有限元分析中的一些问题

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

有限元分析的一些基本考虑-—-—-单元形状对于计算精度的影响

笔者发现,在分析复杂问题时,我们所可能出现的错误,竟然是一些很根本的错误,这些根本错误是由于对有限元的基本理论理解不清晰而造成的。

鉴于这个原因,笔者决定对一些基本问题(例如单元形状问题,单元大小问题,应力集中问题等)展开调查,从而形成了一系列文章,本篇文章是这些系列文章中的第一篇.

本篇文章先考虑有限元分析中的第一个基本问题:单元形状问题。

我们知道,单元形状对于有限元分析的结果精度有着重要影响,而对单元形状的衡量又有着诸多指标,为便于探讨,这里首先只讨论第一个最基本的指标:长宽比(四边形单元的最长尺度与最短尺度之比),而且仅考虑平面单元的长宽比对于计算精度的影响。

为此,我们给出一个成熟的算例。该算例是一根悬臂梁,在其端面施加竖直向下的抛物线分布载荷,我们现在考察用不同尺度的单元划分该梁时,对于A点位移的影响。

这五种不同的划分方式,都使用矩形单元,只不过各单元的长宽比不同。

例如第一种(1)AR=1.1,就是长宽比接近1;

第二种(2)AR=1.5,就是长宽比是1。5.其它类推。

第五种(5)AR=24,此时单元的长度是宽度的24倍。

现在我们看看按照这五种单元划分方式对于A点位移的影响,顺便我们也算出了B点的位移,结果见下表.

我们现在仔细查看一下上表,并分析其含义。

我们先考虑第一行,它是第一种单元划分情况,此时每个单元的长宽比是1。1,由此我们计算出A点,B点的垂直位移,可以看到,A点的竖直位移是—1.093英寸,而B点的竖直位移是-0。346英寸。而这两点我们都是可以用弹性力学的方式得到精确解的,其精确解分别是-1。152以及—0。360。这样,我们可以得到此时A点位移误差的百分比是[(—1.093)—(-1。152)]/1。152 =5。2%.

对于其它情况,也采用类似的方式得到A点位移误差的百分比。

从上表可以看出来,随着长宽比的增加,位移误差越来越大,竟然大到56%.因此,如果我们是用长宽比为24的单元进行划分的话,那么我们的结果可以说是完全错误的.

下面按照上表绘制出一张图,该图从形象的角度表达了上表的含义.

由此可见,长宽比越接近于1,那么结算结果越精确,越远离1,则误差越大.

因此我们在进行有限元分析时,应该尽量保证划分的单元长宽比接近1,这意味着,如果我们使用了四边形单元,则最好是正方形单元;如果使用了三角形单元,则最好是等边三角形.

当然,对于一个复杂的零件而言,我们很难保证每个单元都满足这些要求,但是,我们一定要确保,在我们所关注的地方,例如应力最大的地方,单元形状要接近这一点,否则,我们得到的解就是不可相信的.

但是上述结果也告诉我们,即便是最好形状的单元(情况1,长宽比为1。1),结果的计算精度也不容乐观,其误差达到5。2%,那么,我们可以得到更高精度的解答吗?

可以。这需要单元的细分,下一篇博文中将会详细说明这一点。

有限元分析的一些基本考虑—--单元大小对于计算精度的影响

有限元分析一定可以得到问题的精确解吗?

理论上可以证明,如果插值函数使用了“协调和完整的位移函数”,则当网格尺寸逐渐减小而单元数量增加时,解就会单调收敛。

而且,当单元数目增加时,得到的刚度会降低,并收敛于真实刚度;这就意味着,当单元增加时,得到的位移增加,而收敛于精确位移解.其图形如下:

这里所说的“协调和完整位移函数”,是指:

1.近似函数式一般是多项式。

2。近似函数在单元内要保持连续。

3.近似函数应提供单元间的连续性,包括离散单元每一个节点所有自由度都应该是连续的,二维单元和三维单元沿着公共边界线和公共面必须是连续的。

既能够保证单元内的连续,又能够保证单元间的连续的形函数称为协调函数。

4.近似函数应考虑刚体位移和单元内的常应变状态。即有常数项保证刚体运动(无应变的运动),而有一次项保证有常应变状态发生。这是形函数的完整性问题。

例如,对于一维单元而言,若取形函数

则同时满足上面四个条件,称为协调且完整的位移函数。

一般来说,我们所用的单元使用的位移函数都满足上述四个条件,所以从理论上来说,只要网格加密,就可以收敛于真实解。

为了验证上述理论的真实性,我们选用了一个材料力学中的例子来做仿真。

该例子如下

使用材料力学的理论进行求解,简要过程如下

使用ANSYS进行分析,使用BEAM188单元,首先创建如图所示的几何模型

然后分别对各段直线加密网格划分,得到的结果如下

上表中,第一列是划分的单元数,第二列是最大的压应力,第三列是最大的拉应力。可以看到,随着单元数目的增加,最大拉伸,压缩应力的绝对值都在增加。

从材料力学得到的精确解,最大的压应力是—46.2MPa, 最大的拉应力是28.8MPa。这样,当单元数增加到64个时,压应力的误差是(46。2-45.7)/46.2 =1。1%; 拉应力的精度是(28。8-28.6)/28。8=0。7%.此时精度已经相当高了。

可以明显的看出,随着单元数目的增加,应力解的确是在逐渐逼近真实解.从这个方面来说,加密网格的确是提高计算精度的有效方法。

这也意味着,我们在有限元仿真中,如果要得到精确的结果,必须不断细分网格,直到结果收敛。否则,我们的得到结果就是不可信的.

那么,对于任何问题,只要网格无限细分,一定可以收敛于真实解吗?

未必.

下一篇文章将阐述此问题.

有限元分析中的一些问题-—应力集中结果的可信性对于任意的几何模型,网格细分就一定能够得到真实解吗?这是每一个CAE分析工程师都关注的问题。

如果结构中没有应力集中,答案是肯定的。

如果结构中存在应力集中,则结果未必会收敛。

为了说明这一点,我们选取了一个平面应力问题。它是一个角支座,其图形及尺寸如下。在角支座上钻了两个孔,现在我们固定左上边的孔,而在右下方孔的第四象限半圆上施加压力。并通过不断的加密网格来考虑计算结果的可信性。

相关文档
最新文档