勾股定理逆定理八种证明方法
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
勾股定理逆定理八种证
明方法
集团标准化小组:[VVOPPT-JOPP28-JPPTL98-LOPPNN]
证法1
作四个的直角三角形,把它们拼成如图那样的一个多边形,使D、E、F在一条上(设它们的两条直角边长分别为a、b ,斜边长为c.)。过点C作AC的延长线交DF于点P.
∵ D、E、F在一条直线上,且RtΔGEF ≌ RtΔEBD,
∴ ∠EGF = ∠BED,
∵ ∠EGF + ∠GEF =90°,
∴ ∠BED + ∠GEF = 90°,
∴ ∠BEG =180°―90°= 90°
又∵ AB = BE = EG = GA = c,
∴ ABEG是一个边长为c的正方形。
∴ ∠ABC + ∠CBE = 90°
∵ RtΔABC ≌ RtΔEBD,
∴ ∠ABC = ∠EBD.
∴ ∠EBD + ∠CBE = 90° 即∠CBD= 90°
又∵ ∠BDE = 90°,∠BCP = 90°,BC = BD = a.
∴ BDPC是一个边长为a的正方形。
同理,HPFG是一个边长为b的正方形. 设多边形GHCBE的面积为S,则
证法2
作两个的直角三角形,设它们的两条直角边长分别为a、b(b>a),做一个边长为c的正方形。斜边长为c. 再把它们拼成如图所示的多边形,使E、A、C 三点在一条直线上. 过点Q作QP∥BC,交AC于点P. 过点B作BM⊥PQ,垂足为M;再过点F作FN⊥PQ,垂足为N.
∵ ∠BCA = 90°,QP∥BC,
∴ ∠MPC = 90°,
∵ BM⊥PQ,
∴ ∠BMP = 90°,
∴ BCPM是一个矩形,即∠MBC =90°。
∵ ∠QBM + ∠MBA = ∠QBA = 90°,∠ABC + ∠MBA = ∠MBC = 90°,
∴ ∠,
又∵ ∠BMP = 90°,∠BCA = 90°,BQ = BA = c,
∴ RtΔBMQ ≌ RtΔBCA. 同理可证RtΔQNF ≌ RtΔAEF.即
证法3
作两个全等的直角三角形,同证法2,再作一个边长为c的正方形。把它们拼成如图所示的多边形. 分别以CF,AE为边长做正方形FCJI和AEIG,
∵EF=DF-DE=b-a,EI=b,
∴FI=a,
∴G,I,J在同一直线上,
∵CJ=CF=a,CB=CD=c,∠CJB = ∠CFD = 90°,
∴RtΔCJB ≌ RtΔCFD ,同理,RtΔABG ≌ RtΔADE,
∴RtΔCJB ≌ RtΔCFD ≌ RtΔABG ≌ RtΔADE
∴∠ABG = ∠BCJ,
∵∠BCJ +∠CBJ= 90°,
∴∠ABG +∠CBJ= 90°,
∵∠ABC= 90°,
∴G,B,I,J在同一直线上,
。
证法4
作三个边长分别为a、b、c的三角形,把它们拼成如图所示形状,使H、C、B 三点在一条直线上,连结BF、CD. 过C作CL⊥DE,交AB于点M,交DE 于点L.
∵ AF = AC,AB = AD,∠FAB = ∠GAD,
∴ ΔFAB ≌ ΔGAD,
∵ ΔFAB的面积等于,ΔGAD的面积等于矩形ADLM 的面积的一半,
∴ 矩形ADLM的面积 =. 同理可证,矩形MLEB的面积 =.
∵ 正方形ADEB的面积= 矩形ADLM的面积 + 矩形MLEB的面积
∴ 即
证法5
《几何原本》中的证明在欧几里得的一书中提出勾股定理由以下证明后可成立。设△ABC为一直角三角形,其中A为直角。从A点划一直线至对边,使其垂直于对边上的正方形。此线把对边上的正方形一分为二,其面别与其余两个正方形相等。在正式的证明中,我们需要四个辅助定理如下:如果两个三角形有两组对应边和这两组边所夹的角相等,则两三角形全等。(SAS定理)三角形面积是任一同底同高之平行四边形面积的一半。任意一个正方形的面积等于其二边长的乘积。任意一个四方形的面积等于其二边长的乘积(据辅助定理3)。证明的概念为:把上方的两个正方形转换成两个同等面积的平行四边形,再并转换成下方的两个同等面积的长方形。其证明如下:设△ABC为一直角三角形,其直角为CAB。其边为BC、AB、和CA,依序绘成四方形CBDE、BAGF和ACIH。画出过点A之BD、CE的。此线将分别与BC和DE直角相交于K、L。分别CF、AD,形成两个三角形BCF、BDA。∠CAB和∠BAG都是直角,因此C、A 和 G 都是对应的,同理可证B、A和H。∠CBD和∠FBA皆为直角,所以∠ABD等于∠FBC。因为 AB 和 BD 分别等于 FB 和 BC,所以△ABD 必须相等于△FBC。因为 A 与 K 和 L是线性对应的,所以四方形 BDLK 必须二倍面积于△ABD。因为C、A和G有共同线性,所以正方形BAGF必须二倍面积于
△FBC。因此四边形 BDLK 必须有相同的面积 BAGF = AB²;。同理可证,四边形 CKLE 必须有相同的面积 ACIH = AC2;。把这两个结果相加, AB2;+ AC2;; = BD×BK + KL×KC。由于BD=KL,BD×BK + KL×KC = BD(BK + KC) = BD×BC 由于CBDE是个正方形,因此AB2;+ AC2;= BC2;。此证明是于欧几里得《几何原本》一书第1.47节所提出的
证法6(欧几里得(Euclid)射影定理证法)
如图1,Rt△ABC中,∠ABC=90°,BD是斜边AC上的高通过证明三角形相似则有射影定理如下:
⑴(BD)2;=AD·DC,
⑵(AB)2;=AD·AC ,
⑶(BC)2;=CD·AC。由公式⑵+⑶得:(AB)2;+(BC)2;=AD·AC+CD·AC =(AD+CD)·AC=(AC)2;,图1即(AB)2;+(BC)2;=(AC)2,这就是勾股定理的结论。图1
证法6
在这幅“勾股圆方图”中,以弦为边长得到正方形ABDE是由4个相等的直角三角形再加上中间的那个小正方形组成的。每个直角三角形的面积为ab/2;中间懂得小正方形边长为b-a,则面积为(b-a)2。于是便可得如下的式子:4×(ab/2)+(b-a)2;=c2;化简后便可得:a2;+b2;=c2; 亦即:
c=(a2;+b2;)1/2 勾股定理的别名勾股定理,是中一颗光彩夺目的明珠,被称为“几何学的基石”,而且在和其他学科中也有着极为广泛的应用。正因为这样,世界上几个都已发现并且进行了广泛深入的研究,因此有许多名称。
中国是发现和研究勾股定理最古老的国家之一。中国古代数学家称直角三角形为勾股形,较短的直角边称为,另一直角边称为,斜边称为,所以勾股定理也称为勾股弦定理。在公元前1000多年,据记载,商高(约公元前1120年)答周公曰“故折矩,以为句广三,股修四,径隅五。既方之,外半其一矩,环而共盘,得成三四五。两矩共长二十有五,是谓积矩。”因此,勾股定理在中国又称“商高定理”。在公元前7至6世纪一中国学者陈子,曾经给出过任意直角三角形的三边关系即“以日下为勾,日高为股,勾、股各乘并开方除之得邪至日。在法国和比利时,勾股定理又叫“驴桥定理”。还有的国家称勾股定理为“平方定理”。在陈子后一二百年,希腊的着名数学家毕达哥拉斯发现了这个定理,因此世界上许多国家都称勾股定理为“毕达哥拉斯”定理。为了庆祝这一定理的发现,毕达哥拉斯学派杀了一百头牛酬谢供奉神灵,因此这个定理又有人叫做“百牛定理”.前任美国第二十届总统证明了勾股定理(1876年4月1日)。
1 周髀算经,文物出版社,1980年3月,据宋代嘉定六年本影印,1-5页。
2. 陈良佐:周髀算经勾股定理的证明与的关系。刊於《汉学研究》, 1989年第7卷第1期,255-281页。
3. 李国伟:论「周髀算经」“商高曰数之法出于圆方”章。刊於《第二届科学史研讨会汇刊》,台湾,1991年7月, 227-234页。
4. 李继闵:商高定理辨证。刊於《自然科学史研究》,1993年第12卷第1期,29-41页。
5. 曲安京:商高、赵爽与关於勾股定理的证明。刊於《数学传播》20卷,
台湾,1996年9月第3期, 20-27页
证法7
达芬奇的证法
三张纸片其实是同一张纸,把它撕开重新拼凑之后,中间那个“洞”的面积前后仍然是一样的,但是面积的表达式却不再相同,让这两个形式不同的表达式