数学建模淋雨量与跑步速度
雨中奔跑问题数学建模
题目:一个雨天,你有件急事需要从家中到学校去,学校离家不远,仅一公里,况且事情紧急,你来不及花时间去翻找雨具,决定碰一下运气,顶着雨去学校。
假设刚刚出发雨就大了,但你不打算再回去了,一路上,你将被大雨淋湿。
一个似乎很简单的事情是你应该在雨中尽可能地快走,以减少雨淋的时间。
但如果考虑到降雨方向的变化,在全部距离上尽力地快跑不一定是最好的策略。
试建立数学模型来探讨如何在雨中行走才能减少淋雨的程度。
1 建模准备建模目标:在给定的降雨条件下,设计一个雨中行走的策略,使得你被雨水淋湿的程度最小。
主要因素:淋雨量, 降雨的大小,降雨的方向(风),路程的远近,行走的速度 2 模型假设及符号说明1)把人体视为长方体,身高h 米,宽度w 米,厚度d 米。
淋雨总量用C 升来记。
2)降雨大小用降雨强度I 厘米/时来描述,降雨强度指单位时间平面上的降下水的厚度。
在这里可视其为一常量。
3)风速保持不变。
4)你一定常的速度v 米/秒跑完全程D 米。
3 模型建立与计算1)不考虑雨的方向,此时,你的前后左右和上方都将淋雨。
淋雨的面积 )( 222米wd dh wh S ++=雨中行走的时间 )(秒vD t = 降雨强度 )/()3600/01.0()/(01.0)/(s m I I I ==时米时厘米(升)米S I v D S I t C ⨯⨯=⨯⨯⨯=3600/)/(10)(01.0)3600/(3 模型中为变量。
为参数,而v S I D ,,结论,淋雨量与速度成反比。
这也验证了尽可能快跑能减少淋雨量。
米即米米米小时厘米米若取参数22.2,20.0,50.0,50.1,/2,1000======S d w h I D 秒。
分秒,即你在雨中行走了每秒,则计算得米度你在雨中行走的最大速472167/6=v从而可以计算被淋的雨水的总量为2.041(升)。
经仔细分析,可知你在雨中只跑了2分47 秒,但被淋了2 升的雨水,大约有4 酒瓶的水量。
淋雨问题数学建模
s1 bc, s2 ab
淋雨时间:
雨速垂直分量:
分别计算其淋雨量如下:
d t v
u cos
雨速水平分量:
u sin
顶部淋雨量: 迎面淋雨量:
Q1 s1tw cos bc
d w cos v
v d u sin v Q2 s2tw ab w u v u
所以总的淋雨量为:
符号说明
三、模型的建立
人在雨中行走时可能出现以下三种情形: 情形一:雨垂直下落,人以速度v前行,此时降雨淋 遍全身
淋雨的面积
雨中行走的时间 降雨强度
S 2wh 2dh wd (米2 )
D t (秒) v
I (厘米/时) 0.01I (米/时) (0.01/ 3600 ) I (m / s )
s3 bc, s4 ab
d 淋雨时间: t v
雨速垂直分量:
,分别计算其淋雨量如下:
u cos
方向与v相同,故相对雨速
雨速水平分量:u sin 故相对雨速v= u sin v
cos 顶部淋雨量: Q3 s3tw cos bcdw v
v abdw | u sin v | 背面的淋雨量: Q4 s4tw u uv
a b
(3)
由(1)式知总淋雨量
Q stw (2ab 2ac bc)
d w v
易知 v越大,Q值越小,故此时跑得越快,所淋到的 v vm时, Q 最小; 雨量越少。即:当 对(2)式关于v求导可得 :
Q bdw cu cos au sin 0 2 v u v
时,Q最小
2 v u sin
四、结果分析
雨中奔跑问题数学建模
题目:一个雨天,你有件急事需要从家中到学校去,学校离家不远,仅一公里,况且事情紧急,你来不及花时间去翻找雨具,决定碰一下运气,顶着雨去学校。
假设刚刚出发雨就大了,但你不打算再回去了,一路上,你将被大雨淋湿。
一个似乎很简单的事情是你应该在雨中尽可能地快走,以减少雨淋的时间。
但如果考虑到降雨方向的变化,在全部距离上尽力地快跑不一定是最好的策略。
试建立数学模型来探讨如何在雨中行走才能减少淋雨的程度。
1 建模准备建模目标:在给定的降雨条件下,设计一个雨中行走的策略,使得你被雨水淋湿的程度最小。
主要因素:淋雨量, 降雨的大小,降雨的方向(风),路程的远近,行走的速度 2 模型假设及符号说明1)把人体视为长方体,身高h 米,宽度w 米,厚度d 米。
淋雨总量用C 升来记。
2)降雨大小用降雨强度I 厘米/时来描述,降雨强度指单位时间平面上的降下水的厚度。
在这里可视其为一常量。
3)风速保持不变。
4)你一定常的速度v 米/秒跑完全程D 米。
3 模型建立与计算1)不考虑雨的方向,此时,你的前后左右和上方都将淋雨。
淋雨的面积 )( 222米wd dh wh S ++=雨中行走的时间 )(秒vD t = 降雨强度 )/()3600/01.0()/(01.0)/(s m I I I ==时米时厘米(升)米S I v D S I t C ⨯⨯=⨯⨯⨯=3600/)/(10)(01.0)3600/(3 模型中为变量。
为参数,而v S I D ,,结论,淋雨量与速度成反比。
这也验证了尽可能快跑能减少淋雨量。
米即米米米小时厘米米若取参数22.2,20.0,50.0,50.1,/2,1000======S d w h I D 秒。
分秒,即你在雨中行走了每秒,则计算得米度你在雨中行走的最大速472167/6=v从而可以计算被淋的雨水的总量为2.041(升)。
经仔细分析,可知你在雨中只跑了2分47 秒,但被淋了2 升的雨水,大约有4 酒瓶的水量。
雨中奔跑模型
摘要本文在给定的降雨条件下,分别建立相应的数学模型,分析人体在雨 中奔跑时淋雨多少与奔跑速度、降雨方向等因素的关系.得出结论:若雨迎面落下,则以最大的速度跑完全程淋雨量最少;若雨从背后落下,则以降雨速度的水平分量时奔跑时淋雨量最少.关键词:降雨方向 速度 淋雨量一 问题的提出要在雨中从一处沿直线跑到另一处,若雨速为常数且方向不变,建立数学模型讨论人是否跑得越快,淋雨量越少.讨论:(1)若不考虑雨的方向,设降雨淋遍全身,以最大速度跑步,估计跑完全程的总淋雨量;(2)雨从迎面吹来,雨线与跑步方向在同一平面内时速度多大,总淋雨量最小; (3)雨从背面吹来,雨线方向与跑步方向在同一平面内时速度v 多大,总淋雨量最少;(4)若雨线方向与跑步方向不在同一平面内,模型会有什么变化.二 模型假设及符号说明2.1 把人体视为长方体,身高m a 5.1=(颈部以下),宽度 m b 5.0=,厚度 m c 2.0=.淋雨总量用CL 来记;2.2 降雨大小用降雨强度 h wcm /来描述,降雨强度指单位时间平面上的降下水的厚度;风速保持不变:2.3 距离为 m d 1000=,跑步的最大速度为s m v m /5=. 雨速s m u /4=.记跑步速度为v .2.4 文中所涉及到的降雨量是指从天空降落到地面上的雨水,未经蒸发、渗透、流失而在水面上积聚的水层深度,它可以直观地表示降雨的多少.淋雨量是指人在雨中行走时全身所接收到得雨的体积,可表示为单位时间单位面积上淋雨的多少与接收雨的面积和淋雨时间的乘积.三 模型建立3.1模型一的建立:若不考虑雨的方向,设降雨淋遍全身,即此时人的前后左右和上方都将淋雨,以最大速度跑步淋雨的面积bc ac ab S ++=22 (1)雨中奔跑的时间mv d t = (2) 总淋雨量t S w C ⨯⨯⨯=-2103600(3) (3)式是理想速度奔跑模型.3.2模型二的建立:若考虑降雨方向,雨从迎面吹来,雨线与跑步方向在同一平面内,且与人体的夹角为θ,淋湿的部位只有前面和顶部,分两部分计算淋雨量.若记雨滴的密度为p (1)p ≤,表示在一定的时间在单位体积的空间内,有雨滴所占的空间的比例系数.即up w =图1顶部的淋雨量:θcos 1vbcdw C = (4) 前表面的淋雨量:)]sin ([2v u p vdab C +=θ (5) 总淋雨量: ])sin (cos [21u v u ab bc v dw C C C ++=+=θθ (6) (6)式即为模型二3.3模型三的建立若雨从背面吹来,雨线方向与跑步方向在同一平面内,且与人体的夹角为α. 如图2建立总淋雨量与速度v 及参数θ,,,,,,w u d c b a 之间的关系图2雨速水平分量αsin u ,方向与v 相同,合速度为: v u -αsin ,则总淋雨量:()()()()⎪⎪⎩⎪⎪⎨⎧>+-=-+≤-+=-+=αααωααωαααωααωsin ,sin cos sin cos sin ,sin cos sin cos u v vav a c u u bd v u v a cu u bd u v v av a c u u bd v v u a cu u bd C (7) 即为模型三.四 模型求解4.1模型一的求解:将数据代入模型中,解得:22.2m S =L t 200=L C 444.2=4.2模型二的求解:将数据代入模型中,解得:0=θ时,L C 153.1=030=θ时,L C 555.1=4.3模型三的求解:由(7)可知:若0sin cos <-ααa c 即ac >αtan ,则αsin u v =时C 最小 将数据代入模型中,解得:L C s m v 242.0,2,5.12.0tan ,300≈=>=αα五 模型分析与总结5.1模型一的分析: 由理想奔跑速度模型知,淋雨量与速度成反比. 即跑得越快淋雨量越少. 但分析结果可知:人在雨中跑了s t 200=即3分20秒,身上却淋了2.444升的雨水,相当于5瓶可乐的水量,这是不可思议的!因此这个模型描述雨中奔跑的淋雨量不符合实际,因为没考虑雨速的大小和方向.使问题过于简化.5.2模型二的分析:雨速大小和方向不变,雨速与人的夹角090=θ,则以最大速度奔跑时淋雨量最少.5.3模型三的分析:若,0sin cos <-ααa c 即a c >αtan ,则a c >αtan 时C 最小.总结:根据以上模型得知我们在雨中奔跑时并非跑得越快,淋雨量最少,淋雨量的多少还取决于雨速大小和方向.六 模型的改进方向在以上的假设中,雨线方向与跑步方向是在同一平面内,若雨线方向与跑步方向不在同一平面内,则可将雨速方向分解为与人跑速度同向的速度和与人跑速度方向垂直的速度. 同向速度即平面共面,可看成模型II 的情况,垂直速度可看成模型一情况.在以上的假设中,人以沿直线奔跑,若人以沿折线奔跑,则可将折线分段考虑,同样可分解成模型一或模型二.在以上的假设中,人看成长方体,若人看成是圆柱体,情况又发生改变,而实际问题中的限制性因素远远超过这些,因此此文的分析方法仍存在一定的局限性,有待改进和提高.参考文献[1] 姜启源,谢金星,叶俊. 数学模型(第四版)[M].北京:高等教育出版社,2011:58-67.。
淋雨量建模
淋雨量与跑步速度关系探究摘要本文就“淋雨量与跑步速度关系”的问题建立了数学模型,从实际情况出发对不同条件下速度和淋雨量关系做出分析探究。
针对问题一:因为已经假设雨淋遍全身,且不考虑雨的方向,当人以最大速度跑步时,可由题中的已知条件,直接列方程求解。
针对问题二:利用最优化原理,以雨从迎面吹来时的“淋雨量—速度”图像为指标,利用了几何中的面积公式及物理中速度的分解等知识,建立出一个动态规划模型,结合题目中的已知条件,列出方程求解。
针对问题三:解决方法和问题二相同,通过绘制出雨从背面吹来时的“淋雨量—速度”图像,方便快速直观地得到两者关系。
利用了第二问已知的几何中的面积公式及物理中速度的分解等知识,列出方程求解即可得到相应结论。
针对问题四:结合问题三的结论,做出相应的图像,即可清楚地得出总降雨量最小的点。
针对问题五:将简单的平面问题升华为空间问题,但处理方法和问题二基本相同,只是增加了空间角,本质没有区别。
关键词:总淋雨量aMathematic1.问题分析本文讨论的是跑步快慢与淋雨量的关系。
总的淋雨量即为人体的各个面上的淋雨量之和。
每个面上的淋雨量等于单位面积,单位时间的淋雨量与面积以及时间的乘积。
面积由已知各边长乘积得出,时间为总路程与人前行速度的比值。
再由速度分解,合成,相对速度等知识确定各面淋雨量公式,列出总的方程,根据各变量关系,得出最优解。
当雨线方向和跑步方向不在同一平面时,我们设出雨线方向角,按照上述方法将其分解,同样可以解决问题。
2.问题的重述要在雨中从一处沿直线跑到另一处,若雨速为常数且方向不变,说明是否跑得越快,淋雨量越少。
将人体简化成一个长方体,解释不考虑雨的方向,雨从迎面吹来,雨从背面吹来,雨线方向与跑步方向不在同一平面内的总淋雨量时的模型变化,已知总的淋雨量等于人体的各个面上的淋雨量之和。
每个面上的淋雨量等于单位面积,单位时间的淋雨量与面积以及时间的乘积。
面积由已知各边长乘积得出,时间为总路程与人前行速度的比值,再由速度分解,合成,相对速度等知识确定各面淋雨量公式,列出总的方程即可求解。
数学建模 淋雨模型
淋雨量模型一、问题概述要在雨中从一处沿直线跑到另一处,若雨速为常数且方向不变,试建立数学模型讨论是否跑得越快,淋雨量越少。
将人体简化成一个长方体,高a=(颈部以下),宽b=,厚c=,设跑步的距离d=1000m,跑步的最大速度v m=5m/s,雨速u=4m/s,降雨量ω=2cm/h,及跑步速度为v,按以下步骤进行讨论[17]:(1)、不考虑雨的方向,设降雨淋遍全身,以最大速度跑步,估计跑完全程的总淋雨量;(2)、雨从迎面吹来,雨线与跑步方向在同一平面内,且与人体的夹角为θ,如图1.建立总淋雨量与速度v及参数a,b,c,d,u,ω,θ之间的关系,问速度v多大,总淋雨里最少。
计算θ=0,θ=30°的总淋雨量.(3)、雨从背面吹来,雨线方向跑步方向在同一平面内,且与人体的夹角为α,如图2.建立总淋雨量与速度v及参数a,b,c,d,u,ω,α之间的关系,问速度v多大,总淋雨量最小。
计算α=30°的总淋雨量.(说明:题目中所涉及的图形为网上提供)(4)、以总淋雨量为纵轴,速度v为横轴,对(3)作图(考虑α的影响),并解释结果的实际意义.(5)、若雨线方向跑步方向不在同一平面内,试建立模型二、问题分析淋雨量是指人在雨中行走时全身所接收到得雨的体积,可表示为单位时间单位面积上淋雨的多少与接收雨的面积和淋雨时间的乘积。
可得:淋雨量(V)=降雨量(ω)×人体淋雨面积(S)×淋浴时间(t)①时间(t)=跑步距离(d)÷人跑步速度(v)②由①②得:淋雨量(V)=ω×S×d/v三、模型假设四、(1)、将人体简化成一个长方体,高a=(颈部以下),宽b=,厚c=.设跑步距离d=1000m,跑步最大速度v m=5m/s,雨速u=4m/s,降雨量ω=2cm/h,记跑步速度为v;(参考)(2)、假设降雨量到一定时间时,应为定值;(3)、此人在雨中跑步应为直线跑步;(4)、问题中涉及的降雨量应指天空降落到地面的雨,而不是人工,或者流失的水量,因为它可以直观的表示降雨量的多少;五、模型求解:(一)、模型Ⅰ建立及求解:设不考虑雨的方向,降雨淋遍全身,则淋雨面积:S=2ab+2ac+bc雨中奔跑所用时间为:t=d/v总降雨量V=ω×S×d/vω=2cm/h=2×10-2/3600 (m/s) 将相关数据代入模型中,可解得:S=(㎡)V= (cm3)= (L)(二)、模型Ⅱ建立及求解:若雨从迎面吹来,雨线与跑步方向在同一平面内,且与人体的夹角为θ.,则淋雨量只有两部分:顶部淋雨量和前部淋雨量. (如图1)设雨从迎面吹来时与人体夹角为θ. ,且 0°<θ<90°,建立a ,b ,c ,d ,u ,ω,θ之间的关系为:(1)、考虑前部淋雨量:(由图可知)雨速的水平分量为θsin u ⋅且方向与v 相反,故人相对于雨的水平速度为:()v sin u +⋅θ则前部单位时间单位面积淋雨量为:u /v sin u )(+⋅⋅θω又因为前部的淋雨面积为:b a ⋅,时间为: d/v于是前部淋雨量V 2为 :()()[]()v /d u /v sin u V 2⋅+⋅⋅⋅⋅=θωb a即:()()v u /v sin u a V 2⋅+⋅⋅⋅⋅=θωd b ①(2)、考虑顶部淋雨量:(由图可知)雨速在垂直方向只有向下的分量, 且与v 无关,所以顶部单位时间单位面积淋雨量为()θωcos ⋅,顶部面积为()c b ⋅ ,淋雨时间为()v /d ,于是顶部淋雨量为:v /cos b V 1θω⋅⋅⋅⋅=d c ②由①②可算得总淋雨量 :()()v u /v sin u a v /cos c b V V V 21⋅+⋅⋅⋅⋅⋅+⋅⋅⋅⋅=+=θωθωd b d代入数据求得:v 1800v 875.1sin 5.7cos V ⋅++=θθ 由V (v)函数可知:总淋雨量(V )与人跑步的速度(v )以及雨线与人的夹角(θ)两者有关。
《数学模型》淋雨模型
V V1 V2 b c d cos / v a b d u sin v /u v
代入数据求得:
(2)、考虑顶部淋雨量:(由图可知)雨速在垂直方 向只有向下的分量, 且与v无关,所以顶部单位时间单位 面积淋雨量为 cos ,顶部面积为 b c ,淋雨时间 为 d / v ,于是顶部淋雨量为: V1 b c d cos / v ② 由①②可算得总淋雨量 :
模型 建立 求解
情形1建立及求解: 设不考虑雨的方向,降雨淋遍全身,则淋雨面积: S=2ab+2ac+bc 雨中奔跑所用时间为:t=d/v 总降雨量 V=ω×S×d/v ω=2cm/h=2×10-2/3600 (m/s) 将相关数据代入模型中,可解得: S=2.2(㎡) V=0.00244446 (cm³ )=2.44446 (L)
cos 7.5sin 1.875 v V 1800 v
由V(v)函数可知:总淋雨量(V)与人跑步的速度 (v)以及雨线与人的夹角()两者有关。
对函数V(v)求导,得:
V
cos 7.5 sin
1800 v2
V<0, 所以V为v的减函数,V随v增大而减小。 显然: 因此,速度v=vm=5m/s ,总淋雨量最小。 (Ⅰ)当θ=0,代入数据,解得: V=0.0011527778(m³ )≈1.153(L) (Ⅱ)当θ=30°,代入数据,解得: V=0.0014025(m³)≈1.403(L)
Hale Waihona Puke V1 b c cos d / v b c d cos/v
(2)、后部淋雨量:人相对于雨的水平速度为:
u sin v ,v u sin v u sin ,v u sin
数学建模淋雨问题论文正稿
淋雨问题论文摘要本文在给定的降雨条件下,分别建立相应的数学模型,分析人在雨中奔跑时淋雨的多少与奔跑速度、降雨的方向以及雨线的方向与跑步的方向是否在同一平面等因素的关系,得出结论:若雨迎面落下,则以最大速度跑完全程淋雨量最少;如果雨从背面吹来,分两种情况: (雨从背面吹来时与人体夹角为α)当tan 2/15α<时,跑得越快越好;当tan 2/15α>时,跑步速度,则以降雨速度的水平分量奔跑时淋雨量最少。
若雨线方向与跑步方向不在同一平面,则可将雨速方向分解为与人跑速度同向的速度和与人跑速度方向垂直的速度. 同向速度即平面共面,可看成模型二、三的情况,垂直速度可看成模型一的情况。
关键词淋雨量,雨速大小与方向,跑步速度。
正文1.问题概述要在雨中从一处沿直线跑到另一处,若雨速为常数且方向不变,试建立数学模型讨论是否跑得越快,淋雨量就越少。
将人体简化成一个长方体,搞a=1.5m (颈部以下),宽b=0.5m ,厚c=0.2m 。
设跑步距离d=1000m ,跑步最大速度5/m v m s =,雨速u=4m/s ,降雨量w=2cm/h,记得跑步速度为v ,按以下步骤进行讨论:(1)不考虑雨的方向,设降雨淋遍全身,以最大的速度跑步,估计跑完全程的总淋雨量。
(2)雨从迎面吹来,雨线与跑步方向在同一平面,且与人体的夹角为x ,如图1,建立总淋雨量与速度v 以及参数a 、b 、c 、d 、u 、w 、θ之间关系,问速度v 多大,总淋雨量最少,计算0θ=,30θ=时的总淋雨量(3)雨从背面吹来,雨线方向与跑步方向在同一平面,且与人体的夹角为α,如图2,建立总淋雨量与速度v 以及参数a 、d 、c 、d 、u 、w 、α之间的关系,问速度v 多大,总淋雨量最少,计算30α=时的总淋雨量。
(4)以总淋雨量为纵轴,速度v 为横轴,对(3)进行作图(考虑α的影响),并解释结果的实际意义。
(5)若雨线方向与跑步方向不在同一平面,模型会有什么变化。
关于淋雨数学建模
淋雨数学建模摘要:本文通过对人在雨中直线行走时雨垂直降落、从前吹来、从后吹来这三种情况的分析讨论,得到了在不同情况下淋雨总量与人的行走速度的数学模型。
并发现,当雨垂直落下和迎面吹来时,跑的速度越快淋雨越少;而当雨从背面吹来时,当人跑的速度大于等于雨速的水平分量的大小且此时夹角α满足tan caα<时,跑得越快淋雨越少,除此之外的其它情况下有当αsin u v =时,淋雨量最小。
关键词:淋雨 直线行走一 问题重述人在雨中从一处沿直线跑到另一处,若雨速为常数且方向不变。
试建立数学模型讨论是否跑得越快,淋雨量越少,并用MATLAB 编程实现。
假设跑步距离d=100米,跑步最大速度为m v =5 m/s ,雨速u=4m/s ,降雨量为w=2cm/h 。
(1)不考虑雨的方向,设降雨淋遍全身,以最大速度跑步,估计跑完全程的淋雨量。
(2)雨从迎面吹来,雨线与跑步方向在同一平面内,且与人体夹角为θ,问跑步速度v 为多大?淋雨量最少。
二 问题的分析人在雨中行走时可能出现以下三种情形:情形一:雨垂直下落,人以速度v 前行,此时降雨淋遍全身(如图1所示)图 1情形二:雨迎面吹来,雨线与跑步方向在同一平面内,与人的正面夹角为θ,此时后背淋不到雨(如图2所示)图2情形三:雨从背面吹来,雨线方向与跑步方向在同一平面内,与人的背后夹角为α,此时正面淋不到雨(如图3所示)图 3我们知道当人在雨中前行的时候,人和雨相对地面都是运动的,故知人与雨是相对运动的。
为此我们选择人作为参考系,再考虑雨的相对速度及其与人体方向(即与人体夹角θ、α)对总淋雨量的影响。
三合理的假设3.1 将人体看成一个长方体;3.2 雨速为常数且方向不变;3.3 降雨量为一定值;3.4 考虑雨的方向与人体前进的方向在同一平面内;3.5 符号的假定:a: 身高(颈部以下) b: 身宽 c: 身厚v: 跑步最大速度d: 跑步距离 v: 跑步速度mw: 降雨量 u: 雨速 Q: 总淋雨量θ: 雨迎面吹来与人的夹角α: 雨背面吹来与人的夹角s:有效淋雨面积v:以人为参考系时的相对雨速四模型的建立我们先考虑如下情形,现有一块土地面积为s,雨垂直降落,雨速及方向不变,且降雨量为一常数w ,则有时间t内该土地的淋雨量为Q stw=。
数学建模淋雨问题论文设计
淋雨问题论文摘要本文在给定的降雨条件下,分别建立相应的数学模型,分析人在雨中奔跑时淋雨的多少与奔跑速度、降雨的方向以与雨线的方向与跑步的方向是否在同一平面等因素的关系,得出结论:假如雨迎面落下,如此以最大速度跑完全程淋雨量最少;如果雨从背面吹来,分两种情况: (雨从背面吹来时与人体夹角为α)当tan2/15α>时,跑步α<时,跑得越快越好;当tan2/15速度,如此以降雨速度的水平分量奔跑时淋雨量最少。
假如雨线方向与跑步方向不在同一平面,如此可将雨速方向分解为与人跑速度同向的速度和与人跑速度方向垂直的速度. 同向速度即平面共面,可看成模型二、三的情况,垂直速度可看成模型一的情况。
关键词淋雨量,雨速大小与方向,跑步速度。
正文1.问题概述要在雨中从一处沿直线跑到另一处,假如雨速为常数且方向不变,试建立数学模型讨论是否跑得越快,淋雨量就越少。
将人体简化成一个长方体,搞a=1.5m〔颈部以下〕,宽b=0.5m,厚c=0.2m 。
设跑步距离d=1000m ,跑步最大速度5/m v m s =,雨速u=4m/s ,降雨量w=2cm/h,记得跑步速度为v ,按以下步骤进展讨论:〔1〕不考虑雨的方向,设降雨淋遍全身,以最大的速度跑步,估计跑完全程的总淋雨量。
〔2〕雨从迎面吹来,雨线与跑步方向在同一平面,且与人体的夹角为x ,如图1,建立总淋雨量与速度v 以与参数a 、b 、c 、d 、u 、w 、θ之间关系,问速度v 多大,总淋雨量最少,计算0θ=,30θ=时的总淋雨量〔3〕雨从背面吹来,雨线方向与跑步方向在同一平面,且与人体的夹角为α,如图2,建立总淋雨量与速度v 以与参数a 、d 、c 、d 、u 、w 、α之间的关系,问速度v 多大,总淋雨量最少,计算30α=时的总淋雨量。
(4)以总淋雨量为纵轴,速度v 为横轴,对〔3〕进展作图〔考虑α的影响〕,并解释结果的实际意义。
〔5〕假如雨线方向与跑步方向不在同一平面,模型会有什么变化。
数学模型人在雨中奔跑速度与淋雨量的关系
人在雨中奔跑的速度与淋雨量的关系摘要:本文通过对人在雨中奔跑速度与淋雨量的分析,运用统计分析和分类讨论的方法,得出人在雨中奔跑时最佳的奔跑速度与淋雨量的关系。
因此从以下方面分析:一,设降雨淋遍全身不考虑雨的方向,经简化假设得人淋雨面积为前后左右及头顶面积之和。
二,雨迎面吹来,雨线方向与跑步方向在同一平面,人淋雨面积为前方和头顶面积之和。
因各个方向上降雨速度分量不同,故分别计算头顶和前方的淋雨量后相加即为总的淋雨量。
据此可列出总淋雨量W 与跑步速度v 之间的函数关系。
分析表明当跑步速度为maxv 时,淋雨量最少。
并计算出当雨与人体的夹角θ=0、θ=30°时淋雨量三,雨从背面吹来,雨线与跑步方向在同一平面内,人淋雨量与人和雨相对速度有关。
列出函数关系式分析并求解,可知当人速度v=2m s 时淋雨量最少四,列出淋雨量W 和跑步速度v 之间的函数关系式,利用MATLAB 画出α分别为0°,10°,….90°的曲线图。
五,雨线与人跑步方向不在同一平面内,则考虑人的淋雨面积为前后左右以及头顶。
分别列式表示,总的淋雨量即为三者之和。
1、问题的重述要在雨中的一处沿直线跑到另一处,若雨速为常数且保持方向不变,试建立数学模型讨论是否跑得越快淋雨量越少。
将人简化为一个长方体,高 1.5/a m s =(颈部以下),宽0.5b m =,厚0.2c m =,设跑步距离1000d m =,跑步最大速度5/m v m s =,雨速4/u m s =,降雨量2/w cm h =,记跑步速度为v 。
问题一,不考虑雨的方向,设降雨淋遍全身,以最大速度跑步,估计跑完全程的总淋雨量。
问题二,雨从迎面吹来,雨线与跑步方向在同一平面内,且与人体的夹角为θ,如图1,建立总淋雨量与速度v 及参数,,,,,,a b c d u w θ之间的关系,问速度多大,总淋雨量最少,计算0,30oθθ==时的总淋雨量。
数学建模淋雨模型
淋雨量模型摘要步入雨季,降雨天气逐渐开始在人们的日常生活中频繁出现起来,与此同时,突如其来的雨水也常常带给无准备的人们淋成落汤鸡的窘境。
面对骤雨,大多数人在通常情况下会选择快速奔跑以希求淋雨最少。
然而这样真的能淋雨最少吗?以此日常情景为背景提出了四个问题,本文运用几何知识、物理知识等方法成功解决了这四个问题,得到了在不同的降雨条件下人体在雨中奔跑时淋雨多少与奔跑速度、降雨方向等因素的关系。
并针对不同降雨条件给出了淋雨量最少的方法。
针对问题一,条件给出:不考虑雨的方向,降雨淋遍全身;确定淋雨量为人体表面积与单位面积降雨量及淋雨时间之积针对问题二,根据已知条件(雨从迎面吹来,雨线与跑步方向在同一平面内,且与人体的夹角为θ),对雨线的速度分别沿水平、竖直方向正交分解,并综合考虑人的速度与雨线速度的制约关系,建立模型,得出函数模型。
并对函数求导分析最小淋雨量对应速度。
针对问题三,在雨从背面吹来,雨线方向跑步方向在同一平面内,且与人体的夹角为α的条件下,对雨线的速度分别沿水平、竖直方向正交分解,并综合考虑人的速度与雨线速度的制约关系,建立模型,得出函数模型。
并对函数分析最小淋雨量对应速度。
以总淋雨量为纵轴,速度v为横轴,对函数用Excel作图(考虑α的影响),并解释结果的实际意义。
针对问题四,综合考虑前三种情况的共同作用,并基于前三种模型进行修正。
最后,对所建立的模型和求解方法的方法的优缺点给出了客观的评价,并指出误差所在。
关键字:淋雨量雨速大小雨速方向跑步速度路程远近一、问题重述要在雨中从一处沿直线跑到另一处,若雨速为常数且方向不变,试建立数学模型讨论是否跑得越快,淋雨量越少。
将人体简化成一个长方体,高a=1.5m(颈部以下),宽b=0.5m,厚c=0.2m,设跑步的距离d=1000m,跑步的最大速度v m=5m/s,雨速u=4m/s,降雨量ω=2cm/h,及跑步速度为v,按以下步骤进行讨论]:(1)、不考虑雨的方向,设降雨淋遍全身,以最大速度跑步,估计跑完全程的总淋雨量;(2)、雨从迎面吹来,雨线与跑步方向在同一平面内,且与人体的夹角为θ,如图1.建立总淋雨量与速度v及参数a,b,c,d,u,ω,θ之间的关系,问速度v多大,总淋雨里最少。
数学建模淋雨模型
淋雨量模型一、问题概述要在雨中从一处沿直线跑到另一处,若雨速为常数且方向不变,试建立数学模型讨论是否跑得越快,淋雨量越少。
将人体简化成一个长方体,高a=1.5m(颈部以下),宽b=0.5m,厚c=0.2m,设跑步的距离d=1000m,跑步的最大速度v=5m/s,雨速u=4m/s,降雨量ωm:=2cm/h,及跑步速度为v,按以下步骤进行讨论[17](1)、不考虑雨的方向,设降雨淋遍全身,以最大速度跑步,估计跑完全程的总淋雨量;(2)、雨从迎面吹来,雨线与跑步方向在同一平面内,且与人体的夹角为θ,如图1.建立总淋雨量与速度v及参数a,b,c,d,u,ω,θ之间的关系,问速度v多大,总淋雨里最少。
计算θ=0,θ=30°的总淋雨量.(3)、雨从背面吹来,雨线方向跑步方向在同一平面内,且与人体的夹角为α,如图2.建立总淋雨量与速度v及参数a,b,c,d,u,ω,α之间的关系,问速度v多大,总淋雨量最小。
计算α=30°的总淋雨量.(说明:题目中所涉及的图形为网上提供)(4)、以总淋雨量为纵轴,速度v为横轴,对(3)作图(考虑α的影响),并解释结果的实际意义.(5)、若雨线方向跑步方向不在同一平面内,试建立模型二、问题分析淋雨量是指人在雨中行走时全身所接收到得雨的体积,可表示为单位时间单位面积上淋雨的多少与接收雨的面积和淋雨时间的乘积。
可得:淋雨量(V)=降雨量(ω)×人体淋雨面积(S)×淋浴时间(t)①时间(t)=跑步距离(d)÷人跑步速度(v)②由①②得:淋雨量(V)=ω×S×d/v三、模型假设(1)、将人体简化成一个长方体,高a=1.5m(颈部以下),宽b=0.5m,厚c=0.2m.=5m/s,雨速u=4m/s,降雨量ω=2cm/h,设跑步距离d=1000m,跑步最大速度vm记跑步速度为v;(参考)(2)、假设降雨量到一定时间时,应为定值;(3)、此人在雨中跑步应为直线跑步;(4)、问题中涉及的降雨量应指天空降落到地面的雨,而不是人工,或者流失的水量,因为它可以直观的表示降雨量的多少;四、模型求解:(一)、模型Ⅰ建立及求解:设不考虑雨的方向,降雨淋遍全身,则淋雨面积:S=2ab+2ac+bc雨中奔跑所用时间为:t=d/v总降雨量V=ω×S×d/vω=2cm/h=2×10-2/3600 (m/s) 将相关数据代入模型中,可解得:S=2.2(㎡)V=0.00244446 (cm³)=2.44446 (L)(二)、模型Ⅱ建立及求解:若雨从迎面吹来,雨线与跑步方向在同一平面内,且与人体的夹角为θ.,则淋雨量只有两部分:顶部淋雨量和前部淋雨量. (如图1)设雨从迎面吹来时与人体夹角为θ.,且0°<θ<90°,建立a,b,c,d,u,ω,θ之间的关系为:(1)、考虑前部淋雨量:(由图可知)雨速的水平分量为θu⋅且方向与v相反,sin故人相对于雨的水平速度为:()v⋅θsinu+则前部单位时间单位面积淋雨量为:u /v sin u )(+⋅⋅θω又因为前部的淋雨面积为:b a ⋅,时间为: d/v于是前部淋雨量V 2为 :()()[]()v /d u /v sin u V 2⋅+⋅⋅⋅⋅=θωb a即:()()v u /v s i n u a V 2⋅+⋅⋅⋅⋅=θωd b ①(2)、考虑顶部淋雨量:(由图可知)雨速在垂直方向只有向下的分量, 且与v 无关,所以顶部单位时间单位面积淋雨量为()θωcos ⋅,顶部面积为()c b ⋅ ,淋雨时间为()v /d ,于是顶部淋雨量为:v /c o s b V 1θω⋅⋅⋅⋅=d c ②由①②可算得总淋雨量 :()()v u /v sin u a v /cos c b V V V 21⋅+⋅⋅⋅⋅⋅+⋅⋅⋅⋅=+=θωθωd b d代入数据求得:v1800v875.1sin 5.7cos V ⋅++=θθ由V (v)函数可知:总淋雨量(V )与人跑步的速度(v )以及雨线与人的夹角(θ)两者有关。
跑得快淋雨多还是跑得慢淋雨多?
问题:夏天到了,暴热时候天气无常,刚刚还艳阳高照,瞬间便暴雨滂沱,出门逛街的你又忘记带伞,从一栋百货到另外一栋商城楼只能跑过去,问是跑得快淋雨多还是跑得慢淋雨多?因为我不是学物理学专业出身的,解题时仅仅凭借着高中物理知识和一些思想方法来求解这个问题。
求解过程中为了便于数学模型的建立,我做了两个简化:1、因此对于这种三维多个物体运动的题目,我试图用“降维”的方式将问题简化。
通过降维,把人和空间取y轴和z轴建立的平面,即人、雨、地面在x方向上长度为0.2、雨水是一滴滴的,是不连续的。
为了简化问题,这里将“滂沱大雨”的雨水看成是连续的水流,方向竖直向下,流量恒定。
根据伽利略速度相加原理:v_(甲对丙)=v_(甲对乙)+v_(乙对丙)(即绝对速度=相对速度+牵连速度)可整理出:v_(雨对人)=v_(雨对地)-v_(人对地)速度矢量合成如下:现在可以将人看作静止,把人形抽象成长方形:剩下的问题简化成为了雨水连续作用在长方形平行于雨水方向的投影s上。
这就是某个极小时间段内,人受到的雨量Δm:总的淋湿的雨量是Δm在时间上的累积,即m=Δm*t已知t=路程L除以人奔跑的速度v(人对地),即m=Δm*t=Δm*L/v(人对地)因为雨水在竖直方向上流量恒定,且Δm不受v(雨对人)影响(因为水平方向上没有雨水),因此Δm只正比于投影面积S。
而此时的投影面积已经简化为平面ZoY上的线段l长度(上图中的粗线)。
现在得到了速度三角形和空间长度三角形相似:即b:a = v(人对地):v(雨对地) = tg α故 l = b / sin α =b / sin(arctg(v(人对地):v(雨对地)))b为人身高,不变。
因此Δm∝ l ∝ 1 / sin(arctg(v(人对地):v(雨对地)))又因为t ∝1/v(人对地) 且m=Δm*t所以 m ∝ 1 / (sin(arctg(v(人对地):v(雨对地)))*v(人对地))即sin(arctg(v(人对地):v(雨对地)))*v(人对地)越大,m值越小,淋到的雨越少。
数学建模淋雨模型
数学建模淋雨模型 YUKI was compiled on the morning of December 16, 2020淋雨量模型摘要步入雨季,降雨天气逐渐开始在人们的日常生活中频繁出现起来,与此同时,突如其来的雨水也常常带给无准备的人们淋成落汤鸡的窘境。
面对骤雨,大多数人在通常情况下会选择快速奔跑以希求淋雨最少。
然而这样真的能淋雨最少吗?以此日常情景为背景提出了四个问题,本文运用几何知识、物理知识等方法成功解决了这四个问题,得到了在不同的降雨条件下人体在雨中奔跑时淋雨多少与奔跑速度、降雨方向等因素的关系。
并针对不同降雨条件给出了淋雨量最少的方法。
针对问题一,条件给出:不考虑雨的方向,降雨淋遍全身;确定淋雨量为人体表面积与单位面积降雨量及淋雨时间之积针对问题二,根据已知条件(雨从迎面吹来,雨线与跑步方向在同一平面内,且与人体的夹角为θ),对雨线的速度分别沿水平、竖直方向正交分解,并综合考虑人的速度与雨线速度的制约关系,建立模型,得出函数模型。
并对函数求导分析最小淋雨量对应速度。
针对问题三,在雨从背面吹来,雨线方向跑步方向在同一平面内,且与人体的夹角为α的条件下,对雨线的速度分别沿水平、竖直方向正交分解,并综合考虑人的速度与雨线速度的制约关系,建立模型,得出函数模型。
并对函数分析最小淋雨量对应速度。
以总淋雨量为纵轴,速度v为横轴,对函数用Excel作图(考虑α的影响),并解释结果的实际意义。
针对问题四,综合考虑前三种情况的共同作用,并基于前三种模型进行修正。
最后,对所建立的模型和求解方法的方法的优缺点给出了客观的评价,并指出误差所在。
关键字:淋雨量雨速大小雨速方向跑步速度路程远近一、问题重述要在雨中从一处沿直线跑到另一处,若雨速为常数且方向不变,试建立数学模型讨论是否跑得越快,淋雨量越少。
将人体简化成一个长方体,高a=(颈部以下),宽b=,厚c=,设跑步的距离d=1000m,跑步的最大速度v m=5m/s,雨速u=4m/s,降雨量ω=2cm/h,及跑步速度为v,按以下步骤进行讨论]:(1)、不考虑雨的方向,设降雨淋遍全身,以最大速度跑步,估计跑完全程的总淋雨量;(2)、雨从迎面吹来,雨线与跑步方向在同一平面内,且与人体的夹角为θ,如图1.建立总淋雨量与速度v及参数a,b,c,d,u,ω,θ之间的关系,问速度v 多大,总淋雨里最少。
数学建模淋雨量与跑步速度
数学建模淋雨量与跑步速度
情景重现
下雨天忘了带雨伞,要在雨中从一处沿直线跑到另一处,若雨速为常数且方向不变,试建立数学模型讨论是否跑的越快,淋雨越少,将人体简化为长方体,高a=1.5米(颈部以下),宽b=0.5米,厚c=0.2米,设跑步距离d=100米,跑步最大速度=5米/秒,雨速u=4米/秒,降雨量w=2cm/h,记跑步速度为)
基本假设
(1)风速始终保持不变
(2)降雨速度和降雨强度保持不变
(3)跑完全程的速度始终不变
符号的约定
a人的身高(颈部以下)(已知)
b人的宽度(已知)
c人的厚度(已知)
d全程距离(知)
Vm跑步最大速度(已知)
u雨速(已知)
w降雨量(已知)
v人跑步的速度(未知)
C身上被淋的雨水总量(升)(未知)
I降水强度(单位时间平面上降下雨水的厚度)(厘米/时)
模型的建立
结论
通过对以上模型的分析我们可以知道,在雨中行走时要使身上淋的雨水最少,除了要考虑降雨角度外,还好考虑降雨速度,即是根据降雨角度和降雨速度来选择自己在雨中的行走速度,具体做法如下:
(1)如果雨是迎着前进的方向落下,应该以最大的速度跑完全程..
(2)如果雨是从背后落下,这时应该控制在雨中的速度,让它刚好等于落雨速度的水平分量.。
数学建模 雨中行走问题
数学模型论文学校:班级:姓名:学号:雨中行走问题摘要当我们在雨中冒雨行走时总会下意思的加快速度,似乎跑得越快淋雨量就会越小。
但事实上会是这种情况吗?在这里,我们将给予综合性的考虑,来解释不同情况下的淋雨量。
在不考虑风向的情况下,若人的全身都受到雨淋,理所当然人跑的越快所淋的雨就会越少。
那么模型也可算出淋雨量。
当雨线从正面和人的跑步方向在同一平面时,并且考虑风向的影响,雨线方向和竖直方向成θ角。
因为迎着雨的方向跑,所以全身都会淋到雨,由于有夹角,可以将雨分成竖直方向和水平方向两部分。
便可根据题的要求解出模型。
当雨线从后面和人的跑步方向在同一平面时,并且考虑风向的影响,雨线方向和竖直方向成α角。
因为背着雨的方向跑,所以全身不一定都会淋到雨。
可分几种情况分别来说。
关键词人速;雨速;风向;夹角1.问题的重述当人们在雨中行走时,是不是走的越快就会淋越少的雨呢?对于这个问题,建立合理的数学模型。
讨论一下,在不考虑风向时,人的淋雨量为多少;进而进一步讨论一下,在考虑雨线方向与人的跑步方向在同一平面内成不同角度时的淋雨量。
2.问题的分析当人在雨中行走时,是否跑的越快所淋的雨量就越少那,答案当然不是。
人在雨中所淋到的雨量和风向有关,因为风向的不同会导致雨线和人成不同的角度。
从而使人所淋到的雨量有所不同。
3.模型的假设与符号说明3.1模型的假设(1)把人体视为长方体,身高h米,身宽w米,身厚d米,淋雨总量C升。
(2)把降雨强度视为常量,记为:I(cm h)。
(3)风速保持不变。
v m s跑完全程D。
(4)以定速度()3.2符号说明h人体的身高(m)w 人体的宽度(m)d 人体的厚度(m)D 人跑步的全程(m)v 人跑步的速度(m/s)i 降雨强度(cm/h)c 人在跑步中的淋雨总量(L)s 人在雨中会被雨淋的面积 (㎡)t 人在雨中跑步的时间 (s)v 雨滴下落速度 (m/s)θ 雨滴反方向与人速度方向的夹角ρ 雨滴密度4.模型的建立与求解(1)不考虑雨的方向,此种情况,人的前后左右都会淋雨。
数学模型人在雨中奔跑速度与淋雨量的关系
《数学模型与数学实验》摘要本文在给定的降雨条件下,分别建立相应的数学模型,分析人体在雨中行走时淋雨多少与行走速度、降雨方向等因素的关系。
其中文中所涉及到的降雨量是指从天空降落到地面上的雨水,未经蒸发、渗透、流失而在水面上积聚的水层深度,它可以直观地表示降雨的多少。
淋雨量,是指人在雨中行走时全身所接收到得雨的体积,可表示为单位时间单位面积上淋雨的多少与接收雨的面积和淋雨时间的乘积。
针对问题一,设降雨淋遍全身不考虑雨的方向,经简化假设得人淋雨面积为前后左右及头顶面积之和。
针对问题二,雨迎面吹来,雨线方向与行走方向在同一平面,人淋雨面积为前方和头顶面积之和。
因各个方向上降雨速度分量不同,故分别计算头顶和前方的淋雨量后相加即为总的淋雨量。
据此可列出总淋雨量W与行走速度v之间的函数关系。
分析表明当v时,淋雨量最少。
行走速度为max针对问题三,雨从背面吹来,雨线与行走方向在同一平面内,人淋雨量与人和雨相对速度有关。
列出函数关系式分析并求解。
关键词淋雨量;降雨的大小;降雨的方向(风);路程的远近;行走的速度;雨滴下落的速度,角度;降雨强度;一、问题重述生活中的我们常常会遇到下雨而没带雨具的时刻,我们在那时会有很多选择,其中之一就是淋雨,往往好多人会在雨中快走或奔跑而使自己身体淋雨量最小化,但往往很多人会感觉到淋雨量并不会因为快走或奔跑而减少多少,反而有时候淋雨量倒有所增加,淋雨量和速度等有关参数的关系如何,是否人走得越快雨淋得越少,让我们假设一数学模型模拟计算真实情况。
当我们在雨中从一处沿直线跑到另一处时,如果雨速为常数,走的时候身体的动作的大小和暴露在雨中的面积大小影响着淋雨的多少,并且行走速度也同样影响着淋雨量Q,将人体简化成一个长方体,高a=1.5米,宽b=0.5米,厚c=0.2m,行走距离D,雨速u,降雨量I,行走速度为ν。
1、当我们不考虑风,即雨滴垂直下落时,淋雨量和人行走速度之间的关系2、当雨滴从前方(斜的)下落时,即雨滴与人体的夹角为θ,建立总淋雨量与速度v及其它参数之间的关系,此时速度与淋雨量的关系3、当雨从人的背面吹来,即雨滴与人体的夹角为θ,建立总淋雨量与速度v之间的关系二、模型的假设与符号说明2.1 基本假设1、假设人行走的路线是直线;2、不考虑风的方向(即假定前后左右都淋雨),这是一种较为理想的假设,主要为了建模的方便,并且假设雨滴的速度为常数;3、为计算淋雨面积的方便,把人体表面积看成长方体,长用a表示,宽用b表示,厚度用c 表示,且abc都是定值。
数学建模淋雨量模型
重庆大学本科学生论文数学模型的淋雨量模型学生:谭昕宇、杨龙顺学号:指导教师:黄光辉专业:通信工程专业重庆大学通信工程学院二O一七年十月摘要本文针对淋雨量最小问题,采用matlab仿真等方法,得到不同风向下淋雨量与跑步速度的关系。
针对问题一,可以得到淋雨量最小是2.44L针对问题二,通过matlab仿真可以得到迎面淋雨时跑步速度最大,淋雨量最小。
且淋雨量大小与跑步方向和雨线夹角有关。
针对问题三,通过matlab仿真可以知道背面淋雨时,跑步方向和雨线夹角不太小时,当跑步速度与雨速在同一方向分量相等时淋雨量最小,此时只有顶面淋雨。
在本文的最后,对模型的优缺点进行分析,并提出一些改进。
关键字:淋雨量最小,跑步速度,雨线与跑步方向夹角, matlab目录摘要 (2)一、问题描述 (4)二、问题分析 (4)三、模型假设 (4)四、符号说明 (4)五、模型的建立与求解 (5)六、模型评价 (8)6.1模型优点 (8)6.2模型缺点 (8)6.3模型改进 (8)七、参考文献 (8)一、问题描述要在雨中从一处沿直线跑到另一处,若雨速为常数且方向不变。
讨论淋雨量与人体跑步速度的关系。
二、问题分析这是一个简单优化问题,根据雨速大小和方向、人速度大小进行合理分析,使得人淋雨量最小。
淋雨面积与雨的方向有关,淋雨时间与跑步速度与雨速相对速度大小有关,所以在不同情况下有不同的最优解。
三、模型假设1.人体简化成一个长方体,高a=1.5m(颈部以下),宽b=0.5m,厚c=0.2m;2.雨速u是常数(4m/s),在跑步过程中降雨量w是常数(2cm/h);3.在整个过程中人跑步速度v是常数,且有最大速度V max=5m/s;4.雨线的方向是确定的;5.跑步距离一定d=1000m.四、符号说明五、模型的建立与求解根据题意,按以下步骤进行讨论:5.1 不考虑雨的方向,设雨淋遍全身,以最大速度跑步,估计跑完全程的总淋雨量。
淋雨面积s=2ab+2ac+ab=2.2m2,跑完时间t=d/v=200 s,降雨量w=2cm/h=1/1.8X105m/s,淋雨量Q=swt=2.44X10-3 m3。
雨中跑步淋雨量优化问题
雨中跑步淋雨量优化问题问题分析天气变幻莫测,天气预报常常不靠谱,因此,我们都曾遇到过这样的问题:下雨了,却没有带伞。
这时,作为一个学习过数学建模的人,就应该积极思考,怎么做才能使自己少淋点儿雨呢?这其实就是一个淋雨量的问题。
那么,让我们假设这样一个数学模型:当我们在雨中从一处沿直线跑到另一处时,若雨速为常数且方向不变,此时淋雨量就与走的时候身体的动作、暴露在雨中的面积以及行走速度等因素有关,为了进一步简化模型,将人体简化成一个长方体,高 1.5a m =(颈部以下),宽0.5b m =,厚0.2c m =,跑步距离1000d m=,跑步最大速度5/m v m s =,雨速4/u m s =,降雨量2/w cm h =,记跑步速度为v 。
设总淋雨量为Q ,某一单位面积的淋雨量相同的部分面积为i S ,对应的单位面积的淋雨量记为i w ,淋雨量为i Q ,那么总淋雨量就可以表示为:i i idQ Q S w v==⨯∑∑ ()1模型假设1. 人在奔跑过程中,v 大小与方向恒定,即沿直线匀速前进。
2. 对问题1人体各个方向均匀接受雨量,即单位时间、单位面积上接受雨量恒定。
3. 对问题2、3雨线与跑步方向在同一平面内,并且雨线与人体夹角不变。
在此过程中左右两侧因与雨速平行而不沾雨。
4. 假设雨的密度相同,雨滴大小、形状相同,雨速均匀不变5. 假设单位时间内接收的雨量与雨速成正比。
6. 将人体理想化为一个长、宽、高已知的长方体模型,且人体行走过程中的震荡引起的误差可忽略不计,即相当于长方体的平移。
模型建立与求解 问题一由于不考虑雨的方向,降雨淋遍全身,则应以最大速度跑步,此时m v v =,全身各部位(除底部其余五个面)单位面积淋雨量相同,则22S ab ac bc =++。
单位面积淋雨量就等于单位面积降雨量w ,代入()1式可得1. 2.44Q Stw L =≈问题二当雨从迎面吹来,根据假设3,两侧不淋雨,此时淋雨面为顶部(面积1S )和正面(面积2S )。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
淋雨量与跑步速度关系探究
摘要当大雨来临时,人们总是习惯于拔腿就跑。
摆脱困境的本能迫使我们加快速度,与此同时,日常经验又让我们很多人对跑得越快淋雨就越少这一点深信不疑。
事实是否正如大多数人所想的呢?本文就“淋雨量与跑步速度关系”的问题建立了数学模型,从实际情况出发对不同条件下速度和淋雨量关系做出分析探究。
在问题一中,因为已经假设雨淋遍全身,且速度为最大,所以由题目的已知条件,直接列方程求解。
在问题二中,我们利用最优化原理,建立出一个动态规划模型。
并将该问题分为两部分解答,即:(1)雨从迎面吹来;(2)雨从背面吹来。
同时绘制出第二部分的“淋雨量—速度”图像,方便于快速直观地得到两者关系。
解决该问题的过程中,本文利用了几何中的面积公式及物理中速度的分解等知识,结合题目中的已知条件,列出方程求解。
问题三是问题二的深入,将简单的平面问题升华为空间问题,但处理方法和问题二基本相同,只是增加了空间角,本质没有区别。
本文的特点是在建立模型的基础上层层深入,配合图形,简单明了。
同时,基于本文是建立在严谨的计算之上的,具有一定的可靠性,在很大程度上具有参考价值。
关键词最优化原理动态模型速度选择淋雨量
1.问题的重述
要在雨中从一处沿直线跑到另一处,若雨速为常数且方向不变,试建立数学模型是否跑得越快,淋雨量越少。
将人体简化成一个长方体,高a=1.5米(颈部以下),宽b=0.5米,厚c=0.2
v=5m/s,雨速u=4m/s,降雨量ω=2cm/h,米。
设跑步距离d=1000米,跑步最大速度
m
记跑步速度为v,讨论以下问题:
(1)不考虑雨的方向,设降雨淋遍全身,以最大速度奔跑,估计跑完全程的总淋雨量。
(2)雨从迎面吹来,雨线与跑步方向在同一平面内,且与人体的夹角为θ,如图1.建立总淋雨量与速度v及参数a,b,c,d,u,ω,θ之
间的关系,问速度v多大,总淋雨量最少。
计算θ=0︒,30︒时
的总淋雨量;雨从背面吹来,雨线方向与跑步方向在同一平面内,
且与人体的夹角是α,如图2。
建立总淋雨量与速度 v及参数
a,b,c,d,u,ω,α之间的关系,问速度v多大,总淋雨量最少,
计算α=30︒时的总淋雨量。
以总淋雨量为纵轴,速度v 为横轴,对第二中情况作图,并解释结果的实
际意义。
(3) 若雨线的方向与跑步方向不在同以平面内,模型会有什么变化?
2. 问题的分析
总的淋雨量等于人体的各个面上的淋雨量之和。
每个面上的淋雨量等于单位面积,
单位时间的淋雨量与面积以及时间的乘积。
面积由已知各边长乘积得出,时间为
总路程与人前行速度的比值。
再由速度分解,合成,相对速度等知识确定各面淋雨量公式,列出总的方
程,根据各变量关系,得出最优解。
当雨线方向和跑步方向不在同一平面时,我们设出雨线方向角,按照上述
方法将其分解,同样可以解决问题。
3. 模型的假设和符号说明
3.1模型的假设:
(1)雨速为常数且方向不变;
(2)人体为一个长,宽,高都确定的长方体;
(3)人体跑步速度不受其他因素影响;
(4)降雨量在一定时期内为定值。
3.2符号说明:
a 人体身高
b 人体宽度
c 人体厚度
d 跑步距离
m v 跑步最大速度
u 雨速
ω 降雨量
v 跑步速度
θ 同一平面内,雨从迎面吹来,雨线与人体夹角
α 同一平面内,雨从背面吹来,雨线与人体夹角
t 全过程所花费的时间
s 面积
Q 淋雨量
δ 不同平面内,雨线与跑步方向的夹角
β 雨线在人体正面所在平面内的分量与铅垂线的夹角
4. 模型的建立与求解
4.1问题一:
全身面积 2
2() 2.2s ab bc ac m =++=
淋雨时间 t=d/v=1000/5=200s
降 雨 量 ω=2cm/h=4
1810-m/s
∴淋雨量 Q=st ω=2.2*200*410-/18≈2.44升
4.2问题二:
4.2.1雨从迎面吹来:
顶部淋雨量 1
Q =bcd ω/1cos v θ- 雨速水平分量 u/1sin θ-(方向与v 相反)
合 速 度 u/1sin θ-+v 单位面积时间的淋雨量 ω
(u/1sin θ-+v )/u 迎面淋雨量2
Q =abd ω(u/1sin θ-+v)/uv ∴总淋雨量 12
Q Q Q =+= bcdw/1cos θ-v+abdw(u/1sin θ-+v)/uv. 在此式子中,只有v 是变量,所以当v 最大,即v=m v 时Q 最小,淋雨量
最少。
0, 1.15Q θ=≈升,, 1.5530Q θ︒
==升。
4.2.2雨从背面吹来
合速度 sin u v α- bdw[cucos α+a(usin α-v)]/uv,v ≤usin α
总淋雨量 Q =
Bdw[cucos α+a(v-usin α)]/uv,v>usin α
若ccos α-asin α<0,即:tan α>c/a,则v=usin α时,Q 最小。
否则,V=m v 时,Q 最小。
(如下图)
usin usin α
当30α︒
=,tan α>0.2/1.5,v=2m/s,Q ≈0.24升最小,可与
v=m v ,Q ≈0.93升相比。
分析结果的实际意义可知,当雨从背面吹来,只要α不太小,满足tan α>c/a,
即:α>7.6︒
时,v=usin α,Q 最小。
此时人体背面不淋雨,只有顶部淋雨。
4.3问题三:
该问题中,只举例研究雨从正侧面吹来。
设雨线与跑步速度方向夹角为
δ。
作图如下:
1Q =bcdwsin δcos β/v 雨速水平分量 ucos δ(方向与v 相反)
合 速 度 ucos δ+v 单位面积时 间的淋雨量 ω(ucos δ+v )/u
2
Q =abd ω(ucos δ+v)/uv 3
Q =acdwsin δsin β/v 所以,
总淋雨量Q =123Q Q Q ++=bcdwsin δcos β/v+abdw(ucos δ+v)/uv+acdwsin δsin β/v
由以上式子可知,当v 最大时,Q 最小。
其他情况与问题二处理类似,利用
速度分解和合成,可以解决。
本质并无区别。
5. 模型的评价
本文问题二与问题三都重点体现了模型的建立,指出了求最优解的思想。
图
形的有效利用,使结果更直观明了。
本文的缺点是限制因素太多,变量过少。
考虑问题也不太全面,致使结果可
能与实际情况不太符合。
但总体来讲,本文的思路和解题方法是正确的,可以为进一步的研究奠定基
础。
参考文献
[]1姜启源,谢金星,叶俊,数学建模(第三版),北京,高等教育出版社,1987
年4
月,2003年8月
数学建模论文。