高等数学同济第七版第一章课件

合集下载

高数同济七版电子课本上册

高数同济七版电子课本上册

反常积分
反常积分的概念
反常积分是对于无穷区间上的积分,它分为两类:无穷限的反常积 分和瑕点的反常积分。
反常积分的性质
反常积分具有一些特殊的性质,例如:无穷限的反常积分的结果可 能为无穷大,瑕点的反常积分的结果可能为无穷小。
反常积分的计算方法
对于不同类型的反常积分,计算方法有所不同,常用的方法包括利 用极限理论、幂级数展开等。
法则。
基本公式
02 基本公式包括指数函数的导数、幂函数的导数、对数
函数的导数和三角函数的导数等。
常见函数的导数
03
常见函数的导数包括一次函数的导数、二次函数的导
数、反比例函数的导数和幂函数的导数等。
微分及其应用
01
02
03
微分的概念
微分是函数在某一点处的 近似值,即函数在该点的 切线截距。
微分的几何意义
柯西中值定理
进一步揭示了函数在某点处的导数与该点附近函数的平均值之间的关系,是微分学中的重要定理之一。
洛必达法则
洛必达法则基本内容
在一定条件下,当一个函数的极限为0时,可以 应用洛必达法则求其导数的极限。
洛必达法则的应用
适用于求一些复杂函数的极限,简化计算过程 。
洛必达法则的条件
只有在满足一定条件下才能使用洛必达法则,否则可能导致错误的结果。
反常积分的应用
• 总结词:反常积分是定积分的一种推广形式,它可以用来求解更广泛的一类问 题。反常积分的应用包括物理、工程、经济等领域。
• 详细描述:反常积分是定积分的一种推广形式,它可以用来求解更广泛的一类 问题。反常积分有两种类型:无穷区间上的反常积分和无界函数的反常积分。 无穷区间上的反常积分可以用来求解函数在无穷区间上的积分,而无界函数的 反常积分可以用来求解函数在有限区间上的瑕积分。反常积分的应用非常广泛 ,包括物理、工程、经济等领域。例如,在物理学中,反常积分可以用来求解 量子力学中的波函数问题、电动力学中的电磁场问题等;在工程学中,反常积 分可以用来求解流体动力学中的问题、热传导问题等;在经济领域,反常积分 可以用来求解贴现问题、投资组合问题等。

同济高数第一章第一节

同济高数第一章第一节

定义在R上的任意函数 上的任意函数, 证明 定义在 上的任意函数,都可以表示为 一个奇函数与一个偶函数之和。 一个奇函数与一个偶函数之和。 证 设 f ( x) x ∈ R 1 1 记 ϕ( x ) = [ f ( x ) − f ( − x )], ψ( x ) = [ f ( x ) + f ( − x )] 2 2 1 ϕ( − x ) = [ f ( − x ) − f ( x )] = − ϕ( x ) 奇函数 2 1 ψ( − x ) = [ f ( − x ) + f ( x )] = ψ( x ) 偶函数 2
例6 证明
3x + 1 y= 2 有界 x +4
3 x + 1 | 3 x + 1 | 3 | x | +1 证 | 2 |= 2 ≤ 2 x +4 x +4 x +4 3| x | 1 3( x 2 + 1) 1 = 2 + 2 ≤ + 2 x + 4 x + 4 2( x + 4) 4
3 1 7 ≤ + = 2 4 4 3x + 1 ∴y= 2 x +4
第一章 函数、极限与连续 函数、
第一节 函数
一、集合 总体. 1.集合: 具有某种特定性质的事物的总体 1.集合: 具有某种特定性质的事物的总体 集合 组成这个集合的事物称为该集合的元素 元素. 组成这个集合的事物称为该集合的元素 记为: 记为: a ∈ M , a ∉ M , 集合分类: 集合分类: 有限集 无限集 集合表示: 集合表示: A = {a1 , a 2 ,L , a n }
函数的两要素: 定义域与对应法则 函数的两要素: 定义域与对应法则. 函数与表示自变量的字母无关 指出下列函数是否相同,为什么? 例5 指出下列函数是否相同,为什么?

同济大学版本高数精品课件全册

同济大学版本高数精品课件全册
1+ x
理解为:
f
(

)
=
1− 1+
∆ ∆
(五)函数与图像
2、图像:平面点= 集 C {(x= , y) y f (x), x∈D}。
了解函数的直
例:画函数 y = x 的图像.
观手段!
y
一元函数的图像通常是二
维平面上的一条一维曲线.
注: 由曲线求取对应的函
数往往不易,由函数画图
o
x 像相对容易.
例如, 1 + 2 =3 1 − 2 =−1
负数的引入有实 际意义!如:记 帐有赢利亏欠, 温度有零上零 下…
2. Z(整数环)
对加法、减法都封闭; 对除法不能封闭。
例如, 1 ÷ 2 =0.5
3. Q(有理数域)
对加法、减法、乘法、除法都封闭;有理数域尽管稠密但不 连续,还有客观事物不能用有理数表示。
课后自测
1、 写出所有三角函数和反三角函数的定义域,并画出函数图像。
2、
已知函数
y
=
f
(x)
=
12+
x, x,
0≤ x ≤1 x >1

f
(
1 2
)

f
(
1 t
)
,
并写出定义域及值域 。
第十节 闭区间上连续函数的性质
一、有界性与最大值最小值定理 二、零点定理与介值定理
一、有界性与最大值最小值定理
二、预备知识
1、基本初等函数 (4) 三角函数
余弦函数 y = cos x 正切函数 y = tan x
余切函数 y = cot x
正割函数 y = sec x 余割函数 y = csc x

同济大学高等数学(第七版)上册第一章函数 PPT课件

同济大学高等数学(第七版)上册第一章函数 PPT课件

3
2
1 -4 -3 -2 -1 o -1 1 2 3 4 5 x
-2 -3 -4
阶梯曲线
(4) 狄利克雷函数
y

D( x)

1 0
当x是有理数时 当x是无理数时
y
1
• 无理数点
o
有理数点
x


D(
x)

1 0
xQ ,
xQ
求D( 7), D(1 2).并讨论D(D( x))的性质. 5
例如,
f
(
x)

2x

x
2

1, 1,
x0 x0
y x2 1
y 2x 1
(1) 绝对值函数
y
0
x
(2) 符号函数
1 当x 0
y

sgn
x


0
当x 0
1 当x 0
x sgn x x
y
1
o
x
-1
y
(3) 取整函数 y=[x]
4
[x]表示不超过 x 的最大整数
函数的值域可由其定义域和对应规则确定,即
R f ={ y y = f( x ),x D f }= f( D f ).
结论:函数的两个要素实际也给出了判别两函数是 否相同的方法,即若两函数的定义域相同,对应法 则也相同,这两函数就是相同的,否则就是不同的。
例如:y = f( x )= sin x,x R =( - ,+ );
反函数的定义域和值域恰为原函数的值域 和定义域
y 反函数y ( x)
Q(b, a )
直接函数y f ( x)

高等数学 同济大学第七版第1章第1节课件C1S1

高等数学 同济大学第七版第1章第1节课件C1S1

那么称函数f (x)在X上有上界
y
K1 称为函数f (x)在X上的一个上界
类似可以定义函数f (x)在X上有下界
o
x
函数的几种特性
1.函数的有界性
设函数f (x) 的定义域为D,数集 X D
如果存在数 K1, 使得 f ( x) K1 对任一 x X 都成立
那么称函数f (x)在X上有上界
o
x
注 函数f (x)在X上有界
函数f (x)在X上既有上界,又有下界
例:f ( x) sin x 在(, )内有界,f ( x) 1 在(0, 1)内无界 x
函数的几种特性
2.函数的单调性
设函数f (x) 的定义域为D,区间 I D
y
如果对于区间I上的任意两点x1及x2,
积 f g ( f g)( x) f ( x) g( x), x D
商 f g
f ( x) f ( x) , x D \ x | g( x) 0
g g(x)
概念
概念
集映 合射
逆映射
区邻 间域
构造 复合映射
初等函数 函
反函数

复合函数 构造
四则运算
第一讲 映射与函数

特例



概念




映射的概念
定义 设X、Y是两个非空集合,如果存在一个法则f,使得 对X中每个元素x,按法则f,在Y中有唯一确定的元素 y与之对应,那么称f为从X到Y的映射,记作:y=f (x)
f Xx
原像

定义域
Y y
值域

(1) 映射的三要素:定义域、值域的范围、对应法则; (2) 映射的像唯一,但原像不一定唯一; (3) 映射又称为算子,在不同数学分支中有不同的名称

同济大学高等数学(第七版)上册第一章函数 PPT课件

同济大学高等数学(第七版)上册第一章函数 PPT课件

16 x2 0
(1) (2)
y 2x ln x 16 x2
y log5 (x2 1)
ln x 0 x [1, 4) (4, )

x0
x2 1 0 x (, 1) (1, )
函数定义可简单地归结为构成函数的两个要素: • 定义域 D f : 自变量的变化范围。 • 对应法则 f :自变量与因变量的对应规则。
y y f (x)
f (x)
f (x)
-x o x
x
偶函数图形关于y轴对称,如:y=kx2
设D关于原点对称, 对于x D, 有 f ( x) f ( x) 称 f ( x)为奇函数;
y
y f (x)
-x f (x)
f (x)
o
xx
奇函数的图形关于原点对称,如:y=kx
奇、偶函数经四则运算后仍可在一定条件 下保持相应的奇、偶性。
解: D( 7) 1, 5
D(1 2) 0,
D(D( x)) 1,
(5) 取最值函数
y max{ f ( x), g( x)}
y
f (x)
g( x)
o
x
y min{ f ( x), g( x)}
y
f (x)
g( x)
o
x
例.
已知函数
y
f
(
x)

2 1
x, x,
y
y f (x)
f (x2 )
f (x1)
o
x
I
设函数 f ( x)的定义域为D, 区间I D, 如果对于区间 I 上任意两点x1及 x2 , 当 x1 x2时, 恒有 (2) f ( x1 ) f ( x2 ), 则称函数 f ( x)在区间I上是单调减少的;

同济七版NUAA高数课件 第一章 函数与极限 初等函数

同济七版NUAA高数课件  第一章 函数与极限  初等函数
y archx ln(x x2 1).
D :[1,) 在 [1,) 内单调增加.
y archx
反双曲正切 y arthx
y arthx
1 ln 1 x . 2 1 x
D : (1,1)
奇函数,
在 (1,1)内单调增加.
y ar tanh x
四、小结
函数的分类:
有 有理整函数(多项式函数) 理
ch(x y) chxchy shxshy ;
ch2x sh2x 1;
sh2x 2shxchx;
ch2x ch2x sh2x.
2.反双曲函数
反双曲正弦y arshx ;
y arshx ln(x x2 1).
D : (,)
奇函数,
在 (,)内单调增加.
y arshx
反双曲余弦 y archx
x 自变量, u 中间变量, y 因变量,
注:
1 不是任何两个函数都可以复合成一 个复合函数的;
例如 y arcsin u, u 2 x2;
y arcsin(2 x2 )
2 复合函数可以由两个以上的函数经过复 合构成.
例如 y cot x , 2
y u, u cot v, v x . 2
3 正确分析复合函数的复合过程十分重要: 复合(由里到外), 分析复合过程(由外到里)
y earctan x2 1
2.初等函数
由常数和基本初等函数经过有限次四 则运算和有限次的函数复合步骤所构成并 可用一个式子表示的函数,称为初等函数.
y 1 x x2 xn 不是初等函数
例1

f (x)
基本初等函数 复合函数、初等函数 双曲函数与反双曲函数
一、基本初等函数

高等数学-第一章-函数与极限-函数的极限-同济大学

高等数学-第一章-函数与极限-函数的极限-同济大学
f (x) A ,
经过不等式的变形, 得到关系
f (x) A M x x0 ,
其中 M是一个与x无关的常量. 再取 , 则当
0 x x0 时, 有:
M
f (x) A M x x0 ,
此即说明 lim f (x) A. x x0
例1 证明下列极限
⑴ lim(2x 1) 5; x2
xn
是函数 f
x
xx0
定义域中的一个任意数列,
xn
x0 ,

lim
n
xn
x0,
则相应的数列 f xn 收敛, 且
lim
n
f
(xn )
lim
x x0o
f
(x).
o

设 lim f (x) A, xx0
则存在U (x0, ), 当x U (x0, ), 有
f (x) A ,
o
又因
lim
n
x
证令
xn
1,
1
2n
2
yn
1
2n
,

lim
n
xn
lim
n
yn
0,
且 xn
0, yn , 0,

lim
n
f
(xn )
1, lim n
f
( yn )
0,
所以 lim sin π 不存在.
x0
x
对于数列, 相应的归并性定理为
定理
设数列
lim
n
xn 存在,
则对于
xn
的任一子列(xnk )

lim
2x 2(x2 1)
1 x

同济七版NUAA高数课件 第一章 函数与极限 函数

同济七版NUAA高数课件  第一章 函数与极限  函数

x sgn x x
16
(2) 取整函数 y=[x]
y
[x]表示不超过 x 的最大整数 4
3
2
-4 -3 -2 -1 1o -11 2 3 4 5 x -2 -3 -4
阶梯曲线
17
(3) 狄利克雷函数
y
D( x)
1 0
当x是有理数时 当x是无理数时
y
1
• 无理数点
o
有理数点
x
18
(4) 取最值函数

f u 1
u
1
1 u2
1
1 u2 ,
u

f (x) 1
1 x2 .
( x 0)
x
解:
x
2
x
k 1
x
k,k
0,1,2, x0
得定义域为 x < 0 且 x 1,2,
14
例3 设 f(x) 的定义域[0,1],求 (1) f (x+a)+f(x-a) (a>0) 的定义域; (2) f (lnx)的定义域。
解: (1)
0 0
x x
a a
1 1
a
a
x
x
1 1
a
a
x应取在a≤x≤1-a, 而a ≤1-a
则: 若 a > 1/2 ,定义域为空集; 若 a <= 1/2 ,定义域为 [a, 1-a];
(2) 0≤ln x≤1 , 1≤x≤e为定义域。
15
几个特殊的函数举例 (1) 符号函数
1 当x 0
y
sgn
x
0
当x 0
1 当x 0
y
1

最新同济大学高等数学第七版上册定积分精品课件

最新同济大学高等数学第七版上册定积分精品课件

则有
b
a f ( x)dx f [(t)] (t)dt
b
a f ( x)dx f [(t)] (t)dt
证 因为 f ( x) 在 [a, b] 上连续,故原函数存在,设 F( x) 是 f (x) 的一个原函数,则有
f [(t)](t)dt
f [(t)]d(t)
F[(t)] F[( )] F[( )]
2
三、小结
1、使用定积分的换元法时要注意积分限的对 应。
2、不引入新的变量记号,积分限不变;引入 新的变量记号,积分限跟着变。
3、定积分分部积分公式的用法与不定积分分 部积分公式的用法类似。
作业
P254 1 (4) , (10) , (16) ,(24) ; 3 ; 6; 7 (4), (9), (10)
2 2arctant 1 2 .
0
2
例7

f
(x)
12xx, 1 x
,
x0 x0,
2
求 f ( x 1)dx . 0
解 令 x1 t,
原式
1
f (t)dt
1
f ( x)dx
1
1
1
2xdx
0 1 x dx
0
1 1 x
x2 1
0
(1
2 ) dx
0
1
1 x
1 1 2 ln(1 x) 0 2 ln 2 . 1
T f ( x)dx .
a
0
aT
证 a f ( x)dx
0
T
aT
a f ( x)dx 0 f ( x)dx T f ( x)dx ,
aT
f ( x)dx
xT t

同济高数七版第一章

同济高数七版第一章

面积、体积 、作功…
元素法
不定 定 积分 积分
分析 极限 引论
连续 函数
积分学
无穷 级数 常微分 方程
空间解析几何 多元函数
多元函数 偏导数 全微分 微分学 切线、法平面 应用 、梯度…
重积分 线面积分
曲面面积 体积、质心…
多元函数 积分学
应用 微分学
切线、图形 、速度… 中值定理
导数 微分
面积、体积 、作功…
切线、图形 、速度… 中值定理
导数 微分
面积、体积 、作功…
元素法
不定 定 积分 积分
分析 极限 引论
连续 函数
积分学
无穷 级数 常微分 方程
空间解析几何 多元函数
多元函数 偏导数 全微分 微分学 切线、法平面 应用 、梯度…
重积分 线面积分
曲面面积 体积、质心…
多元函数 积分学
应用 微分学
切线、图形 、速度… 中值定理
极限
连续 函数
无穷 级数
常微分 方程
空间解析几何
多元函数
多元函数微积分 多元函数 偏导数 全微分 重积分 线面积分 微分学
切线、法平面、 应用 梯度…
曲面面积、体积、 质心…
多元函数 积分学
应用
切线、图形 、速度…
中值定理
面积、体积 、作功…
元素法
微分学
导数 微分
微分析 极限
引论
不定 定 积分 积分
分析 极限 引论
连续 函数
积分学
无穷 级数 常微分 方程
空间解析几何 多元函数
多元函数 偏导数 全微分 微分学 切线、法平面 应用 、梯度…
重积分 线面积分

同济大学高等数学第七版§1.10--闭区间上连续函数的性质ppt课件

同济大学高等数学第七版§1.10--闭区间上连续函数的性质ppt课件

几何意义:
连续曲线弧y=f(x)与水平直 线y=C至少有一个交点
y
yf(x)
B
C P1 P2 P3
A O a 1 2 3
bx
完整版ppt课件
12
定理3(介值定理) 设函数 f(x)在闭区间[a b]上连续 且f(a)f(b) 那么 对于f(a)与f(b)之间的任意一个数C 在开区间(a b)内至少有一点x 使得
f()C, (a,b).
证 设(x)=f(x)-C 则(x)在闭区间[a b]上连续
且 (a )f(a )C
(b )f(b ) C
零点定理
(a ) (b ) 0 ,(a,b)使 ,
()0,即 () f() C 0 ,f()C.
完整版ppt课件
13
推论 在闭区间上连续的函数必取得介于最大值
M与最小值 m之间的任何值(不会有任何遗漏).
几何意义:
y
M yf(x)
C
P1 P2 P3
a x1
O
1 2 3 x2 b x
m
完整版ppt课件
14
例 证 明x3方 8x 程 10在 区 (0,1)内 间 至 少 有 . 一 根
证 令 f(x)x38x1,则f(x)在[0,1]上连, 续
又 f(0 )10 , f(1)60, 由零点定理,
但函数f(x)=x在开区间(a,b)内既无最大值又无最小值.
y y=x
Oa
b
ቤተ መጻሕፍቲ ባይዱ
x
完整版ppt课件
5
定理1 (最大值和最小值定理)在闭区间上连续的 函数在该区间上一定有最大值 和最小值.
注1 : 定理1说明,如果函数f(x)在闭区间[a,b]上连续,

同济大学高等数学第七版1-7无穷小的比较 PPT

同济大学高等数学第七版1-7无穷小的比较 PPT
1 - cos x ~ 1 x2 , 所以 当x 0时有 2
1- cos x 1 x2 o( x2 ). 2
16
定理2 (等价无穷小替换定理)

~ ,
~



lim


A(或),

lim


lim


A(或).

lim
lim(

t

1)
n 1 1 n
12
13
二、利用等价无穷小替换求极限
定理1 ~ - o().
即 两个等价无穷小的差一定是一个更高 阶的无穷小,反之亦然。
原因? 他们太接近了,所以它们的差远远小于 它们之中的任何一个。
定理1 ~ o().
14
定理1 ~ o().
证 设 ~ , 则
lim
-

lim

- 1
lim
-1
0,
因此 - o( ), 即 o(lim


lim
o( )

lim1
o( )
1,
lim x 2 0,
x0 x
x2 0比x 0要快得多;
lim sin x 1, sin x 0与x 0快慢相仿;
x0 x
4
无穷小的比较
定义 设, 是同一过程中的两个无穷小, 且 0.
(1) 如果lim 0, 就说是比 高阶的无穷小;
记作 o( );
原式
lim
x0
x- x (2 x)3

高等数学同济七版第一章第六节

高等数学同济七版第一章第六节

xx
..
sin 1 lim lim lim 解 lim x0
taxn第x 六 节x极0 限s存inx 在x 准co则1s
两 个 重要极si限n x x0 x
x
x0
1 c os x
1.
lim lim m 例2 求求
xx 00
11 cc oossxx xx22
.
y
y ta0n x

第六节 极限存在准则 两个重x要极限
于112是l例 例解 解 例llxixiximm由m034040 s1复令ai求 求求nr2xc2合xcsxt222oxillln=sxxii函xxi xxmmmma0000数第r12assssclll六 iiirirxinsintn的nxiccmmimx节 737s3ns000ixxx极xinn2sxx.极.iss,tn限.ii限xnnt2x则22运 存s2xi2xn在1x算23.例准解 例x=法则s55i则n两求求个t得,x重代llsyx当xiii 要nmm表sy极2i第nxxx相限3y六ssxii2nn同节012x2xx时的极..xco限2,表ssi存nx有达2在x t式准则0
1
A n a1n a2n amn Amn .

lim lim 1 mn
1 m
en
e0m 1 ,
n
n
故由夹逼准则I得 limn a1n a2n amn A. n
二、准则II 第二重要极 数限列的单调性
如果数列 { xn } 满足条件
x1 x2 … xn xn+1 … , 则称数列 { xn } 是单调增加的;如果数列 { xn } 满足条件
一、准则I 第一重要极
准限则I 如果数列 { xn }、{ yn } 及 { zn } 满足下列条件

同济7版高等数学精品智能课件-第1章-第1节-集合、映射、函数

同济7版高等数学精品智能课件-第1章-第1节-集合、映射、函数
例2 设 X = {(x , y) | x2 + y2 = 1},Y = {(x , 0) | |x| 1 },
f : XY,则对每个 (x , y) X,有唯一确定的(x , 0) Y 与之对应.显然f 是一个映射,定义域 Df = X ,值域 Rf = Y .在几何上,这个映射表示将平面上一个圆心在 原点的单位圆上的点投影到 x 轴上的区间 [ -1 , 1 ]上.
第一节 映射与函数
注意
(1) 映射 g 和 f 能构成复合映射的条件是:Rg Df . (2) 映射 g 和 f 构成复合映射是有顺序的,f g 有 意义时, g f 可能没意义,即使它们同时都有意义,但 不一定表示同一映射.
三、函数
第一节 映射与函数
1. 函数的概念
定义 设数集合 D R ,则称映射 f : D R为定义 在 D 上的函数,通常简记为
y
1 (x , y)
-1 O x 1 x -1 (x , -y)
第一节 映射与函数
例3

f
:
π 2
,
π 2
[1
,
1]
,
对每个
x
π 2
,
π 2
,
f (x) = sin x .则f 是一个映射,定义域
Df
π 2
,
π 2
,
y
值域 Rf = [ -1 , 1 ] .
1
π 2
f (x) = sin x
二、映射
第一节 映射与函数
1. 映射的概念
定义 设 X , Y 是两个非空集合, 若存在一个对应
规则 f , 使得 x X , 有唯一确定的 y Y 与之对应,
则称 f 为从 X 到 Y 的映射, 记作 f : X Y .
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

5)],
x8 x8
, 求 f (5) .
6. 设 f (sin x 1 ) csc2 x cos2 x , 求 f (x). sin x
4.
解:
f
(
x
)
e
x
2
,
f [ (x)] e 2(x)

e 2 (x) 1 x
得 (x) ln(1 x) ,
x (,0]
5.
已知
f
(x)
x f
cos x , 提示: (2) y
sin x ,
0
x
π 4
π 4
x
π 2
3. 下列函数是否为初等函数 ? 为什么 ?
(1)
f (x) xx, ,
x0 x0
x2
(2) f (x) 11,,
x0 x0
x2 , x
x0
y⑵
1
O 1 x
y⑶
4
2
O1
x
(3)
f
(x)
2, 4,
x x
1 1
3
1, 1,
证明 f (x) 对一切 x 都连续 .
提示:
lim f (x x) lim [ f (x) f (x)]
x0
x0
f (x) f (0)
f (x 0) f (x)
阅读与练习
P65 题 1 , 3(2) ; P74 题 *6
P74 题*6. 证明: 若 f (x) 在 ( , )内连续, lim f (x)
x
存在, 则 f (x) 必在 ( , )内有界.
证: 令lim f (x) A, 则给定 0, X 0,当 x X
x
时, 有
A f (x) A
又 f (x) C[X , X ] , 根据有界性定理, M1 0 , 使
3. 闭区间上连续函数的性质
有界定理 ; 最值定理 ; 零点定理 ; 介值定理 .
例2. 设函数 f (x)
a (1cos x2
x)
,
1,
ln( b x2) ,
x0 x0 x0
在 x = 0 连续 , 则 a = 2 , b = e .
提示: f (0 ) lim a (1 cos x) a
lim (x
x0
a)(x 1) exb
a 1b
0
a 0,b1
x 1 为可去间断点 , lim ex b 极限存在
x1 x (x 1)
lim(ex b) 0
x1
b limex e
x1
例4. 设 f (x) 定义在区间 ( , ) 上 , 且对任意实数
x, y 有 f (x y) f (x) f ( y) , 若 f (x) 在 x 0 连续,
lim
xx0
f
(x)
f
(x0 )
lim y 0
x0
x x x0 , y f (x0 x) f (x0)
f (x0 ) f (x0 ) f (x0 )
0, 0, 当 x x0 时, 有
f (x) f (x0 )
2. 函数间断点
第一类间断点 第二类间断点
可去间断点 跳跃间断点 无穷间断点 振荡间断点
x0
x2
2
f (0 ) lim ln (b x2) ln b
x0
a 1 ln b 2
1 cos x ~ 1 x2 2
例3. 设函数
f (x) ex b (x a)(x 1)
有无穷间断点
x0
及可去间断点 x 1,试确定常数 a 及 b .
解: x 0 为无穷间断点, 所以
lim ex b x0 (x a)(x 1)
解:
f
(sin
x
1 sin
) x
1 sin 2
x
1 )2 3
f (x) x2 3
sin x
例1. 设 f (x) f ( xx1) 2x , 其中 x 0 , x 1 ,求 f (x).
解: 利用函数表示与变量字母的无关的特性 .

t
x1 x
,

x
1 1t
3, [ f (x
5)],
x8 x8
,求
f (5) .
解: f (5) f [ f (10) ] f (10 3) f (7) f [ f (12) ]
f (12 3 ) f (9) 6
6. 设 f (sin x 1 ) csc2 x cos2 x , 求 f (x). sin x
x
(a x)2
相同
(3)
f
(x)
x0
, ,
x0 x0
与(x) f [ f (x)]
相同
2. 下列各种关系式表示的 y 是否为 x 的函数? 为什么?
(1) y 1
不是
sin x 1
(2)
y max sin x , cos x ,
x
[
0,
π 2
]

(3) y arcsin u , u 2 x2 不是
x 13 x 1
(4)
f
(x)
1 1
x3 x3
, ,
x 0 1 x0
x6 ,
xR
以上各函数都是初等函数 .
(x 1)2 x 1 x 1
y1 ⑷
Ox
4. 设 f (x) ex2 , f [(x)] 1 x , 且(x) 0, 求 (x)
及其定义域 .
5.
已知
f
(x)
x f
3, [ f (x
,
代入原方程得
f
(11t )
f
(t)
2 1t
,

f
(11x)
f
(x)
2 1 x

1 1 x
uu1 ,

x
1 1u
,
代入上式得
f (uu1)
f
(11u )
2(u1) u
,

f ( xx1)
f
(11x)
2( x1) x
画线三式联立
f (x) x 1 1 1 x 1 x
二、 连续与间断
1. 函数连续的等价形式
习题课 函数与极限
一、 函数 二、 连续与间断 三、 极限
第一章
一、 函数
1. 概念
定义: 设 D R , 函数为特殊的映射:
f :D
定义域
f (D) R
值域
其中 f (D) y y f (x), x D
图形:
y
C (x , y) y f (x), x D
( 一般为曲线 )
y f (x)
f (D1)
5. 初等函数
有限个常数及基本初等函数 经有限次四则运算与
复合而成的一个表达式的函数.
思考与练习
1. 下列各组函数是否相同 ? 为什么?
(1) f (x) cos(2arccos x) 与(x) 2x2 1, x [1,1]
相同
(2)
f
(x)
ax
, ,
x x
a a
与 ( x)
1a
2
O
D
x
2. 特性 有界性 , 单调性 , 奇偶性 , 周期性
3. 反函数
设函数 f : D f (D) 为单射, 反函数为其逆映射
f 1 : f (D) D
4. 复合函数
给定函数链 f : D1 f (D1) g : D g(D) D1
D
g g(D)D1
f g f
则复合函数为 f g : D f [g(D) ]
相关文档
最新文档