高中数学易错知识点梳理(20210303165258)

合集下载

高三数学易混淆知识点归纳

高三数学易混淆知识点归纳

高三数学易混淆知识点归纳高三数学是学生们备战高考的重要阶段,而数学作为一门理科学科,难免存在一些易混淆的知识点。

下面就是对高三数学中常见的易混淆知识点进行归纳总结,以帮助同学们更好地理解和掌握这些概念。

1. 函数与方程函数与方程是高中数学中最重要的基础概念之一,但是很多学生容易混淆它们之间的关系。

函数是一种映射关系,将自变量的值映射到唯一的因变量的值;而方程则是一个等式,由自变量和常数构成。

需要注意的是,函数可以通过方程表示,但方程不一定表示函数。

2. 三角函数的定义与性质在学习三角函数时,学生们常常会混淆三角函数的定义与性质。

三角函数的定义通过单位圆上的坐标来确定,例如正弦函数就是y 轴上的坐标值;而三角函数的性质涉及到周期性、奇偶性等特点,需要理解和记忆。

3. 平面向量与复数平面向量与复数都是数学中常见的概念,但容易被高三学生混淆。

平面向量是有大小和方向的量,可用箭头表示;而复数是由实部和虚部构成的,通常表示为a+bi的形式。

需要记住,平面向量与复数虽然在某些运算上相似,但本质上是不同的概念。

4. 排列与组合排列与组合是高中数学中的常见概念,也是高考中常考的内容。

排列是选取若干元素进行有序排列,考虑元素的顺序;而组合则是选取若干元素进行无序排列,不考虑元素的顺序。

需要确切理解排列与组合的差别,以避免混淆和错误。

5. 极限与连续极限和连续是高三数学中的重要概念,涉及到函数的趋势和取值。

极限是函数在某一点无限逼近的值,可以通过左右极限或函数的性质进行求解;而连续则是指函数在某一点上具有无间断的性质。

注意极限与连续的定义和判定条件,避免混淆和误解。

综上所述,高三数学易混淆的知识点主要包括函数与方程、三角函数的定义与性质、平面向量与复数、排列与组合以及极限与连续。

同学们在备考高考时应该加强对这些知识点的理解和掌握,注意它们之间的区别和细微差别。

只有通过充分的练习和掌握,才能顺利应对高考数学的各种问题,取得优异的成绩。

高中数学教材易错易混知识点总结

高中数学教材易错易混知识点总结

高中数学教材易错易混知识点总结
高中数学教材中,有些知识点容易出现混淆或易错的情况,下面是一些具体的例子:
1. 函数中的自变量和函数值——在函数中,自变量是输入值,而函数值是输出的结果。

因此,在题目中应当清楚地区分清楚自变量和函数值,避免将两者混淆。

2. 向量的模和方向角——向量的模是向量的长度,而方向角是向量与某个标准方向的夹角。

在计算向量时,要注意区分开二者,避免混淆。

3. 三角函数中的“正弦角”和“余弦角”——正弦角指的是该角的正弦值,余弦角指的是该角的余弦值。

在题目中应当清楚地说明所要求的是哪一个,以避免混淆。

4. 平面向量和空间向量——平面向量与空间向量的概念不同,因此在计算过程中需要注意是否为平面向量或空间向量。

5. 图像对称和函数对称——在二次函数等函数的图像中,有关对称的问题,有的是关于 x 轴对称,有的是关于 y 轴对称。

在解题时需要认真分析,以免混淆。

总之,为了避免容易混淆的情况,在解题时需要认真分析、区分各种概念,尤其是需要注意相似、相同但概念不同的词语,以避免在解题时容易混淆。

高三数学易错知识点归纳

高三数学易错知识点归纳

高三数学易错知识点归纳随着高三学业的紧张和复习的深入,数学作为一门基础且重要的学科,常常成为学生们头疼的问题。

在数学中,总有一些知识点让人迷惑,易出错。

为了帮助高三学生们更好地理解和掌握这些易错知识点,下面将对一些常见的易错知识点进行归纳总结。

1. 不定方程式求解方法的错误应用在解不定方程时,常常会出现错误应用求解方法的情况。

例如,将形如a(x+b)=c的方程错误地视为一元一次方程,从而根据方程两边相等的原则直接得出解答。

实际上,在这种情况下应该将方程分解为gcd(a,b) | c, 然后根据此式来进行求解。

2. 数列求和公式的误用求和公式是数列求和时常用的工具,但也是出错的主要来源之一。

常见的误用有两类:一是错误使用等差数列和等比数列的求和公式;二是错误地对非等差或非等比数列直接使用求和公式。

为了避免这些错误,我们需要在运用求和公式之前,先判断数列的性质,再选择合适的求和公式。

3. 平面几何图形的判定错误在解答平面几何题目时,经常会遇到图形的判定问题。

例如判断两个三角形是否全等、相似,或者判断四边形是否为平行四边形等。

这些判定问题往往需要根据定理和性质来进行分类讨论,但是许多学生容易因为不清楚定理的条件或者忽略了一些重要的性质而出错。

4. 排列组合问题的混淆排列组合是高中数学中的重要内容,但也是容易混淆的一部分。

例如,在计算排列数或组合数时,经常容易出现搞不清楚选择与不选择等情况的错误。

为了避免混淆,我们需要对排列与组合的概念有清晰的理解,并注意问题中所问的具体情况。

5. 二次函数的图像与性质的错误理解二次函数是高三数学中的重要内容,其中最容易出错的是对二次函数图像和性质的理解错误。

例如,对于二次函数的开口方向、顶点坐标以及对称轴位置的理解不准确,都可能导致解题错误。

因此,在学习二次函数时,我们需要多做例题,反复练习,加深对其图像和性质的理解。

6. 不等式运算规则的错误应用不等式是高三数学中的重要内容,但是不等式运算规则的错误应用常常导致解题错误。

高中数学易错知识点整理

高中数学易错知识点整理

高中数学易错知识点整理高中数学易错知识点1、遗忘空集致误错因分析:由于空集是任何非空集合的真子集,因此,对于集合B,就有B=A,φ≠B,B≠φ,三种情况,在解题中如果思维不够缜密就有可能忽视了B≠φ这种情况,导致解题结果错误。

尤其是在解含有参数的集合问题时,更要充分注意当参数在某个范围内取值时所给的集合可能是空集这种情况。

空集是一个特殊的集合,由于思维定式的原因,考生往往会在解题中遗忘了这个集合,导致解题错误或是解题不全面。

2、忽视集合元素的三性致误错因分析:集合中的元素具有确定性、无序性、互异性,集合元素的三性中互异性对解题的影响最大,特别是带有字母参数的集合,实际上就隐含着对字母参数的一些要求。

在解题时也可以先确定字母参数的范围后,再具体解决问题。

3、四种命题的结构不明致误错因分析:如果原命题是“若A则B”,则这个命题的逆命题是“若B则A”,否命题是“若┐A则┐B”,逆否命题是“若┐B则┐A”。

这里面有两组等价的命题,即“原命题和它的逆否命题等价,否命题与逆命题等价”。

在解答由一个命题写出该命题的其他形式的命题时,一定要明确四种命题的结构以及它们之间的等价关系。

另外,在否定一个命题时,要注意全称命题的否定是特称命题,特称命题的否定是全称命题。

如对“a,b都是偶数”的否定应该是“a,b不都是偶数”,而不应该是“a,b都是奇数”。

4、充分必要条件颠倒致误错因分析:对于两个条件A,B,如果A=>B成立,则A是B的充分条件,B是A的必要条件;如果B=>A成立,则A是B的必要条件,B是A的充分条件;如果A<=>B,则A,B互为充分必要条件。

解题时最容易出错的就是颠倒了充分性与必要性,所以在解决这类问题时一定要根据充要条件的概念作出准确的判断。

5、逻辑联结词理解不准致误错因分析:在判断含逻辑联结词的命题时很容易因为理解不准确而出现错误,在这里我们给出一些常用的判断方法,希望对大家有所帮助:p∨q真<=>p真或q真,p∨q假<=>p假且q假(概括为一真即真);p∧q真<=>p真且q真,p∧q假<=>p假或q假(概括为一假即假);┐p真<=>p假,┐p假<=>p真(概括为一真一假)。

高考数学出错知识点

高考数学出错知识点

高考数学出错知识点近年来,随着高考数学难度的增加,考生对于数学出错知识点的关注也越来越高。

本文将详细介绍高考数学中常见的出错知识点,帮助广大考生避免犯错,取得好成绩。

一、函数知识点容易出错1.函数概念混淆:有些考生经常将函数的自变量和因变量搞混,这是一个常见的错误。

函数的自变量是指函数中的变量,而因变量则是由自变量决定的变量。

2.函数运算错误:在进行函数的加、减、乘、除等运算时,考生容易出错。

在进行函数运算时,需要正确对函数进行合并、分解等操作。

3.反函数的理解不准确:有关反函数的相关概念,考生容易混淆。

反函数是指一个函数f的逆函数,记为f的倒数。

考生在使用反函数时,需要注意区分正函数和反函数之间的关系。

二、概率与统计中容易出错的知识点1.概率的计算错误:在计算概率时,考生容易犯错。

计算概率时,需要根据事件的样本空间和样本点进行确定,而不是随意计算。

2.核心概念混淆:在统计学中,考生容易混淆样本均值和总体均值、样本方差和总体方差等概念。

考生需要明确这些概念的含义和计算方法。

3.抽样调查错误:在进行抽样调查时,考生经常犯错。

抽样调查需要满足一定的条件,而不是随意进行,否则会导致结果的不准确。

三、函数与方程中容易出错的知识点1.解方程错误:在解方程时,考生容易漏项、错项或者运算错误。

在解方程的过程中,要仔细检查每一步是否正确,保证解答的准确性。

2.函数的性质混淆:在讨论函数的增减性、单调性和最值等性质时,考生容易混淆。

对于函数的性质要有清晰的理解,并运用正确的方法来推导和分析。

3.函数图像认知错误:在绘制函数图像时,考生容易出错。

对于不同函数类型,考生应该熟悉其图像特点,并正确绘制。

四、几何中常见的出错知识点1.平行线与垂直线的判断错误:在判断平行线和垂直线时,考生容易混淆。

考生需要掌握判断平行线和垂直线的准确方法。

2.图形对称性分析错误:在分析图形的对称性时,考生容易出错。

对于不同类型的对称图形,考生需要准确判断其对称轴和对称点。

高中数学易错点

高中数学易错点

高中数学易错点1. 平面几何易错点:- 误解平行线与垂直线的性质,忽略垂直定理和平行定理的应用;- 混淆平行四边形和矩形的特性,忽略矩形的对角线相等性质;- 混淆正方形和菱形的特性,忽略正方形的对角线垂直性质;- 对相似三角形的判定和性质掌握不牢固,忽略比例定理的应用;- 在证明中,仅仅使用了图形的相似性,忽略了必要的线段比值的计算; - 懒于使用三角函数和向量的方法,依赖于几何直观的解题方法。

2. 解析几何易错点:- 对坐标系的建立和平移旋转的理解存在偏差,导致计算错误;- 利用向量的方法求证问题时,忽略了向量共线的充要条件;- 对于函数的性质(增减性、奇偶性、周期性等)记忆不清,应用不熟练; - 忽略函数的整体特征,只关注其中一点导致的情况;- 对二次函数、幂函数、指数函数和对数函数的图像特性掌握不牢固。

3. 数列与数学归纳易错点:- 对等差数列和等比数列的通项公式应用不熟练;- 缺乏对数列定理的理解和应用,忽略了数列的收敛性;- 在数列求和问题中,误解求和公式导致计算错误;- 对数学归纳法的使用和理解存在偏差。

4. 函数与导数易错点:- 对函数的定义域和值域的判断存在偏差;- 忽略导数的定义和求导法则,导致求导错误;- 对最值问题中的极值判断存在偏差;- 对函数图像的性状判断不准确,导致求解问题时结果错误。

5. 概率与统计易错点:- 对概率的计算规则应用不熟练,如加法原理、乘法原理和条件概率; - 在排列组合问题中,容易忽略重复计数和区分不同情况;- 对统计学中的平均值、方差和标准差的计算公式记忆不牢固;- 在理解样本调查和抽样调查的方法时存在偏差。

以上只是高中数学易错点的一部分,仅供参考。

希望对你有帮助!。

高三数学最容易出错的知识点

高三数学最容易出错的知识点

高三数学最容易出错的知识点高三数学是所有高中生必须面对的一门课程,无论对于理科还是文科生来说,都具有重要的意义。

然而,由于难度较大,很多学生在学习过程中经常容易出现错误。

下面就来探讨高三数学最容易出错的知识点。

一、函数方程求解在高三数学中,函数方程求解是一个难点,也是容易出错的地方。

在这个部分中,学生经常会遇到的问题是没有正确地理解什么是函数和方程。

函数是一种映射关系,而方程是函数等式的表达形式。

因此,学生要明确整个解题过程的目标是找到使方程成立的变量的值。

例如,对于一个一次函数方程y=ax+b,有的学生会错误地理解成求解y的取值范围,而不是求解x的值。

这样的错误会导致学生在解题过程中迷失方向,最终得出错误的答案。

二、导数与极值导数是高三数学中的重要概念,与函数的变化趋势密切相关。

在求导过程中,学生容易疏忽导数的定义和求解规则,从而产生错误的结果。

常见的错误包括对函数求导时未进行连续求导、未正确运用导数的运算性质和规则等。

另外,极值也是一个容易出错的知识点。

在求极值的过程中,学生往往存在以下问题:未注意判断驻点的一阶和二阶导数变化的关系、未对极大值和极小值的定义和判断准则有清晰的认识等。

这些小细节的疏忽会导致最终答案的错误。

三、概率统计概率统计是高三数学中的另一个易错知识点。

学生在计算概率时容易忽略事件间的关系、未理解概率的加法和乘法定理、使用错排列组合等。

此外,在解答概率问题时,学生还容易将条件概率与联合概率混淆,导致最终结果的不准确。

在统计部分,学生常常未能正确理解总体和样本的概念,以及如何通过样本推断总体。

此外,学生在进行数据分析时,也容易将平均值、方差和标准差等相关概念混淆,导致数据处理结果的错误。

四、向量与坐标系向量和坐标系是高三数学中的基础知识,学生在这方面容易出错。

在解题过程中,学生经常会将向量的顺序弄错,导致向量的计算结果错误。

此外,学生在进行向量的分解和合成时,容易忽略向量共线的判断条件,从而导致错误的计算结果。

新高一数学容易错的知识点

新高一数学容易错的知识点

新高一数学容易错的知识点高一数学中容易出错的知识点有很多,下面我将逐一列举并加以解析,以帮助同学们避免犯错。

在解析过程中,我将以题目的方式来呈现,并在每道题目后给出详细解答。

请同学们认真阅读并理解,同时可以做相应的笔记。

1. 一次函数的表示与性质一次函数是数学中常见的一类函数,容易出错的知识点有以下几个:- 函数的定义与性质:不要把“一次函数”的定义与“一次函数图像”的性质混淆。

一次函数的定义是y=ax+b,其中a和b是常数,而一次函数的图像是直线。

- 斜率与函数图像:斜率代表函数图像的倾斜程度,斜率为正表示图像上升,为负表示下降,为零表示水平。

- 函数图像与解析式的关系:理解解析式y=ax+b中的参数a和b与函数图像的关系,从解析式中可以直接读出直线的斜率和截距。

2. 平面向量的运算平面向量是高一阶段的重要内容,容易出错的知识点有以下几个:- 向量加减法:理解向量加减法的几何意义和代数计算规则,加法满足交换律和结合律,减法可以转化为加法进行运算。

- 数量积与几何意义:数量积表示两个向量的乘积,它可以计算向量之间的夹角,同时也可以计算向量在某个方向上的投影。

- 向量共线与垂直的判定条件:掌握向量共线的判定条件,即两个向量的数量积为零;垂直的判定条件,即两个向量的数量积为零。

3. 三角函数的基本概念与关系三角函数是高中数学中的难点,容易出错的知识点有以下几个:- 弧度制与度数制的转换:理解弧度制和度数制的定义,知道两者之间的转换关系。

弧度制下的角度范围是[-π,π],度数制下的角度范围是[0°,360°]。

- 三角函数的周期性:熟练掌握正弦函数、余弦函数和正切函数的周期性,知道它们的图像在不同周期内的重复性。

- 三角函数的基本关系式:掌握正弦函数、余弦函数和正切函数的基本关系式,如sin²θ + cos²θ = 1,tanθ = sinθ / cosθ等,能够熟练运用它们进行计算。

高中数学最易混淆知识点

高中数学最易混淆知识点

高中数学最易混淆知识点在高中数学中,学生们经常会遇到一些易混淆的知识点。

这些知识点可能在数学考试中产生错解或者笔误,给成绩带来不利影响。

以下是我总结的高中数学中最易混淆的知识点。

一、平方与二次方平方和二次方是经常被高中学生混淆的概念。

平方是一个数自己与自己相乘的结果,而二次方是一个数乘以自己两次的结果。

例如,2的平方是4,2的二次方是4。

一个常见的错误就是把平方和二次方的符号混淆,例如将一个负数的平方写成一个正数的二次方。

二、代数式和方程式代数式和方程式也是高中数学中常见的混淆点。

代数式只包含变量、常数和运算符号,而方程式则包含一个等号。

代数式是一个数学表达式,它没有等号,而方程则是等式,包含等号。

举例来说,2x - 3是一个代数式,但2x - 3 = 0是一个方程式。

三、整式和分式整式和分式也是混淆的常见概念。

整式是系数与变量幂次的乘积的和,而分式则是一个整数除以另一个整数。

整式一般包含加法、减法和乘法,但不包含除法。

而分式则包含对数学运算中除法的运用,分子和分母之间的符号是除号。

举例来说,2x^2 + 3x是一个整式,但(2x + 3)/(x - 1)是一个分式。

四、函数和方程函数和方程也常常被高中学生混淆。

一个函数是一个集合,它的输入是一个或多个变量,它的输出是一个或多个结果。

一个方程是两个或多个表达式之间的相等关系。

虽然函数可以被描述为一个方程,但这不是它的本质。

函数与方程不同之处在于其定义域和值域的范围。

函数通常用f(x)表示,而方程则用x表示。

五、复合函数和逆函数复合函数和逆函数也是易混淆的概念。

复合函数指的是将一个函数的输出作为另一个函数的输入。

逆函数是一个与给定函数相对应的反函数。

虽然这些概念都涉及到函数的性质和函数之间的关系,但它们的定义和运用是不同的。

复合函数通常用符号f(g(x))表示,而逆函数则用x的倒数表示。

六、直线和平面直线和平面也是高中数学中常见的混淆点。

直线是由无数个连续的点组成的轨迹,它只有一个维度。

高中数学易错知识梳理

高中数学易错知识梳理

高中数学易错知识梳理高中数学知识体系庞大,概念繁多,很多同学在学习过程中容易出现错误。

为了帮助同学们更好地掌握数学知识,提高解题能力,下面对高中数学中一些易错的知识点进行梳理。

一、集合与函数1、集合中的元素特性易错点:忽略集合中元素的互异性。

例如,集合{1,2,a},若 a= 1 或 2 时,就不满足元素的互异性。

2、空集易错点:空集是任何集合的子集,但容易忽略空集是某些集合的真子集。

例如,若集合 A ={x | x² 2x + 1 = 0} ={1},则空集是集合 A 的真子集。

3、函数的定义域易错点:求函数定义域时,容易忽略分母不为零、偶次根式下被开方数非负、对数函数的真数大于零等条件。

例如,函数 f(x) = 1 /(x 1),定义域为x ≠ 1。

4、函数的单调性易错点:对函数单调性的定义理解不透彻,错误地认为函数在某个区间内的导数值大于零就是单调递增,小于零就是单调递减。

实际上,还需要考虑导数值为零的点。

5、函数的奇偶性易错点:判断函数奇偶性时,忽略函数定义域关于原点对称这个前提条件。

例如,函数 f(x) =√(x + 1) ,其定义域为x ≥ -1 ,不关于原点对称,所以该函数既不是奇函数也不是偶函数。

二、三角函数1、三角函数的定义易错点:在利用三角函数定义求角的三角函数值时,忽略角所在的象限,导致符号错误。

2、诱导公式易错点:记错诱导公式,导致化简或计算错误。

例如,sin(π α) =sinα ,cos(π +α) =cosα 等。

3、三角函数的图象和性质易错点:对三角函数的周期性、对称性、最值等性质理解不深入。

例如,函数 y =sin(ωx +φ) 的周期为 T =2π /|ω| ,对称轴为 x =(kπ +π /2 φ) /ω (k∈Z)。

4、解三角形易错点:在解三角形时,使用正弦定理或余弦定理时忽略角的范围,导致多解或漏解。

三、数列1、等差数列和等比数列的通项公式易错点:记错公式或者在运用公式时,忽略首项和公差(公比)的取值。

高三数学易失分知识点归纳

高三数学易失分知识点归纳

高三数学易失分知识点归纳在高中数学学习过程中,很多学生都会遇到一些易失分的知识点。

这些知识点可能因为概念理解不清晰、计算错误、解题思路不清晰等原因导致学生失分。

为了帮助同学们更好地掌握高三数学考试中的易失分知识点,下面将对其中几个重要的知识点进行归纳和解析。

1. 基础知识点1.1 几何与三角函数几何与三角函数是高中数学的基础,然而很多同学在理解相关概念时容易混淆或者记忆不牢固。

例如,对于周长和面积的概念,许多学生容易混淆或者计算错误。

另外,在三角函数中,正弦定理和余弦定理的应用也是容易出错的地方。

因此,同学们在备考中要反复温习这些基础知识点,并通过大量的练习巩固记忆。

1.2 计算和推导在高三数学考试中,计算和推导是非常常见的题型。

然而,很多学生在计算和推导过程中经常犯错。

例如,在解方程的过程中,容易出现计算错误或者忽略解的判断范围。

在求导求积分的题目中,很多同学容易出错,例如忘记运用链式法则或者移项计算错误等。

因此,同学们在做这类题目时一定要细心,将每一步的计算都仔细核对,避免不必要的失分。

2. 高阶知识点2.1 解析几何解析几何是高三数学考试中的一个重要知识点,也是易失分的重灾区之一。

在解析几何中,直线和曲线的方程、点的位置关系等都是比较考察的内容。

同学们在解这类题目时经常会出现误用公式、计算错误等问题。

因此,要提前掌握各种图形的性质和方程,多进行推导练习,并及时纠正错误,做到知其然更要知其所以然。

2.2 空间几何与立体几何在空间几何和立体几何领域,同学们也经常容易犯错。

例如,在立体几何中,求体积和表面积的计算容易混淆,或者在想象和绘制图形时失误。

因此,同学们在解决这类题目时要注重绘图、标记和计算的准确性,善于利用各种已知条件和几何关系进行解题。

3. 解题技巧和应试策略3.1 切忌草率行事在高三数学考试中,切忌草率行事。

即使遇到熟悉的题型,也要仔细审题,认真计算,不要因为着急或者粗心导致低级错误。

高考数学易错知识点汇总(16个)

高考数学易错知识点汇总(16个)

高考数学易错知识点汇总(16个)数学是研讨理想世界空间方式和数量关系的一门迷信。

小编预备了高考数学易错知识点,希望你喜欢。

易错点1遗忘空集致误错因剖析:由于空集是任何非空集合的真子集,因此,关于集合B高三经典纠错笔记:数学A,就有B=A,B高三经典纠错笔记:数学A,B,三种状况,在解题中假设思想不够缜密就有能够无视了 B这种状况,招致解题结果错误。

尤其是在解含有参数的集分解绩时,更要充沛留意当参数在某个范围内取值时所给的集合能够是空集这种状况。

空集是一个特殊的集合,由于思想定式的缘由,考生往往会在解题中遗忘了这个集合,招致解题错误或是解题不片面。

易错点2无视集合元素的三性致误错因剖析:集合中的元素具有确定性、无序性、互异性,集合元素的三性中互异性对解题的影响最大,特别是带有字母参数的集合,实践上就隐含着对字母参数的一些要求。

在解题时也可以先确定字母参数的范围后,再详细处置效果。

易错点3四种命题的结构不明致误错因剖析:假设原命题是假定 A那么B,那么这个命题的逆命题是假定B那么A,否命题是假定┐A那么┐B,逆否命题是假定┐B那么┐A。

这外面有两组等价的命题,即原命题和它的逆否命题等价,否命题与逆命题等价。

在解答由一个命题写出该命题的其他方式的命题时,一定要明白四种命题的结构以及它们之间的等价关系。

另外,在否认一个命题时,要留意全称命题的否认是特称命题,特称命题的否认是全称命题。

如对a,b都是偶数的否认应该是a,b不都是偶数,而不应该是a ,b都是奇数。

易错点4充沛必要条件颠倒致误错因剖析:关于两个条件A,B,假设A=B成立,那么A是B 的充沛条件,B是A的必要条件;假设B=A成立,那么A是B 的必要条件,B是A的充沛条件;假设AB,那么A,B互为充沛必要条件。

解题时最容易出错的就是颠倒了充沛性与必要性,所以在处置这类效果时一定要依据充要条件的概念作出准确的判别。

易错点5逻辑结合词了解不准致误错因剖析:在判别含逻辑结合词的命题时很容易由于了解不准确而出现错误,在这里我们给出一些常用的判别方法,希望对大家有所协助:p=p真或q真,命题p=p假且q假(概括为一真即真);命题pq真p真且q真,pq假p假或q假(概括为一假即假);┐p真p假,┐p假p真(概括为一真一假)。

2021高考数学知识点易错梳理

2021高考数学知识点易错梳理

2021高考数学知识点易错梳理高中数学知识易错点梳理一、集合,简单逻辑,函数1.研究集合必须注意集合元素的特征即三性(确定,互异,无序);如果集合a={x,XY,lgxy},集合B={0,{x,y},a=B,那么x+y=2.研究集合,首先必须弄清代表元素,才能理解集合的意义。

已知道集合M={y|y=X2,X∈ r} n={y|y=x+1,x∈ r} ,找到我∩ N2设置M={(x,y){y=X2,x∈ r} n={(x,y){y=x+1,x∈ r}2找出M和∩ N3.集合a、b,a?b??时,你是否注意到“极端”情况:a??或b??;求集合的子集A.B.你是否忘记了例如:a2x22a2x10对一切x?r恒成立,求a的取植范围,你讨论过a=2的情况吗?4.对于含有n个元素的有限集合m,其子集、真子集、非空子集合和非空真子集的数量是2n,2n?1,2n?2.是否满足第2n条?1.件{1}?M{1,2,3,4}的m有多少集5.解集合问题的基本工具是韦恩图;某文艺小组共有10名成会员,每人至少可以唱歌和跳舞一项,其中7人可以唱歌和跳舞,5人可以。

现在选择一个能唱歌跳舞的人来表演唱歌和跳舞节目。

有多少种不同的选择?6.两组之间的关系。

M{xx?2k?1,k?z},n?{xx?4k?1,k?z}7.(cua)∩(cub)=cu(a∪b)(cua)∪(cub)=cu(a∩b);A.BBBA.8、可以判断真假的语句叫做命题.逻辑连接词有“或”、“且”和“非”.p、q形式的复合命题的真值表:P正确或错误Q正确或错误P和Q正确或错误P或Q正确或错误9、命题的四种形式及其相互关系原命题互逆逆命题若p则q若q则p互互互为互否逆逆否否否否命题逆否命题若辏鹪颚q若辏裨颚辏否互逆原命题与逆否命题同真同假;逆命题与否命题同真同假.10.你了解地图的概念吗?映射f:在a中→ B、 a中元素的任意性和B中相应元素的唯一性可以映射吗?11、函数的几个重要性质:① 如果函数y?F十、为了一切x?r、都是f?A.十、FA.十、或者F(2a-x)=F (x),那么函数y?F十、关于x线?对称的② 功能y?F十、函数y呢?F十、关于x 线?0对称;功能y?F十、函数y??F十、Y0对称;函数y?f?x?与函数y??f??x?的图象关于坐标原点对称.③若奇函数y?f?x?在区间?0,上是递增函数,则y?f?x?在区间,0?上也是递增函数.④ 如果连函数y都没有?F十、在中场休息时?0是一个递增函数,那么y?F十、在间歇期,这是一个递减函数⑤函数y?f?x?a?(a?0)的图象是把函数y?f?x?的图象沿x轴向左平移a个单位得到的;函数y?f?x?a?((a?0)的图象是把函数y?f?x?的图象沿x轴向右平移A单位;函数y?f?x?+a(a?0)的图象是把函数y?f?x?助图象沿y轴向上平移a个单位得到的;函数y?f?x?+a(a?0)的图象是把函数y?f?x?助图象沿y轴向下平移a个单位得到的.12.在寻找函数的解析表达式和函数的逆函数时,是否标记了函数的定义域?13、求函数的定义域的常见类型记住了吗?函数y=定义域是;复合函数的定义域清楚吗?函数f(x)的定义域是[0,1],findf(log0.5x)x(4?x)lg(x?3)2的定义函数的域的定义域F(x)的域是[a,b],b??A.0,找到函数f(x)?f(x)?f(?x)14、含参的二次函数的值域、最值要记得讨论。

高考数学易混淆知识点总结

高考数学易混淆知识点总结

高考数学易混淆知识点总结数学是高考科目中一个相对容易失分的科目,很多学生在数学考试中容易混淆一些知识点,导致失分。

为了帮助大家更好地复习数学,我总结了一些容易混淆的知识点,希望对大家有所帮助。

一、代数知识点1. 二次函数与二次方程的区别二次函数是形如y=ax²+bx+c的函数,a≠0,其中a、b、c 是常数,x是自变量,y是因变量。

二次函数的图像是抛物线。

二次方程是形如ax²+bx+c=0的方程,a≠0,其中a、b、c 是常数,x是未知数。

解二次方程就是找到方程的根,也就是方程的解。

混淆的原因:二次函数和二次方程的公式都带有x²,容易让人混淆。

解决方法:理解二次函数和二次方程的概念和特点,二次函数是一个函数关系,而二次方程是一个方程,要求找到方程的解。

2. 整式与多项式的区别整式是由有限个数的项用加法和减法连接起来的代数表达式,每一项的指数必须是非负整数。

多项式是特殊的整式,是由若干项用加法和减法连接起来的代数表达式,每一项的指数必须是非负整数,并且不能有分式以及根式。

混淆的原因:整式是多项式的一种特殊情况,容易被误认为整式就是多项式。

解决方法:了解整式和多项式的定义和概念,多项式是整式的一种常见形式。

3. 幂的混淆正整数次幂:a^n=a×a×...×a,其中a是底数,n是指数。

零次幂:a^0=1,其中a≠0。

负整数次幂:a^(-n)=1/(a^n),其中a≠0。

混淆的原因:容易混淆正整数次幂、零次幂和负整数次幂的概念。

解决方法:理解正整数次幂、零次幂和负整数次幂的定义和特点,注意在计算幂时要遵循相应的规律。

二、几何知识点1. 长度与面积的混淆长度是表示一条线段的大小,通常用单位长度来度量,如厘米、米等。

面积是表示一个平面图形大小的量,通常用单位面积来度量,如平方厘米、平方米等。

混淆的原因:长度和面积都是度量物体大小的量,容易混淆。

解决方法:理解长度和面积的概念和计算方法,注意在计算时要根据题目中的要求选择适当的计算方式。

高中数学易混易错知识点大全

高中数学易混易错知识点大全

高中数学易错、易混、易忘备忘录1.在应用条件A ∪B =B⇔A ∩B =A⇔AB时,易忽略A是空集Φ的情况2.求解与函数有关的问题易忽略定义域优先的原则 3 根据定义证明函数的奇偶性时,易忽略检验函数定义域是否关于原点对称 4 求反函数时,易忽略求反函数的定义域 5 单调区间不能用集合或不等式表示. 6 用基本不等式求最值时,易忽略验证“一正二定三等”这一条件7 你知道函数(0,0)b y ax a b x=+>>的单调区间吗?(该函数在(,)-∞+∞和上单调递增;在[和(0上单调递减)这可是一个应用广泛的函数!(其在第一象限的图像就象“√”,特命名为:对勾函数) 是奇函数,图像关于原点对称. 8 解对数函数问题时,你注意到真数与底数的限制条件了吗?(真数大于零,底数大于零且不等于1)字母底数还需讨论呀 9 用判别式判定方程解的个数(或交点的个数)时,易忽略讨论二次项的系数是否为0 尤其是直线与圆锥曲线相交时更易忽略 10 等差数列中的重要性质:若m+n=p+q ,则m n p q a a a a +=+;(反之不成立)等比数列中的重要性质:若m+n=p+q,则m n p a a a a = (反之不成立) 11 用等比数列求和公式求和时,易忽略公比q=1的情况12 已知n S 求n a 时, 易忽略n =1的情况13 等差数列的一个性质:设n S 是数列{n a }的前n 项和, {n a }为等差数列的充要条件是:2n S an bn =+(a, b 为常数)其公差是2a14 你知道怎样的数列求和时要用“错位相减”法吗?(若n n n c a b =其中{n a }是等差数列,{n b }是等比数列,求{n c }的前n 项的和) 15 你还记得裂项求和吗?(如111(1)1n n n n =-++) 16 在解三角问题时,你注意到正切函数的定义域了吗?你注意到正弦函数、余弦函数的有界性了吗?17 你还记得三角化简的通性通法吗?( 异角化同角,异名化同名,高次化低次)18 你还记得在弧度制下弧长公式和扇形面积公式吗?1(||,2l r S lr α==扇形) 19 在三角中,你知道1等于什么吗?(这些统称为1的代换) 常数 “1”的种种代换有着广泛的应用20 0与实数0有区别,0的模为数0,它不是没有方向,而是方向不定 0可以看成与任意向量平行,但与任意向量都不垂直 21 0a =,则0a b ⋅=,但0a b ⋅=不能得到0a =或b = a b ⊥有0a b ⋅= 22 a b =时,有a c b c ⋅=⋅ 反之a c b c ⋅=⋅不能推出a b = 23一般地()()a b c a b c ⋅⋅≠⋅⋅ 24 使用正弦定理时易忘比值还等于2R ::sin :sin :sin a b c A B C = 25 两个不等式相乘时,必须注意同向同正时才能相乘,即同向同正可乘;同时要注意“同号可倒”即a>b>o11a b ⇒<,a<b<o1a b ⇒> 26 分式不等式的一般解题思路是什么?(移项通分、零点分段) 27 解指对数不等式应该注意什么问题?(指数函数与对数函数的单调性, 对数的真数大于零 ) 28 在解含有参数的不等式时,怎样进行讨论?(特别是指数和对数的底或)讨论完之后,要写出:综上所述,原不等式的解是…… 29常用放缩技巧:211111111(1)(1)1n n n n n n n n n-=<<=-++-- k k k k k k k k k +-=+-<<++=-+1112111130用直线的点斜式、斜截式设直线的方程时, 易忽略斜率不存在的情况31直线的倾斜角、到的角、与的夹角的取值范围依次是[0,),(0,),(0,2πππ 32 函数的图象的平移、方程的平移以及点的平移公式易混:33sin sin()3x x x y x y x πππ→-=−−−−−−→=-沿轴向右平移① 22sin 2sin ,sin 2y y y y x y x y x →-=−−−−−→-==+沿轴向上平移②即 212sin sin 2x x x y x y x →=−−−−−−−→=沿轴缩短到原来的③ 1221sin sin 2x x x y x y x →=−−−−−−−→=沿轴伸长到原来的倍④ 2121sin 2sin ,sin 2y y y y x y x y x →=−−−−−−−→==沿轴缩短到原来的⑤即 1221sin sin ,2sin 2y y y y x y x y x →=−−−−−−−→==沿轴伸长到原来的倍⑥即 33 定比分点的坐标公式是什么?(起点,中点,分点以及值可要搞清) 34 直线在坐标轴上的截距可正,可负,也可为0 35 处理直线与圆的位置关系有两种方法:(1)点到直线的距离;(2)直线方程与圆的方程联立,判别式 一般来说,前者更简捷 36处理圆与圆的位置关系,可用两圆的圆心距与半径之间的关系 37 在圆中,注意利用半径、半弦长、及弦心距组成的直角三角形 38 还记得圆锥曲线方程中的a,b,c,p ,ca a c 2,的意义吗? 39 离心率的大小与曲线的形状有何关系?(圆扁程度,张口大小)等轴双曲线的离心率是多少?40 在用圆锥曲线与直线联立求解时,消元后得到的方程中要注意:二次项的系数是否为零?判别式的限制 (求交点,弦长,中点,斜率,对称,存在性问题都在下进行) 41 椭圆中,注意焦点、中心、短轴端点所组成的直角三角形 (a ,b ,c ) 42 通径是抛物线的所有焦点弦中最短的弦 (通径是过焦点,且垂直于x 轴的弦) 43 你知道椭圆、双曲线标准方程中a ,b ,c 之间关系的差异吗?45作出二面角的平面角主要方法是什么?(定义法、三垂线法、垂面法)三垂线法:一定平面,二作垂线,三作斜线,射影可见 46 求点到面的距离的常规方法是什么?(直接法、等体积法、换点法、向量法) 47 求多面体体积的常规方法是什么?(割补法、等积变换法) 48 两条异面直线所成的角的范围:0°<α≤90°直线与平面所成的角的范围:0o ≤α≤90°二面角的平面角的取值范围:0°≤α≤180° 49 二项式()na b +展开式的通项公式中a与b的顺序不变 50 二项式系数与展开式某一项的系数易混, 第r+1项的二项式系数为rn C 51 二项式系数最大项与展开式中系数最大项易混 二项式系数最大项为中间一项或两项;展开式中系数最大项的求法为用解不等式组112r r r r T T T T +++≥⎧⎨≥⎩来确定r 52 解排列组合问题的依据是:分类相加,分步相乘,有序排列,无序组合 53 解排列组合问题的规律是:相邻问题捆绑法;不邻问题插空法;多排问题单排法;定位问题优先法;定序问题倍缩法;多元问题分类法;有序分配问题法;选取问题先排后排法;至多至少问题间接法或看为若干个恰好 54 二项式展开式的通项公式、n 次独立重复试验中事件A 发生k 次的概率与二项分布的分布列三者易记混通项公式:1r n r r r n T C a b -+= (它是第r+1项而不是第r项)事件A 发生k 次的概率:()(1)k k n k n n P k C p p -=-其中k=0,1,2,3,…,n,且0<p<1,p+q=1 55 常见函数的导数公式:0'=C ;1)'(-=n n nx x ;x x cos )'(sin =;x x sin )'(cos -= x x )'(ln = xx a a log 1)'(log = x x e e =)'( a a a x x ln )'(= 2();u u v uv uv u v uv v v '''-⎛⎫'''=+= ⎪⎝⎭,(())u x f u x f u '''=⋅高中数学重要基础知识记忆检查一、幂函数、指数函数和对数函数1、由n 个元素组成的集合,其非空真子集个数为 。

2021高中数学易错点整理附详细答案

2021高中数学易错点整理附详细答案
确定,应分类讨论,另外有关三个“二次”之间的关系的结论也是我们应关注的对象。例如:
ax2 + bx + c > 0 解集为 R Û a > 0, D < 0或a=b=0,c>0
ax2 + bx + c > 0 解集为 Æ Û a < 0, D £ 0或a=b=0,c £ 0
易错点 13 用函数图象解题时作图不准
易错点 8 求函数定义域时条件考虑不充分
【问题】: 求函数 y=
1
+ (x +1)0 的定义域。
3- 2x - x2
错解:[-3,1]
剖析:基础不牢,忽视分母不为零;误以为 (x +1)0 =1 对任意实数成立。
正确答案: (-3, -1) ! (-1,1)
反思:函数定义域是使函数有意义的自变量的取值范围,因此求定义域时就要根据函数解析式把 各种情况下的自变量的限制条件找出来,列成不等式组,不等式组的解集就是该函数定义域。在 求函数的定义域时应注意以下几点①分式的分母不为零;②偶次根式被开方式非负;③对数的真 数大于零;④零的零次幂没有意义;⑤函数的定义域是非空的数集。 易错点 9 求复合函数定义域时忽视“内层函数的值域是外层函数的定义域”
错解:! f (-x) = f (x) ,∴为偶函数
剖析:不求函数定义域只看表面解析式,只能得到偶函数这一结论,导致错误。 正确答案:既奇且偶函数。 反思:函数具有奇偶性的必要条件是其定义域关于原点对称。如果不具备这个条件,一定是非奇
非偶函数。在定义域关于原点对称的前提下,如果对定义域内任意 x 都有 f (-x) = - f (x) ,则
错解: A ! B = {(0, 2), (-2, 0)} 正确答案: A ! B = F 剖析:审题不慎,忽视代表元素,误认为 A 为点集。

高中数学知识点易错点梳理

高中数学知识点易错点梳理

高中数学知识点易错点梳理一、集合、简易逻辑、函数1. 研究集合必须注意集合元素的特点即三性(确定,互异,无序); 集合A={x,xy,lgxy},集合B={0,|x |,y},且A=B,那么x+y=2. 研究集合,第一必须弄清代表元素,才能明白得集合的意义.〔1〕〝集合M={y |y=x 2 ,x ∈R},N={y |y=x 2+1,x ∈R},求M ∩N 〞;与〝集合M={〔x,y 〕|y=x 2 ,x ∈R},N={(x,y)|y=x 2+1,x ∈R}求M ∩N 〞的区不.〔2〕集合{}{}A B ==圆,直线,那么A B 中的元素个数是____个.你注意空集了吗?〔3〕设()f x 的定义域A 是无限集,那么以下集合中必为无限集的有①{|(),}y y f x x A =∈ ②{(,)|(),}x y y f x x A =∈③{|()0,}x f x x A ≥∈ ④{|()2,}x f x x A =∈ ⑤{|()}x y f x =3. 集合 A 、B ,∅=⋂B A 时,你是否注意到〝极端〞情形:∅=A 或∅=B ;求集合的子集B A ⊆时是否不记得A =∅.例如:()()012222<--+-x a x a 对一切R x ∈恒成立,求a 的取植范畴,你讨论了2a =的情形了吗?4. (C U A)∩( C U B) = C U (A ∪B) , (C U A)∪( C U B) = C U (A ∩B); ,A B B B A A B B A B =⇔⊆=⇔⊆,关于含有n 个元素的有限集合M , 其子集、真子集、非空子集、非空真子集的个数依次为,n 2,12-n ,12-n .22-n如满足条件}4,3,2,1{}1{⊂⊆M 的集合M 共有多少个?〔专门注意∅〕5. 解集合咨询题的差不多工具是韦恩图.某文艺小组共有10名成员,每人至少会唱歌和跳舞中的一项,其中7人会唱歌跳舞5人会,现从中选出会唱歌和会跳舞的各一人,表演一个唱歌和一个跳舞节目,咨询有多少种不同的选法?6. 两集合之间的关系.},14{},,12{Z k k x x N Z k k x x M ∈±==∈+==7. 命题的四种形式及其相互关系;全称命题和存在命题. 〔1〕原命题与逆否命题同真同假;逆命题与否命题同真同假.〔2〕〝命题的否定〞与〝否命题〞的区不:____________________ 练习:〔1〕命题〝异面直线,a b 不垂直,那么过a 的任一平面与b 都不垂直〞,求出该命题的否命题.〔2〕命题〝2,3x Q x ∃∈=使成立〞,求该命题的否定.〔3〕假设存在..[13]a ∈,,使不等式2(2)20ax a x +-->,求x 的取值范畴.8、你对映射的概念了解了吗?映射f :A →B 中,A 中元素的任意性和B 中与它对应元素的唯独性,映射与函数的关系如何?例如:函数()x f y =与直线a x =的交点的个数有 个 9、函数的几个重要性质:①假如函数()x f y =关于一切R x ∈,都有()()x a f x a f -=+或f〔2a-x 〕=f 〔x 〕,那么函数()x f y =的图象关于直线a x =对称. ②函数()x f y =与函数()x f y -=的图象关于直线0=x 对称; 函数()x f y =与函数()x f y -=的图象关于直线0=y 对称; 函数()x f y =与函数()x f y --=的图象关于坐标原点对称. ③假设奇函数()x f y =在区间()+∞,0上是递增函数,那么()x f y =在区间()0,∞-上也是递增函数.④假设偶函数()x f y =在区间()+∞,0上是递增函数,那么()x f y =在区间()0,∞-上是递减函数.⑤函数()a x f y +=)0(>a 的图象是把函数()x f y =的图象沿x 轴向左平移a 个单位得到的;函数()a x f y +=()0(<a 的图象是把函数()x f y =的图象沿x 轴向右平移a 个单位得到的;函数()x f y =+a )0(>a 的图象是把函数()x f y =助图象沿y 轴向上平移a 个单位得到的;函数()x f y =+a )0(<a 的图象是把函数()x f y =助图象沿y 轴向下平移a 个单位得到的.⑥函数()y f x a =-+与函数()y f x b =+的图象关于直线2a bx -=对称例如:〔1〕函数()x f y =满足()()11f x f x +=-+那么关于直线 对称〔2〕函数()1y f x =+与()1y f x =-+关于直线 对称 〔3〕函数2log 1y ax =-〔0a ≠〕的图象关于直线2x =对称,那么a=〔4〕函数sin 3y x =的图象可由1cos3y x =-的图象按向量a = 〔a 最小〕平移得到.10、求一个函数的解析式,你标注了该函数的定义域了吗? 例如:〔1〕假设(sin )cos 2f x x =,那么()f x = 〔2〕假设3311()f x x xx+=+,那么()f x = 11、求函数的定义域的常见类型记住了吗?复合函数的定义域弄清了吗? 例如:〔1〕函数y=2)3lg()4(--x x x 的定义域是 ;〔2〕函数)(x f 的定义域是[0,1],求)(log 5.0x f 的定义域.〔3〕函数(2)xf 的定义域是〔0,1],求2(log )f x 的定义域.函数)(x f 的定义域是[b a ,],,0>->a b 求函数)()()(x f x f x F -+=的定义域12、你明白求函数值域的常用方法有哪些吗,含参的二次函数的值域、最值要记得讨论.例如〔1〕函数()x f y =的值域是[b a ,],那么函数()1y f x =-的值域是〔2〕函数y x =-的值域是〔3〕函数y x =+的值域是〔4〕函数2121x x y -=+的值域是13、 判定一个函数的奇偶性时,你注意到函数的定义域是否关于原点对称...........那个必要非充分条件了吗? 在公共定义域内:两个奇函数的乘积是偶函数;两个偶函数的乘积是偶函数;一个奇函数与一个偶函数的乘积是奇函数; 例如:〔1〕函数()2(0)f x x x =≥的奇偶性是〔2〕函数()x f y =是R 上的奇函数,且0x >时,()12xf x =+,那么()f x 的表达式为14、依照定义证明函数的单调性时,规范格式是什么?(取值, 作差, 判正负.)可不忘了导数也是判定函数单调性的一种重要方法.在求函数的单调区间或求解不等式时,你明白函数的定义域要优先考虑吗?例如:〔1〕函数212log (23)y x x =--的单调减区间为〔2〕假设函数212log (3)y x ax a =-+在区间[)2,+∞上是减函数,那么实数a 的取值范畴是〔3〕假设定义在R 上的偶函数()f x 在区间[)0,+∞上是单调增函数,那么不等式()1f ()lg f x <的解集为15、你明白钩型函数()0>+=a xax y 的单调区间吗?〔该函数在(]a -∞-,和[)+∞,a 上单调递增;在[)0,a -和(]a ,0上单调递减〕这但是一个应用广泛的函数!例如:函数2y =的值域为 2y =的值域为16、幂函数与指数函数有何区不?例如:〔1〕假设幂函数()()()223233f x xαααα--=-+是()0,+∞上的单调减函数,那么α=〔2〕假设关于x 的方程4210xxa a +++=有解,那么实数a 的取值范畴是17、对数的换底公式及它的变形,你把握了吗?〔b b ab b a n ac c a n log log ,log log log ==〕你还记得对数恒等式吗?〔b a ba =log 〕例如:〔1〕x 、y 、z ()0,∈+∞且346xyz==,那么3x 、4y 、6z 的大小关系可按从小到大的顺序排列为〔2〕假设集合111log 2,23n A n n N ⎧⎫⎪⎪=-≤≤-∈⎨⎬⎪⎪⎩⎭,那么A 的子集有 个18、求解对数函数咨询题时,注意真数与底数的限制条件! 例如:〔1〕方程122log (2)x x -=+的解的个数是〔2〕不等式(1)(1)log (21)log (1)a a x x --->-成立的充要条件是19、〝实系数一元二次方程02=++c bx ax 有实数解〞转化为〝042≥-=∆ac b 〞,你是否注意到必须0≠a ;当a=0时,〝方程有解〞不能转化为042≥-=∆ac b .假设原题中没有指出是〝二次〞方程、函数或不等式,你是否考虑到二次项系数可能为零的情形?函数()()22lg 111y a x a x ⎡⎤=-+++⎣⎦〔1〕假设函数的定义域为R ,求a 的取值范畴是 〔2〕假设函数的值域为R ,求a 的取值范畴是二.三角1. 三角公式记住了吗?两角和与差的公式________________; 二倍角公式:_________________解题时本着〝三看〞的差不多原那么来进行:〝看角,看函数,看特点〞,差不多的技巧有:巧变角,公式变形使用,化切割为弦,用倍角公式将高次降次, 2. 在解三角咨询题时,你注意到正切函数、余切函数的定义域了吗?正切函数在整个定义域内是 否为单调函数?你注意到正弦函数、余弦函数的有界性了吗?3. 在三角中,你明白1等于什么吗?〔221sin cos x x =+tan cot tansincos0142x x ππ=⋅====这些统称为1的代换) 常数 〝1”的种种代换有着广泛的应用.诱导公试:奇变偶不变,符号看象限4. 在三角的恒等变形中,要专门注意角的各种变换.〔如,)(αβαβ-+=,)(αβαβ+-=⎪⎭⎫⎝⎛--⎪⎭⎫ ⎝⎛-=+βαβαβα222等〕5. 你还记得三角化简题的要求是什么吗?项数最少、函数种类最少、分母不含三角函数、且能求出值的式子,一定要算出值来〕6. 你还记得三角化简的通性通法吗?〔切化弦、降幂公式、用三角公式转化显现专门角. 异角化同角,异名化同名,高次化低次〕;你还记得降幂公式吗?cos 2x=(1+cos2x)/2;sin 2x=(1-cos2x)/2 7. 你还记得某些专门角的三角函数值吗?会求吗?41518sin ,42615cos 75sin ,42675cos 15sin -=︒+=︒=︒-=︒=︒练习: 〔1〕tan (0)ba aθ=≠是cos2sin 2a b a θθ+=的 条件. 解析:sin tan sin cos sin sin cos sin cos 1cos 2sin 2cos 2sin 222b b a b a b a aa b a b aθθθθθθθθθθθθθ=⇔=⇔=⇔=-⇔=⇔+=反之,假设cos2sin 2a b a θθ+=成立,那么未必有tan ,ba θ=取0,2a πθ==-即可,故为充分不必要条件易错缘故:未考虑tan θ不存在的情形〔2〕34sin,cos ,2525θθ==-那么θ角的终边在 解析:因为34sin ,cos ,2525θθ==-故2θ是第二象限角,即22()22k k k Z πθπππ+<<+∈,故424()k k k Z ππθππ+<<+∈,在第三或第四象限以上的结果是错误的,正确的如下:由34sin,cos ,2525θθ==-知322()42k k k Z πθπππ+<<+∈ 因此3424()2k k k Z ππθππ+<<+∈,故在第四象限易错缘故:角度的存在区间范畴过大8. 你还记得在弧度制下弧长公式和扇形面积公式吗?(lr S r l 21,==扇形α) 9. 辅助角公式:()θ++=+x b a x b x a sin cos sin 22(其中θ角所在的象限由a, b 的符号确定,θ角的值由ab=θtan 确定)在求最值、化简时起着重要作用.10. 三角函数〔正弦、余弦、正切〕图象的草图能迅速画出吗?能写出他们的单调区、对称轴,取最值时的x 值的集合吗?〔不忘了k ∈Z 〕三角函数性质要记牢.函数y=++⋅)sin(ϕωx A k 的图象及性质: 振幅|A|,周期T=ωπ2, 假设x=x 0为此函数的对称轴,那么x 0是使y 取到最值的点,反之亦然,使y 取到最值的x 的集合为 , 当0,0>>A ω时函数的增区间为 ,减区间为 ;当0<ω时要利用诱导公式将ω变为大于零后再用上面的结论. 五点作图法:令ϕω+x 依次为ππππ2,23,,2求出x 与y ,依点()y x,作图 练习: 如图,摩天轮的半径为40m ,点O 距地面的高度为50m ,摩天轮做匀速转动,每3min 转一圈,摩天轮上的点P 的起始位置在最低点处,〔1〕试确定在时刻min t 时点P 距地面的高度;〔2〕摩天轮转动的一圈内,有多长时刻点P 距地面超过70m ?11.三角函数图像变换:〔1〕将函数为()y f x = 的图像向右平移4π个单位后,再作关于x 轴的对称变换,得到函数cos 2y x =的图像,那么()f x =〔2〕()2sin()2cos 6f x x x π=+-的图像按向量m 平移得到()g x 的图像,假设()g x 是偶函数,求||m 最小的向量m12.有关斜三角形的几个结论:在Rt ABC ∆中,222,,AC AD AB BC BD BA CD AD BD ===内切圆半径2a b cr +-=〔S 为ABC ∆的面积〕在ABC ∆中,①sin()sin ,cos()cos ,A B C A B C +=+=-tan tan tan tan an tan A B C A t B C ++=sin cos ,cos sin 2222A B C A B C ++==②正弦定理③余弦定理④面积公式111sin sin sin 222S ab C bc A ac B === ⑤内切圆半径2sr a b c=++13.在ABC ∆中,判定以下命题的正误〔1〕A B >的充要条件是cos2cos2A B <(2) tan tan tan 0A B C ++>,那么ABC ∆是锐角三角形〔3〕假设ABC ∆是锐角三角形,那么cos sin A B <三、数列1.等差数列中的重要性质:〔1〕假设q p n m +=+,那么q p n m a a a a +=+;〔2〕仍成等差数列数列}{ka },{a },{n 2n 12b a n +-;仍成等差数列n 23n n 2n n S S , S S , S --数列; 〔3〕假设{n a },{n b }是等差数列,,n n S T 分不为它们的前n 项和,那么2121m m m m a S b T --=; 〔4〕在等差数列中,求S n 的最大(小)值,其中一个思路是找出最后一正项〔负项〕k a ,那么max(min)()n k S S = 练习:B①在等差数列{n a }中,假设9418,240,30n n S S a -===,那么n = ②{n a },{n b }差不多上等差数列,前n 项和分不为,n n S T ,且2132n n S n T n -=+,那么99a b = ③假设{n a }的首项为14,前n 和为n S ,点1(,)n n a a +在直线20x y --=上,那n S 最大时,n =2.等比数列中的重要性质:〔1〕假设q p n m +=+,那么q p n m a a a a ⋅=⋅; 〔2〕k S ,k k S S -2,k k S S 23-成等比数列;〔3〕假设{n a }是等差数列,那么{n ab }是等比数列,假设{n a }是等比数列且0n a >,那么{log n a b }是等差数列;〔4〕类比等差数列而得的有关结论练习:①假设{n a }是等比数列,4738512,124a a a a =-+=,公比q 为整数,那么10a =②数列{n x }满足31212313521nn x x x x x x x x n ====++++-,同时128n x x x +++=,那么1x =③等差数列{n a }满足12212nn a a na b n+++=+++,那么{n b }也是等差数列,类比等比数列{n A }满足 3.等差数列的通项,前n 项和公式的再认识:①1(1)n a a n d An B =+-=+是关于n 的一次函数, ②1()2n n n a a S n a +==中, ③2n S An Bn =+等比数列呢? 练习:等比数列{n a }中,前n 项和123n n S r -=⨯+,那么r =4.你明白 〝错位相减〞 求和吗?〔如:求1{(21)33}n n --⋅-的前n 项和〕你明白 〝裂项相消〞 求和吗?〔如:求1{}(2)n n +的前n 项和〕5.由递推关系求通项的常见方法: 练习:①{n a }中,112,21n n a a a +==-,那么n a =②{n a }中,1112,22n n n a a a ++==+,那么n a = 〔注:关系式中的2换成3呢〕③{n a }满足123,2a a ==且21212n n n a a a n n++=-+-,那么n a =④{n a }满足11a =且212n n n a a a +=+,那么n a =⑤{n a }满足12a =且1121()2n n a a a a +=+++,那么n a = ,n s =6.善于捕捉利用分项求和与放缩法使所得数列为等差等比数列再求和的机会 练习:①正项数列{n a }中,111,21n n a a a +=<+,求证:12111111112n n a a a +++>-+++ 分析:1111112112(1)121n n n n n n a a a a a a +++<+⇒+<+⇒>++231211111111()()()111122222n n n a a a +++>++++=-+++ ②{n a }中111,(2,)(1)!n a a n n N n +==≥∈-,求证:1233n a a a a ++++<分析:11111(3)(1)!123(2)(1)(2)(1)21n a n n n n n n n n ==<=-≥-------12311111111133223211n a a a a n n n ++++≤++-+-++-=-<---四、不等式1、同向不等式能相减,相除吗?2、不等式的解集的规范书写格式是什么?〔一样要写成集合的表达式〕3、分式不等式()()()0≠>a a x g x f 的一样解题思路是什么?〔移项通分,分子分母分解因式,x 的系数变为正值,奇穿偶回〕4、解指对不等式应该注意什么咨询题?〔指数函数与对数函数的单调性, 对数的真数大于零.〕5、含有两个绝对值的不等式如何去绝对值?(一样是依照定义分类讨论)6、利用重要不等式ab b a 2≥+ 以及变式22⎪⎭⎫⎝⎛+≤b a ab 等求函数的最值时,你是否注意到a ,b +∈R 〔或a ,b 非负〕,且〝等号成立〞时的条件,积ab 或和a +b 其中之一应是定值?(一正二定三相等)7、) R b , (a , ba 2ab 2222+∈+≥≥+≥+ab b a b a (当且仅当c b a ==时,取等号〕; a 、b 、c ∈R ,ca bc ab c b a ++≥++222〔当且仅当c b a ==时,取等号〕;8、在解含有参数的不等式时,如何样进行讨论?〔专门是指数和对数的底10<<a 或1>a 〕讨论完之后,要写出:综上所述,原不等式的解集是……. 9、解含参数的不等式的通法是〝定义域为前提,函数增减性为基础,分类讨论是关键.〞10、关于不等式恒成立咨询题,常用的处理方式?〔转化为最值咨询题〕五、向量1.两向量平行或共线的条件,它们两种形式表示,你还记得吗?注意b a λ=是向量平行的充分不必要条件.(定义及坐标表示)2.向量能够解决有关夹角、距离、平行和垂直等咨询题,要记住以下公式:||2=·,21cos ||||a ba b x θ•==+3.利用向量平行或垂直来解决解析几何中的平行和垂直咨询题能够不用讨论斜率不存在的情形,要注意: (1)0,(,],0,,022a b a b a b a b a b πππ•<⇔<>∈•=⇔<>=•>,[0,)2a b π⇔<>∈〔2〕0<•b a 是向量夹角为钝角的必要而非充分条件.4.向量的运算要和实数运算有区不:〔1〕如两边不能约去一个向量,即a b a c •=•推不出b c =,〔2〕向量的乘法不满足结合律,即)()(•≠•,〔3〕两向量不能相除. 5.你还记得向量差不多定理的几何意义吗?它的实质确实是平面内的任何向量都能够用平面内任意不共线的两个向量线性表示,它的系数的含义与求法你清晰吗?6.几个重要结论:〔1〕,OA OB 不共线,OP OA OB λμ=+,那么A ,P ,B 三点共线的充要条件是1λμ+=;〔2〕向量中点公式:假设C 是AB 的中点,那么1()2OC OA OB =+;〔3〕向量重心公式:在ABC 中,0OA OB OC ++=⇔O 是ABC 的重心.例:设F 为抛物线24y x =的焦点,A ,B ,C 为该抛物线上三点,假设0FA FB FC ++=,那么||||||FA FB FC ++=__________.7.向量等式OC OA OB λμ=+的常见变形方法:〔1〕两边同时平方;〔2〕两边同时乘以一个向量;〔3〕合并成两个新向量间的线性关系.8.一个封闭图形首尾连接而成的向量和为零向量,这是题目中的天然条件,要注意运用,关于一个向量等式,能够移项,两边平方、两边同乘以一个实数,两边同时取模,两边同乘以 一个向量,但不能两边同除以一个向量. 例1.ABC 内接于以O 为圆心,1为半径的圆,且3450OA OB OC ++=,求数量积,,OA OB OB OC OC OA .例2.平面四边形ABCD 中,313,5,5,cos ,5AB AD AC DAC ===∠=12cos 13BAC ∠=,设AC x AB y AD =+,求,x y 的值.例3.如图,设点O 在ABC 内部,且有230OA OB OC ++=,那么:AOCABCSS= ____.六、导数1.导数的几何意义即曲线在该点处的切线的斜率,学会定义的多种变形. 2.几个重要函数的导数:①0'=C ,〔C 为常数〕 ②()'1(xx αααα-=为常数〕③'()ln (0x xa a a a =>且1)a ≠ ④'1(log )(0ln a x a x a=>且1)a ≠ ⑤'()x xe e = ⑥'1(ln )x x=⑦'(sin )cos x x = ⑧'(cos )sin x x =-导数的四运算法那么 ①()()()()()'''f x g x f x g x ±=±②()()''Cf x Cfx =⎡⎤⎣⎦〔C 为常数〕③()()()()()()()'''f x g x fx g x f x g x ⋅=⋅+⋅④()()()()()()()()'''2(0)f x f x g x f x g x g x g x g x ⎡⎤⋅-⋅=≠⎢⎥⎣⎦3. 利用导数能够证明或判定函数的单调性,注意当'()0f x ≥或'()0f x ≤,带上等号. 例.20,a b =≠且关于x 的函数3211()32f x x a x a bx =+⋅+⋅在R 上有极值,那么a 与b 的夹角的范畴为4.0()0f x '=是函数f(x)在x 0处取得极值的必要非充分条件,f(x)在x 0处取得极值的充分必要条件是什么? 5.求函数极值的方法: 〔1〕先找定义域,求导数()x f ';〔2〕求方程()x f'=0的根n x x x ,,,21 找出定义域的分界点;〔3〕列表,依照单调性求出极值. ()f x 在0x 处的极值为A ,相当于给出了两个条件:①函数在此点导数值为零,②函数在此点的值为定值. 6. 利用导数求最值的步骤:〔1〕求函数在给定区间上的极值;〔2〕比较区间端点所对的函数值与极值的大小,确定最大值与最小值. 7.含有参数的函数求最值的方法:看导数为0的点与定义域之间的关系. 8.利用导数证明不等式()()f x g x >的步骤: 〔1〕作差()()()F x f x g x =-;〔2〕判定函数()F x 在定义域上的单调性并求它的最小值; 〔3〕判定最小值0A ≥;〔4〕结论:()0F x A >≥,那么()()f x g x >. 9.利用导数判定方程的解的情形..函数()f x 在1x =处的导数为1,那么当0x →时(1)(1)2f x f x+-趋近于解析:由定义得当0x →时,'(1)(1)1(1)(1)11(1)2222f x f f x f f x x +-+∆-=⋅=⋅=∆易错缘故:可不能利用导数的定义来解题.例2.函数32()f x x ax bx c =+++,其中,,a b c R ∈,当230a b -<时,()f x 在R 上的增减性是解析:'2()32f x x ax b =++,那么24(3)0a b ∆=-<在R 上'()0f x >,故是增函数.易错缘故:不善于利用导函数的""∆来判不单调性.例3.假设函数3'21()(1)53f x x f x x =--⋅++,那么'(1)f -= 解析:设321()53f x x ax x =-++,那么'2()21f x x ax =-+.故'(1)22f a -=+.由22a a =+知2a =-.有'(1)f -=-2.易错缘故:可不能运用待定系数法解题.例4.3()f x x x =-,那么当(0,2)x ∈时,()f x 的值域为解析:'2()31f x x =-,令'()03f x x >⇒>,()f x ∴在区间2⎤⎥⎣⎦上单调增,在区间⎡⎢⎣⎦上单调减,()f x ∴的值域为⎡⎤⎢⎥⎣⎦. 易错缘故:求导之后判不单调区间时概念模糊.七.概率:1.古典概型和几何概型的区不.例如:(1)任意取实数x ∈[1,100],恰好落在[50,100]之间的概率为 (2)任意取整数x ∈[1,100],恰好落在[50,100]之间的概率为 2.有关某个事件概率的求法:把所求的事件转化为等可能事件的概率,转化为假设干个互斥事件中有一个发生的概率,利用对立事件的概率. 〔1〕假设A 、B 互斥,那么P 〔A+B 〕=P 〔A 〕+P 〔B 〕; 〔2〕假设A 、B 对立,那么()1()P A P A =-.3.概率题的解题步骤: (1)记事件(2)交代总共结果数与A 事件中结果数(几何概率即D,d ) (3)运算 (4)作答例如.1、在等腰直角三角形ABC 中,〔1〕在斜边AB 上任取一点M ,求AM 小于AC 的概率;〔2〕过顶点C 在ACB ∠内任作一条射线CM ,与线段AB 交于点M ,求AM AC <的概率.2.在矩形ABCD 中,AB=5,AC=7,在矩形内任取一点P ,求090APB ∠>的概率. 八、统计:1.抽样方法要紧有简单随机抽样〔抽签法、随机数表法〕常常用于总体数目较少时,要紧特点是从总体中逐个抽取;系统抽样,常用于总体个数较多时,要紧特点是均衡分成假设干部分,每部分只取一个;分层抽样,要紧特点是分层按比例抽样,要紧使用于总体中有明显差异。

高中数学易错知识梳理

高中数学易错知识梳理

高中数学易错知识梳理高中数学的学习是一个不断积累和总结的过程。

在这个过程中,同学们常常会因为一些易错点而丢分。

下面,我将为大家梳理一下高中数学中常见的易错知识,希望能对大家的学习有所帮助。

一、集合1、忽视空集的存在在求解集合的关系或运算时,容易忽略空集的情况。

空集是任何集合的子集,是任何非空集合的真子集。

例如,集合 A={x | x² 2x + 1 = 0},集合 B={x | x < 1},若 A⊆B,不仅要考虑方程 x² 2x + 1= 0 的解,还要考虑空集的情况。

2、元素与集合、集合与集合的关系混淆元素与集合的关系是“属于(∈)”或“不属于(∉)”,集合与集合的关系是“包含(⊆)”“真包含(⊂)”等。

例如,{1}∈{1, 2, 3}是错误的,应该是{1}⊆{1, 2, 3}。

二、函数1、函数定义域的忽视在求函数的表达式、值域、单调性等问题时,容易忽略函数的定义域。

例如,函数 f(x) = 1 /(x 1),其定义域为x ≠ 1,若在求单调性时不考虑定义域,就会得出错误的结论。

2、函数奇偶性的判断错误判断函数的奇偶性时,要先判断函数的定义域是否关于原点对称。

若定义域不对称,则函数既不是奇函数也不是偶函数。

例如,函数 f(x) =√(x + 1),其定义域为x ≥ -1,不关于原点对称,所以该函数非奇非偶。

3、求函数值域方法不当求函数值域时,方法选择不当会导致错误。

例如,对于形如 f(x) =(ax + b) /(cx + d)的函数,不能简单地用判别式法求值域,要先考虑分母是否为零。

三、导数1、导数的定义理解不清导数的定义是函数在某一点的瞬时变化率,不能简单地认为是函数在某一点的斜率。

例如,对于函数 f(x) =|x|,在 x = 0 处,导数不存在,因为左导数和右导数不相等。

2、求导公式和法则运用错误求导时,容易记错或用错基本函数的求导公式和求导法则。

例如,(sin x)′ = cos x,(cos x)′ = sin x 等。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档