(第六讲)三维地震勘探分解

合集下载

三维地震勘探方法原理与进展

三维地震勘探方法原理与进展

三维地震勘探方法原理与进展1.震源激发:使用震源激发地震波。

常见的震源有人工震源(如重锤、炸药等)和自然地震。

2.地震波传播:地震波在地下沿不同路径传播,并与地下介质发生相互作用。

地震波的传播路径和传播速度取决于地下介质的物理特性,如弹性模量、密度等。

3.接收地震记录:在地震波传播的路径中,设置一系列地震接收器(通常是地震检波器或地震传感器),接收并记录地震波的到达时间、振幅等信息。

4.数据处理与分析:通过对接收到的地震记录进行数据处理和分析,可以得到地震波的传播速度、衰减特性等信息,并进一步推断地下介质的性质。

5.三维地震成像:将地震记录中的信息转化为地下模型,并进行三维地震成像。

常用的地震成像方法包括反演、偏移等。

1.高密度三维数据采集:随着数据采集技术的进步,三维地震勘探可以获得更高密度、更广范围的数据。

这使得勘探人员能够更准确地了解地下构造,并更好地定位资源。

2.多尺度体积建模:三维地震勘探方法逐渐从局部尺度向大范围尺度延伸。

除了对沉积盆地等大尺度地质问题的研究外,也在微观尺度上得到广泛应用,如岩石孔隙结构的研究。

3.三维地震反演技术:传统的地震成像方法主要基于地震波的走时信息,对地下结构的分辨率有限。

而三维地震反演技术可以利用地震波的振幅信息来改善地下结构的分辨率,进一步提高地震勘探的精度。

4.三维地震模拟方法:随着计算机技术的发展,三维地震模拟方法得到了广泛应用。

通过数值模拟地震波在地下的传播过程,可以更好地理解地震波和地下介质的相互作用,为地震勘探提供更准确的解释。

总之,三维地震勘探方法通过收集、处理和分析地震波传播信息来推断地下构造,并取得了显著的进展。

随着技术的进一步改进和计算机技术的不断发展,三维地震勘探将在未来的勘探开发中发挥更重要的作用,为石油、天然气等资源的开发提供更准确和可靠的地质信息。

三维地震

三维地震

• 野外设计时,要考虑地震波的双程旅行 时或界面深度、界面倾角、速度及所需 频率。详细研究这四个参数有助于确定 时间及空间采样间隔及对三维测量成功 与否具有重要作用的覆盖次数及偏移距 的大小。现仅就几个重要参数的选择分 叙如下:
• 1.采样率的确定
• 在空间和时间上的采样密度应满足采样 定理。为保证所有意义反射的完整性, 在地下三个正交方向上的采样都必须保 证足够的密度。时间与空间上的采样率 应分别确定,这与二维的情况完全相似。
01(见图15.4)激发,以球面波方式向下传播。 碰到反射面后,根据惠更斯原理可把反射 界面上每一个点看做是一个新震源,从新 震源发出一系列小的球面波,向四面八方 传播开来。
• 对地面上某个接收点来说,它所接收的反 射波就是这一系列来自反射界面的波的总 和。于是,我们可以研究地下任意点P所产 生的波,在地面 的分布情况。
• 1)道间距的选择
• 根据采样定理,在无相干噪声的情况 下,检波点距应小于等于有意义的信号 的最小波长之半,
x
1 2
s
m
in
(7 3 6)
• 其中smin是最小信号的视波长(沿测线 方向的波长);x是可以选用的最大道距。
• 如果有明显的相干噪声存在,则对噪 声的采样必须保证不把噪声的假频引入 信号的频谱中来
• 下面举一模型实例说明二维地震技术不可 克服的缺陷,这就是有名的W.S.French三 维模型。
• 图为一个平台被一条断层分成的两 个断块。断面为一断层斜坡3,断层上盘有 两个紧靠在一起的穹隆构造1和2。平台上 布置13条测线。
图 7-1a 三维地震模型
• 图15.lb—ld是中的6测线应用不同 数据采集和处理方法所得到的结果。这 条测线从断层上盘开始,穿过穹隆1的顶 部,经过平坦部位,切过窟窿2右翼最低 点,最后与断层陡坡呈450交角进入断层 下盘。

三维地震勘探概述

三维地震勘探概述

第六章三维地震勘探技术
概述
第1节三维地震勘探优点
第2节三维地震资料采集
第3节三维地震资料处理
主讲教师:刘洋
第1节三维地震勘探优点
第6章
VSP 地面地震勘探
地面激发井中接收地面接收接收点激发点
(3)海上四分量地震勘探(单源—四分量)(4)陆上三分量地震勘探(单源—三分量)
模型示意图二维地震成果剖面三维地震成果剖面
第6章
二维资料作的构造等值线图三维资料作的构造等值线图
第6章
第2节三维地震资料采集
第6章
宽线弯线
十字线环形排列

常规正交线束砖墙式奇偶式非正交式
常用三维观测系统--束状观测系统
第6章
8线8炮观测系统
第3节三维地震资料处理
第6章
第六章总结
1.地震勘探的分类
2.三维地震勘探的优点
3.三维观测系统设计的要求
4.三维地震野外采集过程
第六章词汇
时移地震time-lapse seismic
三维地震3D seismic
三分量地震three-component seismic 三维三分量地震3D-3C seismic
面元bin
方位角azimuth。

三维地震勘探资料解释方法

三维地震勘探资料解释方法
2 3 断 层 的解 释 .
褶曲在 三维 地震数据体 上 比较 容易识别 , 其在时 间剖面 上表现为反射波 同相轴 下 凹、 凸或扭 曲; 水平 等时切 片 上 在 上表现为反射波 同相轴 走 向发生弯 曲 , 曲率越 大 , 褶 曲越 则 紧闭 ; 曲率越小 , 则褶 曲越 开阔。
25 陷 落 柱 的 解释 .
层的地质层位 。
均错断时 , 断层 的倾 向和倾 角能 准确地得 到解 释 , 只要在垂 直断层走 向方 向切 剖面 , 面上 的 断层 线 即反映 出断 层倾 剖 向、 倾角 , 位的错断 即反 映出断层 的落差 。当只有 一个 同 层 相轴错断时 , 一方面 要按其 错断 位置判定 , 同时也要 考虑构 造规律 , 其倾角多属推断 。 () 5 断层解 释的审查 : 利用水平 等时切片检查 断层 组合 , 利用联 井剖面对地质层位及断层解 释成 果进行检查 。
场情况 的实 际分 析 , 决定在溜煤 眼上 口安设一套 自动式 挡风 漏斗 , 使其既能保证煤流 的顺利 人仓 , 又可实现 自动挡风。
1 自动 式 挡 风 漏 斗 的 工 作 原 理
1 一漏斗 2一挡风 板 5一动力 臂 3 一固 定 转 轴 4一防 护 挡煤 板 7 一重锤 8 限 位 装 置
断层的解释。
( ) 面的闭合 : 于在垂 直时 问剖面上 依据各 层位 断 2断 对 点确定的断层 面应 在各个方向的时问剖面上进 行闭合 , 以确 保断层位置的准确性 , 延展方 向的可靠性 。断面 闭合 是确定
断 层 空 间 位 置 的 重 要 一 步 , 经过 多次 反 复修 改 才 能 完 成 。 要
新 汶矿 业 集 团协 庄 煤矿 魏 国 王金 合
2 4 第1 0年 期 0

三维地震勘探方法原理与进展

三维地震勘探方法原理与进展

三维地震勘探方法的原理与进展一、原理:70年代中期,著名的W.S.French三维模型问世,它充分地说明了三维地震对解决复杂地质问题的能力和二维地震技术不可克服的缺陷与局限性。

图1-2-1(a)是W.S.French地质模型,—个平台被—条断层切割成两部分,断层下降盘“4”有两个紧靠在—起的穹窿构造“l”和2”,断面“3”是一个斜坡,接个平台布置了13条测线。

图1-2-1(b)。

图1-2-1(c)、图1-2-1(d)是图1-2-1(a)中的第六条测线用不同他处理方法所得到的结果。

这条测线从断层下降盘开始,穿过窍隆“1”的顶部.经过穹窿“2”右翼最低点的平均部位与断层陡坡吴450交角进入上升盘高台。

图1-2-1(b)是未经偏移校正的常规水平叠加剖面,可以明显地看出绕射波和侧面波,弯降“1”被夸大并掩盖了平坦界面,且断面反射右移,同时还出现了来自穹窿“2”的侧面反射波。

图1-2-1(c)是三维偏移剖面,剖面右半部分的穹窿“1”被显示出来,但来自穹窿“2”的侧反射仍然存在,它干扰了平面的反射,同时其他各种侧面波均未能归位,也不能得到正确的解释。

1-2-1(d)是经三维偏移后得到的剖面,剖面上穹窿“2”的侧面反射及各种侧面干扰消失了,断面波、绕射波分别得到归位和收敛,剖面正确地反映了地下构造的真实形态。

上述试验充分说明了三维地震级数对于解决复杂地质构造的能力和三维地震技术本身所不可克服的缺陷。

(a)(b)(c)(d)图1-2-1 W.S.French三维模型试验(a)三维地震模型;(b)原始记录;(c)三维偏移剖面;(d)三维偏移剖面当前三维地震勘探是用反射波法进行的。

二维反射波存在基本原理上有许多相似之处,二者所不同的是三维地震彩高密度的、各种形式的面积观测系统。

所以三维地地震又叫面积观测法,下面简单介绍面积观测系统的反射波时距图。

二、面积测量系统反射波时距图根据物理地震学的原理,地震波从泡点O激发后,以球面波方式向下传播,碰到反射界面后,根据惠更斯原理可以把反射界面上每一个点看作是一个新震源。

三维地震勘探方法原理与进展

三维地震勘探方法原理与进展

三维地震勘探方法原理与进展三维地震勘探是一种利用地震波对地下结构进行成像的方法,它通过记录地震波在地下传播过程中的反射、折射和透射等现象,从而获取地下结构的信息。

与传统的二维地震勘探方法相比,三维地震勘探能够更全面、准确地描述地下构造,并且能够提供更高分辨率的成像结果。

三维地震勘探的原理是利用地震波在地下介质中的传播特性来推断地下结构。

地震波是由地震源产生的一种机械波,它可以在地下介质中传播,并且会遇到不同介质边界的反射、折射和透射等现象。

通过记录地震波的传播时间、振幅和频率等信息,可以建立地震波在地下介质中的传播模型,并通过反演等数学手段将地下结构成像。

1.设计地震勘探方案:根据勘探目标和地质条件,确定地震源和测量装置的部署方式。

常用的地震源包括重锤、震源车和炸药等,测量装置包括地震检波器。

2.采集地震数据:利用地震源激发地震波,在地下布置检波器,并记录地震波在地下传播的过程。

通常采集多个不同位置和方向的地震数据,以获取更完整、准确的地下信息。

3.数据处理:利用信号处理、地震波理论和数学模型等方法对采集到的地震数据进行处理。

这包括地震分析、波场模拟和成像等步骤,通过反演等数学手段将地震数据转化为地下结构信息。

4.地震成像:将处理后的地震数据进行可视化,生成三维地震成像结果。

地震成像方法包括卷积成像、叠前深度偏移和正演模拟等,这些方法可以提供高分辨率的地下结构图像。

1.采集技术的提升:随着测量设备和地震源的不断发展和更新,三维地震勘探的采集效率和数据质量得到了改善。

如引入宽频带地震源、多分量地震数据采集和大角度成像等技术,提高了地震数据的频率响应和波动物性分辨能力。

2.数值模拟方法的发展:为了改善地震数据的处理效果,科学家们对波场模拟方法进行了深入研究。

开发了高效且精确的波动方程求解方法,如有限差分法、有限元法和高阶边界条件法等,这些方法可以更准确地模拟地震波在地下的传播过程。

3.成像技术的提高:为了提高地震勘探的分辨率和准确度,研究人员发展了一系列的地震成像方法。

三维(3D)地震勘探 ppt课件

三维(3D)地震勘探  ppt课件

PPT课件
13
2)平行线型布置
PPT课件
14
3)积木型(又称斜交型)炮点线与接收点线彼此斜交
PPT课件
15
4)路线型(宽线剖面)
沿测线布置检波和炮点,可以得到测线附近条带上的反射资料。 宽线剖面处理后,能确定地下反射界面的位置、倾角和倾向, 分析波的来源,提高剖面信噪比。
PPT课件
16
2、不规则型观测系统
三维地震勘探资料的完整统一性及显示技术的现代化, 更便于人工联机解释。
PPT课件
8
三维地震野外数据采集
观测系统的设计原则 1.在一个共炮点道集式一个共CDP道集内地震道应均匀分布。即,炮点距、道 间距一般均匀分布,布保证同时勘探浅、中、深各目的层。即能取得各反射 层的有用反射波信息,又能用来进行速度分析。 2.在一CDP道集内各炮检距连线的方位方向应当尽可能比较均匀地分布在中心 点的CDP点360°的方位上。 3.地下各点的覆盖参数应尽可能相同,保证叠加参数相同。均匀的覆盖参数 是保证反射记录振幅均匀,频率均匀的前提,从而保证地震记录特征稳定, 便于岩性、岩相研究。
PPT课件
3
发达国家 中国
20世纪70年代开始使用 20世纪80年代迅速发展起来
野外资料采集→室内资料处理→成果解释
三维地震是将地震测网按一定规律布置成方格 状或环状的地震面积勘探方法。
PPT课件
4
三维地震勘探技术发展方向主要包括3方面:
一是发展万道地震采集技术。采用万道地震仪(测线在30000道以上)和数字
三维解释中所特有的功能。
PPT课件
30
用水平切片直接 做构造图。
PPT课件
31
5.彩色显示:三维资料

最新地震处理教程——第六章 三维地震勘探

最新地震处理教程——第六章 三维地震勘探

第六章三维地震勘探6.1 引言在油气勘探中,重要的地下地质特征在性质上都是三维的。

例如盐岩刺穿、逆掩和褶皱带、大的不整合、礁和三角洲砂体沉积等。

二维地震剖面是三维地震响应的断面。

尽管二维剖面包含来自所有方向,包括该剖面平面以外方向传来的信号,二维偏移一般还是假定所有信号均来自该剖面自身所在平面内。

虽然有经验的地震解释人员往往可以识别出平面以外(侧面)的反射,这种信号往往还是会引起二维偏移剖面的不闭合。

这些不闭合是由于使用二维而不是三维偏移导致了不适当的地下成像所引起的。

另一方面,三维数据的三维偏移提供了适当的和详细的三维地下图像,使解释更为真实。

必须对三维测量设计和采集给予特别注意。

典型的海上三维测量是用比较密集的平行线完成的。

一种典型的陆上或浅水三维测量是由布设大量相互平行的接收测线,并在垂直方向上布设炮点(线束采集)完成的。

在海上三维测量中,放炮的方向(航迹)叫做纵测线方向;对于陆上三维测量,检波器的电缆是纵测线方向。

三维测量中与纵测线方向正交的方向叫做横测线方向。

与二维测量测线间距可达1km不同,三维测量的测线间隔可以是50m甚至更密些。

这种密度的覆盖要求精确地测出炮点和检波点的位置。

测量区域的大小是由地下目标层段的区域分布范围和该目标层段能充分成像所需的孔径大小所决定的、这种成像要求意味着三维测量的区域范围差不多总是大于目标的区域范围。

三维测量过程中一般要采集几十万至几百万个地震道,因为三维测量成本高,大部分都用于已发现的油气田的细测。

二维地震数据处理的基本原理仍适用于三维处理。

二维地震数据处理中,把道抽成共中心点(CMP)道集。

三维数据中按共面元抽道集。

这些道集用于速度分析并产生共面元叠加。

在线束采集中,共面元道集与CMP道集是一致的。

一般陆上测量面元为25m×25m,海上测量为12.5m×37.5m。

常规的三维观测系统往往使共面元道集中数据叠加的方式变得很复杂。

海上三维测量拖缆的羽状偏离可以导致共面元道集内的旅行时不再有简单的双曲时差。

三维地震勘探方法及原理

三维地震勘探方法及原理

三维地震勘探方法及原理1. 引言嘿,大家好!今天我们要聊聊一个听上去很高大上的话题——三维地震勘探。

听名字就知道,这可不是随便玩玩的事情。

它是一种能让我们了解地下世界的神奇方法,想象一下,像是在看一部《寻龙诀》那样,揭开大地的秘密。

不过别担心,我会用简单易懂的方式告诉你这一切,咱们轻松聊聊,不让你感觉像在上课。

2. 三维地震勘探的基本概念2.1 什么是三维地震勘探?简单来说,三维地震勘探就是通过发送地震波到地下,然后再接收这些波反射回来的信息,帮我们“看”清地下的结构。

这就像是在用声音给地下“拍照”,而且是立体的!你可以想象一下,像是在玩一个高级的探险游戏,寻找宝藏的感觉。

2.2 三维勘探与传统勘探的区别传统的地震勘探就像是在平面上画图,而三维勘探则是把这个图变成立体的。

你知道的,平面图和立体图的感觉完全不一样。

三维勘探能给我们更丰富、更详细的信息,帮助我们更好地了解地下资源的位置,尤其是石油、天然气这些重要的宝贝。

3. 三维地震勘探的方法3.1 数据采集首先,我们得把“耳朵”伸得长长的,来听地下的声音。

为了做到这一点,咱们需要在地面上布置很多的传感器,这些小家伙就像是地下的侦探,负责接收地震波。

当我们用震源(比如炮炸或者震动器)制造地震波的时候,这些传感器会像打了鸡血一样,快速记录下反射回来的波形数据。

3.2 数据处理与解释数据采集完成后,就进入了“数理化”的阶段。

别担心,不用心慌,这可不是高深的数学题。

其实就是把我们采集到的数据进行分析,转化成地下结构的图像。

这个过程就像是在拼图,有时候拼图的碎片可能会缺失,但聪明的工程师们总能用他们的智慧,把这些碎片拼凑起来,呈现出一个清晰的地下世界。

4. 三维地震勘探的应用4.1 石油与天然气勘探大家知道,石油和天然气是现代生活的命脉。

通过三维地震勘探,我们能够找到这些资源的埋藏地点,提前做好准备,确保能安全高效地开采。

可以说,这项技术就像是给石油公司带来了“金钥匙”,打开了通往财富的大门。

6第六讲地震勘探原理详解

6第六讲地震勘探原理详解

野外采集方式
第二节
折射波运动学
一.单一水平界面的折 射波时距曲线
设地下有一个水平 界面,如右图。令上层速 度为1,下层速度为2, 并且2> 1,界面的深度 是h。在地表O点激发,当 地震波以临界角i入射时 ,在地面测线上的盲区边 界OS2以外将能接收到折 射波。 下面分析任意一条折 射波射线到达地面的旅行 间。对于接收点S4,其旅 行时为:
折射的交叉时与界面深度,由(1)式可得
在速度参数不变的前提下,交叉时反映了折射界面深度变化情况。 在折射波的盲区范围内接收不到折射波,用Xm表示临界距离,也称盲 区半径。在S2点观测时,折射波与反射波同时到达,这是由于以临界角入 射的射线路径OBS2既是反射波的传播路径也是折射波的初始路径。因此在 X=Xm处,两条时距曲线时间相等。我们可以通过求导得到反射与折射两条 曲线的斜率是一样的,即两条时距曲线相切。该点称为折射波的始点。通 过数学换算,得到始点的水平及垂直坐标分别为:
(*)表明,一个水平界面情况下的折射波时距曲线是一条直线,直线 的斜率1/ 2的倒数是视速度。当X=0,截距时间为
t 01 2h co s i v1
(1)
t01是折射波时距曲线延长线与t轴交点的纵纵标,因此称为交叉时。折 射波的交叉时与反射波的t0时间是两个完全不同的概念,反射波的t0时间 是地震波沿界面法线往返传播的时间,而折射波的交叉时没有确切的物 理意义,因为它是观测不到的。
Beach
Water
Whoa Baby Help
反射规律
• 利用 Fermat原理可以展示射线的反射规律
B
1
2 3 5 4
3.斯奈尔(Snห้องสมุดไป่ตู้ll)定律
如右图:地震波在分层介 质中传播时,遵循下面这样一 个式子:

三维地震勘探概述

三维地震勘探概述

第一节 三维地震资料采集
X1=Z﹒tgφ
一、采集要求
或 X1=Vt0sinφ/2 其中:Z—深度,φ—最深目 的层的最大倾角,V—平均速 度,t0——Z对应的垂直反射 时 显然,这个扩大范围的估算由 目的层的深度和倾角决定。
由这个“偏移帽沿”X1扩大 后A0变成了A1——满覆盖面积, 但还应加上覆盖次数渐减带和 附加段,最后得到
第一节 三维地震资料采集
1、采集参数
二、观测系统和采集参数
④最大炮检距Xmax Xmax的设计应考虑下列因素:⒜近似等于目的层深度,⒝ 主要目的层反射应避开直达波、初至折射波的干涉,⒞小于 最深目的层临界折射炮检距,⒟满足速度鉴别精度的要求 ⒠ 使动校正拉伸对信号的影响较小,⒡满足消除多次波的要求 等。 ⑤偏移孔径M 其设计应考虑:⒜大于第一菲涅尔带半径;⒝大于Z•tg30° (Z为最深目的层的深度),以使绕射波能量很好收敛;⒞ 大于倾斜层偏移的横向移动距离 : M >Z•tgmax 偏移孔径应取三项中的最大值。
第一节 概述
四、三维地震勘探应用范围
①复杂构造勘探
查明因断层发育、地层产状变化大而引起的绕射波、侧面波 等干涉严重的复杂断裂构造区,以及盐丘、礁块、地层尖灭、 不整合、微型构造等;
②地层岩性和沉积特征研究 结合钻井资料研究地层岩性的平面和空间变化; ③油田勘探开发
帮助制定或调整油田勘探开发方案,在油田开发过程中监测 油藏动态
第一节 三维地震资料采集
1、采集参数
二、观测系统和采集参数
②覆盖次数N 纵测线方向覆盖次数NX应满足:NX = n/(2dx) 横测线方向覆盖次数NY应满足: NY= P•R/(2dy) 式中: n—排列内一条接收线的道数,dx—纵向上激发点移 动的道数;dy—束线之间接收线移动距离相当的道数,P—排 列不动所需的激发点数,R—接收线数; 总覆盖次数N则为: N = NX •NY ③最大的最小炮检距Xmin Xmin是“子区”(由两条相邻接收线和两条相邻激发线构成) 中心点的CMP面元的最小炮检距,也是该子区内所有CMP面 元中最小炮检距中的最大者。一般等于1~1.2倍的最浅目的层 深度。

三维(3D)地震勘探

三维(3D)地震勘探
27
3.三维地震在纵、横两个方向上密集设置测点,测点距 一般20-100m,常见为50×50或50×75m,因而在地下 每20-37.5m获得一个信息,使水平分辩率显著提高。
一个蛇 曲河 道 在三维 地震显 示中, 得到了 河道整 体展布。
28
A、 L75线局部剖面,浅层断层清楚,信噪比高。
29
该系统一般由十字型观测系统 组合或衍生而来,主要有直式栅 状系统和地震线束观测系统。
可作为小面积三维观测网,将 地下网格面积分布在需要勘探的 地区。
11
地震线束观测系统是目前三维地震大面积施工中最常用的类型, 该系统是由多条平行的接收排列和垂直的炮点排列组成。
×
80m
1
30m ×
61
90
×
121
150
观测系统的类型与选择:
规则型:地面施工条件好,无施工障碍的地区。炮点和检波点按一定的规律 有规则的分布。 不规则型:地面施工条件不好,有施工障碍的山区 、水泡等。 不规则型观 测系统仅适用于地表障碍物多,通行条件差,不能按正常观测系统施工的地 区,可根据地面条件和地质任务的要求设计成各种类型。
9
规则型观测系统:十字型观测系统, 由此衍生成L 型、T型

2、阅读一切好书如同和过去最杰出的 人谈话 。03:5 9:2103: 59:2103 :5912/ 10/2020 3:59:21 AM
4.三维资料是一个数据体,可以在任意方位上切片显示:如 主测线方向In line,横测线方向Cross line,过井切片,斜切 片,水平切片,层切片,尤其象水平切片和层振幅切片是 三维解释中所特有的功能。
30
用水平切片直接 做构造图。
31
5.彩色显示:三维资料

三维地震构造解释

三维地震构造解释

三维地震构造解释随着三维地震采集和处理水平的不断提高,成本不断的下降,解释手段的完善,在油气勘探中的应用效果日趋明显,勘探效益也不断提高。

因此,应用好三维地震解释技术是油气勘探中比较重要的一环。

1、三维地震构造解释的资料准备资料的准备包括三大部分。

1)地震资料三维地震数据体,把奥扩成果带和纯波带。

成果带经过修饰,相位特征较好,主要用于构造解释。

成果带在特定的地质条件下,叠后修饰不影响砂体的变化时,也可以用于储层预测。

纯波带在叠后偏移后,基本没有经过修饰处理,有一定的保幅特点,比较适合储层预测,但在地震资料品质较差的地区,进行构造解释有一定的困难。

基于以上两种数据体的特点,最好都加入工作站解释系统。

地震资料的极性是一个非常重要的问题,牵扯到合成地震记录的正确的标定,以及油层在地震剖面上的精确位置,如果极性搞错,拾取的地震相位有可能不代表油气层。

因此,在收集地震磁带数据体时,必须搞清地震资料的极性。

通常在地震采集前,仪器都按初至波下跳校定,即正反射系数代表波谷,处理过程中如果没有单独做极性转换,处理后的地震数据体就应该是负“normal polarity”正常极性,一般表示处理中没有单独做极性转换,也属于负极性剖面。

处理数据体磁带外,还有工区内三个不同的坐标点,以及每个坐标点对应的x,y大地坐标,同时要了解钙坐标的坐标体系。

工区内的地震测井资料十分重要,一定要了解是否有地震测井资料,如果有一定要想办法收集到。

还有VSP资料也有重要的参考价值。

2)钻井资料工区内所有井的井位坐标,分层数据,录井油气显示情况,钻井取心资料,完钻井深,井斜数据,岩性剖面,泥浆槽面油气显示情况,气测资料等。

这些资料在完井综合录井图和完井报告上均可查到。

最好能把完井综合录井图和完井报告收集到,供地震构造解释时参考使用。

3)测井资料做构造解释时,需要的测井数据带有:声波、自然电位、米底部底部梯度电阻率,1:200综合测井图(用于合成记录环境校正分析),测井成果解释表。

6第六讲地震勘探原理详解

6第六讲地震勘探原理详解
石家庄讲座
地震勘探
曾昭发 吉林大学地球探测科学与技术学院
地震勘探方法简介
地震勘探是利用岩石的弹性波性质进行勘探。地 震勘探采用人工震源激发弹性波,沿测线的不同位置 用地震仪器检测大地的振动,并把数据以数字形式记 录在磁带或磁盘上;通过计算机处理来提高信噪比, 增强或提取有意义的信息,并各种形式显示其结果。 地震波在介质中传播时,其路径、振动强度和波 形将随所通过介质的弹性性质及几何形态的不同而变 化。根据接收到的波的旅行时间和速度资料,可推断 波的传播路径和介质的结构;而根据波的振幅、频率 及地层速度等参数,则有可能推断岩石的性质,从面 达到勘探的目的。
各种地震 波在分层介质中的传播演示图
波速与岩性
反射,透射和折射现象都是由于弹性 介质在速度值上存在差异之故。根据右 图公式可知弹性波的速度主要决定于实 际岩石的弹性常数,和其密度。岩 石性质不同,弹性常数就有差异,岩石 的环境和年代不同,密度也会不一样。 纵横波速度比:
r
Vp Vs

2(1 ) 1 2
野外地震仪(记录器)如下:
野外检波器及其内部结构示意图
野外地面布设
检波器的安置条件: 1 埋置检波器应严格对准位置(组合检波 器的中心点对准桩号) 2 检波器组合形式和组内距要按规定放开; 3 埋置波器要做到平、稳、正、直、紧。 平:同一道的组合检波器要埋置在同一 水平面上。 稳:要轻拿轻放检波器,平稳操作。 正:埋置检波器的位置要正确。 直:检波器要垂直地面。 紧:要埋紧检波器。 4 妥善处理检波器点处的地形(沟、坝、 村、庄、高压线等)影响。
二.地震波速度
地震波在岩层中传播的速度是一个十分重要的参数。在资 料解释过程中,用它进行时深转换;在资料处理中,如叠加 、偏移,以及滤波等都要用到。

三维地震勘探部署与设计分析精品资料

三维地震勘探部署与设计分析精品资料
在进行三维地震部署与设计的指标分析之前,先阐述两个概念:(1)三维地震资料面积:在不考虑偏移孔径[6](为了使任意倾斜同相轴能正确成像,而加到勘探部署区域外的宽度)的情况下,三维地震资料面积一般指两个区域面积之和(图2),即三维地震资料的满覆盖区域(中部)和未满覆盖区域(外部),勘探部署区域(内部)认为是满覆盖区域。勘探部署区域是勘探方(业主)部署的勘探面积,其面积为偏移前的满覆盖面积,勘探方按照面积支付给乙方勘探费用。未满覆盖区域是覆盖次数渐减带区域,设计者在此区域内布设炮点、检波点,以保证满覆盖区域边界处达到满覆盖次数,最大的炮点、检波点面积为施工面积。(2)平均覆盖次数:将获取三维地震资料的区域面积按照网格(面元)进行划分,如地震采集的观测方式为6L×4S×120,每放一炮共计720个地震道接收,每接收一道地震信息,获取地下地震反射一次,即覆盖次数为一次。(地震采集总炮数×每炮的地震道接收总数)÷网格(面元)数,得到每个面元内的射线数目,即为平均覆盖次数。地震资料面积内的平均覆盖次数越高,则未满覆盖区域面积占总资料面积的比值越小,勘探能效越高。
从某油田早期的三维地震勘探部署来看(图1),其具有如下几个缺点:①勘探区域根据地下构造单元进行划分,按不同年度分别进行地震采集设计与施工,由于不同年份部署区域的方位有差异,必然出现不同程度的地震资料重合与空白,如1996年布设的区域与其他年度布设的区域;②勘探区域之间没有很好的衔接,如2003年、2007年布设的三维勘探,虽然勘探区域面积的方位角保持一致,但区域的边界重复布设太多;③勘探区域面积的大小、形状不同,如1996年布设最小的勘探面积(45.960km2),2007年布设最大的勘探面积(286.580km2),2009年布设多边形的区域面积,矩形面积的拐点多于4个。上述布设勘探区域的布设方式不利于地震资料的连片处理及地质解释[10],因为覆盖次数、方位角、炮检距等分布的不均匀性[11-12]会造成地震属性的差异[13-14]。对勘探部署设计而言,为了完成特定的地质目标,经常会出现各种形状、大小、方向不同的勘探区域,从勘探费用考虑,其设计无可厚非;对地震勘探的采集而言,依据地质条件进行三维地震设计①时,为满足勘探区域边界的满覆盖地震资料,在未覆盖区域面积内需部署数量不等的炮点、检波点,数量的多少取决于勘探面积的布设方式,如勘探面积大小、形状、方向及其与相邻勘探区域的衔接等。勘探面积越小、拐点越多,则地震采集所需的总检波点数、总炮点数就越多,直接导致采集成本增加,使投入与获取的资料面积不成比例,降低了勘探能效。此外,处理部署区域的边界问题时无法利用老资料[15-17],从而增加了采集成本。主要针对勘探区域面积的边缘处理,三维地震勘探由观测系统将不同炮点、检波点联系在一起,对于一个特定的检波点,每接收一次地震信号,就认为其被“激活”一次,区域边界的检波点被“激活”的次数不断减少,要达到相同的覆盖次数,根据面积的大小及形状变化,必须增加不同数量的炮点,数量的多少取决于部署区域面积,直接影响勘探费用。

《三维地震解释》课件

《三维地震解释》课件

3
全波形反演
利用地震数据的完整波形信息,包括振 幅和相位变化,反演地下介质的高精度 成像结果。
地震解释案例分析
案例一 案例二
应用三维地震解释技术,在威海油田成功勘探出 新的油气藏。
应用三维地震解释技术,在龙源口煤矿成功勘探 出底板上盘煤储层。
地震解释技术的局限性和改进方案还需要进一步研究。
总结和展望
2 意义
通过三维地震解释,可以获取更全面、准确 的地下地质信息,进行精细勘探和有效发现 地下资源,有助于优化勘探和开发效果,提 高勘探和开发效率。
地震数据的获取
二维地震数据和三维地震数据的区别
二维地震数据是一条地震剖面数据,它的数据量小、 分辨率低,只能获取垂直于地表面的地震信息;三 维地震数据是由若干条地震剖面数据组成的立体图 像,数据量大、分辨率高,能够获取水平和垂直于 地表面的地震信息。
工具的功能和应用
三维地震解释工具主要可以进行数据处理、解释 分析、地质建模和高精度成像等,在石油、天然 气勘探、地质研究和环境监测等领域有广泛应用。
地震解释技术
1
声波走时反演
基于声波速度的空间分布特征,反演地
波形反演
2
下介质的速度信息。
利用地震数据的波形信息,反演地下介
质的物理参数,如密度、速度、衰减等。
总结
三维地震解释是一项内容较为复杂、技术难度较高 的地球物理勘探技术,在油田勘探、煤炭勘探、地 下水资源勘探和环境监测等领域具有广泛应用。
展望
未来,三维地震解释技术将继续向高速、高精、高 效方向发展,有望实现“多分辨、高识别、高精度、 立体建模”的目标。
参考文献
• 李世平, 姜林芳. 三维地震解释技术在大庆油田的应用[J]. 地球物理学进展, 2019, 34(4): 1681-1685. • 王辉. 基于灰模型的三维地震解释技术研究与实现[J]. 现代化矿业, 2020, (8): 189-191.

6 三维地震解释

6 三维地震解释

6.人机联作解释
解释常在工作站上进行。工作站一般包括图象处理机,辅助图象存 储器,数据输入装置和 显示终端。配备的软件包括许多专用的模块。 国内市场上常用的是Landmark工作站,Geoquest工作站,Bouma工 作站等。具软硬件系统成套,由多家石油公司生产销售。
解释过程一般分八个步骤: (1).通过数字化桌输入测点的坐标位置数据,或用 键盘输入。 (2).通过数据化桌输入时间剖面或深度剖面每道的 子样数据,或用磁带机拷贝。 (3).根据需要建立数值校正,速度分析、参数分析、 参数提取,水平切片等数据文件。 (4).建立显示数据文件(如· hrn文件或· map文件) (5).形成人机联作解释文件。 (6).打印解释工作进展 (7).存储解释结果 (8).修改解释结果进行图示。
2 用水平切片直 接做构造图。
三、三维 地震的地 震相解释: 1 层振幅 切片的解 释或者说 提取目的 层振幅, 由振幅 异 常带解释 微相、砂 体展布。
复习思考题:
1.什么情况下所做的构造图才能实现既做了空 校又使用了变速? 2.一个三维构造圈闭图和二维圈闭图一般会有 哪些差异(指同一个构造)? 3.从研究目的上看,三维地震相与二维地震相 分析有哪些差异
无菲尼尔带现象
2.三维地震 可消除侧反 射影响,因 而背斜圈闭 形态与大小 比较真实。 不像二维地 震由于侧反 射影响,背 斜往往变宽, 变大,尤其 是低幅度背 斜的失真明 显。
3.三维地震在纵、横两个方向上密集设置测点,测点距 一般20-100m,常见为50×50或50×75m,因而在地下 每20-37.5m获得一个信息,使水平分辩率显著提高。
4.为什么说三维偏移剖面上断层、背斜高点的 形态、大小、位置较准确,而不是最准确呢?

三维地震勘探部署与设计分析精品资料

三维地震勘探部署与设计分析精品资料
在进行三维地震部署与设计的指标分析之前,先阐述两个概念:(1)三维地震资料面积:在不考虑偏移孔径[6](为了使任意倾斜同相轴能正确成像,而加到勘探部署区域外的宽度)的情况下,三维地震资料面积一般指两个区域面积之和(图2),即三维地震资料的满覆盖区域(中部)和未满覆盖区域(外部),勘探部署区域(内部)认为是满覆盖区域。勘探部署区域是勘探方(业主)部署的勘探面积,其面积为偏移前的满覆盖面积,勘探方按照面积支付给乙方勘探费用。未满覆盖区域是覆盖次数渐减带区域,设计者在此区域内布设炮点、检波点,以保证满覆盖区域边界处达到满覆盖次数,最大的炮点、检波点面积为施工面积。(2)平均覆盖次数:将获取三维地震资料的区域面积按照网格(面元)进行划分,如地震采集的观测方式为6L×4S×120,每放一炮共计720个地震道接收,每接收一道地震信息,获取地下地震反射一次,即覆盖次数为一次。(地震采集总炮数×每炮的地震道接收总数)÷网格(面元)数,得到每个面元内的射线数目,即为平均覆盖次数。地震资料面积内的平均覆盖次数越高,则未满覆盖区域面积占总资料面积的比值越小,勘探能效越高。
从某油田早期的三维地震勘探部署来看(图1),其具有如下几个缺点:①勘探区域根据地下构造单元进行划分,按不同年度分别进行地震采集设计与施工,由于不同年份部署区域的方位有差异,必然出现不同程度的地震资料重合与空白,如1996年布设的区域与其他年度布设的区域;②勘探区域之间没有很好的衔接,如2003年、2007年布设的三维勘探,虽然勘探区域面积的方位角保持一致,但区域的边界重复布设太多;③勘探区域面积的大小、形状不同,如1996年布设最小的勘探面积(45.960km2),2007年布设最大的勘探面积(286.580km2),2009年布设多边形的区域面积,矩形面积的拐点多于4个。上述布设勘探区域的布设方式不利于地震资料的连片处理及地质解释[10],因为覆盖次数、方位角、炮检距等分布的不均匀性[11-12]会造成地震属性的差异[13-14]。对勘探部署设计而言,为了完成特定的地质目标,经常会出现各种形状、大小、方向不同的勘探区域,从勘探费用考虑,其设计无可厚非;对地震勘探的采集而言,依据地质条件进行三维地震设计①时,为满足勘探区域边界的满覆盖地震资料,在未覆盖区域面积内需部署数量不等的炮点、检波点,数量的多少取决于勘探面积的布设方式,如勘探面积大小、形状、方向及其与相邻勘探区域的衔接等。勘探面积越小、拐点越多,则地震采集所需的总检波点数、总炮点数就越多,直接导致采集成本增加,使投入与获取的资料面积不成比例,降低了勘探能效。此外,处理部署区域的边界问题时无法利用老资料[15-17],从而增加了采集成本。主要针对勘探区域面积的边缘处理,三维地震勘探由观测系统将不同炮点、检波点联系在一起,对于一个特定的检波点,每接收一次地震信号,就认为其被“激活”一次,区域边界的检波点被“激活”的次数不断减少,要达到相同的覆盖次数,根据面积的大小及形状变化,必须增加不同数量的炮点,数量的多少取决于部署区域面积,直接影响勘探费用。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
二、三维速度分析 物探新方法技术(地震勘探)
第六讲
三维地震勘探
一、 三维地震数据的采集 二、三维速度分析 三、三维偏移归位处理 四、三维反射地震资料解释方法简介 4.1 三维反射地震资料显示 4.2 三维反射地震资料解释 4.3 三维地震资料人机交互解释
【思考题】
(1)三维观测系统类型有哪些? (2)如何确定可覆盖区域? (3)理解水平切片和垂直切片的概念。 (4) 理解等时切片与地震构造图的关系。
1. 三维观测系统的类型
(2)非平行线型观测系统
方型系统(Seisquare),环型系统(Seisloop)
一、 三维地震数据的采集
2. 三维观测系统参数的选择
(1) 网格间距
一、 三维地震数据的采集
(2) 覆盖次数的选择
(3)最大炮检距的选择
S
max
V
sin
rms
t f
0 max
一、 三维地震数据的采集
一、 三维地震数据的采集
1. 三维观测系统的类型
(1)平行线型观测系
炮点线

“十”字型系统(Cross System)
检波点线
“T”型、“L”型
一、 ቤተ መጻሕፍቲ ባይዱ维地震数据的采集
1. 三维观测系统的类型
“丰”字型(Swath)
一、 三维地震数据的采集
1. 三维观测系统的类型 多条平行线型
一、 三维地震数据的采集
(三)、三维静校正处理
1.野外静校正 三维静校正包括野外静校正和剩余静校 正,野外静校正是指对炮点和接收点的高程, 井口的时差校正和折射数据或初至波计算的 风化层低速带变化的时差校正。剩余静校正 是对地表引起的时差异常进行校正。
(三)、三维静校正处理
2.二维剩余静校正 在二维情况下,是剩余静校正由假设地下 一致的构造项、地表一致的震源和接收点校正 项、以及动校正剩余项组成,因此在地表一致 性假设条件下,各种地震资料处理软件中都有 许多剩余静校正模块。
Va Vs / 1 sin cos ( 0 )
2 2
叠加速度
地层倾角
炮检线的 方位角
界面倾向 的方位角
(二) 三维速度分析
3.建立三维速度模型
用三维数据分析得到的速度可建立三维速 度场。三维处理只有准确地建立三维速度场 , 后面的处理、解释才能保证精度。建立三维速 度场要合理,这也是一个难点。
(二) 三维速度分析 4.扇形分析技术
考虑一个 CDP 选排中象蜘蛛网似有炮检矢量分布。 将它划分成若干个扇形。划分的原则是不能太小, 太小会增加工作量,且造成一扇形内保持有数量 相近的道数。划分了扇形之后,将一个扇形内的 所有道组成一个虚二维共反射点道集,用标准的 二维速度分析方法计算速度,结果置于扇形的中 心方位。然后用最小平方拟合技术求出叠加速度 方位椭圆 ( 求最大叠加速度、最小叠加速度和椭 圆主轴方位角 ) 。为了完成椭圆的计算至少需要 划分三对扇 形。用虚二维CDP道集计算叠加速度 时可适当考虑加权问题。
(4)炮点距计算
一、 三维地震数据的采集
(5)组合
一、 三维地震数据的采集
3.数据采集面积的确定 勘探面积( Prospect Area ):用三维 偏移后的资料点覆盖起来的一片面积。 偏移孔径( Migration Apeture ):在 勘探面积的四边要各扩大一条以满足处理的 要求。
一、 三维地震数据的采集
(二)、三维速度分析
扇形分析技术
(二)、三维速度分析
图是同一个 CDP 点、二个不同扇形上合成道集动 校正的例了。 (a) 为原始道集; (b) 为用统一的一种 对各方位速度资料作了平均后的速度进行动校正的 结果,可以看到,在一个扇形道集上校正不足,在 另一个扇形道集上却校正过量;
(二)、三维速度分析
(二) 三维速度分析
1.二维叠加速度概念 在二维情况下,某条测线 t0 时刻的叠加 速度Vφ为
V Vr / cos
均方根速度
叠加速度
地层倾角
(二) 三维速度分析
2.三维叠加速度 在三维情况下,要考虑炮检线的方位。对同 一t0,不同炮检线方位角不同,叠加速度是不 同的,三维叠加速度可表示为
(1) 倾斜孔径(Dip Apeture) Xdip>=Z.sinψ (2) 绕射孔径(Diffractional Apeture)
二、三维地震勘探资料处理
(一)三维数据处理概述 1.三维数据特点 三维数据量很大,比二维要增加更多的数 据。地形测量数据量就是为三维地震勘探所进 行的陆上的各项地形测点工作和海上各项定位 工作的结果。对这些数据的处理工作主要是检: 查原始数据的可靠性,对数据进行编辑、校正、 滤波等,然后绘制测线分布图、炮点位置分布 图、检波点位置分布图、测区地形平面图、 CMP 点分布图、反射面元划分图、和覆盖次数 平面图等。
(一)三维数据处理概述 2.与二维处理相同与不同的处理内容
三维与二维处理有几个方面不一样,要研 制专门的三维数据处理软件,例如三维速度分 析、三维速度静校正、三维偏移等。
三维数据处理在许多方面与二维处理类似, 可以用二维处理的方法和软件经过修改来处 理,例如三维数据的增益恢复、滤波、反褶积、 初步速度分析,二维初叠加等,三维处理同样 需要利用 CMP 叠加来衰减多次波、提高信噪比, 也要作倾角校正 (DMO) 来消除反射点模糊效应。
(三)、三维静校正处理
3.三维剩余静校正 三维剩余静校正项除了有接收点校正项、 炮点校正项以外,还与构造项与倾角有关,剩 余动校正项与倾角、走向有关,因此有更多的 项,需要多道参与计算。多道的多参数的解, 要受到数学条件的约束,因此三维静校正的求 取是个难题,有多种方法求解,迭代法也是其 中的一种。 求出静校正量后要在面上平滑、平滑后再 作三维静校正。目前国内外都在研制三维静校 正方法和软件。
(c)为用各扇形上求出的速度值对扇形上各道校正 的结果。由于扇形道集内各道也不在同一方位,故 校正仍不是完全准确的,还有小的起伏。最后,用 拟合技术得到的各方位上速度分别进行校正,得到 (d)图用方位校正后速度函数动校正结果
(二)、三维速度分析
(c)为用各扇形上求出的速度值对扇形上各道校正 的结果。由于扇形道集内各道也不在同一方位,故 校正仍不是完全准确的,还有小的起伏。最后,用 拟合技术得到的各方位上速度分别进行校正,得到 (d)图用方位校正后速度函数动校正结果
相关文档
最新文档