不稳定等现象。

初中数学与小学数学相比,知识的深度、广度、能力要求都有不小的提高。

对概念、法则、公式、定理知识一知半解,没有吃透课本内容。

课后又不能及时巩固、总结、寻找知识间的联系,只是赶作业、套题型,遇到难题缺乏思考,学习方法的缺乏或不得当严重制约学生的有效思维,久而久之容易形成思维惰性,学不好数学。

以上这些问题如果在初一阶段不能很好的解决,在初二的两极分化阶段,同学们可能就会出现成绩的滑坡。

相反,如果能够打好初一数学基础,初二的学习只会是更上一层楼!策略:1.狠抓基础,循序渐进。

立足课本,把课本知识点吃透,辅以基础知识、基本方法的训练,先以基础题为主,培养运算能力,提升自信心。

等基础知识熟悉了,再逐渐加深难度,能举一反三,形成自己的思维。

能灵活运用知识点。

2.培养良好的学习习惯。

及时预习书本知识,然后带着问题去听课,提高课堂效率。

总结相似的题型,收集自己的典型错题和不会做的题目。

就不懂得问题,积极讨论、请教老师。

自己制定每日学习计划,形成习惯。

3.提高作业质量和效率。

每天作业是对当天所学内容的巩固,如果能高质量的完成当天的作业,就能把当天所学的知识点消化吸收,遗留的问题就少,进而学习效率就高。

初二成绩下滑初中数学是一个整体。

初二的难点多,初三的考点多。

相对而言,初一数学知识点虽然很多,但都比较基础,中考多以基础题为主,要求不高。

初二是初中数学学习的一个拐点,坡度突然增加,知识点上的增多和难度的增加,在学习方法上学生是很容易适应的。

特别是几何内容的增加,它的研究对象从“数”到“形”发生变化,方法也从“运算”到“推理”发生变化,学生的分析能力和表达能力跟不上就很难从图形中找到关系,推理论证困难学科(物理)也相应增加,学业加重,精力分散,有些学生有些力不从心,缺乏毅力的,就会慢慢掉队。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初中数学各章节重难点第一章实数★重点★实数的有关概念及性质,实数的运算☆内容提要☆一、重要概念1.数的分类及概念数系表:说明:“分类”的原则:1)相称(不重、不漏)2)有标准2.非负数:正实数与零的统称。

(表为:x≥0)常见的非负数有:性质:若干个非负数的和为0,则每个非负担数均为0。

3.倒数:①定义及表示法②性质:A.a≠1/a(a≠±1);B.1/a中,a≠0;C.0<a<1时1/a>1;a>1时,1/a<1;D.积为1。

4.相反数:①定义及表示法②性质:A.a≠0时,a≠-a;B.a与-a在数轴上的位置;C.和为0,商为-1。

5.数轴:①定义(“三要素”)②作用:A.直观地比较实数的大小;B.明确体现绝对值意义;C.建立点与实数的一一对应关系。

6.奇数、偶数、质数、合数(正整数—自然数)定义及表示:奇数:2n-1偶数:2n(n为自然数)7.绝对值:①定义(两种):代数定义:几何定义:数a的绝对值顶的几何意义是实数a在数轴上所对应的点到原点的距离。

②│a│≥0,符号“││”是“非负数”的标志;③数a的绝对值只有一个;④处理任何类型的题目,只要其中有“││”出现,其关键一步是去掉“││”符号。

二、实数的运算1.运算法则(加、减、乘、除、乘方、开方)2.运算定律(五个—加法[乘法]交换律、结合律;[乘法对加法的]分配律)3.运算顺序:A.高级运算到低级运算;B.(同级运算)从“左” 到“右”(如5÷×5);C.(有括号时)由“小”到“中”到“大”。

第二章代数式★重点★代数式的有关概念及性质,代数式的运算☆内容提要☆一、重要概念分类:1.代数式与有理式用运算符号把数或表示数的字母连结而成的式子,叫做代数式。

单独的一个数或字母也是代数式。

整式和分式统称为有理式。

2.整式和分式含有加、减、乘、除、乘方运算的代数式叫做有理式。

没有除法运算或虽有除法运算但除式中不含有字母的有理式叫做整式。

有除法运算并且除式中含有字母的有理式叫做分式。

3.单项式与多项式没有加减运算的整式叫做单项式。

(数字与字母的积—包括单独的一个数或字母)几个单项式的和,叫做多项式。

说明:①根据除式中有否字母,将整式和分式区别开;根据整式中有否加减运算,把单项式、多项式区分开。

②进行代数式分类时,是以所给的代数式为对象,而非以变形后的代数式为对象。

划分代数式类别时,是从外形来看。

如,=x, =│x│等。

4.系数与指数区别与联系:①从位置上看;②从表示的意义上看5.同类项及其合并条件:①字母相同;②相同字母的指数相同合并依据:乘法分配律6.根式表示方根的代数式叫做根式。

含有关于字母开方运算的代数式叫做无理式。

注意:①从外形上判断;②区别:、是根式,但不是无理式(是无理数)。

7.算术平方根⑴正数a的正的平方根([a≥0—与“平方根”的区别]);⑵算术平方根与绝对值①联系:都是非负数,=│a│②区别:│a│中,a为一切实数; 中,a为非负数。

8.同类二次根式、最简二次根式、分母有理化化为最简二次根式以后,被开方数相同的二次根式叫做同类二次根式。

满足条件:①被开方数的因数是整数,因式是整式;②被开方数中不含有开得尽方的因数或因式。

把分母中的根号划去叫做分母有理化。

9.指数⑴( —幂,乘方运算)①a>0时,>0;②a<0时,>0(n是偶数),<0(n是奇数)⑵零指数: =1(a≠0)负整指数: =1/ (a≠0,p 是正整数) 二、 运算定律、性质、法则1.分式的加、减、乘、除、乘方、开方法则 2.分式的性质⑴基本性质: = (m≠0) ⑵符号法则:⑶繁分式:①定义;②化简方法(两种) 3.整式运算法则(去括号、添括号法则) 4.幂的运算性质:① · = ;② ÷ = ;③ = ;④ = ;⑤ 技巧:5.乘法法则:⑴单×单;⑵单×多;⑶多×多。

6.乘法公式:(正、逆用) (a+b )(a-b )= (a±b) =7.除法法则:⑴单÷单;⑵多÷单。

8.因式分解:⑴定义;⑵方法:A.提公因式法;B.公式法;C.十字相乘法;D.分组分解法;E.求根公式法。

9.算术根的性质: = ; ; (a≥0,b≥0); (a≥0,b >0)(正用、逆用)10.根式运算法则:⑴加法法则(合并同类二次根式);⑵乘、除法法则;⑶分母有理化:A. ;B. ;C. .11.科学记数法: (1≤a <10,n 是整数=数与式典型例题一、数与式1、已知a-b=1,b+c=2,则2a+2c+1= 。

2、当x 时,33-=-x x 。

3、若31=-xx ,则x x 1+= 。

4、9.30万精确到 位,有效数字有 个。

5、已知A 、B 、C 是数轴上的三点,点B 表示1,点C 表示-3,AB=2,则AC 的长度是 。

6、P 点表示2,那么在数轴上到P 点的距离等于3个单位长度的点所表示的数是 。

7、64的平方根是 。

若(-3)2=a 2,则a= 。

8、某人以a 千米/小时的速度由甲地到乙地,然后又以b 千米/时的速度从乙地返回甲地,则此人往返一次的平均速度是 。

9、完成某项工作,甲独做需a 小时,乙独做需b 小时,若两人合作完成这项工作的80%需要的时间是 。

10、洗衣机每台原价为a 元,在第一次降价20%的基础上再降价15%,则洗衣机现价是 元。

11、若14+x 表示一个整数,则整数x 可取的值的个数是 。

12、如果一个三角形的三条边长分别为1,k ,3,化简3225102--+-k k k = 。

13、下列语句说法正确的是( )A .倒数等于本身的数有0B .算术平方根等于本身的数是±1和0C .立方根等于本身的数有±1和0D .相反数等于本身的数是±114 )A B C . D .第三章 统计初步 ★重点★☆ 内容提要☆ 一、 重要概念1.总体:考察对象的全体。

2.个体:总体中每一个考察对象。

3.样本:从总体中抽出的一部分个体。

4.样本容量:样本中个体的数目。

5.众数:一组数据中,出现次数最多的数据。

6.中位数:将一组数据按大小依次排列,处在最中间位置的一个数(或最中间位置的两个数据的平均数) 二、 计算方法1.样本平均数:⑴ ;⑵若 , ,…, ,则 (a —常数, , ,…, 接近较整的常数a);⑶加权平均数: ;⑷平均数是刻划数据的集中趋势(集中位置)的特征数。

通常用样本平均数去估计总体平均数,样本容量越大,估计越准确。

2.样本方差:⑴ ;⑵若 , ,…, ,则 (a —接近 、 、…、 的平均数的较“整”的常数);若 、 、…、 较“小”较“整”,则 ;⑶样本方差是刻划数据的离散程度(波动大小)的特征数,当样本容量较大时,样本方差非常接近总体方差,通常用样本方差去估计总体方差。

3.样本标准差:统计初步典型例题1、某校三个绿化小组一天植树的棵树如下:10,x ,8,已知这组数据只有一个众数且大小等于中位数,那么这组数据的平均数是 。

第四章 直线形★重点★相交线与平行线、三角形、四边形的有关概念、判定、性质。

☆ 内容提要☆一、 直线、相交线、平行线1.线段、射线、直线三者的区别与联系从“图形”、“表示法”、“界限”、“端点个数”、“基本性质”等方面加以分析。

2.线段的中点及表示3.直线、线段的基本性质(用“线段的基本性质”论证“三角形两边之和大于第三边”)4.两点间的距离(三个距离:点-点;点-线;线-线)5.角(平角、周角、直角、锐角、钝角)6.互为余角、互为补角及表示方法7.角的平分线及其表示8.垂线及基本性质(利用它证明“直角三角形中斜边大于直角边”)9.对顶角及性质10.平行线及判定与性质(互逆)(二者的区别与联系)11.常用定理:①同平行于一条直线的两条直线平行(传递性);②同垂直于一条直线的两条直线平行。

12.定义、命题、命题的组成13.公理、定理14.逆命题二、三角形分类:⑴按边分;⑵按角分1.定义(包括内、外角)2.三角形的边角关系:⑴角与角:①内角和及推论;②外角和;③n边形内角和;④n边形外角和。

⑵边与边:三角形两边之和大于第三边,两边之差小于第三边。

⑶角与边:在同一三角形中,3.三角形的主要线段讨论:①定义②××线的交点—三角形的×心③性质①高线②中线③角平分线④中垂线⑤中位线⑴一般三角形⑵特殊三角形:直角三角形、等腰三角形、等边三角形4.特殊三角形(直角三角形、等腰三角形、等边三角形、等腰直角三角形)的判定与性质5.全等三角形⑴一般三角形全等的判定(SAS、ASA、AAS、SSS)⑵特殊三角形全等的判定:①一般方法②专用方法6.三角形的面积⑴一般计算公式⑵性质:等底等高的三角形面积相等。

7.重要辅助线⑴中点配中点构成中位线;⑵加倍中线;⑶添加辅助平行线8.证明方法⑴直接证法:综合法、分析法⑵间接证法—反证法:①反设②归谬③结论⑶证线段相等、角相等常通过证三角形全等⑷证线段倍分关系:加倍法、折半法⑸证线段和差关系:延结法、截余法⑹证面积关系:将面积表示出来直线形典型例题1、如图,在由24个边长都为1的小正三角形的网格中,点P是正六边形的一个顶点,以点P为直角顶点作格点直角三角形,请你写出所有可能的直角三角形斜边的长。

第1题图第2题图第4题图2、如图,在平面直角坐标系中,已知点A(1,0)和点B(0,3),点C在坐标平面内。

若以A、B、C为顶点构成的三角形是等腰三角形,且底角为30°,则满足条件的点C有个。

3、已知等腰三角形一腰上的中线将它的周长分为9和12两部分,则腰长为。

4、如图,线段OD的一个端点O在直线a上,以OD为一边画等腰三角形,并且使另一个顶点在直线a上,这样的等腰三角形能画个。

5、直角三角形的两边长为3,4,则第三边长为。

6、直角三角形的周长是24cm,斜边上的中线长为5cm,则此三角形的面积为。

7、如果两个角的两边分别平行,且其中一个角比另一个角的2倍少30°,则这两个角的度数为。

8、在等边三角形ABC外有一点D,满足AD=AC,则∠BDC的度数为。

9、已知两数4和8,试写出第三个数,使这三个数中,其中一个数是其余两个数的比例中项,则第三个数是。

10、在比例尺为1:10000的地图上,区域面积为5cm2的地方代表实际面积是。

11、在△ABC中,AB=8,AC=6,点D在AB上,AD=2,点E在AC上,且△ADE与原三角形相似,则AE= 。

12、如图,DE∥AB,DF∥AC,若S△DEC=4,S△BDF=9,则S△ABC= 。

13、Rt△ABC中,∠C=90°,AC=6,BC=8,在Rt△ABC中作一个内接正方形,则该正方形的边长是。

相关文档
最新文档