有限元期末考试试卷A卷

合集下载

有限元考试试题及答案

有限元考试试题及答案

江西理工大学研究生考试试卷一、 简答题(共40分,每题10分)1. 论述单元划分应遵循的原则。

2. 说明形函数应满足的条件。

3. 说明四边形等参数单元中“等参数”的含义,即为什么要引入等参数单元。

4. 阐述边界元法的主要优缺点。

二、 计算题(共60分,每题20分)1. 一杆件如图3所示,杆件上方固定后,在下方受垂直向下的集中力作用,已知:杆件材料的杨氏模量2721/100.3in lbf E E ⨯==,截面积2125.5in A =,2275.3in A =,长度in L L 1221==,集中力lbf P 100=,用有限元方法求解B 点和C 点位移。

备注:(1)1 lbf (磅力,libra force ) = 4.45 N 。

(2)杨氏模量、弹性模量、Young 氏弹性模量具有相同含义(10分)2. 如图2所示,有一正方形薄板,沿对角承受压力作用,厚度t=1m ,载荷20__12__—20__13__ 学年 第___一___学期 课程名称:_____有限元及数值模拟________ 考试时间:___2012___ 年__11__月___3___日考试性质(正考、补考或其它):[ 正考 ] 考试方式(开卷、闭卷):[ 开卷 ] 试卷类别(A 、B):[ A ] 共 九 大题温 馨 提 示请考生自觉遵守考试纪律,争做文明诚信的大学生。

如有违犯考试纪律,将严格按照《江西理工大学学生违纪处分规定》(试行)处理。

学院 专业 学号 姓名 题号 一二三四五六七八九十十一十二总 分得分pyA1A2L1L2图1F=20KN/m,设泊松比µ=0,材料的弹性模量为E,试求它的应力分布。

(15分)图23. 图示结点三角形单元的124边作用有均布侧压力q,单元厚度为t,求单元的等效结点荷载。

图3一、简答题1. 答:1)合理安排单元网格的疏密分布2)为突出重要部位的单元二次划分3)划分单元的个数4)单元形状的合理性5)不同材料界面处及荷载突变点、支承点的单元划分6)曲线边界的处理,应尽可能减小几何误差7)充分利用结构及载荷的对称性,以减少计算量2. 答:形函数应满足的三个条件:a.必须能反映单元的刚体位移,就是位移模式应反映与本单元形变无关的由其它单元形变所引起的位移。

有限元期末考试试卷A卷

有限元期末考试试卷A卷

有限元期末考试试卷A卷华南理工大学汽车工程学院年第 1 学期期末考试 2009-2010《汽车有限元法》本科生试卷(A卷)(.本试卷共有四大题,满分 100 分,考试时间 120 分钟)题号一二三四总分得分评卷人一( 判断题(每题2分,共10分)1(有限元法是将连续体理想化为有限个单元集合而成,这些单元仅在每个节点上相连接,即用有限个单元的集合来代替原来具有无限个自由度的连续体。

2(弹性力学是研究不可变形固体在外力和边界约束变动等作用下的弹性变形与应力状态的科学。

和理论力学材料力学一样是固体力学的组成部分3(位移函数只需要能反映单元的刚体位移。

办学单位: 年级专业: 姓名: 学号: 成绩:4(单元刚度矩阵是奇异、对称矩阵。

5(用有限元法计算出计算结果需要进行整理的意义在于所计算出的应力是近似的,一般不保持连续性。

二(填空题(每空0.5分,共计20分)1(弹性力学的五项基本假定是: ,,,,。

2(汽车结构件计算模型的分类有: ,,,,。

3.在用有限元法分析实际工程问题中,常见的问题有: 分析,分析,第 1 页共 5 页分析,分析,分析,技术等。

4.用商业有限元软件ANSYS进行静力强度分析的基本步骤是: ,,。

5.举例列出静力分析所使用的单元类型: ,,,,等。

6.在用ANSYS软件分析考虑自重的结构静力问题时,材料参数中的,,和是必须输入的。

7.在进行有限元分析时,利用,在满足计算精度要求的前提下,可以减少计算工作量。

8.已知 w1=0.2,w2=0.2,w3=0.25, t1=0.0228,t2=0.0228,t3=0.013在下图中用规定格式填入数据:9(ANSYS的用户界面包括:(1)主窗口,由下列,,,,,5个部分组成;(2) 。

10.汽车载荷工况复杂多样,可将分为与。

三(叙述题,每题10分,共计50分1. 采用4节点4边形平面单元划分网格时,应注意什么,2. 在分析静强度梁应力位移时常用约束的基本类型与约束力的关系。

有限元的考试试的题目及问题详解——第一组

有限元的考试试的题目及问题详解——第一组

有限元考试试题与答案一、简答题〔5道,共计25分〕。

1.有限单元位移法求解弹性力学问题的根本步骤有哪些?〔5分〕答:〔1〕选择适当的单元类型将弹性体离散化;〔2〕建立单元体的位移插值函数;〔3〕推导单元刚度矩阵;〔4〕将单元刚度矩阵组装成整体刚度矩阵;〔5〕代入边界条件和求解。

2.在划分网格数一样的情况下,为八节点四边形等参数单元精度大于四边形矩形单元?〔5分〕答:在对于曲线边界的边界单元,其边界为曲边,八节点四边形等参数单元边上三个节点所确定的抛物线来代替原来的曲线,显然拟合效果比四边形矩形单元的直边好。

3.轴对称单元与平面单元有哪些区别?〔5分〕答:轴对称单元是三角形或四边形截面的空间的环形单元,平面单元是三角形或四边形平面单元;轴对称单元内任意一点有四个应变分量,平面单元内任意一点非零独立应变分量有三个。

4.有限元空间问题有哪些特征?〔5分〕答:〔1〕单元为块体形状。

常用单元:四面体单元、长方体单元、直边六面体单元、曲边六面体单元、轴对称单元。

〔2〕结点位移3个分量。

〔3〕根本方程比平面问题多。

3个平衡方程,6个几何方程,6个物理方程。

5.简述四节点四边形等参数单元的平面问题分析过程。

〔5〕分〕答:〔1〕通过整体坐标系和局部坐标系的映射关系得到四节点四边形等参单元的母单元,并选取单元的唯一模式;〔2〕通过坐标变换和等参元确定平面四节点四边形等参数单元的几何形状和位移模式;〔3〕将四节点四边形等参数单元的位移模式代入平面问题的几何方程,得到单元应变分量的计算式,再将单元应变代入平面问题的物理方程,得到平面四节点等参数单元的应力矩阵;〔4〕用虚功原理求得单元刚度矩阵,最后用高斯积分法计算完成。

二、论述题〔3道,共计30分〕。

1. 简述四节点四边形等参数单元的平面问题分析过程。

〔10分〕答:〔1〕通过整体坐标系和局部坐标系的映射关系得到四节点四边形等参单元的母单元,并选取单元的唯一模式;〔2〕通过坐标变换和等参元确定平面四节点四边形等参数单元的几何形状和位移模式;〔3〕将四节点四边形等参数单元的位移模式代入平面问题的几何方程,得到单元应变分量的计算式,再将单元应变代入平面问题的物理方程,得到平面四节点等参数单元的应力矩阵;〔4〕用虚功原理求得单元刚度矩阵,最后用高斯积分法计算完成。

西北工业大学“公共课”《有限元及程序设计》23秋期末试题库含答案版

西北工业大学“公共课”《有限元及程序设计》23秋期末试题库含答案版

西北工业大学“公共课”《有限元及程序设计》23秋期末试题库含答案第1卷一.综合考核(共20题)1.2.在应力函数上任意增减一个(),对应力分量无影响。

A.线性项B.二次项C.三次项D.常数项3.广义结点力是垂直于x轴和y轴的弯矩和单位长度上的扭矩。

()A.错误B.正确4.总体刚度矩阵的形成方法有()。

A.结点平衡法B.直接刚度法C.间接刚度法D.位移法5.边界条件的处理方法有()。

A.划0置1法B.置大数法C.划1置0法D.置小数法6.下列属于平面应力问题的是()。

A.平板坝的平板支墩B.挡土墙C.重力水坝D.受内水压力作用的圆管7.8.φ=cxy能解决矩形板()问题。

A.左右均布拉压B.上下均布拉压C.纯剪切D.纯弯曲9.解决空间问题时应该充分利用结构的对称性、相似性和重复性简化结构计算简图,降低未知量个数。

()A.错误B.正确10.11.总体刚度矩阵的形成方法有直接刚度法和()。

A.结点平衡法B.二单元平均法C.绕结点平均法D.置大数法12.薄板小挠度弯曲理论中基本未知量是板面上沿垂直于板面方向的位移即挠度W。

()A.错误B.正确13.属于基本的高精度单元的有()。

A.四边形矩形单元B.6结点三角形单元C.10结点三角形单元D.结点18自由度三角形单元E.3结点三角形单元14.通过挠曲微分方程求出位移后即可确定所有物理量,是按坐标求解法。

()A.错误B.正确15.极坐标系下的基本未知量只有径向正应力σr,环向正应力σθ,剪应力τr θ。

()A.错误B.正确16.17.属于不规则单元的有()。

A.正四面体单元B.正三棱体单元C.任意曲边单元D.任意六面体单元18.弹性力学的基本假定有()。

A.假设物体是连续的B.假设物体是均匀的和各向同性的C.假设物体是完全弹性的D.假设物体内无初应力E.假设物体的变形是很小的19.20.解平面应力和平面应变问题采用的应力矩阵相同。

()A.错误B.正确第1卷参考答案一.综合考核2.参考答案:A3.参考答案:B4.参考答案:AB5.参考答案:AB6.参考答案:A8.参考答案:C9.参考答案:B11.参考答案:A12.参考答案:B13.参考答案:ABCD14.参考答案:A15.参考答案:A17.参考答案:D18.参考答案:ABCDE 20.参考答案:B。

有限元基础期末测试

有限元基础期末测试

《有限元基础》期末测试一、结构线性静力分析如图所示的托架,其顶面承受2lbf in的均匀分布载荷。

托架通过有孔的表面50/ν=,托架尺固定在墙上,托架是钢制的,弹性模量6=⨯,泊松比0.3E psi2910寸如图,单位为英寸。

试通过ANSYS求其变形图及von Mises应力分布图。

对题目分析。

进行建模,网格划分托架网格图施加约束后,就可以对实体进行加载求解,托架变形图托架变形图输出的是原型托架和施加载荷后托架变形图的对比,虚线部分即为托架的原型,托架变形图可看出,由于载荷的作用,托架上面板明显变形了,变形最严重的就是红色部分,这是因为其离托板就远,没有任何物体与其分担载荷,故其较容易变形甚至折断。

这是我们在应用托架的时候应当注意的。

节点位移图托架von Mises 应力分布图上面两个图为托架的应力分布图,由图可看出主要在两孔处出现应力集中,也就是说这些地方所受的应力的最大的,比较容易出现裂痕。

我们在应用托架的时候,应当注意采取一些设施,以便减缓其应力集中。

特别是在施加载荷时,绝对不能够超过托架所能承受的极限,否则必将导致事故的发生。

二、动力分析如图1有一梁板结构,板的四角由四根梁固定支撑,板质量集中于中央。

梁板材料相关参数为弹性模量112210/E N m =⨯,泊松比0.3ν=,密度337.810/kg m ρ=⨯。

板的厚度0.02t =,板长2000L mm =,宽1000B mm =,板的质量100M kg =。

梁长1000h mm =,截面面积为42210A m -=⨯,惯性矩为84210J m -=⨯,现在板的表面施加均匀压力载荷如图2。

试研究该梁板结构的瞬态动力响应。

图1图2建立有限元分析模型并附加动力节点146的位移时间历程结果三、非线性屈曲分析如图,一根长200L in =,截面高度0.5h in =,截面面积20.25A in =,惯性矩24/120.0052083J Ah in ==的细长杆受轴向载荷的作用,若沿X 方向取10个主自由度,求其屈曲模态。

机械有限元试卷A、B及标准答案必考

机械有限元试卷A、B及标准答案必考

山东科技大学2012—2013学年第一学期《有限元方法》考试试卷(A卷)班级姓名学号一、选择题(每题1分,共10分)1、弹性力学与材料力学的主要不同之处在于C。

A. 任务;B. 研究对象;C. 研究方法;D. 基本假设。

σ是 C 。

2、在轴对称问题中,径向应力分量rA. 恒为零;B. 与r无关;C. 与θ无关;D. 恒为常数。

3、利用ANSYS进行结构分析时,结果文件为。

A. jobname.rst;B. jobname.rth;C. jobname.rfl;D. jobname.rmg。

4、在ANSYS的单元库中,PLANE42单元属于。

A. 结构梁单元;B. 结构壳单元;C. 结构线单元;D. 结构实体单元。

5、在一个分析中,可能有多个材料特性组,ANSYS通过独特的来识别每个材料特性组。

A. 特性;B. 说明;C. 参考号;D.方法。

6、ANSYS与Pro/E的接口文件类型是。

A..x_t;B. .prt;C. .sat;D. .model。

7、载荷包括所有边界条件以及外部或内部作用效应,下列不属于ANSYS 载荷的是。

A. DOF约束;B. 力;C. 体载荷;D.应力。

8、要求面或者体有规则的形状,即必须满足一定的准则。

A.自由网格;B. 映射网格;C. Sweep分网;D. 其他。

9、独立于有限元网格,即可以改变单元网格而不影响施加的载荷。

A.阶跃载荷;B. 有限元模型载荷;C. 实体模型载荷;D. 斜坡载荷。

10、有限元法首先求出的解是,单元应力和应变可由它求得。

A.节点坐标;B.节点自由度;C. 节点载荷;D. 节点位移。

二、填空题(每空1分,共20分)1、在整个有限元分析的过程中,是分析的基础。

2、平面应力问题与薄板弯曲问题的弹性体几何形状都是,但前者受力特点是,变形发生在板面内;后者受力特点是的力的作用,板将变成有弯有扭的曲面。

3、典型的ANSYS文件包括、、。

4、平面应力问题与平面应变问题都具有个独立的应力分量,个独立的应变分量,但对应的弹性体几何形状前者为,后者为。

(完整版)有限元考试试题及答案

(完整版)有限元考试试题及答案

e an dAl l t h i ng si nt he i rb ei n ga re go o2. 如图2所示,有一正方形薄板,沿对角承受压力作用,厚度t=1m ,载荷F=20KN/m ,设泊松比µ=0,材料的弹性模量为E ,试求它的应力分布。

(15分)图23. 图示结点三角形单元的124边作用有均布侧压力q ,单元厚度为t ,求单元的等效结点荷载。

图3图1一、简答题1. 答:1)合理安排单元网格的疏密分布2)为突出重要部位的单元二次划分3)划分单元的个数4)单元形状的合理性5)不同材料界面处及荷载突变点、支承点的单元划分6)曲线边界的处理,应尽可能减小几何误差7)充分利用结构及载荷的对称性,以减少计算量2. 答:形函数应满足的三个条件:a.必须能反映单元的刚体位移,就是位移模式应反映与本单元形变无关的由其它单元形变所引起的位移。

b.能反映单元的常量应变,所谓常量应变,就是与坐标位置无关,单元内所有点都具有相同的应变。

当单元尺寸取小时,则单元中各点的应变趋于相等,也就是单元的形变趋于均匀,因而常量应变就成为应变的主要部分。

c.尽可能反映位移连续性;尽可能反映单元之间位移的连续性,即相邻单元位移协调。

3. 答:含义:所谓的等参数单元,就是在确定单元形状的插值函数和确定单元位移场的插值函数中采用了完全相同的形函数。

意义:构造出一些曲边地高精度单元,以便在给定地精度下,用数目较少地单元,解决工程实际地具体问题。

4. 答:有限单元法是基于变分原理的里兹(Ritz)法的另一种形式,从而使里兹法分析的所有理论基础都适用子有限单元法,确认了有限单元法是处理连续介质问题的一种普遍方法.利用变分原理建立有限元方程和经典里兹法的主要区别是有限单元法假设的近似函数不是在全求解域而是在单元上规定的,面且事先不要求满足任何边界条件,因此它可以用来处理很复杂的连续介质问题。

有nl⎥⎦⎤⎢⎣⎡5.0025.025.011212---==E k k ⎥⎦⎤⎢⎣⎡5.0025.0011313-==E k k ⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡5.125.025.05.125.0005.05.00025.075.025.025.075.032222212222E E E E k k k k +=++=⎥⎦⎤⎢⎣⎡----=⎥⎦⎤⎢⎣⎡---+⎥⎦⎤⎢⎣⎡---5.025.025.0125.025.005.025.0025.05.032312323E E E k k k =+=⎥⎦⎤⎢⎣⎡---5.0025.025.022424E k k ==⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡025.025.00025.0000025.0032522525E E E k k k =+=⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡5.125.025.05.15.00025.075.025.025.075.025.0005.043333313333E E E E k k k k =++=⎥⎦⎤⎢⎣⎡----=⎥⎦⎤⎢⎣⎡---+⎥⎦⎤⎢⎣⎡---125.025.05.05.0025.025.05.025.0025.043533535E E E k k k =+=⎥⎦⎤⎢⎣⎡0025.0043636E k k ==⎥⎦⎤⎢⎣⎡75.025.025.075.024444E k k ==⎥⎦⎤⎢⎣⎡---25.0025.05.024545E k k == ⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡5.125.025.05.175.025.025.075.05.00025.025.0005.045535525555E E E E k k k k =++=⎥⎦⎤⎢⎣⎡---25.0025.05.045656E k k ==⎥⎦⎤⎢⎣⎡25.0005.046666E k k ==把上面计算出的,…,对号入座放到总刚矩阵中去,于是得到11k 66k []K的具体表达式。

有限元期末考试题及答案

有限元期末考试题及答案

有限元期末考试题及答案一、选择题1. 有限元方法是一种数值分析方法,主要用于求解什么类型的数学问题?A. 线性代数方程B. 微分方程C. 积分方程D. 代数方程答案:B2. 在有限元分析中,单元的划分是基于什么原则?A. 单元数量B. 单元形状C. 问题域的几何特性D. 计算资源答案:C3. 下列哪项不是有限元分析中常用的单元类型?A. 三角形单元B. 四边形单元C. 六面体单元D. 圆形单元答案:D二、填空题4. 有限元方法中,______是指将连续的物理域离散成有限数量的小区域,这些小区域称为单元。

答案:离散化5. 在进行有限元分析时,通常需要定义材料属性,包括______、密度和弹性模量等。

答案:泊松比三、简答题6. 简述有限元方法的基本步骤。

答案:有限元方法的基本步骤包括:定义问题域、离散化问题域、选择单元类型、定义材料属性、构建全局刚度矩阵、施加边界条件、求解线性代数方程、提取结果。

7. 解释什么是有限元分析中的收敛性,并说明影响收敛性的因素。

答案:收敛性是指随着单元数量的增加,有限元分析结果逐渐接近真实解的性质。

影响收敛性的因素包括单元的类型、形状、大小以及网格的布局等。

四、计算题8. 假设有一个长度为2米的杆,两端固定,中间施加了一个向下的力F=1000N。

如果杆的材料是钢,其弹性模量E=210 GPa,泊松比ν=0.3,请计算杆的弯曲位移。

答案:首先,根据Euler-Bernoulli梁理论,可以写出弯曲位移的方程为:\[ w(x) = \frac{F}{384EI} L^3 \]其中,\( w(x) \) 是位移,\( F \) 是施加的力,\( L \) 是杆的长度,\( E \) 是弹性模量,\( I \) 是截面惯性矩。

对于一个矩形截面,\( I \) 可以表示为:\[ I = \frac{bh^3}{12} \]假设杆的截面宽度为b,高度为h,代入上述公式,可以计算出位移。

有限元法基础试题

有限元法基础试题

有限元法基础试题有限元法基础试题(a)一、填空题(5×2分)1.1单元刚度矩阵k?e??btdbd?中,矩阵b为__________,矩阵d为___________。

1.2边界条件通常存有两类。

通常出现在边线全然紧固无法旋转的情况为_______边界,具体内容选定非常有限的非零值加速度的情况,例如提振的下陷,称作_______边界。

1.3内部微元体上外力总机械功:+?的表达??d?wex,x??xy,y?fbx??u???xy,x??y,y?fby??v?dxdy??x?u,x??y?v,y??xy??u,y?? u,x??dxdy式中,第一项为____________________的虚功,第二项为____________________的虚功。

1.4弹簧单元的位移函数n1+n2=_________。

1.5kij数学表达式:令dj=_____,dk=_____,k?j,则内力fi?kij。

二、判断题(5×2分)2.1加速度函数的假设合理是否将直接影响至有限元分析的计算精度、效率和可靠性。

()2.2变形体虚功原理适用于于一切结构(一维杆系、二维板、三位块体)、适用于于任何力学犯罪行为的材料(线性和非线性),就是变形体力学的广泛原理。

()2.3变形体虚功原理建议力系均衡,建议虚位移协同,就是在“均衡、协同”前提下功的并集关系。

()2.4常快速反应三角单元中变形矩阵就是x或y的函数。

()2.5等距单元中变形矩阵就是x或y的函数。

()三、简答题(26分后)3.1列举有限元法的优点。

(8分)3.2写下非常有限单元法的分析过程。

(8分后)3.3列出3种普通的有限元单元类型。

(6分)3.4详细阐释变形体虚位移原理。

(4分后)四、计算题(54分)4.1对于右图右图的弹簧女团,单元①的弹簧常数为10000n/m,单元②的弹簧常数为20000n/m,单元③的弹簧常数为10000n/m,确认各节点加速度、反力以及单元②的单元力。

弹性力学有限元考试卷与答案(AB卷)

弹性力学有限元考试卷与答案(AB卷)

2009-2010学年第一学期《弹性力学有限元》课内考试A卷授课班号年级专业学号姓名一、判断正误(×)1. 节点的位置依赖于形态,而并不依赖于载荷的位置(√)2. 对于高压电线的铁塔那样的框架结构的模型化处理使用梁单元(×)3. 不能把梁单元、壳单元和实体单元混合在一起作成模型(√)4. 四边形的平面单元尽可能作成接近正方形形状的单元(×)5. 平面应变单元也好,平面应力单元也好,如果以单位厚来作模型化处理的话会得到一样的答案(×)6. 用有限元法不可以对运动的物体的结构进行静力分析(√)7. 一般应力变化大的地方单元尺寸要划的小才好(×)8. 所谓全约束只要将位移自由度约束住,而不必约束转动自由度(×)9. 线性应力分析也可以得到极大的变形(√)10. 同一载荷作用下的结构,所给材料的弹性模量越大则变形值越小二、填空1.平面应力问题与薄板弯曲问题的弹性体几何形状都是薄板,但前者受力特点是:平行于板面且沿厚度均布载荷作用,变形发生在板面内;后者受力特点是:垂直于板面的力的作用,板将变成有弯有扭的曲面。

(3分)2.平面应力问题与平面应变问题都具有三个独立的应力分量:σx,σy,τxy,三个独立的应变分量:εx,εy,γxy,但对应的弹性体几何形状前者为薄板,后者为长柱体。

(3分)3.位移模式需反映刚体位移 ,反映 常变形 ,满足 单元边界上位移连续 。

(3分)4.单元刚度矩阵的特点有:对称性 , 奇异性 ,还可按节点分块。

(2分) 5.薄板弯曲问题每个节点有个3自由度,分别是:w 、θx 、θy ,但其中只有 一个是独立的,其余两个可以用它表示为:,x y w wy xθθ∂∂==-∂∂。

(3分) 6.用有限元程序计算分析一结构的强度须提供(4分) ① 几何信息:节点坐标,单元节点组成,板厚度,梁截面等 ② 材料信息:弹性模量,泊松比,密度等 ③ 约束信息:固定约束,对称约束等④ 载荷信息:集中力,集中力矩,分布面力,分布体力等7.轴对称问题单元形状为:三角形或四边形截面的空间环形单元 ,由于轴对称的特性,任意一点变形只发生在子午面上,因此可以作为 二 维问题处理。

有限元期末考试试题及答案—湖南大学

有限元期末考试试题及答案—湖南大学

(7 分)
a 0 0 0 -a 0 1 1 1 B1 2 0 -a , B2 2 0 a , B3 2 0 0 ; B B1 a a a -a a a 0 0 -a
B2
B3
a
y
2N / m 1N / m 2
O
x
2N / m 2m 2m
(a ) 2、解: (1) 对称性及计算模型正确 (2) 正确标出每个单元的合理局部编号 (3) 求单元刚度矩阵 K e () (4 分) (3 分)
(5) 应用适当的位移约束之后,给出可供求解的整体平衡方程(不需要求解) 。 (5 分)
1、有限元分析的基本思路(3 分)
首先,将物体或求解域离散为有限个互不重叠仅通过节点互相连接的子域(即单元),原始边界条件也被转化为节点上的边界条件, 此过程称为离散化。其次,在单元内,选择简单近似函数来分片逼近未知的求解函数,即分片近似。具体做法是在单元上选择一些合适的 节点作为求解函数的插值点,将微分方程中的变量改写成由各变量或其导数的节点值与所选用的插值函数组成的线性表达式,这是有限元 法的创意和精华所在。而整体区域上的解函数就是这些单元上的简单近似函数的组合。最后,基于与原问题数学模型(基本方程和边界条 件)等效的变分原理或加权残值法,建立有限元方程(即刚度方程),从而将微分方程转化为一组变量或其导数的节点值为未知量的代数 方程组。从而借助矩阵表示和计算机求解代数方程组得到原问题的近似解。
(1)位移模式必须包含单元刚体位移;(2)位移模式必须包含单元的常应变;(3)位移模式在单元内要连续,且唯一在相邻单元 之间要协调。
4、写出弹性力学的基本方程、基本假设和基本变量(3 分)
平衡方程 几何方程 物理方程 具体方程见笔记

《有限元》期末考题

《有限元》期末考题

一、填空(共10个空,每空2分,共20分)11、有限元法是近似求解连续场问题的数值方法。

2、有限元法将连续的求解域离散,得到有限个单元,单元和单元之间用节点相连。

3、直梁在外力作用下,横截面上的内力有剪力和弯矩两个。

4、平面刚架结构在外力作用下,横截面上的内力有剪力、弯矩和轴力。

5、进行直梁的有限元分析,梁单元上每个节点的节点位移为挠度和转角。

、平面刚架结构中,已知单元e的坐标变换矩阵[T e]及局部坐标系x´O´y ´下的单元刚度矩阵[K´]e,则单元在整体坐标系xOy下的单元刚度矩阵为 P31 。

7、平面刚架结构中,已知单元e的坐标变换矩阵[T e]及整体坐标系xOy下的单元节点力矩阵{p}e,则单元在局部坐标系x´O´y´下的单元节点力矩阵为 P30 。

8、在弹性范围和小变形的前提下,节点力和节点位移之间是线性系。

9、弹性力学问题的方程个数有 15个,未知量个数有 15 个。

10、弹性力学平面问题的方程个数有个,未知量个数有个。

11、把经过物体内任意一点各个截面的应力状况叫做一点的应力状态。

12、形函数在单元节点上的值,具有本点为 1 、它点为零的性质,并且在三角形单元的任一节点上,三个形函数之和为 1 。

13、形函数是定义于元内部坐标连续函数。

14、在进行节点编号时,要尽量使同一单元的相邻节点的号码差尽可能小,以便最大限度地缩小刚度矩阵带宽,节省存储、提高计算效率。

15、三角形单元的位移模式为。

16、矩形单元的位移模式为。

17、在选择多项式位移模式的阶次时,要求所选的位移模式应该与局部坐标系的方位无关,这一性质称为几何各向同性。

18、单元刚度矩阵描述了节点力和节点位移之间的关系。

19、在选择多项式作为单元的位移模式时,多项式阶次的确定,要考虑解答的收敛性,即要满足单元的完备性和协调性的要求。

20、三节点三角形单元内的应力和应变是常数,四节点矩形单元内的应力和应变是线性变化的。

有限元期末考试试题

有限元期末考试试题

有限元期末考试试题有限元期末考试试题有限元分析是一种数值计算方法,广泛应用于工程领域中的结构分析、热传导、流体力学等问题。

作为有限元分析的基础,期末考试试题将涵盖有限元的基本原理、方法和应用。

本文将以期末考试试题为主线,深入探讨有限元分析的相关知识。

一、选择题1. 有限元分析的基本思想是什么?A. 将连续体划分为有限个单元B. 将连续体划分为无限个单元C. 将连续体划分为两个单元D. 将连续体划分为三个单元2. 有限元分析中,单元是指什么?A. 物理实体B. 离散区域C. 数学模型D. 计算节点3. 有限元分析的目的是什么?A. 求解连续体的精确解B. 求解连续体的近似解C. 求解连续体的数值解D. 求解连续体的解析解二、填空题1. 有限元分析中,单元的划分应满足什么条件?单元的划分应满足连续性和完整性的条件。

2. 有限元分析中,刚度矩阵的维度是多少?刚度矩阵的维度与单元自由度的个数相关。

三、简答题1. 有限元分析的步骤是什么?有限元分析的步骤包括建立有限元模型、确定边界条件、求解方程、后处理结果。

2. 有限元分析中,如何选择适当的单元类型?选择适当的单元类型需要考虑问题的特点、几何形状和边界条件等因素。

四、计算题1. 对于一个矩形截面的梁,长度为L,宽度为b,高度为h,杨氏模量为E,应力为σ,根据弹性力学理论,梁的弯曲刚度EI与梁的几何尺寸和材料性质有关。

请推导出梁的弯曲刚度的表达式。

解:根据弹性力学理论,梁的弯曲刚度EI与梁的几何尺寸和材料性质有关。

对于矩形截面的梁,弯曲刚度的表达式为:EI = (E * b * h^3) / 12其中,E为杨氏模量,b为梁的宽度,h为梁的高度。

通过以上计算题,我们可以看出有限元分析的应用范围广泛,可以用于解决各种工程问题。

通过对试题的分析和解答,我们对有限元分析的基本原理、方法和应用有了更深入的了解。

总结:本文以有限元期末考试试题为主线,辅以相关知识的解析和讨论,深入探讨了有限元分析的基本原理、方法和应用。

有限元期末考试试题

有限元期末考试试题

有限元期末考试试题一、选择题(每题2分,共20分)1. 在有限元分析中,单元的刚度矩阵通常通过以下哪种方式计算?A. 直接积分B. 线性插值C. 经验公式D. 试验数据2. 以下哪个选项不是有限元分析中的边界条件?A. 固定边界B. 自由边界C. 周期边界D. 热边界3. 有限元方法中,节点的自由度数量取决于什么?A. 单元类型B. 材料属性C. 几何形状D. 载荷类型4. 在进行热传导问题的有限元分析时,以下哪个方程是正确的?A. 牛顿第二定律B. 热平衡方程C. 动量守恒定律D. 质量守恒定律5. 以下哪个不是有限元分析中常用的单元类型?A. 四节点矩形单元B. 三角形单元C. 六面体单元D. 八节点等参单元二、简答题(每题10分,共30分)1. 简述有限元方法的基本步骤,并举例说明其在工程中的应用。

2. 解释什么是等参单元,并说明它在有限元分析中的重要性。

3. 描述在有限元分析中如何处理非线性问题,并给出一个具体的例子。

三、计算题(每题25分,共50分)1. 给定一个由四个节点构成的二维平面应力问题,节点坐标如下:节点1: (0, 0)节点2: (1, 0)节点3: (1, 1)节点4: (0, 1)已知材料的弹性模量E=210 GPa,泊松比ν=0.3。

若在节点1和节点3上施加单位力(1 N),试求该结构的位移场和应力场。

2. 考虑一个长方体热传导问题,其尺寸为Lx=0.5m,Ly=0.3m,Lz=0.2m。

该长方体的热导率为k=50 W/m·K,初始温度分布为T(x, y, z, 0) = 300 K。

若在x=0和x=Lx的面上施加恒定的边界温度T=400 K,试求经过时间t=10s后长方体内部的温度分布。

四、论述题(共30分)1. 论述有限元分析在结构优化设计中的作用,并讨论其在现代工程设计中的重要性。

有限单元法期末考试试题

有限单元法期末考试试题

有限单元法期末考试试题# 有限单元法期末考试试题## 一、选择题(每题2分,共20分)1. 有限元法中,单元划分的目的是:A. 简化问题B. 增加计算量C. 便于数值计算D. 增加模型复杂度2. 在有限元分析中,以下哪个不是单元的自由度:A. 位移B. 速度C. 转动D. 压力3. 下列哪一项不是有限元法的基本假设:A. 连续性假设B. 线性假设C. 均匀性假设D. 非均匀性假设4. 有限元法中,位移函数的选择应满足:A. 物理意义B. 几何意义C. 边界条件D. 所有上述条件5. 在有限元分析中,以下哪个不是常见的数值积分方法:A. 单点积分B. 高斯积分C. 牛顿-科特斯积分D. 梯形积分## 二、简答题(每题10分,共30分)1. 简述有限元法的基本原理及其在工程中的应用。

2. 解释什么是高斯积分,它在有限元分析中的作用是什么?3. 描述有限元分析中单元刚度矩阵的组装过程。

## 三、计算题(每题25分,共50分)1. 假设有一个二维平面应力问题,其材料的杨氏模量为210 GPa,泊松比为0.3。

给定一个矩形板,尺寸为2m x 1m,四边固定。

在板的中心施加一个向下的集中力P=10 kN。

使用有限元法求解板的中心位移。

(a) 描述问题并建立控制方程。

(b) 选择合适的单元类型并进行网格划分。

(c) 写出单元刚度矩阵的一般形式。

(d) 组装整体刚度矩阵。

(e) 应用边界条件和载荷向量,求解位移。

2. 考虑一个简单的桁架结构,由三个杆件组成,形成一个等腰三角形。

已知杆件的材料属性相同,杨氏模量E=200 GPa,截面积A=0.01 m²。

桁架的底边长度为2m,高为1m。

在顶点施加一个向下的集中力P=10 kN。

使用有限元法计算每个杆件的轴向应力。

(a) 画出桁架结构的示意图。

(b) 确定每个杆件的自由度。

(c) 写出杆件的局部刚度矩阵。

(d) 组装整体刚度矩阵。

(e) 应用载荷向量,求解每个杆件的轴向应力。

机械有限元试卷A、B及标准答案必考

机械有限元试卷A、B及标准答案必考

《有限元方法》考试试卷(A卷)一、选择题1、弹性力学与材料力学的主要不同之处在于。

A. 任务;B. 研究对象;C. 研究方法;D. 基本假设。

σ是。

2、在轴对称问题中,径向应力分量rA. 恒为零;B. 与r无关;C. 与θ无关;D. 恒为常数。

3、利用ANSYS进行结构分析时,结果文件为。

A. jobname.rst;B. jobname.rth;C. jobname.rfl;D. jobname.rmg。

4、在ANSYS的单元库中,PLANE42单元属于。

A. 结构梁单元;B. 结构壳单元;C. 结构线单元;D. 结构实体单元。

5、在一个分析中,可能有多个材料特性组,ANSYS通过独特的来识别每个材料特性组。

A. 特性;B. 说明;C. 参考号;D.方法。

6、ANSYS与Pro/E的接口文件类型是。

A..x_t;B. .prt;C. .sat;D. .model。

7、载荷包括所有边界条件以及外部或内部作用效应,下列不属于ANSYS 载荷的是。

A. DOF约束;B. 力;C. 体载荷;D.应力。

8、要求面或者体有规则的形状,即必须满足一定的准则。

A.自由网格;B. 映射网格;C. Sweep分网;D. 其他。

9、独立于有限元网格,即可以改变单元网格而不影响施加的载荷。

A.阶跃载荷B. 有限元模型载荷C. 实体模型载荷;D. 斜坡载荷。

10、有限元法首先求出的解是,单元应力和应变可由它求得。

A.节点坐标;B.节点自由度;C. 节点载荷;D. 节点位移。

二、填空题(每空1分,共20分)1、在整个有限元分析的过程中,是分析的基础。

2、平面应力问题与薄板弯曲问题的弹性体几何形状都是,但前者受力特点是,变形发生在板面内;后者受力特点是的力的作用,板将变成有弯有扭的曲面。

3、典型的ANSYS文件包括、、。

4、平面应力问题与平面应变问题都具有个独立的应力分量,个独立的应变分量,但对应的弹性体几何形状前者为,后者为。

有限元考试试题

有限元考试试题

有限元考试试题一、选择题(每题5分,共30分)1、在有限元分析中,我们通常使用什么方法来求解偏微分方程?A.积分法B.差分法C.有限差分法D.有限元法2、下列哪个不是有限元法的优点?A.可以处理复杂几何形状B.可以处理非线性问题C.可以处理大规模问题D.可以处理不稳定问题3、在有限元分析中,我们通常将连续的物理场离散化为一系列的什么?A.有限个点B.无限个小段C.有限个小段D.无限个点4、下列哪个不是有限元分析的基本步骤?A.划分网格B.建立模型C.执行计算D.编写代码5、在有限元分析中,我们通常使用什么来描述物理场的性质?A.偏微分方程B.泛函方程C.常微分方程D.边界条件6、下列哪个不是有限元分析的应用领域?A.结构分析B.流体动力学C.电磁学D.社会科学二、填空题(每题10分,共40分)7、______是一种将连续的物理场离散化为一系列有限个点的方法,是有限元分析的基础。

8、在有限元分析中,我们通常使用______来对物理场进行离散化处理。

9、______是一种求解偏微分方程的数值方法,广泛应用于有限元分析。

10、在有限元分析中,我们通常使用______来描述物理场的性质。

三、解答题(每题20分,共60分)11、请简述有限元分析的基本步骤,并解释其在结构分析中的应用。

12、请说明在有限元分析中,如何处理边界条件,并举例说明。

13、请简述有限元分析的优点和局限性。

有限空间培训考试试题及答案一、选择题1、在有限空间内,以下哪个行为是危险的?A.带压操作B.穿著宽松衣服C.使用电动工具D.所有上述答案:D.所有上述。

在有限空间内,带压操作、穿著宽松衣服和使用电动工具都是危险的。

2、当进入有限空间前,应该进行哪项操作?A.排放内部气体B.测试内部气体C.对内部进行冲洗D.所有上述答案:D.所有上述。

在进入有限空间前,应该进行排放内部气体、测试内部气体并对内部进行冲洗。

3、有限空间内的危险因素不包括以下哪个?A.缺氧B.有毒气体C.电击D.所有上述答案:C.电击。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

有限元期末考试试卷A卷
华南理工大学汽车工程学院
年第 1 学期期末考试 2009-2010
《汽车有限元法》本科生试卷(A卷)
(.本试卷共有四大题,满分 100 分,考试时间 120 分钟)
题号一二三四总分
得分
评卷人
一( 判断题(每题2分,共10分)
1(有限元法是将连续体理想化为有限个单元集合而成,这些单元仅在每个节点上相连接,即
用有限个单元的集合来代替原来具有无限个自由度的连续体。

2(弹性力学是研究不可变形固体在外力和边界约束变动等作用下的弹性变形与应力状态的科
学。

和理论力学材料力学一样是固体力学的组成部分
3(位移函数只需要能反映单元的刚体位移。

办学单位: 年级专业: 姓名: 学号: 成绩:
4(单元刚度矩阵是奇异、对称矩阵。

5(用有限元法计算出计算结果需要进行整理的意义在于所计算出的应力是近似的,一般不保
持连续性。

二(填空题(每空0.5分,共计20分)
1(弹性力学的五项基本假定是: ,,,
,。

2(汽车结构件计算模型的分类有: ,,
,,。

3.在用有限元法分析实际工程问题中,常见的问题有: 分析,分析,
第 1 页共 5 页
分析,分析,分析,技术等。

4.用商业有限元软件ANSYS进行静力强度分析的基本步骤是: ,
,。

5.举例列出静力分析所使用的单元类型: ,,,,
等。

6.在用ANSYS软件分析考虑自重的结构静力问题时,材料参数中的,,和是必须输入的。

7.在进行有限元分析时,利用,在满足计算精度要求的前提下,可以减少计算工作量。

8.已知 w1=0.2,w2=0.2,w3=0.25, t1=0.0228,t2=0.0228,t3=0.013在下图中用规定格式填入数据:
9(ANSYS的用户界面包括:(1)主窗口,由下列,
,,,,
5个部分组成;(2) 。

10.汽车载荷工况复杂多样,可将分为与。

三(叙述题,每题10分,共计50分
1. 采用4节点4边形平面单元划分网格时,应注意什么,
2. 在分析静强度梁应力位移时常用约束的基本类型与约束力的关系。

第 2 页共 5 页
3. 写出平面应力问题和平面应变问题的静力平衡方程、几何方程和物理方程。

4. 汽车结构有限元分析的主要应用主要体现哪几个方面,
第 3 页共 5 页
5.平面应力问题和平面应变问题可以解决那些工程实际问题,
第 4 页共 5 页
四(计算题20分,求解等截面直杆在自重作用下的拉伸,已知:单位杆长重量为
2q,80KN/m,杆长为L=5m,截面面积为A=100mm,弹性模数为E=200GPa,分别用材料力学和有限元法(5个单元)。

第 5 页共 5 页。

相关文档
最新文档