近世代数课后习题参考答案(张禾瑞)-4

合集下载

近世代数课后习题答案

近世代数课后习题答案

近世代数课后习题答案近世代数课后习题答案近世代数是数学中的一个重要分支,研究的是抽象代数结构及其性质。

在学习近世代数的过程中,课后习题是巩固知识、加深理解的重要途径。

本文将为大家提供一些近世代数课后习题的答案,希望对大家的学习有所帮助。

一、群论1. 设G是一个群,证明恒等元素是唯一的。

答案:假设G中有两个恒等元素e和e',则有e * e' = e'和e' * e = e。

由于e是恒等元素,所以e * e' = e' = e' * e。

再由于e'是恒等元素,所以e * e' = e =e' * e。

因此,e = e',即恒等元素是唯一的。

2. 设G是一个群,证明每个元素在G中的逆元素是唯一的。

答案:假设G中的元素a有两个逆元素b和c,即a * b = e,a * c = e。

则有a * b = a * c。

两边同时左乘a的逆元素a',得到a' * (a * b) = a' * (a * c)。

根据结合律和逆元素的定义,等式右边可以化简为b = c。

因此,元素a的逆元素是唯一的。

二、环论1. 设R是一个环,证明零元素是唯一的。

答案:假设R中有两个零元素0和0',则有0 + 0' = 0'和0' + 0 = 0。

由于0是零元素,所以0 + 0' = 0' = 0' + 0。

再由于0'是零元素,所以0 + 0' = 0 = 0' + 0。

因此,0 = 0',即零元素是唯一的。

2. 设R是一个环,证明每个非零元素在R中的乘法逆元素是唯一的。

答案:假设R中的非零元素a有两个乘法逆元素b和c,即a * b = 1,a * c = 1。

则有a * b = a * c。

两边同时左乘a的乘法逆元素a',得到(a * b) * a' = (a * c) *a'。

近世代数习题解答张禾瑞二章

近世代数习题解答张禾瑞二章

近世代数习题解答第二章群论1群论1. 全体整数的集合对于普通减法来说是不是一个群?证不是一个群,因为不适合结合律.2. 举一个有两个元的群的例子.证G={1,-1}对于普通乘法来说是一个群.3. 证明,我们也可以用条件1,2以及下面的条件4,5'来作群的定义:4'. G至少存在一个右单位元e,能让ae = a 对于G的任何元a都成立5 . 对于G的每一个元a,在G里至少存在一个右逆元 a ,能让aa eA_1证(1) 一个右逆元一定是一个左逆元,意思是由aa e 得a a = e因为由4 G有元a能使a'a =e1 1 1 '所以(a a)e = (a a)(a a )即a a = e(2)一个右恒等元e 一定也是一个左恒等元,意即由ae = a 得ea = a即ea = a这样就得到群的第二定义.(3)证ax二b可解取x = a这就得到群的第一定义.反过来有群的定义得到4,5'是不困难的.2单位元,逆元,消去律1. 若群G的每一个元都适合方程x2二e,那么G就是交换群.证由条件知G中的任一元等于它的逆元,因此对a,b^G有ab = (ab),= b°a,= ba .2. 在一个有限群里阶大于2的元的个数是偶数._1 n —1 n n —1 —1证(1)先证a的阶是n则a 的阶也是n . a e= (a ) (a ) e e若有m n 使(a ')m= e 即(a m)' = e因而a m=e‘ • a m=e 这与a的阶是n矛盾「a的阶等于a °的阶_4 _4 2(2) a的阶大于2,则a=a 若a=a : a=e 这与a的阶大于2矛盾(3) a b 贝U a「b'斗总起来可知阶大于2的元a与a双双岀现,因此有限群里阶大于2的元的个数一定是偶数3. 假定G是个数一个阶是偶数的有限群,在G里阶等于2的元的个数一定是奇数.证根据上题知,有限群G里的元大于2的个数是偶数;因此阶<2的元的个数仍是偶数,但阶是1的元只有单位元,所以阶<2的元的个数一定是奇数.4. 一个有限群的每一个元的阶都是有限的证a := G故a a2…a m…a n…€ G由于G是有限群,所以这些元中至少有两个元相等:m n n _ma =a (m n) 故a 二en - m是整数,因而a的阶不超过它.4群的同态假定在两个群G和G的一个同态映射之下,a》a,a和a的阶是不是一定相同?证不一定相同丄 c _1 +23 _1 +伍例如G 二{1, , }-2 2对普通乘法G,G都作成群,且(x^1 (这里x是G的任意元,1是G的元)由••可知G s G—1+&3 —1—iJ3但11的阶都是3.2 2而1的阶是1.5变换群1 11. --------------------------------------- 假定I是集合的一个非变换,1会不会有一个左逆元T ,使得I =Z ?证我们的回答是回有的 A ={1,2,3,— }3f 2 3 f 44f 3 4-显然是一个非--- 变换但'二2.假定A是所有实数作成的集合.证明.所有A的可以写成x > ax b,a,b是有理数,a = 0形式的变换作成一个变换群.这个群是不是一个交换群?证(1) - : x—ax ■ bca,cb d是有理数ca尸0 ;是关闭的.⑵显然时候结合律⑶ a =1 b =0则:Xr X 而.J .二. ;所以构成变换群.又d X"x 13. 故1 - 21因而不是交换群3.假定S 是一个集合 A 的所有变换作成的集合,我们暂时仍用旧符号.:a 》a' = .(a)来说明一个变换..证明,我们可以用.「2: a“【[.2(a)] = j.2(a)来规定一个S 的乘法,这个乘法也适合结合律,并且 对于这个乘法来说;还是S 的单位元.证 彳: a —. d (a)那么.「2: a “ i [ .2(a)] = i 2(a) 显然也是A 的一个变换. 现在证这个乘法适合结合律:故 (•1・2)・3 =・1(・2・3) 再证;还是S 的单位元4 .证明一个变换群的单位元一定是恒等变换证设;是是变换群G 的单位元G , G 是变换群,故.是—变换,因此对集合 A 的任意元a ,有A 的元b ,;(a) »( (a)) = ;• (b) = • (b) =a另证■- (x)(x)根据1.7.习题3知t i(x) =x 5.证明实数域上一切有逆的n n 矩阵乘法来说,作成一个群。

近世代数基础 张禾瑞 答案

近世代数基础 张禾瑞 答案

《近世代数》单元测试(群论部分)
学号_________________ 姓名_______________ 成绩__________________
一、 (15%)在全体n 阶矩阵集合)(R M n 中定义二元关系“~”:⇔B A ~存在可逆矩阵
P ,使得B AP P =-1。

证明:
“~”是一个等价关系。

二、 (15%)设R 为实数域,令R c b a a b a c b a G ∈⎪⎪⎪⎭
⎫ ⎝⎛=,,|000{ 且0≠a }。

证明G 关于矩
阵的乘法构成群。

三、 (15%)设}0,,|10{≠∈⎥⎦⎤⎢⎣⎡=r Q s r s r G 对于矩阵乘法构成群,}|101{Q s s H ∈⎥⎦
⎤⎢⎣⎡=,其中Q 是有理数域,证明:H 是G 的不变子群,且*≅Q H G
,其中*Q 是非零有理数的乘法群。

四、 (15%)设G 和G 是两个有限循环群,它们的阶分别是m 和n ,证明:G 和G 同态当且
仅当m n |。

五、 (15%)若A 、B 是群G 的两个不变子群,且AB G =,证明:若
B b A a ba ab ∈∈∀=,,,则G 是直积B A ⨯的一个满同态象。

六、 (15%)设G 和G 是两个有限循环群,它们的阶分别是m 和n ,证明:G 和G 同态
当且仅当m n |。

七、 (10%)设G G f →:是满同态,G b a ∈,,证明:bK aK b f a f =⇔=)()(,其
中Kerf K =。

近世代数习题解答张禾瑞二章

近世代数习题解答张禾瑞二章

近世代数习题解答第二章群论1群论1.全体整数的集合对于普通减法来说是不是一个群?证不是一个群,因为不适合结合律.2.举一个有两个元的群的例子.证G={1,-1}对于普通乘法来说是一个群.3.证明,我们也可以用条件1,2以及下面的条件4,5'来作群的定义:4'. G至少存在一个右单位元e,能让ae = a 对于G的任何元a都成立5 . 对于G的每一个元a,在G里至少存在一个右逆元 a ,能让aa eA_1证(1) 一个右逆元一定是一个左逆元,意思是由aa e 得a a = e因为由4 G有元a能使a'a =e1 1 1 '所以(a a)e = (a a)(a a )即a a = e(2)一个右恒等元e 一定也是一个左恒等元,意即由ae = a 得ea = a即ea = a这样就得到群的第二定义.(3)证ax二b可解取x = a这就得到群的第一定义.反过来有群的定义得到4,5'是不困难的.2单位元,逆元,消去律1.若群G的每一个元都适合方程x2二e,那么G就是交换群.证由条件知G中的任一元等于它的逆元,因此对a,b^G有ab = (ab),= b°a,= ba .2.在一个有限群里阶大于2的元的个数是偶数._1 n —1 n n —1 —1证(1)先证a的阶是n则a 的阶也是n . a e= (a ) (a ) e e若有m n 使(a ')m= e 即(a m)' = e因而a m=e‘ • a m=e 这与a的阶是n矛盾「a的阶等于a °的阶_4 _4 2(2)a的阶大于2,则a=a 若a=a : a=e 这与a的阶大于2矛盾(3) a b 贝U a「b'斗总起来可知阶大于2的元a与a双双岀现,因此有限群里阶大于2的元的个数一定是偶数3.假定G是个数一个阶是偶数的有限群,在G里阶等于2的元的个数一定是奇数.证根据上题知,有限群G里的元大于2的个数是偶数;因此阶<2的元的个数仍是偶数,但阶是1的元只有单位元,所以阶<2的元的个数一定是奇数.4.一个有限群的每一个元的阶都是有限的证a := G故a a2…a m…a n…€ G由于G是有限群,所以这些元中至少有两个元相等:m n n _ma =a (m n) 故a 二en - m是整数,因而a的阶不超过它.4群的同态假定在两个群G和G的一个同态映射之下,a》a,a和a的阶是不是一定相同?证不一定相同丄 c _1 +23 _1 +伍例如G 二{1, , }-2 2对普通乘法G,G都作成群,且(x^1 (这里x是G的任意元,1是G的元)由••可知G s G—1+&3 —1—iJ3但11的阶都是3.2 2而1的阶是1.5变换群1 11. ------------------------------------------ 假定I是集合的一个非变换,1会不会有一个左逆元T ,使得I =Z ?证我们的回答是回有的 A ={1,2,3,— }3f 2 3 f 44f 3 4-显然是一个非--- 变换但'二2.假定A是所有实数作成的集合.证明.所有A的可以写成x > ax b,a,b是有理数,a = 0形式的变换作成一个变换群.这个群是不是一个交换群?证(1) - : x—ax ■ bca,cb d是有理数ca尸0 ;是关闭的.⑵显然时候结合律⑶ a =1 b =0 则:Xr X而.J .二. ;所以构成变换群.又d X"x 1故1 - 21因而不是交换群3.假定S 是一个集合 A 的所有变换作成的集合,我们暂时仍用旧符号.:a 》a ' = .(a)来说明一个变换..证明,我们可以用.「2: a“【[.2(a)] = j.2(a)来规定一个S 的乘法,这个乘法也适合结合律,并且 对于这个乘法来说;还是S 的单位元.证 彳: a —. d (a)那么.「2: a “ i [ .2(a)] = i 2(a) 显然也是A 的一个变换. 现在证这个乘法适合结合律 : 故 (•1・2)・3 =・1(・2・3) 再证;还是S 的单位元4 .证明一个变换群的单位元一定是恒等变换证设;是是变换群G 的单位元G , G 是变换群,故.是—变换,因此对集合 A 的任意元a ,有A 的元b ,;(a) »( (a)) = ;• (b) = • (b) =a另证■- (x)(x)根据1.7.习题3知t i(x) =x5.证明实数域上一切有逆的 n n 矩阵乘法来说,作成一个群。

近世代数习题解答张禾瑞二章

近世代数习题解答张禾瑞二章

近世代数习题解答张禾瑞二章近世代数习题解答第二章群论1群论1. 全体整数的集合对于普通减法来说是不是一个群?证不是一个群,因为不适合结合律.2. 举一个有两个元的群的例子.证G={1,-1}对于普通乘法来说是一个群.3. 证明,我们也可以用条件1,2以及下面的条件4,5'来作群的定义:4'. G至少存在一个右单位元e,能让ae = a 对于G的任何元a都成立5 . 对于G的每一个元a,在G里至少存在一个右逆元 a ,能让aa eA_1证(1) 一个右逆元一定是一个左逆元,意思是由aa e 得a a = e 因为由4 G有元a能使a'a =e1 1 1 '所以(a a)e = (a a)(a a )即a a = e(2)一个右恒等元e 一定也是一个左恒等元,意即由ae = a 得ea = a即ea = a这样就得到群的第二定义.(3)证ax二b可解取x = a这就得到群的第一定义.反过来有群的定义得到4,5'是不困难的.2单位元,逆元,消去律1. 若群G的每一个元都适合方程x2二e,那么G就是交换群.证由条件知G中的任一元等于它的逆元,因此对a,b^G有ab = (ab),= b°a,= ba .2. 在一个有限群里阶大于2的元的个数是偶数._1 n —1 n n —1 —1证(1)先证a的阶是n则a 的阶也是n . a e= (a ) (a ) e e若有m n 使(a ')m= e 即(a m)' = e因而a m=e‘ ? a m=e 这与a的阶是n矛盾「a的阶等于a °的阶_4 _4 2(2) a的阶大于2,则a=a 若a=a : a=e 这与a的阶大于2矛盾(3) a b 贝U a「b'斗总起来可知阶大于2的元a与a双双岀现,因此有限群里阶大于2的元的个数一定是偶数3. 假定G是个数一个阶是偶数的有限群,在G里阶等于2的元的个数一定是奇数.证根据上题知,有限群G里的元大于2的个数是偶数;因此阶<2的元的个数仍是偶数,但阶是1的元只有单位元,所以阶<2的元的个数一定是奇数.4. 一个有限群的每一个元的阶都是有限的证a := G故a a2…a m…a n…€ G由于G是有限群,所以这些元中至少有两个元相等:m n n _ma =a (m n) 故a 二en - m是整数,因而a的阶不超过它.4群的同态假定在两个群G和G的一个同态映射之下,a》a,a和a的阶是不是一定相同?证不一定相同丄 c _1 +23 _1 +伍例如G 二{1, , }-2 2对普通乘法G,G都作成群,且(x^1 (这里x是G的任意元,1是G的元)由??可知G s G—1+&3 —1—iJ3但11的阶都是3.2 2而1的阶是1.5变换群1 11. --------------------------------------- 假定I是集合的一个非变换,1会不会有一个左逆元T ,使得I =Z ?证我们的回答是回有的 A ={1,2,3,— }3f 2 3 f 44f 3 4-显然是一个非--- 变换但'二2.假定A是所有实数作成的集合.证明.所有A的可以写成x > ax b,a,b是有理数,a = 0形式的变换作成一个变换群.这个群是不是一个交换群?证(1) - : x—ax ■ bca,cb d是有理数ca尸0 ;是关闭的.⑵显然时候结合律⑶ a =1 b =0则:Xr X 而.J .二. ;所以构成变换群.又d X"x 13. 故1 - 21因而不是交换群3.假定S 是一个集合 A 的所有变换作成的集合,我们暂时仍用旧符号.:a 》a' = .(a)来说明一个变换..证明,我们可以用.「2:a“【[.2(a)] = j.2(a)来规定一个S 的乘法,这个乘法也适合结合律,并且对于这个乘法来说;还是S 的单位元.证彳: a —. d (a)那么.「2:a “ i [ .2(a)] = i 2(a) 显然也是A 的一个变换. 现在证这个乘法适合结合律:故 (?1?2)?3 =?1(?2?3) 再证;还是S 的单位元4 .证明一个变换群的单位元一定是恒等变换证设;是是变换群G 的单位元G , G 是变换群,故.是—变换,因此对集合 A 的任意元a ,有A 的元b ,;(a) ?( (a)) = ;? (b) = ? (b) =a另证■- (x)(x)根据1.7.习题3知t i(x) =x 5.证明实数域上一切有逆的n n 矩阵乘法来说,作成一个群。

近世代数习题解答张禾瑞三章

近世代数习题解答张禾瑞三章

近世代数习题解答第三章环与域1加群、环的定义1. 证明,本节内所给的加群的一个子集作成一个子群的条件是充分而且必要的证(i )若S是一个子群贝y a, b三S二a b三S0是S的零元,即0 • a = a对G的零元,0」a=a. 0=0即0 s 0 - a - -a S.(ii )若a,b S= a - b S今证S是子群由a,b S= aS,S对加法是闭的,适合结合律,由a S= -a • S,而且得a — a = 0 := S再证另一个充要条件:若S是子群,a,b S= a,-b S= a-b S 反之a S= a - a = 0 S= 0 - a - -a S故a, b S= a -( -b) = a b S2. R ={0,a,b,c}加法和乘法由以下两个表给定:+0a b c0a b c00a b c00000a a0cb a0000b b c0a b0a b cc c b a0c0a b c证明,R作成一个环证R对加法和乘法的闭的对加法来说,由2.9.习题6, R和阶是4的非循环群同构,且为交换群乘法适合结合律x(yz) = (xy)Z事实上.当x =0或x = a ,(A)的两端显然均为0 .当x =b或x=c, (A)的两端显然均为yz.这已讨论了所有的可能性,故乘法适合结合律.两个分配律都成立x( y z^ xy xz事实上,第一个分配律的成立和适合律的讨论完全一样,只看x = 0或x = a以及x = b或x = c就可以了.至于第二个分配律的成立的验证,由于加法适合交换律,故可看y =0或y = a (可省略z =0,z =a的情形)的情形,此时两端均为zx 剩下的情形就只有.R作成一个环.2交换律、单位元、零因子、整环1. 证明二项式定理在交换环中成立.证用数学归纳法证明.当n =1时,显然成立.假定n = k时是成立的:看n =k 1 的情形(a b)k(a b)(因为(畀)北)(:」))即二项式定理在交换环中成立.2. 假定一个环R对于加法来说作成一个循环群,证明R是交换环.证设a是生成元则R的元可以写成na (n整数)3 .证明,对于有单位元的环来说,加法适合交换律是环定义里其他条件的结果(利用(a b)(1 1))证单位元是1,a,b是环的任意二元,4 .找一个我们还没有提到过的有零因子的环证令R是阶为2的循环加群规定乘法:a,b三R而ab = 0 则R显然为环.阶为2 .有a R 而a=0但aa=0 即a为零因子或者R为n n矩阵环.5.证明由所有实数a • b 12 (a,b整数)作成的集合对于普通加法和乘法来说是一个整环.证令R -{a b. 2 (a,b整数)}(i ) R是加群(a b 一2) (c d . 2) =(a c) (b d) . 2适合结合律,交换律自不待言.零元0 0,2a ■ b2 的负元-a -b 2(ii )(a b -2)(c d 2) =(ac 2bd) (ad be) 2乘法适合结合律,交换律,并满足分配律.(iii )单位元 1 ^.2(iii) R 没有零因子,任二实数ab = 0= a = 0或b = 03除、环、域1. F ={所有复数a bi a,b 是有理数}证明 F 二对于普通加法和乘法来说是一个域 .证和上节习题5同样方法可证得 F 是一个整环 证明 F 对于普通加法和乘法来说是一个域 .证 只证明 a 亠b--3=0有逆元存在.则a,b 中至少有一个 =0,2 2我们说a-3b -- 02 2不然的话,a =3b(b =0]若 b =0 贝y a =0 矛盾)23 =笃 但-3不是有理数、b 2 2既然a …3b 0‘_a b贝U a ^.3的逆为 22 * 2—a 2_3b 2a 2_3b 24.证明 例3的乘法适合结合律. 证[(:1, ■1)C 2, -2)]^'3,'3)又(:九沁:2「2)(: 3「3)]_____________二[〉1(〉2〉3 - :2 :3)-1:1 (〉2 :3: 3),5.验证,四元数除环的任意元(a bi),(c di),这里a,b,c,d 是实数,可以写成(a,0) (b,0)(i,0) (c,0)(0,1)(d,0)(0,i)的形式.证 (a bi,c di)二(a,c) (bi,di)4无零因子环的特征1. 假定F 是一个有四个元的域,证明.(a) 的特征是2; (b)F 的0 或11的两个元都适合方程证(a )设F 的特征为P 则P 的(加)群F 的非零元的阶 所 P 4(4是群F 的阶) 但要求P 是素数,• P = 2.(b )设 F 二{0,1,a,b }并且(i ) F 有1 • i = 0(ii ) a bi = 0.a 2 • b 2 = 0因而有,a - b~7~2— 7~2a +ba +b故F 为域2.F -{所有实数a b,. 3, 即a, b 中至少一个-0使(a bi)(aa 2b 2-b a 2b2i )=1(a,b 是有理数)}由于P =2,所以加法必然是x x =0,,而 1 a = a 二 1 a = b2 2 a a, a 1 故有1a 1 1 a a abb b a— 2 (否则 a = b )=• a 二 bb b 1 1这样,a, b 显然适合x 2 = x 12. 假定[a ]是模的一个剩余类.证明若a 同n 互素,证设 x • [a]且(x,n) = d 贝U x = dx 1, n = dn 1由于 x -a 二 nq= a = x -nq = dx^dng = d(x r ~m q) 故有d a, ,且有d n 因为(a, n) =1 所以d =13.证明,所有同n 互素的模 n 的剩余类对于剩余类的乘法来说 作成一个群(同 互素的剩余类的个数普通用符号 '(n)来表示,并且把它叫做由拉 ■•函数)证G 二{[ a ]而[a ]同n 互素}G 显然非空,因为[1] • G((1, n) =1)(i )[a],[b] G 则[a][b]二[ab]又(a, n) =1,(b, n) =1 有(ab, n) =1(ii )显然适合结合律.(iii)因为n 有限所以G 的阶有限. 若[a ][ x ]二[a ][x '] 即[ax ]二[ax ']由此可得 nax —ax ' =a(x —x ')常(a,n) =1,二 dx — x ' 即有[x ]二[x ] 另一个消去律同样可证成立.故有又{1,a,b}构成乘群,所以乘法必然是 那么所有[a ]的书都同n 互素(这时我们说 [a ]同n 互素).G作成一个群4.证明,若是(a, n) =1,那么a°(n)三1( n)(费马定理)证(a, n) 则[a]三G而[a]的阶是G的阶\n)的一个因子因此[a] (n^[1]即[a (n)] =[1]5子环、环的同态1. 证明,一个环的中心是一个交换子环.证设N是环的中心.显然0三N a,b三N,x是环的任意元是子环,至于是交换环那是明显的.2. 证明,一个除环的中心是个域.证设!是除环!是中心由上题知N是R的交换子环1 R,显然1 N ,即N包含非零元,同时这个非零元1是的单位元.a N , x R 即ax = xa.N !是一个域3. 证明,有理数域是所有复数a - bi(a,b是有理数)作成的域R(i)的唯一的真子域证有理数域R是R(i)的真子域.设F !是R(i)的一个子域,则F二R(因为R是最小数域)若a bi F ,而b = 0则i F 二F 二F(i)这就是说,R是R(i)的唯一真子域.4. 证明,R(i)有且只有两自同构映射.证有理数显然变为其自己.假定i则由i2 - -1=- -1— - - i 或「- -i这就证明完毕.当然还可以详细一些:确是R(i)的两个自同构映射.现在证明只有这两个.若:i 》:二a bi(有理数变为其自己)则由i2= -1 = (a bi)2二a2「b22abi 二-1若b =0= a2- -1是有理数,在就岀现矛盾所以有a = 0因而b = 1.在就是说,只能i > i或i •-i i5. J3表示模3的剩余类所作成的集合.找岀加群J3的所有自同构映射,这找岀域J3!的所有自同构映射. 证1)对加群J3的自同构映射自同构映射必须保持!0 0故有1 : i —;i2)对域J3的自同构映射.自同构映射必须保持0 0 , 1 1所有只有—• i6. 令R是四元数除环,R是子集S = { —切(a,0)}这里a阿是实数,显然与实数域S同构.令R是把R中S换成S后所得集合;替R规定代数运算.使R三R,分别用i,j,k表示R的元(i,0), (0,1),(0,i), ,那么2 2 2R的元可以写成a bi cj dk(a,b,c1d是实数)的形式(参看33 习题5).验证.i - j -k - -1, ij = 一ji = k, jk = —kj = i,ki = —ik = j.证1)对':(a,0)—;a来说显然S三S2)S ={ —切(a,0)} a实数S ={—切(a,0) a 实数R={(a,"・| 一切(a,0)}复数对(:厂)是不属于S的R的元.R={(c(,P…| 一切a}规定由于S与S的补足集合没有共同元,容易验证< 是R与R间的一一映射.规定R的两个唤的和等于它们的逆象的和的象R的两个元的积等于它们的逆象的积的象首先,这样规定法则确是R的两个代数运算.其次,对于这两个代数运算以及R的两个代数运算来说在.之下R二R(3)由3.3.习题5知这里a,b,c,d 实数这是因为令i =(i,0), j =(0,1),k =(0,i) (4) i2=(i,O)(i,O) =(-1,0) 1同样jk - -kj = i,ki - -ik = j6多项式环1.证明,假定R是一个整环,那么R上的一个多项式环R[x]也是一个整环.证R!是交换环=R[x]交换环,R有单位元1=1是R[x]的单位元,R没有零因子=R[x]没有零因子事实上, f(x) =a0a n x n,a =0则f (x)g(x) =a°b°+ …+a n b m X n4m因为R没有零因子,所以a n b m = 0因而f (x)g(x) = 0这样R[x]是整环2 .假定R是模7的剩余类环,在R[x]里把乘积计算出来解原式=[5]x5-[3]x4x3[5]x -[5] =[5]X5 [4]x4x3[5]x [2]3. 证明:(i) R[:i,:2] = R[:2,:1](ii )若X“X2,…,X n是R上的无关未定元,那么每一个X j都是R上的未定元.证(i) «1,_辺]={ 一切二如2一:*一::;2}R02,%] ={ —切送a j2j^2j«i j1}由于》a i1i^2a i j^Z a j2j®22°1j1因而R[ r,:2 ] = R[ : 2,:』n(i)设v Hx k=°0-.. k00 h 0 0即' a k X i X i d X i X i 1 X nk =0因为x1,x2/ x n是R上的无关未定元,所以即x i是R上的未定元4. 证明:(i )若是x1,x2/ x n和y1, y2/ y n上的两组无关未定元,那么(ii ) R!上的一元多项式环R[X]能与它的一个真子环同构.证(i ) : f(X i,X2, X n) > f (y i, y2/ y n)根据本节定理3 R[x1,x2^ x n] ~ R[y1, y2^ y n]容易验证f i(X i,X2,X n) = f2(X i,X2;X n)二f i(y i,y2, y n) =f2(y i, y2, y n)这样R[X i,X2,X n]= R[y i,y2, y n]2 2 n(ii) 令R[x] ={ —切a。

近世代数习题解答张禾瑞二章

近世代数习题解答张禾瑞二章

近世代数习题解答张禾瑞二章近世代数习题解答第二章群论1群论1.全体整数的集合对于普通减法来说是不是一个群?证不是一个群,因为不适合结合律.2.举一个有两个元的群的例子.证G={1,-1}对于普通乘法来说是一个群.3.证明,我们也可以用条件1,2以及下面的条件4,5'来作群的定义:4'. G至少存在一个右单位元e,能让ae = a 对于G的任何元a都成立5 . 对于G的每一个元a,在G里至少存在一个右逆元 a ,能让aa eA_1证(1) 一个右逆元一定是一个左逆元,意思是由aa e 得a a = e 因为由4 G有元a能使a'a =e1 1 1 '所以(a a)e = (a a)(a a )即a a = e(2)一个右恒等元e 一定也是一个左恒等元,意即由ae = a 得ea = a即ea = a这样就得到群的第二定义.(3)证ax二b可解取x = a这就得到群的第一定义.反过来有群的定义得到4,5'是不困难的.2单位元,逆元,消去律1.若群G的每一个元都适合方程x2二e,那么G就是交换群.证由条件知G中的任一元等于它的逆元,因此对a,b^G有ab = (ab),= b°a,= ba .2.在一个有限群里阶大于2的元的个数是偶数._1 n —1 n n —1 —1证(1)先证a的阶是n则a 的阶也是n . a e= (a ) (a ) e e若有m n 使(a ')m= e 即(a m)' = e因而a m=e‘ ? a m=e 这与a的阶是n矛盾「a的阶等于a °的阶_4 _4 2(2)a的阶大于2,则a=a 若a=a : a=e 这与a的阶大于2矛盾(3) a b 贝U a「b'斗总起来可知阶大于2的元a与a双双岀现,因此有限群里阶大于2的元的个数一定是偶数3.假定G是个数一个阶是偶数的有限群,在G里阶等于2的元的个数一定是奇数.证根据上题知,有限群G里的元大于2的个数是偶数;因此阶<2的元的个数仍是偶数,但阶是1的元只有单位元,所以阶<2的元的个数一定是奇数.4.一个有限群的每一个元的阶都是有限的证a := G故a a2…a m…a n…€ G由于G是有限群,所以这些元中至少有两个元相等:m n n _ma =a (m n) 故a 二en - m是整数,因而a的阶不超过它.4群的同态假定在两个群G和G的一个同态映射之下,a》a,a和a的阶是不是一定相同?证不一定相同丄 c _1 +23 _1 +伍例如G 二{1, , }-2 2对普通乘法G,G都作成群,且(x^1 (这里x是G的任意元,1是G的元)由??可知G s G—1+&3 —1—iJ3但11的阶都是3.2 2而1的阶是1.5变换群1 11. ------------------------------------------ 假定I是集合的一个非变换,1会不会有一个左逆元T ,使得I =Z ?证我们的回答是回有的 A ={1,2,3,— }3f 2 3 f 44f 3 4-显然是一个非--- 变换但'二2.假定A是所有实数作成的集合.证明.所有A的可以写成x > ax b,a,b是有理数,a = 0形式的变换作成一个变换群.这个群是不是一个交换群?证(1) - : x—ax ■ bca,cb d是有理数ca尸0 ;是关闭的.⑵显然时候结合律⑶ a =1 b =0 则:Xr X而.J .二. ;所以构成变换群.又d X"x 1故1 - 21因而不是交换群3.假定S 是一个集合 A 的所有变换作成的集合,我们暂时仍用旧符号.:a 》a ' = .(a)来说明一个变换..证明,我们可以用.「2:a“【[.2(a)] = j.2(a)来规定一个S 的乘法,这个乘法也适合结合律,并且对于这个乘法来说;还是S 的单位元.证彳: a —. d (a)那么.「2:a “ i [ .2(a)] = i 2(a) 显然也是A 的一个变换. 现在证这个乘法适合结合律:故 (?1?2)?3 =?1(?2?3) 再证;还是S 的单位元4 .证明一个变换群的单位元一定是恒等变换证设;是是变换群G 的单位元G , G 是变换群,故.是—变换,因此对集合 A 的任意元a ,有A 的元b ,;(a) ?( (a)) = ;? (b) = ? (b) =a另证■- (x)(x)根据1.7.习题3知t i(x) =x5.证明实数域上一切有逆的 n n 矩阵乘法来说,作成一个群。

近世代数习题解答张禾瑞二章

近世代数习题解答张禾瑞二章

近世代数习题解答张禾瑞二章近世代数习题解答第二章群论1群论1. 全体整数的集合对于普通减法来说是不是一个群?证不是一个群,因为不适合结合律.2. 举一个有两个元的群的例子.证G={1,-1}对于普通乘法来说是一个群.3. 证明,我们也可以用条件1,2以及下面的条件4,5'来作群的定义:4'. G至少存在一个右单位元e,能让ae = a 对于G的任何元a都成立5 . 对于G的每一个元a,在G里至少存在一个右逆元 a ,能让aa eA_1证(1) 一个右逆元一定是一个左逆元,意思是由aa e 得a a = e 因为由4 G有元a能使a'a =e1 1 1 '所以(a a)e = (a a)(a a )即a a = e(2)一个右恒等元e 一定也是一个左恒等元,意即由ae = a 得ea = a即ea = a这样就得到群的第二定义.(3)证ax二b可解取x = a这就得到群的第一定义.反过来有群的定义得到4,5'是不困难的.2单位元,逆元,消去律1. 若群G的每一个元都适合方程x2二e,那么G就是交换群.证由条件知G中的任一元等于它的逆元,因此对a,b^G有ab = (ab),= b°a,= ba .2. 在一个有限群里阶大于2的元的个数是偶数._1 n —1 n n —1 —1证(1)先证a的阶是n则a 的阶也是n . a e= (a ) (a ) e e若有m n 使(a ')m= e 即(a m)' = e因而a m=e‘ ? a m=e 这与a的阶是n矛盾「a的阶等于a °的阶_4 _4 2(2) a的阶大于2,则a=a 若a=a : a=e 这与a的阶大于2矛盾(3) a b 贝U a「b'斗总起来可知阶大于2的元a与a双双岀现,因此有限群里阶大于2的元的个数一定是偶数3. 假定G是个数一个阶是偶数的有限群,在G里阶等于2的元的个数一定是奇数.证根据上题知,有限群G里的元大于2的个数是偶数;因此阶<2的元的个数仍是偶数,但阶是1的元只有单位元,所以阶<2的元的个数一定是奇数.4. 一个有限群的每一个元的阶都是有限的证a := G故a a2…a m…a n…€ G由于G是有限群,所以这些元中至少有两个元相等:m n n _ma =a (m n) 故a 二en - m是整数,因而a的阶不超过它.4群的同态假定在两个群G和G的一个同态映射之下,a》a,a和a的阶是不是一定相同?证不一定相同丄 c _1 +23 _1 +伍例如G 二{1, , }-2 2对普通乘法G,G都作成群,且(x^1 (这里x是G的任意元,1是G的元)由??可知G s G—1+&3 —1—iJ3但11的阶都是3.2 2而1的阶是1.5变换群1 11. --------------------------------------- 假定I是集合的一个非变换,1会不会有一个左逆元T ,使得I =Z ?证我们的回答是回有的 A ={1,2,3,— }3f 2 3 f 44f 3 4-显然是一个非--- 变换但'二2.假定A是所有实数作成的集合.证明.所有A的可以写成x > ax b,a,b是有理数,a = 0形式的变换作成一个变换群.这个群是不是一个交换群?证(1) - : x—ax ■ bca,cb d是有理数ca尸0 ;是关闭的.⑵显然时候结合律⑶ a =1 b =0则:Xr X 而.J .二. ;所以构成变换群.又d X"x 13. 故1 - 21因而不是交换群3.假定S 是一个集合 A 的所有变换作成的集合,我们暂时仍用旧符号.:a 》a' = .(a)来说明一个变换..证明,我们可以用.「2:a“【[.2(a)] = j.2(a)来规定一个S 的乘法,这个乘法也适合结合律,并且对于这个乘法来说;还是S 的单位元.证彳: a —. d (a)那么.「2:a “ i [ .2(a)] = i 2(a) 显然也是A 的一个变换. 现在证这个乘法适合结合律:故 (?1?2)?3 =?1(?2?3) 再证;还是S 的单位元4 .证明一个变换群的单位元一定是恒等变换证设;是是变换群G 的单位元G , G 是变换群,故.是—变换,因此对集合 A 的任意元a ,有A 的元b ,;(a) ?( (a)) = ;? (b) = ? (b) =a另证■- (x)(x)根据1.7.习题3知t i(x) =x 5.证明实数域上一切有逆的n n 矩阵乘法来说,作成一个群。

近世代数课后习题参考答案(张禾瑞) (1)

近世代数课后习题参考答案(张禾瑞) (1)

近世代数课后习题参考答案第二章群论1群论1. 全体整数的集合对于普通减法来说是不是一个群?证 不是一个群,因为不适合结合律.2. 举一个有两个元的群的例子.证 }1,1{-=G 对于普通乘法来说是一个群.3. 证明, 我们也可以用条件1,2以及下面的条件''5,4来作群的定义:'4. G 至少存在一个右单位元e ,能让a ae = 对于G 的任何元a 都成立'5. 对于G 的每一个元a ,在G 里至少存在一个右逆元,1-a 能让 e aa =-1证 (1) 一个右逆元一定是一个左逆元,意思是由e aa =-1得e a a =-1因为由'4G 有元'a 能使e a a =-'1 所以))(()('111a a a a e a a ---=e a a a e a a aa a ====----'1'1'11][)]([即 e a a =-1(2) 一个右恒等元e 一定也是一个左恒等元,意即 由 a ae = 得 a ea =a ae a a a a aa ea ====--)()(11即 a ea =这样就得到群的第二定义. (3) 证 b ax =可解 取b a x 1-=b be b aa b a a ===--)()(11这就得到群的第一定义.反过来有群的定义得到''5,4是不困难的.2单位元,逆元,消去律1. 若群G 的每一个元都适合方程e x =2,那么G 就是交换群. 证 由条件知G 中的任一元等于它的逆元,因此对G b a ∈,有ba a b ab ab ===---111)(.2. 在一个有限群里阶大于2的元的个数是偶数.证 (1) 先证a 的阶是n 则1-a 的阶也是n .e e a a e a n nn===⇒=---111)()(若有n m 〈 使e a m =-)(1 即 e a m =-1)(因而 1-=e a m e a m =∴ 这与a 的阶是n 矛盾.a 的阶等于1-a 的阶 (2)a 的阶大于2, 则1-≠a a 若 e a a a =⇒=-21 这与a 的阶大于2矛盾(3) b a ≠ 则 11--≠b a总起来可知阶大于2的元a 与1-a 双双出现,因此有限群里阶大于2的元的个数一定是偶数3. 假定G 是个数一个阶是偶数的有限群,在G 里阶等于2的元的个数一定是奇数.证 根据上题知,有限群G 里的元大于2的个数是偶数;因此阶2≤的元的个数仍是偶数,但阶是1的元只有单位元,所以阶 2≤的元的个数一定是奇数.4. 一个有限群的每一个元的阶都是有限的.证 G a ∈故 G a a a a nm∈ ,,,,,,2由于G 是有限群,所以这些元中至少有两个元相等:n m a a =)(n m 〈 故 e a m n =- m n -是整数,因而a 的阶不超过它.4群的同态假定在两个群G 和-G 的一个同态映射之下,-→a a ,a 和-a 的阶是不是一定相同? 证 不一定相同 例如 }231,231,1{i i G +-+-= }1{=-G对普通乘法-G G ,都作成群,且1)(=x φ(这里x 是G 的任意元,1是-G 的元)由 φ可知 G ∽-G 但231,231i i --+-的阶都是3.而1的阶是1.5变换群1. 假定τ是集合的一个非一一变换,τ会不会有一个左逆元1-τ,使得εττ=-1?证 我们的回答是回有的},3,2,1{ =A1τ: 1→1 2τ 1→12→1 2→3 3→2 3→4 4→3 4→5 ……τ显然是一个非一一变换但 εττ=-12. 假定A 是所有实数作成的集合.证明.所有A 的可以写成b a b ax x ,,+→是有理数,0≠a 形式的变换作成一个变换群.这个群是不是一个交换群? 证 (1) :τb ax x +→:λd cx x +→:τλd cb cax d b ax c x ++=++→)(d cb ca +,是有理数 0≠ca 是关闭的.(2) 显然时候结合律(3) 1=a 0=b 则 :εx x → (4) :τb ax +)(1:1ab x a x -+→-τ 而 εττ=-1所以构成变换群.又 1τ: 1+→x x:2τx x 2→:21ττ)1(2+→x x :12ττ12+→x x故1221ττττ≠因而不是交换群.3. 假定S 是一个集合A 的所有变换作成的集合,我们暂时仍用旧符号τ:)('a a a τ=→来说明一个变换τ.证明,我们可以用21ττ: )()]([2121a a a ττττ=→来规定一个S 的乘法,这个乘法也适合结合律,并且对于这个乘法来说ε还是S 的单位元. 证 :1τ)(1a a τ→:2τ)(2a a τ→那么:21ττ)()]([2121a a a ττττ=→ 显然也是A 的一个变换. 现在证这个乘法适合结合律:)]()[(:)(321321a a ττττττ→)]]([[321a τττ==→)]([:)(321321a a ττττττ)]]([[321a τττ故 )()(321321ττττττ= 再证ε还是S 的单位元:ε)(a a a ε=→:ετ)()]([a a a ττε=→τ:τε)()]([a a a τετ=→∴τεετ=4. 证明一个变换群的单位元一定是恒等变换。

近世代数习题解答张禾瑞二章

近世代数习题解答张禾瑞二章

近世代数习题解答第二章 群论1 群论1. 全体整数的集合对于普通减法来说是不是一个群?证 不是一个群,因为不适合结合律. 2. 举一个有两个元的群的例子.证 }1,1{-=G 对于普通乘法来说是一个群. 3. 证明, 我们也可以用条件1,2以及下面的条件 ''5,4来作群的定义:'4. G 至少存在一个右单位元e ,能让a ae = 对于G 的任何元a 都成立'5. 对于G 的每一个元a ,在G 里至少存在一个右逆元,1-a 能让 e aa =-1证 (1) 一个右逆元一定是一个左逆元,意思是由e aa =-1得e a a =-1因为由'4G 有元'a 能使e a a =-'1所以))(()('111a a a a e a a ---= 即 e a a =-1(2) 一个右恒等元e 一定也是一个左恒等元,意即 由 a ae = 得 a ea = 即 a ea =这样就得到群的第二定义. (3) 证b ax =可解取b a x 1-=这就得到群的第一定义.反过来有群的定义得到''5,4是不困难的.2 单位元,逆元,消去律1. 若群G 的每一个元都适合方程e x=2,那么G 就是交换群.证 由条件知G 中的任一元等于它的逆元,因此对G b a ∈,有ba a b ab ab ===---111)(.2. 在一个有限群里阶大于2的元的个数是偶数.证 (1) 先证a 的阶是n 则1-a 的阶也是n .e e a a e a n n n ===⇒=---111)()(若有n m 〈 使e a m=-)(1 即 e a m =-1)(因而 1-=e a m e a m =∴ 这与a 的阶是n 矛盾.a 的阶等于1-a 的阶 (2) a 的阶大于2, 则1-≠a a 若 e a a a =⇒=-21 这与a 的阶大于2矛盾(3)b a ≠ 则 11--≠b a总起来可知阶大于2的元a 与1-a 双双出现,因此有限群里阶大于2的元的个数一定是偶数3. 假定G 是个数一个阶是偶数的有限群,在G 里阶等于2的元的个数一定是奇数.证 根据上题知,有限群G 里的元大于2的个数是偶数;因此阶2≤的元的个数仍是偶数,但阶是1的元只有单位元,所以阶 2≤的元的个数一定是奇数.4. 一个有限群的每一个元的阶都是有限的.证G a ∈故 G a a a a nm∈ ,,,,,,2由于G 是有限群,所以这些元中至少有两个元相等: nma a = )(n m 〈 故 e amn =-m n -是整数,因而a 的阶不超过它.4 群的同态假定在两个群G 和-G 的一个同态映射之下,-→a a ,a 和-a 的阶是不是一定相同? 证 不一定相同例如 }231,231,1{i i G +-+-=对普通乘法-G G ,都作成群,且1)(=x φ(这里x 是G 的任意元,1是-G 的元)由 φ可知 G ∽-G但231,231i i --+-的阶都是3. 而1的阶是1.5 变换群1. 假定τ是集合的一个非一一变换,τ会不会有一个左逆元1-τ,使得εττ=-1?证 我们的回答是回有的},3,2,1{ =A1τ: 1→1 2τ 1→12→1 2→3 3→2 3→4 4→3 4→5 … …τ显然是一个非一一变换但 εττ=-12. 假定A 是所有实数作成的集合.证明.所有A 的可以写成b a b ax x ,,+→是有理数,0≠a 形式的变换作成一个变换群.这个群是不是一个交换群? 证 (1) :τb ax x +→d cb ca +,是有理数0≠ca 是关闭的.(2) 显然时候结合律 (3) 1=a 0=b 则 :ε x x →而εττ=-1所以构成变换群.又 1τ: 1+→x x故1221ττττ≠因而不是交换群.3. 假定S 是一个集合A 的所有变换作成的集合,我们暂时仍用旧符号τ:)('a a a τ=→ 来说明一个变换τ.证明,我们可以用21ττ: )()]([2121a a a ττττ=→来规定一个S 的乘法,这个乘法也适合结合律,并且对于这个乘法来说ε还是S 的单位元.证 :1τ )(1a a τ→那么:21ττ )()]([2121a a a ττττ=→ 显然也是A 的一个变换. 现在证这个乘法适合结合律: 故 )()(321321ττττττ= 再证ε还是S 的单位元4. 证明一个变换群的单位元一定是恒等变换。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

近世代数课后习题参考答案第四章 整环里的因子分解1 素元、唯一分解1. 证明:0不是任何元的真因子。

证 当0≠a 时若b a 0=则0=a 故矛盾当0=a 时,有00ε= (ε 是单位)就是说0是它自己的相伴元2. 我们看以下的整环I ,I 刚好包含所有可以写成 m m n (2是任意整数,0≥n 的整数) 形式的有理数,I 的哪些个元是单位,哪些个元是素元?证 1)I 的单位总可以把m 表为p p m k (2=是0或奇数,k 非负整数)我们说1±=p 时,即k m 2±=是单位,反之亦然2)I 的素元依然是k p p m k ,(2=的限制同上)我们要求ⅰ)0≠pⅱ)1±≠pⅲ)p k 2只有平凡因子满足ⅰ)—— ⅲ)的p 是奇素数故p m k 2=而p 是奇素数是nm 2是素元,反之亦然, 3.I 是刚好包含所有复数b a bi a ,(+整数)的整环,证明5不是I 的素元,5有没有唯一分解?证 (1)I 的元ε是单位,当而且只当12=ε时, 事实上,若bi a +=ε是单位则11-=εε 2'221εε= 即2'21εε=但222b a +=ε是一正整数,同样2'ε也是正整数, 因此,只有12=ε反之,若1222=+=b a ε,则0,1=±=b a或1,0±==b a 这些显然均是单位 此外,再没有一对整数b a ,满足122=+b a ,所以I 的单位只有i ±±,1。

(2)适合条件52=α的I 的元α一定是素元。

事实上,若52=α则0≠α又由α)1(也不是单位 若2225,λβαβλα=== 则12=β或52=βββ⇒=12是单位λαβλ⇒=⇒-12是α的相伴元λλβ⇒=⇒=1522是单位βαλβ⇒=⇒-1是α的相伴元不管哪种情形,α只有平凡因子,因而α是素元。

(3)I 的元5不是素元。

若βα=5则2225λβ= 这样,2β只可能是25,5,1 当52=β由)1(β是单位 当1522=⇒=λβ由)1(λ是单位此即λβ,中有一是5的相伴元 现在看52=β的情形5,222=+=+=b a bi a ββ可能的情形是⎩⎨⎧==21b a ⎩⎨⎧=-=21b a ⎩⎨⎧=1b a ⎩⎨⎧-=-=21b a⎩⎨⎧=1b a ⎩⎨⎧-=1b a ⎩⎨⎧=-=12b a ⎩⎨⎧-=1b a显然)2)(2(5i i -+= 由(2)知52=β的β是素元,故知5是素元之积(4)5的单一分解)21)(21(5i i -+=)21)(1)(21)(1(i i --+-=)21)()(21)(()21)()(21)((i i i i i i i i --+=-+-=i ±±,1均为单位2 唯一分解环1.证明本节的推论证 本节的推论是;一个唯一分解环I 的 n 个元n a a a ,,21 在I 里一定有最大公因子 ,n a a a ,,21 的两个最大公因子只能查一个单位因子。

用数学归纳法证当2=n 时,由本节定理3知结论正确。

假定对1-n 个元素来说结论正确。

看n 的情形设 121,,-n a a a 有最大公因子为1-n d 。

1-n d ,n a 的最大公因子为d 即1-n d d 而a d n 1- i a d n i ⇒-=)1,,2,1( )1,,2,1(-=n i 又n a d故d 是n n a a a a ,,1,2,1- 的公因子 假定i a d - n n i ,1,,2,1-=1--⇒n d d 又n a d - d d -⇒这就是说,d 是n n a a a a ,,1,2,1- 的最大公因子若'd 是n n a a a ,11- 的最大公因子 那么d d ' 且'd d 'ud d =⇒ vd d =' uvd d =⇒若 0=d 则o d ='0≠d 则1=uv 即u 是单位ε故d d ε=2. 假定在一个唯一分解环里n n db a db a db a ===,,,2211证明 当而且只当d 是n a a a ,,,21 的一个最大公因子的时候,n b b b ,,,21 互素证 ""⇒假定d 是n a a ,,1 的一个最大公因子若 n b b b ,,21不互素则有 n n c d b c d b '1'1,,== 而'd 不是单位 那么),,1(,'n i c dd a i i ==这就是说'dd 是n a a ,1的公因子 所以d dd '即 '''d dd d = 故1'''=d d 'd 是单位 矛盾''''⇐假定n b b ,,1 互素令'd 是n a a ,1的最大公因子则有'd d 即d d 'i i c d a '=i c dd 1= ),,2,1(n i = i i c d b 1= 1d ⇒是n b b ,,1 的公因子于是1d 是单位d d ε='那么d 是n a a ,,1 的最大公因子3. 假定I 是一个整环,)(a 和)(b 是I 的两个主理想证明 )()(b a =当而且只当b 是I 的相伴元的时候证 ''''⇒假定)()(b a = a c b cb a ',== a cc a '= 1'=cc',c c 是单位所以b 是a 的相伴元''''⇐假定a b ε= (ε 单位)),(a b ∈ )()(a b ⊂)()(,1a ab a ⊂=-ε故 ()()b a =3 主理想1.假定I 是一个主理想环,并且d b a =),(证明 d 是a 和b 的一个最大公因子,因此a 和b 的何最大公因子'd都可写成以下形式:tb sa d +=' ),(I t s ∈证 由于)(),(d b a =有d a a d a 1),(=∈ d b b d b 1),(=∈ d 是a b ,的公因子 仍由)(),(d b a =知),(b a d ∈故有 b t a s d ''+=设1d 是b a , 的 任一公因子由)(A 知d d 1即d 是b a ,的最大公因子又d d ε='(ε单位 )),(,)()()(''''I t s tb sa b t a s b t a s ∈+=+=+=εεε2. 一个主理想环的每一个最大理想都是由一个元素所生成的。

证 设)(p 是主理想环I 的最大理想,并设0)(≠p 若p 是单位,则1)(=p若p 不是素元则bc p =, c b ,是p 的真因子 )()(b p ⊂)(p 最大理想 I b =∴)(b b ⇒∈)(1是单位,矛盾。

3.我们看两个主理想环I 和0I 是I 的子环,假定a 和b 是0I 的两个元,d 是这两个元在I 里的一个最大公因子。

证明:d 也是这两个元在I 里的一个最大公因子。

证 0I 是主理想环的子环,所以在0I 里)(),('d b a =由本节习题1知d 是b a ,的最大公因子,而且最大公因子d 有以下形式:),(0I t s tb sa d ∈+= d I I ,0⊂也是b a ,在I 里的公因子。

设 1d 是b a ,在I 里任意公因子则1111,d b b d a a ==那么)(11111tb sa d tb sa d +=+=d d 1故d 是b a ,在I 里的最大公因子。

4 欧氏环1. 证明:一个域一定是一个欧氏环.证 设F 是域,则F 一定是整环 0,≠∈x F xn n x ,:→φ是某一个固定0≥的整数,这符合条件(ⅰ)ⅱ)0,≠∈a F a 对F 的任何元b 都有0)(1+=-b a a b这里0=r2. 我们看有理数域F 上的一元多项式环][x F 理想等于怎样的一个主理想?证 我们说][)1,1(352x F x x x =+++1,1352+++x x x 互素1)1(1)1(3523=++++-∴x x x x即)1,1(1352+++∈x x x因而)()1()1,1(352x F x x x ==+++3. 证明由所有复数b a bi a ,(+是整数) 所作成的环是一个欧氏环取(a a =)(φ)证 bi a +=α b a , 整数令222)(b a +==ααφ 设0≠α 则0222≠+=b a α任取 di c +=β d c , 整数其中22'22',b a bc ad b b a bd ac a +-=++= 故 '',b a 是有理数 取,yi x +=λy x , 是有理数,且满足条件 21,21''≤-≤-y b x a 令 λαβλλη-=-=' 则ηαλαβ+= 因为,,,αλβ的实部与虚部系数均为整数,所以ηα的实部与虚部系数亦均为整数1)21()21()()(222'2'2'2〈+≤-+-=-=y b x a λλη 2222ααηηα〈= 设r =ηαr +=λαβ 22α〈r即)()(αφφ〈r 注意:取 yi x +=λ 使21'≤-x a 21'≤-y b 的整数 y x ,是可以做到的 例如x b a bd ac x a -++=-22' 只要取 ⎥⎦⎤⎢⎣⎡++=22b a bd ac x 或122+⎥⎦⎤⎢⎣⎡++b a bd ac 即可使21'≤-x a 5 多项式环的因子分解1. 假定!是一个唯一分解环,Q 是I 的商域,证明,][x l 的一个多项式若是在][x Q 里可约,它在][x l 里已经可约.证 若)(x f 在][x l 里不可约,令)()(0x df x f =)(0x f 是本原多项式显然, )(0x f 在][x l 里也不可约,由引理3)(0x f 在][x Q 里不可约,这与)(x f 在][x Q 里可约的假设矛盾.2. 假定][x l 是整环I 上的一元多项式环.!属于)(x f 但不属于I ,并且)(x f 的最高系 数是I 的一个单位,证明)(x f 在][x I 里有分解.证 )(x f 的最高系数是I 的单位,所以)(x f 的系数的最大公因子是单位,也就是说)(x f 是本原多项式.)()(x I x f ∈ 而)(x f I ∈即)(x f 次数0〉根据本节引理4证明的前一部分)(x f 在)(x I 里有分解。

相关文档
最新文档