二次函数的图像与系数的关系

合集下载

二次函数中各项系数abc与图像的关系

二次函数中各项系数abc与图像的关系

二次函数中各项系数a ,b ,c 与图像的关系一、首先就y=ax 2+bx+c (a≠0)中的a ,b ,c 对图像的作用归纳如下:1 a 的作用:决定开口方向:a > 0开口向上;a < 0开口向下;决定张口的大小:∣a ∣越大,抛物线的张口越小.2 b 的作用:b 和a 与抛物线图像的对称轴、顶点横坐标有关.b 与a 同号,说明02<-a b ,则对称轴在y 轴的左边; b 与a 异号,说明−b 2a >0,则对称轴在y 轴的右边;特别的,b = 0,对称轴为y 轴.3 c 的作用:c 决定了抛物线与y 轴的交点纵坐标.抛物线与y 轴的交点(0,c )c > 0 抛物线与y 轴的交点在y 轴的正半轴;c < 0 抛物线与y 轴的交点在y 轴的负半轴;特别的,c = 0,抛物线过原点.4 a,b,c 共同决定判别式?=b 2−4ac 的符号进而决定图象与x 轴的交点b 2−4ac >0 与x 轴两个交点b 2−4ac =0 与x 轴一个交点b 2−4ac <0 与x 轴没有交点5 几种特殊情况:x=1时,y=a + b + c ;x= -1时,y=a - b + c .当x = 1时,① 若y > 0,则a + b + c >0;② 若y < 时0,则a + b + c < 0当x = -1时,① 若y > 0,则a - b + c >0;② 若y < 0,则a - b + c < 0.扩:x=2, y=4a + 2b + c ;x= -2, y=4a -2b + c ; x=3, y=9a +3 b + c ;x= -3, y=9a -3b + c 。

一.选择题(共8小题)1.已知二次函数y=ax 2+bx +c 的图象大致如图所示,则下列关系式中成立的是( )A .a >0B .b <0C .c <0D .b +2a >02.如果二次函数y=ax 2+bx +c (a ≠0)的图象如图所示,那么下列不等式成立的是( )A .a >0B .b <0C .ac <0D .bc <0.3.已知二次函数y=ax 2+bx +c (a ≠0)的图象如图所示,有下列4个结论:①abc >0;②b <a +c ;③4a +2b +c >0;④b 2﹣4ac >0;其中正确的结论有( )A .1个B .2个C .3个D .4个4.二次函数y=ax 2+bx +c (a ≠0)的图象如图所示,对于下列结论:①a <0;②b <0;③c >0;④2a +b=0;⑤a ﹣b +c <0,其中正确的个数是( )A .4个B .3个C .2个D .1个第3题图 第4题图 第5题图 第6题图5.二次函数y=ax 2+bx +c (a ≠0)的图象如图,给出下列四个结论::①a <0;②b >0;③b 2﹣4ac >0;④a +b +c <0;其中结论正确的个数有( )A .1个B .2个C .3个D .4个6.如图所示,抛物线y=ax 2+bx +c 的顶点为(﹣1,3),以下结论:①b 2﹣4ac <0;②4a ﹣2b +c <0;③2c﹣b=3;④a+3=c,其中正确的个数()A.1 B.2 C.3 D.47.如图是二次函数y=ax2+bx+c图象的一部分,图象过点A(﹣3,0),对称轴为直线x=﹣1,下列给出四个结论中,正确结论的个数是()个①c>0;②若点B(﹣,y1)、C(﹣,y2)为函数图象上的两点,则y1<y2;③2a﹣b=0;④<0;⑤4a﹣2b+c>0.A.2 B.3 C.4 D.58.二次函数y=ax2+bx+c的图象如图所示,以下结论:①abc>0;②4ac<b2;③2a+b>0;④当x<时,y随x的增大而减小;⑤a+b+c>0.其中正确的有()A.5个 B.4个 C.3个 D.2个二.填空题(共4小题)9.如图,抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=1,与x轴的一个交点坐标为(﹣1,0),其部分图象如图所示,下列结论:①4ac<b2;②方程ax2+bx+c=0的两个根是x1=﹣1,x2=3;③3a+c>0;④当y>0时,x的取值范围是﹣1≤x<3;⑤当x<0时,y随x增大而增大;其中结论正确有.10.一抛物线和抛物线y=﹣2x2的形状、开口方向完全相同,顶点坐标是(﹣1,3),则该抛物线的解析式为.11.抛物线y=ax2+12x﹣19顶点横坐标是3,则a=.12.将二次函数y=x2+6x+5化为y=a(x﹣h)2+k的形式为.三.解答题(共7小题)13.已知:抛物线y=﹣x2+bx+c经过点B(﹣1,0)和点C(2,3).(1)求此抛物线的表达式;(2)如果此抛物线沿y轴平移一次后过点(﹣2,1),试确定这次平移的方向和距离.14.函数y=(m+2)是关于x的二次函数,求:(1)满足条件的m值;(2)m为何值时,抛物线有最低点?求出这个最低点.这时,当x为何值时,y随x的增大而增大?(3)m为何值时,函数有最大值?最大值是多少?这时,当x为何值时,y随x的增大而减小.15.已知二次函数的图象经过(0,0)(﹣1,﹣1),(1,9)三点.(1)求这个函数的解析式;(2)求这个函数图象的顶点坐标.16.已知抛物线的顶点坐标是(1,﹣4),且经过点(0,﹣3),求与该抛物线相应的二次函数表达式.17.已知二次函数y=x2﹣4x+5.(1)将y=x2﹣4x+5化成y=a (x﹣h)2+k的形式;(2)指出该二次函数图象的对称轴和顶点坐标;(3)当x取何值时,y随x的增大而增大?18.如图,二次函数的图象的顶点坐标为(1,),现将等腰直角三角板直角顶点放在原点O,一个锐角顶点A在此二次函数的图象上,而另一个锐角顶点B在第二象限,且点A的坐标为(2,1).(1)求该二次函数的表达式;(2)判断点B是否在此二次函数的图象上,并说明理由.19.已知二次函数y=a(x﹣h)2,当x=4时有最大值,且此函数的图象经过点(1,﹣3).(1)求此二次函数的解析式;(2)当x为何值时,y随x的增大而增大?。

二次函数中二次项系数与像的关系及变化规律的详细解析

二次函数中二次项系数与像的关系及变化规律的详细解析

二次函数中二次项系数与像的关系及变化规律的详细解析二次函数是数学中常见的一种函数形式,具有形如f(x) = ax^2 + bx + c 的表达式,其中a、b、c为常数,并且a ≠ 0。

在二次函数中,二次项系数a决定了函数的开口方向、形状以及顶点位置,而像则代表了函数在横轴上各点对应的纵坐标值。

本文将对二次函数中二次项系数与像之间的关系及变化规律进行详细解析。

1. 开口方向二次函数的开口方向由二次项系数a的正负决定。

当a > 0时,函数的抛物线开口向上;当a < 0时,函数的抛物线开口向下。

二次项系数a的正负直接影响了像的取值范围以及函数的凹凸性。

2. 最值点和顶点二次函数的最值点可以通过求导数的方法得出,根据导数的结果可以确定函数的最小值或最大值。

对于二次函数f(x) = ax^2 + bx + c,它的导数为f'(x) = 2ax + b。

当导数为零时,即f'(x) = 0时,可以解得函数的极值点x = -b / (2a)。

将x代入原函数f(x)中,即可得到极值点对应的像f(-b / (2a))。

这个极值点也称为顶点,它在抛物线上的位置决定了像的取值范围。

3. 函数开口程度与a的绝对值大小二次项系数a的绝对值越大,函数的开口越窄,形状越细长;a的绝对值越小,函数的开口越宽,形状越圆润。

通过改变二次项系数a的取值可以调整函数的开口程度,进而影响像的取值范围。

4. 对称轴与顶点位置对称轴是二次函数的一个重要特征,它是通过顶点且垂直于横轴的一条直线。

对称轴的方程可以通过将表达式中的x替换成常数得出。

对于f(x) = ax^2 + bx + c,对称轴的方程为x = -b / (2a)。

对称轴的位置与像的取值范围也有一定的关系,根据对称性质可知,对称轴与像的取值范围存在一种对应关系。

5. a的正负与函数的单调性当二次项系数a > 0时,函数开口向上,其图像呈现上凹形态,也即在对称轴两侧,函数单调递增;而当a < 0时,函数开口向下,其图像呈现下凹形态,函数在对称轴两侧单调递减。

二次函数的图像与系数的关系(初三数学最全整理)

二次函数的图像与系数的关系(初三数学最全整理)

二次函数图象与系数的关系二次函数的图象与二次函数的系数a 、b 、c 有内在联系。

由系数可以得出二次函数的大致图象,由图象可以得出二次函数系数的取值范围,以下是二次函数的系数和图象之间联系的一些归纳和总结!一、知识点1 二次函数的图像与系数的关系(1)a 的符号由 决定: ①开口向 ⇔ a 0;①开口向 ⇔ a 0.(2)b 的符号由 决定:① 在y 轴的 ⇔b a 、 ;① 在y 轴的 ⇔b a 、 ;① 是 ⇔b 0.(3)c 的符号由 决定:①点(0,c )在y 轴正半轴 ⇔c 0;①点(0,c )在原点 ⇔c 0;①点(0,c )在y 轴负半轴 ⇔c 0.知识点2 二次函数与一元二次方程的关系[归纳概括]如果抛物线)0(2≠++=a c bx ax y 与x 轴有公共点,公共点的横坐标是0x ,那么当x= 时,函数的值是0,因此x= 就是方程02=++c bx ax 的一个根.[归纳概括]函数)0(2≠++=a c bx ax y 的图像与x 轴交点的个数(1)当042>-ac b 时,有 交点;(2)当042=-ac b 时,有 交点;(3)当042<-ac b 时,没有交点;二、例题讲解:例1 已知二次函数)0(2≠++=a c bx ax y 的图像如图所示,试确定代数式①a ;②b ;③c ;④b 2-4ac ;⑤2a+b ;⑥a+b+c ;⑦a-b+c ;⑧4a+2b+c 的符号.练习1:根据图象填空:(1)a _____0;(2)b 0;(3)c 0;(4)ac b 42- 0 ; (5)2a b +______0;(6)0a b c ++⎽⎽⎽⎽ ; (7)0a b c -+⎽⎽⎽⎽;练习2:二次函数y =ax 2+bx +c 的图象如图所示,对称轴是直线x =1.(1)试确定代数式的符号①abc ______0;②3a +c ______0;③(a +c )2﹣b 2______0; ④b 2-4ac ______0 ⑤a +b +2c _____0(2)证明:a +b ≤m (am +b )(m 为实数).练习3.在平面直角坐标系中,二次函数y =ax 2+bx +c (a ≠0)的图象如图所示,证明: a ﹣b ≤m (am +b )(m 为实数);例2二次函数y =ax 2+bx +c (a ≠0)的部分图象如图所示,图象过点(﹣1,0),对称轴为直线x =2,(1)试确定代数式的符号4a +b 0;(2)9a +c 3b ;(2)证明:8a +7b +2c >0;(3)若点A (﹣3,y 1)、点B (﹣,y 2)、点C (,y 3)在该函数图象上,判断y 1,y 2,y 3的大小(4)若方程a (x +1)(x ﹣5)=﹣3的两根为x 1和x 2,且x 1<x 2,判断﹣1,5,x 1,x 2的大小变式1:利用抛物线图象求解一元二次方程及二次不等式(1)方程02=++c bx ax 的根为___________;(2)方程23ax bx c ++=-的根为__________;(3)方程24ax bx c ++=-的根为__________;(4)不等式20ax bx c ++>的解集为 ;(5)不等式20ax bx c ++<的解集为 ;(6)若方程|ax 2+bx +c |=1有四个根,则这四个根的和为 ,变式2.抛物线y =ax 2+bx +c (a ≠0)的部分图象如图所示,与x 轴的一个交点坐标为(4,0),抛物线的对称轴是直线x =1.下列结论中:①方程ax 2+bx +c =3有两个不相等的实数根;②抛物线与x 轴的另一个交点坐标为(﹣2,0);③若点A (m ,n )在该抛物线上,则am 2+bm +c ≤a +b +c .其中正确的有变式3.(1)抛物线2(0)y ax bx c a =++≠的图象全部在x 轴上方的条件是(2)抛物线2(0)y ax bx c a =++≠的图象全部在x 轴下方的条件是 例3.如图,抛物线y =ax 2+bx +c 与x 轴交于点A (﹣1,0),顶点坐标(1,n ),与y 轴的交点在(0,3),(0,4)之间(包含端点),(1)求代数式(a +c )2﹣b 2的值(2)若方程|ax 2+bx +c |=2有四个根,求这四个根的和(3)求a 的取值范围 (4)求b 的取值范围例4.在同一平面直角坐标系xOy 中,一次函数y =ax 与二次函数y =ax 2+a 的图象可能是( ) A .B .C .D . 三、课后作业1.如图,抛物线y=ax2+bx+c交x轴于(﹣1,0),(3,0)两点,下列判断中,错误的是()A.图象的对称轴是直线x=1B.当x>2时,y随x的增大而减小C.当﹣1<x<1时,y<0D.一元二次方程ax2+bx+c=0的两个根是﹣1和32.如图,二次函数y=ax2+bx+c(a≠0)的图象经过点A(﹣3,0),顶点为P(﹣1,n).下列结论错误的是()A.abc>0B.4ac﹣b2<0C.3a+c>0D.关于x的方程ax2+bx+c=n+1无实数根3.如图,已知抛物线y=ax2+bx+c开口向上,与x轴的一个交点为(﹣1,0),对称轴为直线x=1.下列结论错误的是()A.abc>0B.b2>4acC.4a+2b+c>0D.2a+b=04.在同一坐标系中,一次函数y=ax+b和二次函数y=ax2+bx+c的图象可能为()A.B.C.D.5.二次函数y=ax2+bx+c的图象如图所示(1).判断正误并说明理由:①abc<0②b2﹣4ac<0③2a>b(2)证明:(a+c)2<b26.如图,二次函数y=ax2+bx+c(a≠0)的图象经过点(﹣1,2),且与x轴交点的横坐标分别为x1、x2,其中﹣2<x1<﹣1,0<x2<1,下列结论:①abc<0;②2a﹣b<0;③﹣1<a<0;④b2+8a>4ac;⑤a+c<1.其中正确的是7.二次函数y=ax2+bx+c(a≠0)的部分图象如图所示,对称轴为直线x=,且经过点(2,0).下列说法:①﹣2b+c=0;;②4a+2b+c<0;③若(0,y1),(1,y2)是抛物线上的两点,则y1=y2;④b+c>m(am+b)+c(其中m≠).其中正确的是8.二次函数y=ax2+bx+c(a,b,c为常数,a≠0)的部分图象如图所示,图象顶点的坐标为(2,1),与x轴的一个交点在点(3,0)和点(4,0)之间,有下列结论:①abc<0;②a﹣b+c>0;③c﹣4a=1;④b2>4ac;⑤am2+bm+c≤1(m为任意实数).其中正确的是9.如图,已知抛物线y=ax2+bx+c(a,b,c为常数,a≠0)经过点(2,0),且对称轴为直线x=,求证:无论a,b,c取何值,抛物线一定经过(,0)10.已知抛物线y=ax2+bx+c(b>a>0)与x轴最多有一个交点,现有以下四个结论:①该抛物线的对称轴在y轴左侧;②关于x的方程ax2+bx+c+2=0无实数根;③a﹣b+c≥0;④的最小值为3.其中,正确结论的个数为()A.1个B.2个C.3个D.4个。

盘点中考中的二次函数系数与图像的关系

盘点中考中的二次函数系数与图像的关系

盘点中考中的二次函数系数与图像的关系作者:李建婷来源:《初中生世界·九年级》2015年第12期二次函数是初中阶段学习的重要内容之一,在中考命题中,由二次函数的图像确定其待定系数及系数组成的代数式的符号,或由二次函数的系数符号判断函数图像等都是考试热点.命题常以客观题形式出现,这类考题不仅能较为全面地考查同学们对知识的理解掌握情况,还考查同学们运用知识分析问题解决问题的能力.二次函数y=ax2+bx+c(a≠0)的图像与系数的关系:(1)开口方向:二次项系数a决定抛物线的开口方向和大小.当a>0时,抛物线开口向上;当a(2)对称轴:一次项系数b和二次项系数a共同决定对称轴的位置.当a与b同号(即ab>0)时,对称轴在y轴左侧;当a与b异号(即ab(3)与y轴的关系:常数项c决定抛物线与y轴交点.抛物线与y轴交于(0,c),当c>0时,抛物线与y轴的交点在正半轴上;当c(4)与x轴的关系:抛物线与x轴交点个数由Δ决定.当Δ=b2-4ac>0时,抛物线与x轴有两个交点;当Δ=b2-4ac=0时,抛物线与x轴只有一个交点;当Δ=b2-4ac(5)确定am2+bm+c的符号:关键是抛物线上横坐标为m的点P的位置情况.当点P在x 轴上方时,am2+bm+c>0;当点P在x轴下方时,am2+bm+c一、由二次函数的图像考查系数及系数组成的代数式的符号例1 (2015·广东深圳)二次函数y=ax2+bx+c(a≠0)的图像如图1所示,下列说法:①a>0;②b>0;③c0,正确的个数是().A. 1个B. 2个C. 3个D. 4个【解析】∵抛物线的开口向下,∴a∵抛物线的对称轴在y轴右侧,∴- >0,即b>0,故说法②正确;∵抛物线与y轴的交点在x轴上方,∴c>0,故说法③错误;∵抛物线与x轴有两个交点,∴b2-4ac>0,故说法④正确.综上所述,正确的说法是②④.因此选B.二、由二次函数的图像考查点与对称轴的关系例2 (2015·湖北恩施)如图2是二次函数y=ax2+bx+c图像的一部分,图像过点A(-3,0),对称轴为直线x=-1,给出四个结论:①b2>4ac;②2a+b=0;③a+b+c>0;④若点B- ,y1、C- ,y2为函数图像上的两点,则y1A. ②④B. ①④C. ①③D. ②③【解析】∵抛物线与x轴有两个交点,∴b2-4ac>0,即b2>4ac,故①正确;∵对称轴为直线x=-1,∴x=- =-1,∴2a-b=0,故②错误;∵图像过点A(-3,0),对称轴为直线x=-1,∴图像与x轴的另一交点为(1,0),即当x=1时,y=0,∴a+b+c=0,故③错误;由图像可知:抛物线开口向下,当x=-1时,函数有最大值,点B- ,y1、C- ,y2为函数图像上的两点且C点距离对称轴较近,∴y1【点评】此题考查二次函数对称轴的性质,解答本题关键是掌握二次函数根的判别式,会利用对称轴及抛物线与x轴交点情况进行推理.三、由二次函数的图像考查系数符号及其与二次方程之间的关系例3 (2015·广西南宁)如图3,已知经过原点的抛物线y=ax2+bx+c(a≠0)的对称轴是直线x=-1,下列结论中:①ab>0;②a+b+c>0;③当-2A. 0个B. 1个C. 2个D. 3个【解析】∵抛物线的开口向上,∴a>0,∵对称轴在y轴的左侧,∴- 0,∴ab>0,故①正确;观察图像知:当x=1时,y=a+b+c>0,故②正确;∵抛物线的对称轴为x=-1,与x轴交于(0,0),∴另一个交点为(-2,0),∴当-2因此选D.【点评】本题主要考查图像与二次函数系数之间的关系,会利用对称轴的范围确定2a与b的符号,以及二次函数与二次方程之间的转换.四、考查由二次函数的系数确定图像中的定点例4 (2014·甘肃白银)二次函数y=x2+bx+c,若b+c=0,则它的图像一定过点().A. (-1,-1)B. (1,-1)C. (-1,1)D. (1,1)【解析】由b+c=0,得c=-b,代入二次函数,变形得y=x2+b(x-1),若图像一定过某点,则与b无关,当x=1时,二次函数为y=x2,与b无关,此时y=1,因此它的图像一定过点(1,1).选D.【点评】本题考查了二次函数图像与系数的关系,在这里求定点问题,应把b当作变量,令其系数为0进行求解.五、考查由二次函数的系数符号确定相关的图像例5 (2015·辽宁锦州)在同一坐标系中,一次函数y=ax+2与二次函数y=x2+a的图像可能是().【解析】根据一次函数和二次函数的解析式可得直线与y轴的交点为(0,2),抛物线的开口向上.解法一:从解析式的系数入手:①若a②若a>0,抛物线的顶点在y轴正半轴上,直线经过一、二、三象限.因此选C.解法二:从函数图像入手:选项B中的图像抛物线开口向下,产生错误,排除B;选项D中的图像,直线与y轴交点在负半轴上,产生错误,排除D;选项A中的图像,因为直线上升,所以a>0,但是抛物线的顶点在y轴负半轴上,所以a因此选C.【点评】与二次函数相关的图像的确定,一般采用以下两种方法:(1)从函数关系式入手,确定其中一个关系式系数符号,当它的正负不确定时,要进行分类讨论,或逐一比较各个关系式中相同的系数,判断其在同一坐标系中是否矛盾;(2)从图像入手,依据在同一坐标系中各个图像的位置,判断各个关系式中相同的系数符号是否矛盾.即由数找形或由形定数.六、由图表构建图像考查二次函数性质的综合运用例6 (2014·山东泰安)二次函数y=ax2+bx+c(a,b,c为常数,且a≠0)中的x与y的部分对应值如下表:下列结论:①ac1时,y的值随x值的增大而减小;③3是方程ax2+(b-1)·x+c=0的一个根;④当-10.其中正确的个数为().A. 4个B. 3个C. 2个D. 1个【解析】由图表中数据描出图像(如图4),可得出:抛物线开口向下,∴a又x=0时,y=3,∴c=3>0,∴ac∵抛物线开口向下,且对称轴为x= =1.5,∴当x>1.5时,y的值随x值的增大而减小,故②错误;∵当x=3时,y=3,∴9a+3b+c=3,∵c=3,∴9a+3b+3=3,∴9a+3b=0,∴3是方程ax2+(b-1)x+c=0的一个根,故③正确;∵当x=-1时,ax2+bx+c=-1,∴当x=-1时,ax2+(b-1)x+c=0,∵当x=3时,ax2+(b-1)x+c=0,且函数有最大值,∴当-10,故④正确.因此选B.【点评】数形结合是研究二次函数最常用的方法,把图表信息转化为图像信息能更直观地发现其所具有的性质,更好地分析解决问题.小试身手1. 抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=-1,与x轴的一个交点A在点(-3,0)和(-2,0)之间,其部分图像如图5,则下列结论:①4ac-b2A. 1个B. 2个C. 3个D. 4个2. 如图6,抛物线y=ax2+bx+c的对称轴是x=-1,且过点,0,有下列结论:①abc>0;②a-2b+4c=0;③25a-10b+4c=0;④3b+2c>0;⑤a-b≥m(am-b).其中所有正确的结论是________.(填写正确结论的序号)答案:1. C2. ①③⑤(作者单位:江苏省南京师范大学附属中学江宁分校)。

二次函数图像与系数的关系

二次函数图像与系数的关系

二次函数图像与系数间的关系一 知识梳理1,二次函数y=ax 2+bx+c(a ≠0)的图像与系数a 、b 、c 、ac b 42-的关系 :注 ①a 的正否决定抛物线的开口方向和大小 ②a,b 决定对称轴的位置,左同右异。

③c 决定抛物线与Y 轴的交点的位置。

④取特值:如当x=1,y=a+b+c ,当x=2是,y=4a+2b+c 等。

2、二次函数与一元二次方程的关系(二次函数与x 轴交点情况):(1) 一元二次方程20ax bx c ++=是二次函数2y ax bx c =++当函数值0y =时的特殊情况.图象与x 轴的交点个数:① 当240b ac ∆=->时,图象与x 轴交于两点()()1200A x B x ,,,12()x x ≠,其中的12x x ,是一元二次方程()200ax bx c a ++=≠的两根.② 当0∆=时,图象与x 轴只有一个交点; ③ 当0∆<时,图象与x 轴没有交点.1' 当0a >时,图象落在x 轴的上方,无论x 为任何实数,都有0y >;2'当0a <时,图象落在x 轴的下方,无论x 为任何实数,都有0y <. 题型一、二次函数、一次函数及反比例函数图像确定例1、在同一坐标系内,一次函数y=ax+b 与二次函数y=ax 2+8x+b 的图像可能是( )A.B.C.D.例2、二次函数y=ax2+bx+c的图象如图所示,反比例函数与一次函数y=cx+a在同一平面直角坐标系中的大致图象是()A.B.C.D.例3、一次函数y=ax+b和二次函数y=ax2+bx+c在同一直角坐标系内的图象位置大致是( )课堂练习:1、二次函数y=ax2+bx的图像如图所示,那么一次函数y=ax+b的图像大致是()A.B.C.D.2、二次函数y=ax2+bx+c(a≠0)的图像如图所示,则函数y=ax与y=bx+c在同一直角坐标系内的大致图像是()A.B.C.D.3、在同一直角坐标系中,函数y=mx+m和y=﹣mx2+2x+2(m是常数,且m≠0)的图象可能是()A.B.C。D.题型二、二次函数图像与系数之间的关系基础题型例1、二次函数y=ax2+bx+c的图像如图所示,则下列结论正确的是()A.a<0,b<0,c>0,b2﹣4ac>0 B.a>0,b<0,c>0,b2﹣4ac<0C.a<0,b>0,c<0,b2﹣4ac>0 D.a<0,b>0,c>0,b2﹣4ac>0例2、已知二次函数()20y ax bx c a =++≠的图像如图所示,下列说法错误的是( )A .图像关于直线x=1对称B .函数()20y ax bx c a =++≠的最小值是﹣4C .﹣1和3是方程()200ax bx c a ++=≠的两个根D .当x <1时,y 随x 的增大而增大例3、如图所示,二次函数y=ax 2+bx+c 的图像中,王刚同学观察得出了下面四条信息:(1)b 2-4ac >0;(2)c >1;(3)2a ﹣b <0;(4)a+b+c <0,其中错误的有( )A .1个B .2个C .3个D .4个课堂练习:1、(2011•重庆)已知抛物线y=ax 2+bx+c (a ≠0)在平面直角坐标系中的位置如图所示,则下列结论中,正确的是( )A 、a >0B 、b <0C 、c <0D 、a+b+c >02、二次函数y=ax 2+bx+c (a≠0)的图象如图所示,则点P (b 2﹣4ac ,a+b+c )所在的象限是( )A.第一象限B.第二象限C.第三象限D.第四象限3、(2011•雅安)已知二次函数y=ax2+bx+c的图象如图,其对称轴x=-1,给出下列结果①b2>4ac;②abc>0;③2a+b=0;④a+b+c>0;⑤a-b+c<0,则正确的结论是()A、①②③④B、②④⑤C、②③④D、①④⑤题型三、二次函数图像与系数之间的关系能力题型例1、已知二次函数的y=ax2+bx+c(a≠0)图象如图所示,有下列5个结论:①abc<0;②b <a+c;③4a+2b+c>0;④2c<3b;⑤a+b<m(am+b)(m≠1的实数),其中正确结论的番号有.例2、如图为二次函数y=ax2+bx+c的图象,在下列说法中:①abc<0;②方程ax2+bx+c=0的根是x1=﹣1,x2=3;③a+b+c>0;④当x>1时,y随x的增大而增大;⑤9a﹣3b>16a+4b正确的说法有.(把正确的答案的序号都填在横线上)例3、已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,与y轴相交一点C,与x轴负半轴相交一点A,且OA=OC,有下列5个结论:①abc>0;②b<a+c;③4a+2b+c>0;④2a+b=0;⑤c+=﹣2,其中正确的结论有 .(请填序号)课堂练习1、已知二次函数()20y ax bx c a =++≠的图像如图所示,给出以下结论:①24b ac >;②0abc >;③20a b -=;④80a c +<;⑤930a b c ++<,其中结论正确的是 .(填正确结论的序号)2、.二次函数y=ax 2+bx+c 的图象如图所示,以下结论:①a+b+c=0;②4a+b=0;③abc <0;④4ac-b 2<0;⑤当x≠2时,总有4a+2b >ax 2+bx 其中正确的有 (填写正确结论的序号).3、已知二次函数的图象与轴交于点、,且,与轴的正半轴的交点在的下方.下列结论:①;②;③;④.其中正确结论的个数是 个.课堂测试:1、如图,二次函数y=ax 2+bx+c 的图象与y 轴正半轴相交,其顶点坐标为( 12,1),下列结论:①ac <0;②a+b=0;③4ac-b 2=4a ;④a+b+c <0.其中正确结论的个数是( )2y ax bx c =++x (20)-,1(0)x ,112x <<y (02),420a b c -+=0a b <<20a c +>210a b -+>A、1B、2C、3D、42、(2011•山西)已知二次函数y=ax2+bx+c的图象如图所示,对称轴为直线x=1,则下列结论正确的是()A、ac>0B、方程ax2+bx+c=0的两根是x1=-1,x2=3C、2a-b=0D、当x>0时,y随x的增大而减小3、(2011•泸州)已知二次函数y=ax2+bx+c(a,b,c为常数,a≠0)的图象如图所示,有下列结论:①abc>0,②b2-4ac<0,③a-b+c>0,④4a-2b+c<0,其中正确结论的个数是()A、1B、2C、3D、44、(2011•兰州)如图所示的二次函数y=ax2+bx+c的图象中,刘星同学观察得出了下面四条信息:(1)b2-4ac>0;(2)c>1;(3)2a-b<0;(4)a+b+c<0.你认为其中错误的有()A、2个B、3个C、4个D、1个5、.如图,已知二次函数y=ax2+bx+c(a≠0)的图象,则下列结论正确序号是(只填序号).①abc>0,②c=-3a,③b2-4ac>0,④a+b<m(am+b)(m≠1的实数).6、如图是二次函数y=ax2+bx+c图象的一部分,图象过点A(x 1,0),-3<x1<-2,对称轴为x=-1.给出四个结论:①abc>0;②2a+b=0;③b2>4ac;④a-b>m(ma+b)(m≠-1的实数);⑤3b+2c>0.其中正确的结论有()A.2个 B.3个 C.4个 D.5个课后作业:1、已知二次函数y=ax2的图象开口向上,则直线y=ax-1经过的象限是()A、第一、二、三象限B、第二、三、四象限C、第一、二、四象限D、第一、三、四象限2、二次函数y=ax2+bx+c的图象如图所示,则下列结论正确的是()A、a<0,b<0,c>0,b2-4ac>0B、a>0,b<0,c>0,b2-4ac<0C、a<0,b>0,c<0,b2-4ac>0D、a<0,b>0,c>0,b2-4ac>03、已知二次函数y=ax2+bx+c的图象如图所示,那么下列判断不正确的是()A、ac<0B、a-b+c>0C、b=-4aD、关于x的方程ax2+bx+c=0的根是x1=-1,x2=54、已知二次函数y=ax2+bx+c的图象如图所示,则a,b,c满足()A、a<0,b<0,c>0,b2-4ac>0B、a<0,b<0,c<0,b2-4ac>0C、a<0,b>0,c>0,b2-4ac<0D、a>0,b<0,c>0,b2-4ac>05、已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,有下列4个结论,其中正确的结论是()A、abc>0B、b>a+cC、2a-b=0D、b2-4ac<06、已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,则下列结论:①ac>0;②a-b+c<0;③当x<0时,y<0;④方程ax2+bx+c=0(a≠0)有两个大于-1的实数根.其中错误的结论有()A、②③B、②④C、①③D、①④7、如图所示为二次函数y=ax2+bx+c(a≠0)的图象,在下列选项中错误的是()A、ac<0B、x>1时,y随x的增大而增大C、a+b+c>0D、方程ax2+bx+c=0的根是x1=-1,x2=38、二次函数y=ax2+bx+c的图象如图所示,下列结论错误的是()A、ab<0B、ac<0C、当x<2时,函数值随x增大而增大;当x>2时,函数值随x增大而减小D、二次函数y=ax2+bx+c的图象与x轴交点的横坐标就是方程ax2+bx+c=0的根9、已知二次函数y=ax2+bx+c的图象如图所示,则下列结论正确的是()A、a>0B、c<0C、b2-4ac<0D、a+b+c>010、二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列结论①a,b异号;②当x=1和x=3时,函数值相等;③4a+b=0;④当y=4时,x的取值只能为0,结论正确的个数有()个.A、1B、2C、3D、411.二次函数y=ax2+bx+c(a≠0)的图像如图所示,则下列结论中正确的是()A.a>0 B.当﹣1<x<3时,y>0C.c<0 D.当x≥1时,y随x的增大而增大12.函数y=x2+bx+c与y=x的图像如图所示,有以下结论:①b2﹣4c>0;②b+c+1=0;③3b+c+6=0;④当1<x<3时,x2+(b﹣1)x+c<0.其中正确的个数为()A .1B .2C .3D .413.如图,二次函数y=ax 2+bx+c (a≠0)的图像与x 轴交于A 、B 两点,与y 轴交于C 点,且对称轴为x=1,点B 坐标为(﹣1,0).则下面的四个结论: ①2a+b=0;②4a﹣2b+c <0;③ac>0;④当y <0时,x <﹣1或x >2. 其中正确的个数是( )A .1B .2C .3D .414、如图,矩形OABC 在平面直角坐标系中的位置如图所示,3OA =,2AB =.抛物线2y ax bx c =++(0a ≠)经过点A 和点B ,与x 轴分别交于点D 、E (点D 在点E 左侧),且1OE =,则下列结论:①0>a ;②3c >;③20a b -=;④423a b c -+=;⑤连接AE 、BD ,则=9ABDE S 梯形,其中正确结论的个数为( )A .1个B .2个C .3个D .4个15、如图,二次函数y=ax 2+bx+c (a>0)图象的顶点为D ,其图象与x 轴的交点为A 、B ,对称轴为直线x=1,与y 轴负半轴交于点C ,且OB=OC>2,下面五个结论:①bc<0;②4a+2b+c>0;③2a+b=0;④一元二次方程ax 2+bx+c=﹣2必有两个不相等的实数根;⑤1c 2a+=-. 那么,其中正确的结论是_____。

初中数学 二次函数的图像的最值与系数的关系如何确定

初中数学  二次函数的图像的最值与系数的关系如何确定

初中数学二次函数的图像的最值与系数的关系如何确定二次函数的图像的最值与系数的关系是数学中一个重要的概念,它可以帮助我们确定二次函数图像的最大值或最小值。

下面我将为你详细介绍二次函数图像的最值与系数的关系的确定方法,并提供一些解题技巧和实例。

一、二次函数图像的最值与系数的关系的确定方法1. 二次函数的标准形式:-二次函数的标准形式为y = ax^2 + bx + c,其中a、b、c为常数,且a ≠ 0。

2. 二次函数的最值的定义:-二次函数的最值是指二次函数图像的最高点或最低点的函数值,最值可以表示为f(x)。

3. 系数与最值的关系的定义:-系数a决定了二次函数图像的开口方向和最值的正负性。

4. 系数与最值的关系的确定:-如果a > 0,则二次函数图像开口向上,最值为最小值。

-如果a < 0,则二次函数图像开口向下,最值为最大值。

二、系数与最值的关系的求解技巧1. 求解系数与最值的关系的步骤:-首先,确定二次函数的系数a的值。

-然后,通过系数a的值,可以确定二次函数图像的开口方向和最值的正负性。

三、解题技巧和实例分析1. 解题技巧:-确定二次函数的系数a的值。

-根据系数a的值,可以确定二次函数图像的开口方向和最值的正负性。

2. 实例分析:例题:已知二次函数的方程为y = 2x^2 - 3x + 1,确定二次函数图像的最值。

解析:首先,确定二次函数的系数a的值。

对于二次函数y = 2x^2 - 3x + 1,系数a = 2。

然后,通过系数a的值,可以确定二次函数图像的开口方向和最值的正负性。

由于系数a = 2 > 0,所以二次函数图像开口向上,最值为最小值。

通过计算或观察二次函数图像,可以确定最值的函数值。

对于二次函数y = 2x^2 - 3x + 1,可以使用二次函数的顶点公式来求解最值。

顶点公式为:x = -b / (2a),代入系数b = -3和a = 2,得到x = 3/4。

二次函数图像与系数的关系

二次函数图像与系数的关系

二次函数系数与图形的关系解答方法:1、判断单独系数a,看开口方向2、单独判断系数b,看对称轴,左同右异,对称轴在y轴左边,则a,b同号,对称轴在y轴右边,则a,b异号3.单独判断系数c,则看抛物线与对称轴的交点。

4、判断系数a和b的大小,则看对称轴,如题目给出对称轴为1,则对称轴就是-=1从而计算得出a和b的关系,如果题目给出的对称轴是在-1和0之间,则,进而计算出a和b的大小关系5、判断3个系数a,b,c的关系,首先是-4ac,看抛物线与横轴的交点,其次顶点坐标最后a+b+c代表的就是x=1时对应的y值a-b+c x=-14a+2b+c x=24a-2b+c x=-29a-3b+c x=-39a+3b+c x=3例1如图是二次函数y=ax2+bx+c图象的一部分,图象过点A(-3,0),对称轴为直线x=-1,给出以下结论:①abc<0②b2-4ac>0③4b+c<0④若B(-52,y1)、C(-12,y2)为函数图象上的两点,则y1>y2⑤当-3≤x≤1时,y≥0,例2二次函数y=ax2+bx+c(a≠0)的图象如图所示,对称轴为x=1,给出下列结论:①abc >0;②b2=4ac;③4a+2b+c>0;④3a+c>0,其中正确的结论是如图,抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=1,与x轴的一个交点坐标为(-1,0),其部分图象如图所示,下列结论:①4ac<b2;②方程ax2+bx+c=0的两个根是x1=-1,x2=3;③3a+c>0④当y>0时,x的取值范围是-1≤x<3⑤当x<0时,y随x增大而增大其中结论正确的个数是()例4已知二次函数y=ax2+bx+c+2的图象如图所示,顶点为(-1,0),下列结论:①abc<0;②b2-4ac=0;③a>2;④4a-2b+c>0.其中正确结论的个数是()课堂练习:二次函数y=ax2+bx+c(a≠0)的图象如图所示,对称轴为x=1,给出下列结论:①abc >0;②b2=4ac;③4a+2b+c>0;④3a+c>0,其中正确的结论有()如图,二次函数y=ax2+bx+c(a≠0)的图象与x轴交于A,B两点,与y轴交于点C,且OA=OC.则下列结论:①abc<0;②244ac ba>0;③ac-b+1=0;④OA•OB=-ca.其中正确结论的个数是()如图,已知二次函数y=ax2+bx+c(a≠0)的图象与x轴交于点A(-1,0),对称轴为直线x=1,与y轴的交点B在(0,2)和(0,3)之间(包括这两点),下列结论:①当x>3时,y<0;②3a+b<0;③-1≤a≤-2 3;④4ac-b2>8a;其中正确的结论是()a、b、c是实数,点A(a+1、b)、B(a+2,c)在二次函数y=x2-2ax+3的图象上,则b、c的大小关系是b如图,抛物线y=ax2+bx+c与x轴相交于点A、B(m+2,0)与y轴相交于点C,点D在该抛物线上,坐标为(m,c),则点A的坐标是∙二次函数y=ax2+bx+c(a,b,c为常数,且a≠0)中的x与y的部分对应值如表下列结论:①ac<0;②当x>1时,y的值随x值的增大而减小.③3是方程ax2+(b-1)x+c=0的一个根;④当-1<x<3时,ax2+(b-1)x+c>0.其中正确的结论是∙若关于x的一元二次方程x2-2x+kb+1=0有两个不相等的实数根,则一次函数y=kx+b的大致图象可能是()A.B.C.D.a,b,c为常数,且(a-c)2>a2+c2,则关于x的方程ax2+bx+c=0根的情况是()A.有两个相等的实数根B.有两个不相等的实数根C.无实数根D.有一根为0∙若关于x的一元二次方程x2-3x+p=0(p≠0)的两个不相等的实数根分别为a和b,且a2-ab+b2=18,则a/b+ b/a 的值是()A.3 B.-3 C.5 D.-5∙若x1,x2是一元二次方程x2-2x-1=0的两个根,则x12-x1+x2的值为()A.-1 B.0 C.2 D.3∙若二次函数y=x2+mx的对称轴是x=3,则关于x的方程x2+mx=7的解为()A.x1=0,x2=6 B.x1=1,x2=7 C.x1=1,x2=-7 D.x1=-1,x2=7 ∙如图,已知二次函数y=ax2+bx+c(a≠0)的图象与x轴交于点A(-1,0),与y轴的交点B在(0,-2)和(0,-1)之间(不包括这两点),对称轴为直线x=1.下列结论:①abc>0②4a+2b+c>0③4ac-b2<8a④1/3<a<2/3⑤b>c.其中含所有正确结论的选项是()A.①③B.①③④C.②④⑤D.①③④⑤如图是二次函数y=ax2+bx+c过点A(-3,0),对称轴为x=-1.给出四个结论:①b2>4ac,②2a+b=0;③a-b+c=0;④5a<b.其中正确结论是()A.②④B.①④C.②③D.①③∙在同一平面直角坐标系中,函数y=ax2+bx(a≠0)与y=bx+a(b≠0)的图象可能是()A.B.C.D.∙直线y=kx经过二、四象限,则抛物线y=kx2+2x+k2图象的大致位置是()A.B.C.D.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,并且关于x的一元二次方程ax2+bx+c-m=0有两个不相等的实数根,下列结论:①b2-4ac<0;②abc>0;③a-b+c<0;④m>-2,其中,正确的个数有()A.1B.2C.3D.4已知二次函数y=ax 2-bx-2(a≠0)的图象的顶点在第四象限,且过点(-1,0),当a-b 为整数时,ab 的值为( )二次函数y=ax 2+bx+c 的图象如图所示,下列结论:①b <2a ;②a+2c-b >0;③b >a >c ;④b 2+2ac <3ab .其中正确结论的个数是( )已知直线y=-3x+3与坐标轴分别交于点A ,B ,点P 在抛物线y=-31(x-32+4上,能使△ABP 为等腰三角形的点P 的个数有( ) A .3个 B .4个C .5个D .6个二次函数y=ax 2+bx-1(a≠0)的图象经过点(1,1),则a+b+1的值是( ) A .-3B .-1C .2D .3已知关于x 的方程ax+b=0(a≠0)的解为x=-2,点(1,3)是抛物线y=ax 2+bx+c (a≠0)上的一个点,则下列四个点中一定在该抛物线上的是( ) A .(2,3)B .(0,3)C .(-1,3)D .(-3,3)已知二次函数y=x 2+2x-3,当自变量x 取m 时,对应的函数值小于0,设自变量分别取m-4,m+4时对应的函数值为y 1,y 2,则下列判断正确的是( ) A .y 1<0,y 2<0 B .y 1<0,y 2>0C .y 1>0,y 2<0D .y 1>0,y 2>0。

二次函数中各项系数a,b,c与图像的关系

二次函数中各项系数a,b,c与图像的关系

二次函数中各项系数 a ,b, c 与图像的关系 一、首先就y=ax 2 +bx+c (a 工0)中的a ,b ,c 对图像的作用归纳如下: a 的作用:决定开口方向:a > 0开口向上;a < 0开口向下; 决定张口的大小:l a I 越大,抛物线的张口越小. b 的作用:b 和a 与抛物线图像的对称轴、顶点横坐标有关. b 与a 同号,说明 _L .. o ,则对称轴在y 轴的左边; 2a b 与a 异号,说明 b -> 0 '口 ,则对称轴在y 轴的右边; 特别的,b = 0,对称轴为y 轴.c 的作用:c 决定了抛物线与y 轴的交点纵坐标.抛物线与y 轴的交点(0,c ) c > 0抛物线与y 轴的交点在y 轴的正半轴;c < 0抛物线与y 轴的交点在y 轴的负半轴; 特别的,c = 0 ,抛物线过原点. ■ . 2 a,b,c 共同决定判别式 b 2 - 4ac > 0 b 2 - 4ac = 0 b 2 - 4ac < 0 * = b ~4ac 的符号进而决定图象与X 轴的交点 与X 轴两个交点 与X 轴一个交点 与X 轴没有交点 x=1 时,y=a + b + c ; x= -1 时,y=a - b + c .当 x = 1 时,①若 y > 0,贝U a + b + c >0 ; ® 若 y < 时 0,贝Ua +b +c < 0 当 x = -1 时,①若 y > 0,贝U a - b + c >0 ;②若 y < 0,贝U a - b + 扩:x=2, y=4a + 2b + c ; x= -2, y=4a -2b + c ; x=3, y=9a +3 b + c 一.选择题(共8小题) 1 .已知二次函数y=ax +bx+c 的图象大致如图所示,贝U 下列关系式中成立的是 A. a >0 B . b v 0 C. c v 0D . b+2a >0 2.如果二次函数y=a£+bx+c (a ^ 0)的图象如图所示,那么下列不等式成立 几种特殊情况: c < 0 . ;x= -3, y=9a -3b + c 。

二次函数中各项系数与图像的关系

二次函数中各项系数与图像的关系

二次函数中各项系数a ,b ,c 与图像的关系一、首先就y=ax 2+bx+c (a≠0)中的a ,b ,c 对图像的作用归纳如下:1 a 的作用:决定开口方向:a > 0开口向上;a < 0开口向下;决定张口的大小:∣a ∣越大,抛物线的张口越小.2 b 的作用:b 和a 与抛物线图像的对称轴、顶点横坐标有关.b 与a 同号,说明02<-a b ,则对称轴在y 轴的左边; b 与a 异号,说明−b 2a >0,则对称轴在y 轴的右边;特别的,b = 0,对称轴为y 轴.3 c 的作用:c 决定了抛物线与y 轴的交点纵坐标.抛物线与y 轴的交点(0,c )c > 0 抛物线与y 轴的交点在y 轴的正半轴;c < 0 抛物线与y 轴的交点在y 轴的负半轴;特别的,c = 0,抛物线过原点.4 a,b,c 共同决定判别式?=b 2−4ac 的符号进而决定图象与x 轴的交点b 2−4ac >0 与x 轴两个交点b 2−4ac =0 与x 轴一个交点b 2−4ac <0 与x 轴没有交点5 几种特殊情况:x=1时,y=a + b + c ;x= -1时,y=a - b + c .当x = 1时,① 若y > 0,则a + b + c >0;② 若y < 时0,则a + b + c < 0当x = -1时,① 若y > 0,则a - b + c >0;② 若y < 0,则a - b + c < 0.扩:x=2, y=4a + 2b + c ;x= -2, y=4a -2b + c ; x=3, y=9a +3 b + c ;x= -3, y=9a -3b + c 。

一.选择题(共8小题)1.已知二次函数y=ax 2+bx+c 的图象大致如图所示,则下列关系式中成立的是( )A .a >0B .b <0C .c <0D .b+2a >02.如果二次函数y=ax 2+bx+c (a ≠0)的图象如图所示,那么下列不等式成立的是( )A .a >0B .b <0C .ac <0D .bc <0.3.已知二次函数y=ax 2+bx+c (a ≠0)的图象如图所示,有下列4个结论:①abc >0;②b <a+c ;③4a+2b+c >0;④b 2﹣4ac >0;其中正确的结论有( )A .1个B .2个C .3个D .4个4.二次函数y=ax 2+bx+c (a ≠0)的图象如图所示,对于下列结论:①a <0;②b <0;③c >0;④2a+b=0;⑤a ﹣b+c <0,其中正确的个数是( )A .4个B .3个C .2个D .1个第3题图 第4题图 第5题图 第6题图5.二次函数y=ax 2+bx+c (a ≠0)的图象如图,给出下列四个结论::①a <0;②b >0;③b 2﹣4ac >0;④a+b+c <0;其中结论正确的个数有( )A .1个B .2个C .3个D .4个6.如图所示,抛物线y=ax 2+bx+c 的顶点为(﹣1,3),以下结论:①b 2﹣4ac <0;②4a ﹣2b+c <0;③2c﹣b=3;④a+3=c,其中正确的个数()A.1 B.2 C.3 D.47.如图是二次函数y=ax2+bx+c图象的一部分,图象过点A(﹣3,0),对称轴为直线x=﹣1,下列给出四个结论中,正确结论的个数是()个①c>0;②若点B(﹣,y1)、C(﹣,y2)为函数图象上的两点,则y1<y2;③2a﹣b=0;④<0;⑤4a﹣2b+c>0.A.2 B.3 C.4 D.58.二次函数y=ax2+bx+c的图象如图所示,以下结论:①abc>0;②4ac<b2;③2a+b>0;④当x<时,y随x的增大而减小;⑤a+b+c>0.其中正确的有()A.5个B.4个C.3个D.2个二.填空题(共4小题)9.如图,抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=1,与x轴的一个交点坐标为(﹣1,0),其部分图象如图所示,下列结论:①4ac<b2;②方程ax2+bx+c=0的两个根是x1=﹣1,x2=3;③3a+c>0;④当y>0时,x的取值范围是﹣1≤x<3;⑤当x<0时,y随x增大而增大;其中结论正确有.10.一抛物线和抛物线y=﹣2x2的形状、开口方向完全相同,顶点坐标是(﹣1,3),则该抛物线的解析式为.11.抛物线y=ax2+12x﹣19顶点横坐标是3,则a= .12.将二次函数y=x2+6x+5化为y=a(x﹣h)2+k的形式为.三.解答题(共7小题)13.已知:抛物线y=﹣x2+bx+c经过点B(﹣1,0)和点C(2,3).(1)求此抛物线的表达式;(2)如果此抛物线沿y轴平移一次后过点(﹣2,1),试确定这次平移的方向和距离.14.函数y=(m+2)是关于x的二次函数,求:(1)满足条件的m值;(2)m为何值时,抛物线有最低点?求出这个最低点.这时,当x为何值时,y随x的增大而增大?(3)m为何值时,函数有最大值?最大值是多少?这时,当x为何值时,y随x的增大而减小.15.已知二次函数的图象经过(0,0)(﹣1,﹣1),(1,9)三点.(1)求这个函数的解析式;(2)求这个函数图象的顶点坐标.16.已知抛物线的顶点坐标是(1,﹣4),且经过点(0,﹣3),求与该抛物线相应的二次函数表达式.17.已知二次函数y=x2﹣4x+5.(1)将y=x2﹣4x+5化成y=a (x﹣h)2+k的形式;(2)指出该二次函数图象的对称轴和顶点坐标;(3)当x取何值时,y随x的增大而增大?18.如图,二次函数的图象的顶点坐标为(1,),现将等腰直角三角板直角顶点放在原点O,一个锐角顶点A在此二次函数的图象上,而另一个锐角顶点B在第二象限,且点A的坐标为(2,1).(1)求该二次函数的表达式;(2)判断点B是否在此二次函数的图象上,并说明理由.19.已知二次函数y=a(x﹣h)2,当x=4时有最大值,且此函数的图象经过点(1,﹣3).(1)求此二次函数的解析式;(2)当x为何值时,y随x的增大而增大?。

二次函数图像与系数的关系

二次函数图像与系数的关系

二次函数的图象与各项系数之间的关系 技巧讲解1. 二次项系数a :a 决定了抛物线开口的大小和方向,a 的正负决定开口方向,a 的大小决定开口的大小.二次函数2y ax bx c =++中,a 为二次项系数,显然0a ≠.① 当0a >时,抛物线开口向上;② 当0a <时,抛物线开口向下; ③a 的值越大,函数图象越靠近y 轴,开口越小,反之a 的值越小,函数图象越远离y 轴,开口越大;一次函数图象有类似特点。

2. 一次项系数b :①在a 确定的前提下,b 决定了抛物线对称轴的位置.②ab 的符号的判定:对称轴ab x 2-=在y 轴左边则0>ab ,在y 轴的右侧则0<ab ,概括的说就是“左同右异”在二次项系数a 确定的前提下,b 决定了抛物线的对称轴.⑴ 在0a >的前提下,①当0b >时,02b a-<,即抛物线的对称轴在y 轴左侧; ②当0b =时,02b a-=,即抛物线的对称轴就是y 轴; ③当0b <时,02b a ->,即抛物线对称轴在y 轴的右侧. ⑵ 在0a <的前提下,结论刚好与上述相反,即①当0b >时,02b a->,即抛物线的对称轴在y 轴右侧; ②当0b =时,02b a-=,即抛物线的对称轴就是y 轴; ③当0b <时,02b a -<,即抛物线对称轴在y 轴的左侧. 3. 常数项c :c 决定了抛物线与y 轴交点的位置.⑴ 当0c >时,抛物线与y 轴的交点在x 轴上方,即抛物线与y 轴交点的纵坐标为正;⑵ 当0c =时,抛物线与y 轴的交点为坐标原点,即抛物线与y 轴交点的纵坐标为0;⑶ 当0c <时,抛物线与y 轴的交点在x 轴下方,即抛物线与y 轴交点的纵坐标为负.总之,只要a b c ,,都确定,那么这条抛物线就是唯一确定的.4.特殊形式(1)当x=1时,可以求出a+b+c 的值; 若x=1时,y>0,则a+b+c>0; 若x=1时,y<0,则a+b+c<0; 若x=1时,y=0,则a+b+c=0;(2)当x=-1时,可以求出a-b+c 的值; 若x=-1时,y>0,则a-b+c>0; 若x=-1时,y<0,则a-b+c<0; 若x=-1时,y=0,则a-b+c=0;(3)根的别式b 2-4ac ,可以用来判断抛物线与x 轴的交点个数,当b 2-4ac>0时,方程2y ax bx c =++=0有两个根,也就是说y=0时,函数在x 轴上可以找到2个对应的自变量值,即断抛物线与x 轴有2个交点;同理b 2-4ac=0,二次函数图象与x 轴有一个交点;b 2-4ac <0时,抛物线与x 轴没有交点。

二次函数图象与系数的关系最全总结

二次函数图象与系数的关系最全总结

二次函数图象与系数的关系最全总结二次函数是初中数学的重点也是难点内容之一,它的图象是一条抛物线,其形状、开口方向、位置等与表达式中的系数的关系非常密切。

所以,二次函数图象与a、b、c的关系是非常重要的一个知识点,今天,小培就为大家总结一下二次函数图像与系数的关系变化。

1. a决定抛物线的开口方向及大小具体内容:•a>0,抛物线开口向上•a<0,抛物线开口向下•|a|越大,抛物线的开口越小•|a|越小,抛物线的开口越大我们知道抛物线平移前后形状及开口方向不变,只是位置发生改变,那么只要两个二次函数的a相同,那么就可以由其中一个二次函数通过平移得到另一个二次函数.图象:抛物线开口向上,a>0,抛物线开口向下,a<0,开口大的抛物线的|a|小于开口小的抛物线的|a|.图象示例:2. a、b共同决定抛物线对称轴的位置对称轴的位置具体内容:•b=0时,对称轴为y轴•b/a>0,对称轴在y轴左侧(即a、b同号,则对称轴在y轴左侧,简记为“左同”)•b/a<0,对称轴在y轴右侧(即a、b异号,则对称轴在y轴右侧,简记为“右异”)上述当b≠0时,a、b的符号及对称轴与y轴的位置可简记为“左同右异”图象:对称轴在y轴,则b=0,对称轴在y轴左侧,根据“左同右异”判断a、b同号,对称轴在y轴右侧,根据“左同右异”判断a、b异号.图象示例:3. c决定抛物线与y轴交点的位置具体内容:•c=0,抛物线过原点•c>0,抛物线与y轴交于正半轴•c<0,抛物线与y轴交于负半轴可根据c是抛物线与y轴交点的纵坐标来理解记忆这一点内容图象示例:4. b2-4ac决定抛物线与x轴的交点的个数具体内容:•b2-4ac=0时,与x轴有唯一交点(即顶点)•b2-4ac>0时,与x轴有两个交点(即开口向上时顶点在x轴下方,开口向下顶点在x轴上方)•b2-4ac<0时,与x轴没有交点(即开口向上时顶点在x轴上方,开口向下顶点在x轴下方)图象示例:5. 特例•当x=1时,y=a+b+c•当x=-1时,y=a-b+c•当x=2时,y=4a+2b+c•当x=-2时,y=4a-2b+c•若a+b+c<0,即当x=1时,y<0•若a-b+c>0,即当x=-1时,y>0•当对称轴为直线x=1时,则2a+b=0•当对称轴为直线x=-1时,则2a-b=0从上述中我们可以得出从二次函数的图象也可以得出关于系数a、b、c的相关信息,做此类问题一定要注意数形结合.例题讲解例1二次函数y=ax2+bx+c的图象如图所示,则点在()A.第一象限B.第二象限C.第三象限D.第四象限【分析】根据图象开口向下可得a<0,根据对称轴在y轴右侧可得a、b异号,则b>0,抛物线与y轴交于正半轴,可得c>0,所以<0,则点M(b,)符合第四想象点的坐标特征(+,-),故选D.例2若抛物线y=ax2+3x+1与x轴有两个交点,则a的取值范围是()A.a>0B.a>- 4/9C.a>9/4D.a<9/4且a≠0【分析】根据抛物线与x轴有两个交点,则b2-4ac>0,即32-4a×1>0,解得a<9/4,根据二次函数定义可知a≠0.故选D.▲易错警示▲不要忽视二次函数表达式中二次项系数不为0这一条件.例3 已知二次函数y=ax2+bx+c的图象如图所示,下列结论:①a+b+c<0,②a-b+c>0;③abc>0;④b=2a 中正确个数为()A.4个B.3个C.2个D.1个【分析】•a+b+c是当x=1时y的值,根据图象可知当x=1时,图象上对应的点在x轴下方,则y=a+b+c<0,故①正确;•a-b+c是当x=-1时y的值,根据图象可知当x=-1时,图象上对应的点在x 轴上方,则y=a-b+c>0,故②正确;•根据图象开口向下可得a<0,根据对称轴在y轴左侧,可得a、b同号,故b<0,根据图象与y轴交于正半轴可得c>0,所以abc>0,故③正确;•由图象得抛物线的对称轴为直线•x=-b/2a=-1,则b=2a,故④正确;故本题选A.。

二次函数的图像与系数的关系

二次函数的图像与系数的关系

初三上学期 二次函数(3) 抛物线的图像与系数 班级 姓名 知识点归纳:二次函数的图像与系数的关系 (1)a 的符号由抛物线的开口方向决定: ①开口方向向上⇔a 0; ②开口方向下⇔a 0.(2)b 的符号由抛物线的对称轴与a 的符号共同决定:①若抛物线的对称轴在y 轴的左侧 ⇔b a 、 ; ②若抛物线的对称轴在y 轴的右侧 ⇔b a 、 ; ③若抛物线的对称轴是y 轴⇔b 0.(3)c 的符号由抛物线与y 轴的交点位置决定: ①与y 轴正半轴相交⇔c 0; ②与y 轴负半轴相交⇔c 0; ③经过原点 ⇔c 0;(3)24b ac ∆=-的符号由抛物线与x 轴的交点个数决定的: ①抛物线与x 轴有2个交点⇔24b ac ∆=- 0 ; ②抛物线与x 轴有1个交点⇔24b ac ∆=- 0 ; ③抛物线与x 轴有没有交点⇔ 24b ac ∆=- 0 .(4)两个特殊代数式c b a ++与c b a +-的符号:(其他特殊代数式类似)c b a ++是抛物线c bx ax y ++=2 (0a ≠)上的点 (1,c b a ++)的纵坐标, c b a +-是抛物线c bx ax y ++=2 (0a ≠)上的点(-1,c b a +-)的纵坐标.根据点的位置,可确定它们的符号. (5)只含有a b 、两个字母的代数式的值的确定,一般看对称轴,也可以看两根之和;而只含有a c 、两个字母的代数式的值的确定,一般看两根之积 .练习:1. 抛物线2y ax bx c =++的图像如图1,则____0a ,____0b ,___0c ,24____0b ac ∆=-.2.二次函数c bx ax y ++=2的图象如图2所示,则24__0b a c ∆=-,__0ab ,___0bc ,___0a b c ++,___0a b c -+(图1) (图2) (图3)3.二次函数2y ax bx c =++的图象如图5所示,对称轴是直线1x =,则___0c ,24____0b ac ∆=-, ___0a b c ++,___0a b c -+,42___0a b c ++,2___0a b +,2___0a b -.4.抛物线)0(2≠++=a c bx ax y 过第二、三、四象限,则a 0,b 0,c 0,图像的顶点在第 象限, 24b ac - 0.草图: 理由:5.二次函数2y ax bx c =++的图像如图所示,则一次函数y ax b =+的图像可能为… ( )6.二次函数221y ax x a =++-的图象可能..是 …… ( )7. 已知抛物线2(0)y ax bx c a =++≠的图象如图6所示,则下列结论:①0ab >;②当1x =-和3x =-时的函数值相等;③40a b +=;④当且仅当0x =时,函数值为2,其中正确的是 .例题1.已知二次函数2y ax bx c =++(0a ≠)的图象如图所示,有下列结论:①240b ac ->;②0abc >;③20a b +=;④80a c +>; ⑤930a b c ++<.其中,正确结论的个数是A .2B .3C .4D .5 ……( )例题2.如图,已知抛物线23y x bx a =+-过点A (1,0),B (0,-3),与x 轴交于另一点C . (1)求抛物线的解析式;(2)若在第三象限的抛物线上存在点P ,使PBC ∆为以点B 为直角顶点的直角三角形,求点P 的坐标;(3)在(2)的条件下,在抛物线上是否存在一点Q ,使以P ,Q ,B ,C 为顶点的四边形为直角梯形?若存在,请求出点Q 的坐标;若不存在,请说明理由.例题3. 如图①,抛物线()024112<+-=m m mx mx y 与x 轴交于点B 、C (点B 在点C左侧),抛物线上另有一点A 在第一象限内,且090BAC ∠= (1)填空:OB = ,OC = ;(2)连结OA ,将OAC ∆沿x 轴翻折后得到ODC ∆,当四边形OACD 是菱形时,求此抛物线的解析式;(3)如图②,设垂直于x 轴的垂线l :n x =与⑵中的抛物线交于点M ,与线段CD 交于点N ,若直线l 沿x 轴方向左右平移,当n 为何值时,四边形AMCN 的面积取得最大值,并求出这个面积最大值.。

二次函数系数a、b、c与图像的关系

二次函数系数a、b、c与图像的关系

二次函数系数a 、b 、c 与图像的关系若抛物线与 x 轴交于(1,0),则a + b + c = 0;若抛物线与 x 轴交于(-1,0),则a - b + c = 0. (1) 当x = 1时,①若y > 0,则a + b + c >0;②若y < 0,则a + b + c < 0 (2) 当x = -1时,①若y > 0,则a - b + c >0;②若y < 0,则a - b + c < 0.5 例1(重庆2004年)二次函数()02≠++=a c b a χχγ的图像如图,则点M (b ,ac )在( )A .第一象限B .第二象限C .第三象限D .第四象限 分析:∵开口向下,∴a < 0;∵抛物线与y 轴的交点在y 轴的正半轴,∴c > 0∵顶点在y 轴的右边,∴b 与a 异号,即b > 0;∴ac < 0;∴点M 在第四象限选D例2、(2004陕西)二次函数()02≠++=a c b a χχγ的图像如图,则下列关系判断正确的是( )A .ab < 0B .bc < 0C .a + b + c > 0D .a - b + c < 0分析:∵开口向下,∴a < 0; ∵抛物线与y 轴的交点在y 轴的负半轴,∴c < 0∵顶点在y 轴的左边,∴b 与a 同号,即b < 0; ∴ab > 0, bc > 0 故A 、B 均错 ∵x = 1时,y < 0,∴a + b + c < 0,故C 错 ∵x = -1时,y < 0,∴a - b + c < 0.故选D例3(2004呼和浩特)如图,四个二次函数的图像中分别对应的是:①2χγa =②2χγb =③2χγc =④2χγd =,则a , b , c , d 的大小关系是 . A .a > b > c > d B .a > b > d > c C .b > a > c > dD .b > a > d > c分析:∵③、④的图像开口向下,∴c < 0,d < 0; ∵④的张口比③的张口小,∴∣d ∣ > ∣c ∣, ∴c > d ; ∵①、②的图像开口向上,∴a > 0,b > 0;∵①的张口比②的张口小,∴∣a ∣ > ∣b ∣, ∴a > b例4、已知二次函数()02≠++=a c b aχχγ的图像如图,则a 、b 、c 满足( )A .a < 0,b < 0,c > 0 ;B .a < 0,b < 0,c < 0 ;C .a < 0,b > 0,c > 0 ;D .a > 0,b < 0,c > 0 ;分析:∵开口向下,∴a < 0;∵抛物线与y 轴的交点在y 轴的正半轴,∴c > 0∵顶点在y 轴的左边,∴b 与a 同号,即b < 0; ∴选A 例5 二次函数()02≠++=a c b a χχγ的图像如图,13χ=为该函数图像的对称轴,根据这个函数图像,你能得到关于该函数的那些性质和结论呢?(写4个即可). 解: ①∵开口向上,∴a > 0;②∵抛物线与y 轴的交点在y 轴的负半轴,∴c < 0; ③∵顶点在y 轴的右边,∴b 与a 异号,即b < 0; ④∵x = 1时,y < 0,∴a + b + c < 0;⑤∵x = -1时,y > 0,∴a - b + c > 0.例1、已知y=ax 2+bx+c 图象如图1,则下列关系中成立的是( )120.<-<a bA 220.<-<abB 221.<-<a bC12.=abD 剖析 特别位置判定法,若抛物过O(0,0)(2,0)则x=12=-a b 这里221<-<ab ,所以选C .求值判定法,设抛物线过(α,0)(0<α<2),(2,0),则α2a+αb+c=0①,4a+2b+c=0②,①②(α2-4)a+(α-2)b=0∵α-2≠0∴(α+2)a+b=0b=-(α+2)a.121222)2(2>+=+=+=-∴αααa a a b 221<-<∴ab求中点坐标判定法,设抛物线与x 轴交于点A(α,0)(0<α<2),B(2,0), 则A 、B 中点坐标是12122>+=+αα 221<-<∴ab所以选 C . 注意:若题目为“已知抛物线y=ax 2+bx+c 过A(1,5),B(4,5),求对称轴直线”应怎样求?例2为了备战世界杯,中国足球队在某次训练中,一队员在距离球门12米处挑射,正好射中了2.4米高的球门横梁,若足球运动路线是抛物线y=ax 2+bx+c 如图2,则下列结论: ①601-<a ,②0601<<-a ,③a-b+c>0,④a<b<-12aA .①③ B. ①④ C . ②③ D . ②④剖析 排除法判定,易知c=2.4把(12,0)代入y=ax 2+bx+c 中得: 144a+12b+2.4=0,11205a b ++=,由图象知a<0,对称轴2b x a-=11120560a a ∴+<<-,, 即①成立, ②不成立,故不可能选C 与D . 111201201255a b a b b a++=∴+-<<- ,,,000022b ba b a a<->∴<> ,,,.,12a b a -<<∴④正确,故在A ,B 中只能选B .例3、已知抛物线y=ax 2+bx+c(a<0)经过点(-1,0)且满足4a+2b+c>0以下结论:①a+b>0,②a+c>0,③-a+b+c>0,④b 2-2ac>5a 2其中正确的个数有( )A .1个B .2个C .3个D .4个剖析: 特殊值判定法,∵抛物线过(-1,0)点,∴a-b+c=0, c=b-a 代入4a+2b+c>0中得.a+b>0,①正确.∵a<0,a+b>0,∴b>0,∵a-b+c=0,∴a+c=b>0,a+c>0,②正确.∵a<0,b>0,∴c=b-a>0,-a>0,∴-a+b+c>0,③正确.∵a-b+c=0,∴a+c=b ,2a+c=a+b>0,2a+c>0,∵a<0,c>0,∴c-2a>0, ∴(c-2a)(c+2a)>0,c 2-4a 2>0,c 2>4a 2,∵b=a+c ,∴b 2=c 2+a 2+2ac ,c 2=b 2-a 2-2ac ,b 2-a 2-2ac>4a 2,b 2-2ac>5a 2, ④正确. 所以选D .注意 :有时利用x=±1时,y=a±b+c ,x=±2时,y=4a±2b+c 中,y 符号判定a±b+c 和4a±2b+c 的符号.例4、已知二次函数y=ax 2+bx+c 图象与x 轴交于(-2,0)(x ,0)且1<x 1<2,与y 轴正半轴交点在(0,2)下方,下列结论,①a<b<0,②2a+c>0,③4a+c<0,④2a-b+1>0其中正确个数为( )A .1个B .2个C .3个D .4个剖析: 数形判定法,根据题意可画草图3, 1122b b x a a=->-∴< 对称轴,, 00022b ba a a<-<∴> ,, ∴a<b<0 ①正确. ∵抛物线过(-2,0),∴4a-2b+c=0, 2a+c=-2a+2b=-2(a-b)>0∴2a+c>0,②正确. ∵4a-2b+c=0,4a+c=2b<0∴4a+c<0,③正确. ∵4a-2b+c=0,2cb a 2-=-∴ ∵0<c<2,12c->-∴,2a-b>-1,即2a-b+1>0 ④正确. 所以选D .补充练习:1、二次函数y =ax 2+bx +c (a ≠0)的图象如图2所示,则点c M b a ⎛⎫ ⎪⎝⎭,在( ) A 、第一象限 B 、第二象限 C 、第三象限 D 、第四象限 2、如图,若a <0,b >0,c <0,则抛物线y=ax 2+bx +c 的大致图象为( )3、二次函数2(0)y ax bx c a =++≠的图象如图所示,则下列说法不正确的是( ) A 、240b ac ->B 、0a >C 、0c >D 、02ba-< 4、二次函数y =ax 2+bx +c 的图象如图3所示,则下列关于a ,b ,c 间关系的判断正确的是( ) A 、ab <0B 、bc <0C 、a +b +c >0D 、a -b +c <05、 二次函数c bx ax y ++=2,图象如图所示,则反比例函数xab y =的图象的两个分支分别在第 象限。

第22章:二次函数与反比例函数知识点总结

第22章:二次函数与反比例函数知识点总结

第22章:二次函数与反比例函数强化记忆知识点知识点1:二次函数的图象与系数的关系.二次函数2y ax bx c =++中图象与系数的关系:(1)二次项系数a 的正负决定开口方向,a 的大小决定开口的大小. a>0时,开口向上,a<0时,开口向下。

a 越大,开口越小。

a 越小,开口越大。

(2)一次项系数b ,在a 确定的前提下,b 决定了抛物线对称轴的位置.若0>ab ,则对称轴a b x 2-=在y 轴左边,若0<ab ,则对称轴a bx 2-=在y 轴的右侧。

若b=0,则对称轴abx 2-==0,即对称轴是y 轴.概括的说就是“左同右异,y 轴0” (3)常数项c ,c 决定了抛物线与y 轴交点的位置.当0c >时,交点在y 轴的正半轴上 ;当0c =时,抛物线经过原点,;当0c <时,交点在y 轴的负半轴上, 简记为“上正下负原点0”(4) △=b 2-4ac 决定了抛物线与x 轴交点的个数. ① 当0∆>时,抛物线与x 轴有两个交点 ② 当0∆=时,抛物线与x 轴只有一个交点; ③ 当0∆<时,抛物线与x 轴没有交点.另外当0a >时,图象落在x 轴的上方,无论x 为任何实数,都有0y >; 当0a <时,图象落在x 轴的下方,无论x 为任何实数,都有0y <.注:a +b +c 表示x=1时,对应的函数值。

a -b +c 表示x= -1时,对应的函数值.4a +2b +c 表示x=2时,对应的函数值。

9a -3b +c 表示x= -3时,对应的函数值.等知识2:一次函数的图象与系数的关系.一次函数:y=kx +b(k,b 是常数,k≠0) 中图象与系数的关系:(1)走向:k>0,图象经过第一、三象限;k<0,图象经过第二、四象限b>0,图象经过第一、二象限;b<0,图象经过第三、四象限⇔⎩⎨⎧>>00b k 直线经过第一、二、三象限 ⇔⎩⎨⎧<>00b k 直线经过第一、三、四象限 ⇔⎩⎨⎧><00b k 直线经过第一、二、四象限 ⇔⎩⎨⎧<<00b k 直线经过第二、三、四象限 (2)增减性: k>0,y 随x 的增大而增大;k<0,y 随x 增大而减小.(3)截距: 当b>0时,图象交于y 轴正半轴, 当b<0时,图象交于y 轴负半轴,当b=0时,图象交于原点.(4)倾斜度:|k|越大,图象越接近于y 轴;|k|越小,图象越接近于x 轴.知识3:反比例函数的图象与系数的关系以及反比例函数性质. 反比例函数:y =xk(k 为常数,k ≠0)中图象与系数的关系: (1)反比例函数的增减性不连续,在讨论函数增减问题时,必须有“在每一个象限内”这一条件。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

二次函数的图像与系数的关系1.已知二次函数y=ax 2+bx+c (a ≠0)的图象如图,有下列5个结论:①abc <0;②3a+c>0;③4a+2b+c >0;④2a+b=0;⑤b 2>4ac.其中正确的结论的有( )A. 1个B. 2个C. 3个D. 4个2.如图,二次函数y =ax 2+bx +c (a ≠0)的大致图象,关于该二次函数下列说确的是( )A. a >0,b <0,c >0B. b 2﹣4ac <0C. 当﹣1<x <2时,y >0D. 当x >2时,y 随x 的增大而增大 3.如图,二次函数图象,过点A (3,0),二次函数图象的对称轴是直线x=1,下列结论正确的是( )A. 2a+b=0B. ac>0C.D.4.已知函数y=mx 2-6x+1(m 是常数),若该函数的图象与x 轴只有一个交点,则m 的值为( )A. 9B. 0C. 9或0D. 9或15.如图,二次函数2y ax bx c =++的图象的对称轴是直线1x =,则下列理论:①0a <,0b <②20a b ->,③0a b c ++>,④0a b c -+<,⑤当1x >时, y 随x 的增大而减小,其中正确的是().A. ①②③B. ②③④C. ③④⑤D. ①③④6.已知y=ax+b的图象如图所示,则y=ax2+bx的图象有可能是()A. B. C. D.7.二次函数y=ax2+bx+c(a≠0)的部分图象如图,图象过点(﹣1,0),对称轴为直线x=2,下列结论:①4a+b=0;②9a+c<3b;③25a+5b+c=0;④当x>2时,y随x的增大而减小.其中正确的结论有()A. 1个B. 2个C. 3个D. 4个8.如下图,已知经过原点的抛物线y=ax2+bx+c(a≠0)的对称轴是直线x=-1,下列结论中①ab>0,②a+b+c>0,ƒ③当-2<x<0时,y<0.正确的个数是()A. 0个B. 1个C. 2个D. 3个 9.二次函数与一次函数y=ax+c 在同一直角坐标系的大致图象是( )A. B. C. D.10.如图是二次函数()20y ax bx c a =++≠图象的一部分,对称轴为12x =,且经过点()2,0,有下列说法:①0abc <;②0a b +=;③420a b c ++<;④若()()120,,1,y y 是抛物线上的两点,则12y y =,上述说确的是( )A. ①②④B. ③④C. ①③④D. ①②11.在同一坐标系中,一次函数2y ax =+与二次函数2y x a =+的图象可能是( )A. B. C. D.12.如图是二次函数y =ax 2+bx +c 的图象,则点(a , bc )在( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限13.二次函数y =ax 2+bx +c (a ≠0)图象上部分点的对应值如下表:x -3 -2 -1 0 1 2 3 4 y6-4-6-6-46则使y <0的x 的取值围为_____________________________.14.已知二次函数2y ax bx c =++的图象与x 轴交于点()20-,,()10x ,,且112x << ,与y 轴的正半轴的交点在()02,的下方.下列结论:① 420a b c -+=;② 0a b <<;③ 20a c +>;④ 210a b -+<.其中正确结论有_______________.(填序号)15.已知二次函数2y ax bx c =++的图象如图所示,有以下结论:①0a b c ++>;②1a b c -+>;③0abc >;④420a b c -+<;⑤20b a -=其中所有正确结论的序号是__________(填序号)16.如图,二次函数2y ax bx c =++的图象开口向上,图象经过点(-1,2)和(1,0),且与y轴相交于负半轴。

给出四个结论:①0abc <;②20a b +>;③1a c +=;④1a > ,其中正确结论的序 号是___________参考答案1.D【解析】由题意得:则: .得故①正确;3a+c=<0, 故②错误;当x=2时,即4a+2b+c>0 ,故正确;由于,即2a+b=0,故④正确;由于函数图像与x轴有两个交点,即b2>4ac,故⑤正确.综上所述,故选D.2.D【解析】试题分析:由抛物线开口方向得a>0,由抛物线的对称轴位置得b<0,由抛物线与y轴的交点位置得c<0,于是可对A选项进行判断;根据抛物线与x轴的交点个数可对B选项进行判断;根据函数图象,利用函数图象在x轴上方所对应的自变量的取值围对C选项进行判断;根据二次函数的增减性可对D选项进行判断.解:∵抛物线开口向上,∴a>0,∵抛物线的对称轴在y轴的右侧,∴b<0,∵抛物线与y轴的交点在x轴下方,∴c<0,所以A选项错误;∵抛物线与x轴有2个交点,∴△=b2−4ac>0,所以B选项错误;∵抛物线与x轴交于点(−1,0)、(2,0),∴当−1<x<2时,y<0,所以C选项错误;∵x>2在对称轴的右侧,∴y随x的增大而增大,所以D选项正确。

故选D.点睛:本题主要考查二次函数图象与系数符号的关系及二次函数的增减性.通过分析函数图象得出相关结论是解题的关键.3.A【解析】由图象可知,抛物线开口向下,a<0;对称轴为直线=1,则b>0,抛物线与y轴的交点在x轴上方,c>0,即得ac<0,选项B错误;由对称轴为直线=1,可得2a+b=0,选项A正确;由对称轴为x=1,抛物线与x轴的一个交点坐标为(3,0),则,抛物线与x 轴的另一个交点坐标为(-1,0),所以x=-1时,y=a-b+c=0,选项C不正确.由图象可知,抛物线与x轴有两个交点,可得,即,选项D不正确,故选A.点睛:二次函数y=ax 2+bx+c (a ≠0)图象与系数的关系: ①二次项系数a 决定抛物线的开口方向和大小.当a >0时,抛物线向上开口;当a <0时,抛物线向下开口.②一次项系数b 和二次项系数a 共同决定对称轴的位置,当a 与b 同号时(即ab >0),对称轴在y 轴左; 当a 与b 异号时(即ab <0),对称轴在y 轴右.(简称:左同右异) ③常数项c 决定抛物线与y 轴交点. 抛物线与y 轴交于(0,c ).④抛物线与x 轴交点个数,△=b 2-4ac >0时,抛物线与x 轴有2个交点;△=b 2-4ac=0时,抛物线与x 轴有1个交点;△=b 2-4ac <0时,抛物线与x 轴没有交点. 4.C【解析】①当m=0时,函数y=mx 2−6x+1的图象与x 轴只有一个交点;②当m ≠0时,若函数y=mx 2−6x+1的图象与x 轴只有一个交点,则方程mx 2−6x+1=0有两个相等的实数根,所以△=(−6)2−4m=0,m=9.综上,若函数y=mx 2−6x+1的图象与x 轴只有一个交点,则m 的值为0或9. 故选:C点睛:此题考查了抛物线与x 轴的交点或一次函数与x 轴的交点,是典型的分类讨论思想的应用. 5.C 【解析】①根据抛物线开口向下即可得出a<0,结合抛物线的对称轴为x=1可得出b=-2a>0,①错误;②由①得出b=-2a ,将其代入2a-b 可得出2a-b=4a<0,②错误;③根据函数图象可知当x=1时y>0,将x=1代入抛物线解析式即可得出a+b+c>0,③正确;④根据函数图象可知当x=-1时,y<0,将x=-1代入抛物线解析式即可得出a-b+c<0,④正确;⑤根据函数图象即可得出x>1时y 随x 的增大而增大,⑤正确. 综上即可得出结论. 解:∵0a <, 0b >,∴①错误. 又∵12ba-=,∴2b a =-, 240a b a -=<.∴②错误. 又∵当1x =时0y >,∴0a b c ++>,∴③正确 当1x =-时0y <,∴0a b c -+<,∴④正确. 又∵当1x >时y 随x 的增大而减小.∴⑤是正确.6.D【解析】试题解析:∵y=ax+b 的图象过第一、三、四象限, ∴a >0,b <0,对于y=ax 2+bx 的图象, ∵a >0,∴抛物线开口向上, ∵x=-2ba>0, ∴抛物线的对称轴在y 轴的右侧, ∵c=0,∴抛物线过原点. 故选D .7.D【解析】已知抛物线的对称轴为直线x==2,可得b=-4a ,即4a+b=0,①正确;由图象可知当x=-3时,y <0,所以9a-3b+c <0,即9a+c <3b ,②正确;已知抛物线与x 轴的一个交点为(-1,0),对称轴为直线x=2可得抛物线与x 轴的另一个交点为(5,0),所以25a+5b+c=0,③正确;观察图象可知当x >2时,y 随x 的增大而减小,④正确.故选D . 点睛:本题考查了二次函数图象与系数的关系:二次函数y=ax 2+bx+c (a ≠0),二次项系数a 决定抛物线的开口方向和大小,当a >0时,抛物线向上开口;当a <0时,抛物线向下开口;一次项系数b 和二次项系数a 共同决定对称轴的位置,当a 与b 同号时(即ab >0),对称轴在y 轴左; 当a 与b 异号时(即ab <0),对称轴在y 轴右;常数项c 决定抛物线与y 轴交点. 抛物线与y 轴交于(0,c );抛物线与x 轴交点个数由△决定,△=b 2-4ac >0时,抛物线与x 轴有2个交点;△=b 2-4ac=0时,抛物线与x 轴有1个交点;△=b 2-4ac <0时,抛物线与x 轴没有交点. 8.D【解析】,. , , ,故①正确;∵当 时,,,故②正确;∵对称轴是直线x =﹣1,x 1=0, ∴x 2=-2, ∴当﹣2<x <0时,y <0,故③正确;故选D. 9.D【解析】A. 由抛物线知,a<0,c>0;由直线知a>0,c<0,a 的值矛盾,故本选项错误; B. 由抛物线知,a>0,c<0;由直线知a>0,c>0,c 的值矛盾,故本选项错误; C. 由抛物线知,a>0,c>0;由直线知a<0,c<0,a 的值矛盾,故本选项错误; D. 由抛物线知,a<0,c>0;由直线知a<0,c>0,两结论一致,故本选项正确。

故选D. 10.A【解析】①∵二次函数的图象开口向下, ∴a <0,∵二次函数的图象交y 轴的正半轴于一点, ∴c >0,∵对称轴是直线x =12, ∴−2b a =12, ∴b =−a >0, ∴abc <0. 故①正确;②∵由①中知b =−a , ∴a +b =0, 故②正确;③把x =2代入y =ax ²+bx +c 得:y =4a +2b +c ,∵抛物线经过点(2,0),∴当x=2时,y=0,即4a+2b+c=0.故③错误;④∵(0,y ₁)关于直线x=12的对称点的坐标是(1,y ₁),∴y₁=y₂.故④正确;综上所述,正确的结论是①②④.故选:A.点睛: 本题考查了二次函数的图象和系数的关系的应用,注意:当a>0时,二次函数的图象开口向上,当a<0时,二次函数的图象开口向下.11.D【解析】∵二次函数y=x²+a∴抛物线开口向上,∴排除B,∵一次函数y=ax+2,∴直线与y轴的正半轴相交,∴排除A;∵抛物线得a<0,∴排除C;故选D.12.D【解析】试题分析:根据二次函数的图象判断a、b、c的符号,再判断点(a, bc)所在的象限.解:∵抛物线开口向上,∴a>0,∵抛物线对称轴y=<0,且a>0,∴b>0,∵抛物线与y轴交于负半轴,∴c<0,∴bc<0,∴点(a,bc)在第四象限。

相关文档
最新文档