高中物理热学试题 及答案
高中物理竞赛十年预赛真题热学纯手打word版含答案
十年真题-热学(预赛)1.(34届预赛2)系统1和系统2质量相等,比热容分别为C 1和C 2,两系统接触后达到够达到共同的温度T ,整个过程中与外界(两系统之外)无热交换.两系统初始温度T 1和T 2的关系为A .T 1=C 2C 1(T -T 2)-TB .T 1=C 1C 2(T -T 2)-T C .T 1=C 1C 2(T -T 2)+T D .T 1=C 2C 1(T -T 2)+T 2.(31届预赛1)一线膨胀系数为α的正立方体物块,当膨胀量较小时,其体膨胀系数等于A .αB .α1/3C .α3D .3α3.(29届预赛1)下列说法中正确的是A .水在0℃时密度最大B .一个绝热容器中盛有气体,假设把气体中分子速率很大的如大于v A 的分子全部取走,则气体的温度会下降,此后气体中不再存在速率大于v A 的分子C .杜瓦瓶的器壁是由两层玻璃制成的,两层玻璃之间抽成真空,抽成真空的主要作用是既可降低热传导,又可降低热辐射D .图示为一绝热容器,中间有一隔板,隔板左边盛有温度为T 的理想气体,右边为真空.现抽掉隔板,则气体的最终温度仍为T4.(28届预赛2)下面列出的一些说法中正确的是A .在温度为20ºC 和压强为1个大气压时,一定量的水蒸发为同温度的水蒸气,在此过程中,它所吸收的热量等于其内能的增量.B .有人用水银和酒精制成两种温度计,他都把水的冰点定为0度,水的沸点定为100度,并都把0刻度与100刻度之间均匀等分成同数量的刻度,若用这两种温度计去测量同一环境的温度(大于0度小于100度)时,两者测得的温度数值必定相同.C .一定量的理想气体分别经过不同的过程后,压强都减小了,体积都增大了,则从每个过程中气体与外界交换的总热量看,在有的过程中气体可能是吸收了热量,在有的过程中气体可能是放出了热量,在有的过程中气体与外界交换的热量为零.D .地球表面一平方米所受的大气的压力,其大小等于这一平方米表面单位时间内受上方作热运动的空气分子对它碰撞的冲量,加上这一平方米以上的大气的重量.5.(27届预赛2)烧杯内盛有0℃的水,一块0℃的冰浮在水面上,水面正好在杯口处.最后冰全部融化成0℃的水.在这过程中A .无水溢出杯口,但最后水面下降了B .有水溢出杯口,但最后水面仍在杯口处C .无水溢出杯口,水面始终在杯口处D .有水溢出杯口,但最后水面低于杯口6.(27届预赛3)如图所示,a和b是绝热气缸中的两个活塞,它们把气缸分成甲和乙两部分,两部分中都封有等量的理想气体.a是导热的,其热容量可不计,与气缸壁固连.b 是绝热的,可在气缸内无摩擦滑动,但不漏气,其右方为大气.图中k为加热用的电炉丝.开始时,系统处于平衡状态,两部分中气体的温度和压强皆相同.现接通电源,缓慢加热一段时间后停止加热,系统又达到新的平衡,则A.甲、乙中气体的温度有可能不变B.甲、乙中气体的压强都增加了C.甲、乙中气体的内能的增加量相等D.电炉丝放出的总热量等于甲、乙中气体增加内能的总和7.(27届预赛4)一杯水放在炉上加热烧开后,水面上方有“白色气”;夏天一块冰放在桌面上,冰的上方也有“白色气”.A.前者主要是由杯中水变来的“水的气态物质”B.前者主要是由杯中水变来的“水的液态物质”C.后者主要是由冰变来的“水的气态物质”D.后者主要是由冰变来的“水的液态物质”8.(26届预赛3)一根内径均匀、两端开中的细长玻璃管,竖直插在水中,管的一部分在水面上.现用手指封住管的上端,把一定量的空气密封在玻璃管中,以V0表示其体积;然后把玻璃管沿竖直方向提出水面,设此时封在玻璃管中的气体体积为V1;最后把玻璃管在竖直平面内转过900,让玻璃管处于水平位置,设此时封在玻璃管中的气体体积为V2.则有A.V1>V0≥V2B.V1>V0>V2C.V1=V2>V0D.V1>V0,V2>V09.(25届预赛4)如图所示,放置在升降机地板上的盛有水的容器中,插有两根相对容器的位置是固定的玻璃管a和b,管的上端都是封闭的,下端都是开口的.管内被水各封有一定质量的气体.平衡时,a管内的水面比管外低,b管内的水面比管外高.现令升降机从静止开始加速下降,已知在此过程中管内气体仍被封闭在管内,且经历的过程可视为绝热过程,则在此过程中A.a中气体内能将增加,b中气体内能将减少B.a中气体内能将减少,b中气体内能将增加C.a、b中气体内能都将增加D.a、b中气体内能都将减少10.(25届预赛5)图示为由粗细均匀的细玻璃管弯曲成的“双U形管”,a、b、c、d 为其四段竖直的部分,其中a、d上端是开口的,处在大气中.管中的水银把一段气体柱密封在b、c内,达到平衡时,管内水银面的位置如图所示.现缓慢地降低气柱中气体的温度,若c中的水银面上升了一小段高度Δh,则A.b中的水银面也上升ΔhB.b中的水银面也上升,但上升的高度小于ΔhC .气柱中气体压强的减少量等于高为Δh 的水银柱所产生的压强D .气柱中气体压强的减少量等于高为2Δh 的水银柱所产生的压强11.(31届预赛9)图中所示的气缸壁是绝热的.缸内隔板A 是导热的,它固定在缸壁上.活塞B 是绝热的,它与缸壁的接触是光滑的,但不漏气.B 的上方为大气.A 与B 之间以及A 与缸底之间都盛有n mol 的同种理想气体.系统在开始时处于平衡状态,现通过电炉丝E 对气体缓慢加热.在加热过程中,A 、B 之间的气体经历_________过程,A 以下气体经历________过程;气体温度每上升1K ,A 、B 之间的气体吸收的热量与A 以下气体净吸收的热量之差等于_____________.已知普适气体常量为R .答案:等压、等容、nR解析:在加热过程中,AB 之间的气体的压强始终等于大气压强与B 活塞的重力产生的压强之和,故进行的是等压变化,由于隔板A 是固定在气缸内的,所以,A 以下的气体进行的是等容变化,当气体温度升高1K 时,AB 之间的气体吸收的热量为Q 1=P ΔV +ΔU ,A以下的气体吸收的热量为Q 2=ΔU ,又根据克拉伯龙方程p ΔV =nR ΔT ,所以Q 1-Q 2=p ΔV=nR .12.(28届预赛6)在大气中,将一容积为0.50m 3的一端封闭一端开口的圆筒筒底朝上筒口朝下竖直插人水池中,然后放手,平衡时,筒内空气的体积为0.40m 3.设大气的压强与10.0m 高的水柱产生的压强相同,则筒内外水面的高度差为 .答案:2.5m13.(34届预赛13)横截面积为S 和2S 的两圆柱形容器按图示方式连接成一气缸,每隔圆筒中各置有一活塞,两活塞间的距离为l ,用硬杆相连,形成“工”字形活塞,它把整个气缸分隔成三个气室,其中Ⅰ、Ⅲ室密闭摩尔数分别为ν和2ν的同种理想气体,两个气室内都有电加热器;Ⅱ室的缸壁上开有一个小孔,与大气相通;1mol 该种气体内能为CT(C 是气体摩尔热容量,T 是气体的绝对温度).当三个气室中气体的温度均为T 1时,“工”字形活塞在气缸中恰好在图所示的位置处于平衡状态,这时Ⅰ室内空气柱长亦为l ,Ⅱ室内空气的摩尔数为32ν.已知大气压不变,气缸壁和活塞都是绝热的,不计活塞与气缸之间的摩擦.现通过电热器对Ⅰ、Ⅲ两室中的气体缓慢加热,直至Ⅰ室内气体的温度升为其初始状态温度的2倍,活塞左移距离d .已知理想气体常量为R ,求:(1)Ⅲ室内气体初态气柱的长度;(2)Ⅲ室内气体末态的温度;(3)此过程中ⅠⅢ室密闭气体吸收的总热量.解析:(1)设大气压强为p 0.初态:Ⅰ室内气体压强为p 1;Ⅲ室内气体压强为p 1′,气柱的长度为l ′.末态:Ⅰ室内气体压强为p 2;Ⅲ室内气体压强为p 2′.由初态到末态:活塞左移距离为d .对初态应用气体状态方程,对Ⅰ室气体有:p 1lS =νRT 1 ①对Ⅱ室内气体有:p 0(l 2×S +l 2×2S )=32ν0RT 1②对Ⅲ室内气体有:p1′l′(2S)=(2ν)RT1③由力学平衡条件有:p1′(2S)=p1S+p0(2S-S) ④由题给条件和①②③④式得:l′=ν2ν1+ν0l=2νν+ν0l⑤(2)对末态应用气体状态方程,对Ⅰ室内气体有:p2(l-d)S=νRT2=νR·2T1⑥对Ⅲ室内气体有:p2′(l′+d)(2S)=(2ν)RT2′⑦由力学平衡条件有:p2′(2S)=p2S+p0(2S-S) ⑧联立②⑤⑥⑦⑧和题给条件得:T2′=2νl+(ν+ν0)d(l-d)(ν+ν0)⎝⎛⎭⎫1+ν02νl-dl T1⑨(3)大气对密闭气体系统做的功为W=p0(2S-S)(-d)=-p0Sd=-dlν0RT1⑩已利用②式.系统密闭气体内能增加量为:ΔU=νC(T2-T1)+(2ν)C(T2′-T1)=νC(2T2′-T1) ⑪由⑨⑩式得:ΔU=2νl+(ν+ν0)d(l-d)(ν+ν0)⎝⎛⎭⎫2ν+l-dlν0CT1-νCT1⑫系统吸收的热量为:Q=ΔU-W=2νl+(ν+ν0)d(l-d)(ν+ν0)⎝⎛⎭⎫2ν+l-dlν0CT1-νCT1+dlν0RT1⑬参考评分:第(1)问9分,①②③④式各2分,⑤式1分.第(2)问4分,⑥⑦⑧⑨式各1分.第(3)问7分,⑩⑪式各2分,⑫式1分,⑬式2分.14.(33届预赛16)充有水的连通软管常常用来检验建筑物的水平度.但软管中气泡会使得该软管两边管口水面不在同一水平面上.为了说明这一现象的物理原理,考虑如图所示的连通水管(由三段内径相同的U形管密接而成),其中封有一段空气(可视为理想气体),与空气接触的四段水管均在竖直方向;且两个有水的U形管两边水面分别等高.此时被封闭的空气柱的长度为L a .已知大气压强P 0、水的密度ρ、重力加速度大小为g ,L 0≡P 0/(ρg).现由左管口添加体积为ΔV =xS 的水,S 为水管的横截面积,在稳定后:(1)求两个有水的U 形管两边水面的高度的变化和左管添水后封闭的空气柱的长度;(2)当x <<L 0、L a<<L 0时,求两个有水的U 形管两边水面的高度的变化(用x 表出)以及空气柱的长度.已知1+z ≈1+12z ,当z <<1. 解析:解法(一)(1)设在左管添加水之前左右两个U 形管两边水面的高度分贝为h 1和h 2,添加水之后左右两个U 形管两边水面的高度分别为h 1L 和h 1R 、h 2L 和h 2R .如图所示,设被封闭的空气的压强为p ,空气柱的长度为L b .水在常温常压下可视为不可被压缩的流体,故:2h 1+x =h 1L +h 1R ①2h 2=h 2L +h 2R ②由力学平衡条件有:p 0+ρgh 1L =p +ρgh 1R ③p 0+ρgh 2R =p +ρgh 2L④由于连通管中间高度不变,有:h 1+h 2+L a =h 1R +h 2L +L b ⑤由玻意耳定律得:p 0L a =pL b ⑥联立①②③④⑤⑥式得p 满足的方程:L 0p 0p 2+⎝⎛⎭⎫L a -L 0-x 2p -p 0L a =0 解得:p =p 02L 0⎣⎡⎦⎤L 0-L a +x 2+⎝⎛⎭⎫L a -L 0-x 22+4L a L 0 ⑦ 将⑦式带入⑥式得:L b =12⎣⎡⎦⎤L a -L 0-x 2+⎝⎛⎭⎫L a -L 0-x 22+4L a L 0 ⑧ 由①②③④⑦式得:Δh 1L ≡h 1L -h 1=x -Δh 1R=x -L 02+14[L 0-L a +x 2+⎝⎛⎭⎫L a -L 0-x 22+4L a L 0] ⑨ =5x -2L a -2L 08+14⎝⎛⎭⎫L a -L 0-x 22+4L a L 0 Δh 1R ≡h 1R -h 1=L 0+x 2-p 2ρg=L 0+x 2-14⎣⎡⎦⎤L 0-L a +x 2+⎝⎛⎭⎫L a -L 0-x 22+4L a L 0 ⑩=3x +2L a +2L 08-14⎝⎛⎭⎫L a -L 0-x 22+4L a L 0 Δh 2L ≡h 2L -h 2=L 02-p 2ρg =L 02-14⎣⎡⎦⎤L 0-L a +x 2+⎝⎛⎭⎫L a -L 0-x 22+4L a L 0 ⑪ =2L a +2L 0-x 8-14⎝⎛⎭⎫L a -L 0-x 22+4L a L 0 Δh 2R ≡h 2R -h 2=-Δh 2L=x -2L a -2L 08+14⎝⎛⎭⎫L a -L 0-x 22+4L a L 0 ⑫ (2)在x <<L 0和L a <<L 0的情形下,由⑧式得:L b ≈L a ⑬⑦式成为:p ≈p 0(1+x 2L 0) ⑭ 由⑨⑩⑪⑫⑬⑭式得:Δh 1L ≈34x ⑮ Δh 1R ≈-Δh 2L =Δh 2R ≈14x ⑯ 参考评分:第(1)问14分,①②③④⑤⑥⑦⑧式各1分,⑨⑩式各2分,⑪⑫式各1分;第(2)问6分,⑬⑭式各1分,⑮⑯式各2分.解法(二)(1)设U 形管1左侧末态水面比初态上升x 2+y ,右侧末态水面比初态上升x 2-y ,U 形管2左侧末态水面比初态下降y ,右侧末态水面比初态上升y .由玻意耳定律得: L a L 0=L b (L 0+2y ) ①由几何关系有:L a -x 2+2y =L b ②将②式带入①式得:L a L 0=(L a -x 2+2y ) (L 0+2y ) ③解得: y =x 8-L 04-L a 4+14⎝⎛⎭⎫L 0+L a -x 22+2xL 0 ④ 此即U 形管2左侧末态比初态水面下降值,也是右侧末态比初态水面上升值(负根y=x 8-L 04-L a 4-14⎝⎛⎭⎫L 0+L a -x 22+2xL 0不符合题意,已舍去).U 形管1左侧末态比初态水面上升:x 2+y =5x -2L a -2L 08+14⎝⎛⎭⎫L a +L 0-x 22+2xL 0 ⑤ 右侧末态比初态水面上升:x 2-y =3x +2L a +2L 08-14⎝⎛⎭⎫L a +L 0-x 2 2+2xL 0 ⑥ 将④式带入②式得:L b =L a -x 2+2y =2L a -2L 0-x 4+12⎝⎛⎭⎫L a +L 0-x 22+2xL 0 ⑦ (2)在x <<L 0和L a <<L 0的情形下,④⑤⑥⑦式中的根号部分⎝⎛⎭⎫L a +L 0-x 22+2xL 0=L a 2+L 02+x 24+2L 0L a -xL 0-xL a +2xL 0 =L 01+L a 2L 02+x 24L 02+2L a L 0-xL a 2L 02+x L 0≈L 0⎣⎡⎦⎤1+12(L a 2L 02+x 24L 02+2L a L 0-xL a L 02+x L 0 =L 0+12⎣⎡⎦⎤L a 2L 0+x 24L 0+2L a -xL a L 0+x ⑧ ≈L 0+12(2L a +x ) =L a +L 0+x 2⑧式在推导过程中用到了1+z ≈1+12z ,当z <<1. 将⑧式带入④⑤⑥⑦式中分别得到:y ≈x 8-L 04-L a 4+14⎝⎛⎭⎫L 0+L a +x 2=x 4⑨ x 2+y ≈x 2+x 4=3x 4⑩ x 2-y ≈x 2-x 4=x 4⑪ L b ≈L a 2-L 02-x 4+12⎝⎛⎭⎫L 0+L a +x 2=L a ⑫参考评分:第(1)问14分,①式4分,②③式各1分,④式3分,⑤式2分,⑥式1分.第(2)问6分,⑨⑩式各2分,⑪⑫式各1分.15.(32届预赛15)如图,导热性能良好的气缸A 和B 高度均为h (已除开活塞的厚度),横截面积不同,竖直浸没在温度为T 0的恒温槽内,它们的底部由一细管连通(细管容积可忽略).两气缸内各有一个活塞,质量分别为m A =2m 和m B =m ,活塞与气缸之间无摩擦,两活塞的下方为理想气体,上方为真空.当两活塞下方气体处于平衡状态时,两活塞底面相对于气缸底的高度均为h /2.现保持恒温槽温度不变,在两活塞上面同时各缓慢加上同样大小的压力,让压力从零缓慢增加,直至其大小等于2m g (g 为重力加速度)为止,并一直保持两活塞上的压力不变;系统再次达到平衡后,缓慢升高恒温槽的温度,对气体加热,直至气缸B 中活塞底面恰好回到高度为h /2处.求:(1)两个活塞的横截面积之比S A ∶S B .(2)气缸内气体的最后的温度.(3)在加热气体的过程中,气体对活塞所做的总功.解析:(1)平衡时气缸A 、B 内气体的压强相等,故:m A g S A =m B g S B① 由①式和题给条件得: S A ∶S B =2∶1 ②(2)两活塞上各放一质量为2m 的质点前,气体的压强p 1和体积V 1分别为:p 1=2mg S A =mg S B③ V 1=32S B h ④ 两活塞上各放一质量为2m 的质点后,B 中活塞所受到的气体压力小于它和质点所受重力之和,B 中活塞将一直下降至气缸底部为之,B 中气体全部进入气缸A .假设此时气缸A 中活塞并未上升到气缸顶部,气体的压强p 2=4mg S A =2mg S B⑤ 设平衡时气体体积为V 2,由于初态末态都是平衡态,由理想气体状态方程有:p 1V 1T 0=p 2V 2T 0⑥ 由③④⑤⑥式得: V 2=34S 0h =38S A h ⑦ 这时气体的体积小于气缸A 的体积,与活塞未上升到气缸顶部的假设一致.缓慢加热时,气体先等压膨胀,B 中活塞不动,A 中活塞上升;A 中活塞上升至顶部后,气体等容升压;压强升至3mg S B时,B 中活塞开始上升,气体等压膨胀.设当温度升至T 时,该活塞恰好位于h 2处.此时气体的体积变为V 3=52S B h ⑧ 气体压强 p 3=3mg S B⑨ 设此时气缸内气体的温度为T ,由状态方程有:p 2V 2T 0=p 3V 3T⑩ 由⑤⑦⑧⑨⑩式得: T =5T 0 ⑪(3)升高恒温槽的温度后,加热过程中,A 活塞上升量为h -38h =58h ⑫ 气体对活塞所做的总功为W =4mg ·58h +3mg ·h 2=4mgh ⑬ 参考评分:第(1)问3分,①式2分,②式1分;第(2)问13分,③④⑤⑥式各2分,⑦⑧⑨⑩⑪式各1分;第(3)问4分,⑫⑬式各2分.16.(31届预赛14)1mol 的理想气体经历一循环过程1-2-3-1,如p -T 图示所示,过程1-2是等压过程,过程3-1是通过p -T 图原点的直线上的一段,描述过程2-3的方程为c 1p 2+c 2p =T ,式中c 1和c 2都是待定的常量,p 和T 分别是气体的压强和绝对温度.已知,气体在状态1的压强、绝对温度分别为P 1和T 1,气体在状态2的绝对温度以及在状态3的压强和绝对温度分别为T 2以及p 3和T 3.气体常量R 也是已知的.(1)求常量c 1和c 2的值;(2)将过程1-2 -3 -1在p -v 图示上表示出来;(3)求该气体在一次循环过程中对外做的总功.解析:(1)设气体在状态i (i =1、2、3)下的压强、体积和温度分别为p i 、V i 和T i ,由题设条件有:c 1p 22+c 2p 2=T 2 ①c 1p 32+c 2p 3=T 3 ②由此解得:c 1=T 2p 3-T 3p 2p 22p 3-p 32p 2=T 2p 3-T 3p 1p 12p 3-p 32p 1③ c 2=T 2p 32-T 3p 22p 2p 32-p 22p 3=T 2p 32-T 3p 12p 1p 32-p 12p 3④ (2)利用气体状态方程pV =RT 以及V 1=R T 1p 1、V 2=R T 2p 2、V 3=R T 3p 3⑤ 可将过程2—3的方程写为p V 2-V 3p 2-p 3=V +V 2p 3-V 3p 2p 2-p 3⑥ 可见,在p -V 图上过程2-3是以(p 2,V 2)和(p 3,V 3)为状态端点的直线,过程3-1是通过原点直线上的一段,因而描述其过程的方程为:p T =c 3 ⑦ 式中c 3是一常量,利用气体状态方程pV =RT ,可将过程3-1的方程改写为:V =R c 3=V 3=V 1 ⑧ 这是以(p 3,V 1)和(p 1,V 1)为状态端点的等容降压过程.综上所述,过程1-2-3-1在p -V 图上是一直角三角形,如图所示.(3)气体在一次循环过程中对外做的总功为:W =-12(p 3-p 1)(V 2-V 1) ⑨ 利用气体状态方程pV =RT 和⑤式,上式即:W =-12R (T 2-T 1)⎝⎛⎭⎫p 3p 1-1 ⑩ 参考评分:第(1)问8分,①②③④式各2分;第(2)问10分,⑤⑥式各2分,过程1-2-3-1在p -V 上的图示正确得6分;第(3)问2分,⑩式2分.17.(30届预赛14)如图所示,1摩尔理想气体,由压强与体积关系的p-V 图中的状态A 出发,经过一缓慢的直线过程到达状态B ,已知状态B 的压强与状态A 的压强之比为12,若要使整个过程的最终结果是气体从外界吸收了热量,则状态B 与状态A 的体积之比应满足什么条件?已知此理想气体每摩尔的内能为32RT ,R 为普适气体常量,T 为热力学温度.解析:令ΔU 表示系统内能的增量,Q 和W 分别表示系统吸收的热量和外界对系统所做的功,由热力学第一定律有:ΔU =Q +W ①令T 1和T 2分别表示状态A 和状态B 的温度,有:ΔU =32R (T 2-T 1) ②令p 1、p 2和V 1、V 2分别表示状态A 、B 的压强和体积,由②式和状态方程可得: ΔU=32(p 2V 2-p 1V 1) ③由状态图可知,做功等于图线下所围面积,即:W =-12(p 1+p 2)(V 2-V 1) ④要系统吸热,即Q >0,由以上格式可得:32(p 2V 2-p 1V 1)+12(p 1+p 2)(V 2-V 1)>0⑤按题意,p 2p 1=12,带入上式,可得:V 2V 1>32 ⑥参考评分:①②③式各3分,④式4分,⑤式3分,⑥式2分.18.(29届预赛14)由双原子分子构成的气体,当温度升高时,一部分双原子分子会分解成两个单原子分子,温度越高,被分解的双原子分子的比例越大,于是整个气体可视为由单原子分子构成的气体与由双原子分子构成的气体的混合气体.这种混合气体的每一种成分气体都可视作理想气体.在体积V =0.045m 3的坚固的容器中,盛有一定质量的碘蒸气,现于不同温度下测得容器中蒸气的压强如下:试求温度分别为1073K 和1473K 时该碘蒸气中单原子分子碘蒸气的质量与碘的总质量之比值.已知碘蒸气的总质量与一个摩尔的双原子碘分子的质量相同,普适气体常量R =8.31J·mol -1·K -1解析:以m 表示碘蒸气的总之,m 1表示蒸气的温度为T 时单原子分子的碘蒸气的质量,μ1、μ2分别表示单原子分子碘蒸气和双原子分子碘蒸气的摩尔质量,p 1、p 2分别表示容器中单原子分子碘蒸气和双原子分子碘蒸气的分压强,则由理想气体的状态方程有:p 1V =m 1μ1RT ① p 2V=m -m 1μ2RT②其中,R 为理想气体常量. 根据道尔顿分压定律,容器中碘蒸气的总压强p 满足:p =p 1+p 2 ③设α=m 1m 为单原子分子碘蒸气的质量与碘蒸气的总质量的比值,注意到μ1=12μ2 ④ 由以上各式解得:α=μ2V mR ·p T-1 ⑤ 带入有关数据可得,当温度为1073K 时,α=0.06 ⑥ 当温度为1473K 时,α=0051 ⑦ 参考评分:①②③⑤式各4分,⑥⑦式各2分.19.(26届预赛15)图中M 1和M 2是绝热气缸中的两个活塞,用轻质刚性细杆连结,活塞与气缸壁的接触是光滑的、不漏气的,M 1是导热的,M 2是绝热的,且M 2的横截面积是M 1的2倍.M 1把一定质量的气体封闭在气缸为L 1部分,M 1和M 2把一定质量的气体封闭在气缸的L 2部分,M 2的右侧为大气,大气的压强p 0是恒定的.K 是加热L 2中气体用的电热丝.初始时,两个活塞和气体都处在平衡状态,分别以V 10和V 20表示L 1和L 2中气体的体积.现通过K 对气体缓慢加热一段时间后停止加热,让气体重新达到平衡太,这时,活塞未被气缸壁挡住.加热后与加热前比,L 1和L 2中气体的压强是增大了、减小还是未变?要求进行定量论证.解析:解法(一)用n 1和n 2分别表示L 1和L 2中气体的摩尔数,p 1、p 2和V 1、V 2分别表示L 1和L 2中气体处在平衡状态时的压强和体积,T 表示气体的温度(因为M 1是导热的,两部分气体的温度相等),由理想气体状态方程有:p 1V 1=n 1RT ①p 2V 2=n 2RT ②式中R 为普适气体常量.若以两个活塞和轻杆构成的系统为研究对象,处在平衡状态时有:p 1S 1-p 2S 1+p 2S 2-p 0S 2=0 ③已知S 2=2S 1 ④有③④式得:p 1+p 2=2p 0 ⑤由①②⑤三式得:p 1=2n 1n 2p 0V 2V 1+n 1n 2V 2 ⑥若⑥式中的V 1、V 2是加热后L 1和L 2中气体的体积,则p 1就是加热后L 1中气体的压强.加热前L 1中气体的压强则为p 10=2n 1n 2p 0V 20V 10+n 1n 2V 2 ⑦ 设加热后L 1中气体体积的增加量为ΔV 1,L 2中气体体积的增加量为ΔV 2,因连接两活塞的杆是刚性的,活塞M 2的横截面积是M 1的2倍,故有:ΔV 1=ΔV 2=ΔV ⑧加热后L 1和L 2中气体的体积都是增大的,即ΔV >0.(若ΔV <0,即加热后活塞是向左移动的,则大气将对封闭在气缸中的气体做功,电热丝又对气体加热,根据热力学第一定律,气体的内能增加,温度将上升,而体积是减小的,故L 1和L 2中气体的压强p 1和p 2都将增大,这违反力学平衡条件⑤式)于是有V 1=V 10+ΔV ⑨V 2=V 20+ΔV ⑩由⑥⑦⑨⑩四式得:p 1-p 10=2n 1n 2p 0(V 10-V 20)ΔV ⎣⎡⎦⎤V 10+ΔV +n 1n 2(V 20+ΔV )⎝⎛⎭⎫V 10+n 1n 2V 20 ⑪由⑪式可知:若加热前V 10=V 20,则p 1=p 10,即加热后p 1不变,由⑤式知p 2亦不变;若加热前V 10<V 20,则p 1<p 10,即加热后p 1必减小,由⑤式知p 2必增大;若加热前V 10>V 20,则p 1>p 10,即加热后p 1必增大,由⑤式知p 2必减小.参考评分:得到⑤式3分,得到⑧式3分,得到⑪式8分,最后结论6分. 解法(二)设加热前L 1和L 2中气体的压强和体积分别为p 10、p 20和V 10、V 20,以p 1、p 2和V 1、V 2分别表示加热后L 1和L 2中气体的压强和体积,由于M 1是导热的,加热前L 1和L 2中气体的温度是相等的,设为T 0,加热后L 1和L 2中气体的温度也相等,设为T .因为加热前、后两个活塞和轻杆构成的系统都处在力学平衡状态,注意到S 2=2S 1,力学平衡条件分别为:p 10+p 20=2p 0 ①p 1+p 2=2p 0 ②由①②两式得:p 1-p 10=-(p 2-p 20) ③根据理想气体状态方程,对L 1中的气体有:p 1V 1p 10V 10=T T 0④ 对L 2中气体有:p 2V 2p 20V 20=T T 0⑤ 由④⑤两式得:p 1V 1p 10V 10=p 2V 2p 20V 20⑥ ⑥式可改写成:⎝⎛⎭⎫1+p 1-p 10p 10⎝⎛⎭⎫1+V 1-V 10V 10=⎝⎛⎭⎫1+p 2-p 20p 20⎝⎛⎭⎫1+V 2-V 20V 20 ⑦ 因连接两活塞的杆是刚性的,活塞M 2的横截面积是M 1的2倍,故有:V 1-V 10=V 2-V 20 ⑧把③⑧式带入⑦式得:⎝⎛⎭⎫1+p 1-p 10p 10⎝⎛⎭⎫1+V 1-V 10V 10=⎝⎛⎭⎫1-p 1-p 10p 20⎝⎛⎭⎫1+V 1-V 10V 20 ⑨ 若V 10=V 20,则由⑨式得p 1=p 10,若加热前L 1中气体的体积等于L 2中气体的体积,则加热后L 1中气体的压强不变,由②式可知加热后L 2中气体的压强亦不变;若V 10<V 20,则由⑨式得p 1<p 10,若加热前L 1中气体的体积小于L 2中气体的体积,则加热后L 1中气体的压强必减小,由②式可知加热后L 2中气体的压强必增大;若V 10>V 20,则由⑨式得p 1>p 10,若加热前L 1中气体的体积大于L 2中气体的体积,则加热后L 1中气体的压强必增大,由②式可知加热后L 2中气体的压强必减小;参考评分:得到①式和②式或得到③式得3分,得到⑧式得3分,得到⑨式得8分,最后结论得6分.。
高中物理竞赛十年复赛真题-热学(含答案)
十年真题-热学(复赛)1.(34届复赛7)如气体压强-体积图所示,摩尔数为ν的双原子理想气体构成的系统经历一正循环过程(正循环指沿图中箭头所示的循环),其中自A 到B 为直线过程,自B到A 为等温过程.双原子理想气体的定容摩尔热容为52R ,R 为气体常量. (1)求直线AB 过程中的最高温度; (2)求直线AB 过程中气体的摩尔热容量随气体体积变化的关系式,说明气体在直线AB 过程各段体积范围内是吸热过程还是放热过程,确定吸热和放热过程发生转变时的温度T c ; (3)求整个直线AB 过程中所吸收的净热量和一个正循环过程中气体对外所作的净功. 解析:(1)直线AB 过程中任一平衡态气体的压强p 和体积V 满足方程p -p 0p 0-p 02=V -V 02V 02-V 0 此即 p =32p 0-p 0V 0V ① 根据理想气体状态方程有:pV =νRT ② 由①②式得: T =1νR ⎝⎛⎭⎫-p 0V 0V 2+32p 0V =-p 0νR ⎝⎛⎭⎫V -34V 02+9p 0V 016νR③ 由③式知,当V =34V 0时, ④ 气体达到直线AB 过程中的最高温度为:T max =9p 0V 016νR⑤ (2)由直线AB 过程的摩尔热容C m 的定义有:dQ =νC m dT ⑥ 由热力学第一定律有: dU =dQ -pdV ⑦由理想气体内能公式和题给数据有:dU =νC V dT =ν52RdT ⑧ 由①⑥⑦⑧式得:C m =C V +p ν dV dT =52R +⎝⎛⎭⎫32p 0-p 0V 0V 1ν dV dT ⑨ 由③式两边微分得:dV dT =2νRV 0p 0(3V 0-4V )⑩ 由⑩式带入⑨式得:C m =21V 0-24V 3V 0-4V R 2⑪ 由⑥⑩⑪式得,直线AB 过程中,在V 从V 02增大到3V 04的过程中,C m >0,dV dT >0,故dQ dV>0,吸热 ⑫ 在V 从3V 04增大到21V 024的过程中,C m <0,dV dT <0,故dQ dV>0,吸热 ⑬ 在V 从21V 024增大到V 0的过程中,C m >0,dV dT <0,故dQ dV<0,放热 ⑭由⑫⑬⑭式可知,系统从吸热到放热转折点发生在V =V c =21V 024处 由③式和上式得:T c =1νR ⎝⎛⎭⎫-p 0V 0V 2+32p 0V =35p 0V 064νR⑮ (3)对于直线AB 过程,由⑥⑩式得:dQ =νC m dT dV dV =21V 0-24V 4V 0p 0dV =⎝⎛⎭⎫214-6V V 0p 0dV ⑯ 将上式两边对直线过程积分得,整个直线AB 过程中所吸收的净热量为:Q 直线=⎠⎛V 0/2V 0⎝⎛⎭⎫214-6V V 0p 0dV =p 0⎝⎛⎭⎫21V 4-3V 2V 0⎪⎪V 0V 02=38p 0V 0 ⑰ 直线AB 过程中气体对外所做的功为:W 直线=12⎝⎛⎭⎫p 0+p 02⎝⎛⎭⎫V 0-V 02=38p 0V 0 ⑱ 等温过程中气体对外所做的功为:W 等温=⎠⎛V 0V 0/2pdV =⎠⎛V 0V 0/2p 0V 02dV V =-p 0V 02ln2 ⑲ 一个正循环过程中气体对外所做的净功为:W =W 直线+W 等温=⎝⎛⎭⎫38-ln22p 0V 0 ⑳ 参考评分:第(1)问10分,①②式各3分,④⑤式各2分;第(2)问20分,⑥⑦⑧⑨⑩⑪⑫⑬⑭⑮式各2分;第(3)问10分,⑯⑰⑱⑲⑳式各2分.2.(33届复赛2)秋天清晨,气温为4.0℃,一加水员到实验园区给一内径为2.00m 、高为2.00m 的圆柱形不锈钢蒸馏水罐加水.罐体导热良好.罐外有一内径为4.00cm 的透明圆柱形观察柱,底部与罐相连(连接处很短),与大气相通,如图所示.加完水后,加水员在水面上覆盖一层轻质防蒸发膜(不溶于水,与罐壁无摩擦),闭了罐顶的加水口.此时加水 员通过观察柱上的刻度看到罐内水高为1.00m .(1)从清晨到中午,气温缓慢升至24.0℃,问此时观察柱内水位为多少?假设中间无人用水,水的蒸发及罐和观察柱体积随温度的变化可忽略.(2)从密闭水罐后至中午,罐内空气对外做的功和吸收的热量分别为多少?求这个过程中罐内空气的热容量.已知罐外气压始终为标准大气压p 0=1.01×105pa ,水在4.0℃时的密度为ρ0=1.00×103kg·m -3,水在温度变化过程中的平均体积膨胀系数为3.03×10-4K -1,重力加速度大小为g =9.80m/s 2,绝对零度为-273.15℃.解析:(1)清晨加完水封闭后,罐内空气的状态方程为p 0V 0=nRT 0 ① 至中午时由于气温升高,罐内空气压强增大,设此时罐内空气的压强、体积和温度分别为p 1、V 1、T 1,相应的状态方程为:p 1V 1=nRT 1 ②此时观察柱和罐内水位之差为:Δh =V 1-V 0S 1+V 1-V 0S 2+κ(T 1-T 0)(S 1+S 2)l 0S 2③ 式中右端第三项是由原罐内和观察柱内水的膨胀引起的贡献,l 0=1.00m 为早上加水后观察柱内水面的高度,S 1=πm 2,S 2=4π×10-4m 2分别为罐、观察柱的横截面积.由力平衡条件有:p 1=p 0+ρ1g Δh 1 ④式中ρ1=ρ01+κ(T 1-T 0)是水在温度为T 1时的密度. ⑤联立①②③④⑤式得:ρ1gS ′(Δh )2+(p 0S 1+λρ1gV 0)-⎝⎛⎭⎫T 1T 0-λp 0V 0=0 ⑥ 式中S ′=S 1S 2S 1+S 2,λ=1-κ(T 1-T 0) ⑦ 解⑥得:Δh =-(p 0S 1+λρ1gV 0)+(p 0S 1+λρ1gV 0)2+4ρ1gS ′p 0V 0⎝⎛⎭⎫T 1T 0-λ2ρ1gS ′=0.812m ⑧另一解不合题意,舍去.由③⑤⑦⑧式和题给数据得:V 1-V 0=S ′Δh -κ(T 1-T 0)S 1l 0=-0.0180m 3由上式和题给数据得,中午观察柱内水位为:l 1=Δh -V 1-V 0S 1+l 0=1.82m ⑨ (2)先求罐内空气从清晨至中午对外所做的功.解法(一)早上罐内空气压强p 0=1.01×105pa ,中午观察柱内水位相对于此时罐内水位升高Δh ,罐内空气压强升高了Δp =ρ1g Δh =7.91×103pa ⑩因Δp <<p 0,认为在准静态升温过程中罐内平均压强p -=p 0+12Δp =11.05×105pa ⑪ 罐内空气体积缩小了ΔV =0.0180m 3 ⑫可见ΔV V <<1,这说明⑪式是合理的.罐内空气对外做功W =p -ΔV =-1.9×103J ⑬ 解法(二)缓慢升温是一个准静态过程,在封闭水罐后至中午之间的任意时刻,设罐内空气都处于热平衡状态,设其体积、温度和压强分别为V 、T 和p .水温为T 时水的密度为ρ=ρ01+κ(T -T 0) ⑩ 将②③④式中的V 1、T 1和p 1换为V 、T 和p ,利用⑩式得罐内空气在温度为T 时的状态方程为:p =p 0+ρg S ′[V 1-V 0+κ(T 1-T 0)S 1l 0]=p 0+ρgS 1l 0S ′ V 1-V 0S 1l 0+κ(T 1-T 0)1+κ(T 1-T 0) ⑪ 由题设数据和前门计算结果可知,κ(T -T 0)<κ(T 1-T 0)=0.0060V -V 0S 1l 0<V 1-V 0S 1l 0=0.0057这说⑪式右端分子中与T 有关的项不可略去,而右端分母中与T 有关的项可略去.于是⑪式:p =p 0+ρg S ′[V 1-V 0+κ(T 1-T 0)S 1l 0]=p 0+ρgS 1l 0S ′⎣⎡⎦⎤V 1-V 0S 1l 0+κ(T 1-T 0) 利用状态方程,上式可改写成p =p 0-ρg S ′(V 0+κT 0S 1l 0)+nR κS 1l 01-κρ0gl 0nR S 1S ′V-nR κS 1l 0 ⑫ 从封闭水罐后至中午,罐内空气对外界做的功为W =⎠⎛V 0V 1pdV=⎠⎜⎛V 0V 1⎝ ⎛⎭⎪⎫p 0-ρg S ′(V 0+κT 0S 1l 0)+nRκS 1l 01-κρ0gl 0nR S 1S ′V -nR κS 1l 0dV =-nR κS 1l 0⎩⎨⎧⎭⎬⎫(V 1-V 0)-S ′ρ0g ⎣⎡⎦⎤p 0-ρ0g S ′(V 0+κT 0S 1l 0)+nR κS 1l 0ln 1-κρ0gl 0nR S 1S ′V 11-κρ0gl 0nR S 1S ′V 0 ⑬ =-1.9×103J解法(三)缓慢升温是一个准静态过程,在封闭水罐后至中午的任意时刻,罐内空气都处于热平衡状态,设其体积、温度和压强分别为V 、T 和p .水在温度为T 时的密度为ρ=ρ01+κ(T -T 0) ⑩ 将②③④式中的V 1、T 1和p 1换为V 、T 和p ,利用⑩式得罐内空气在温度为T 时的状态方程为p =p 0+ρg S ′[V -V 0+κ(T 1-T 0)S 1l 0]=p 0+ρ0g S ′ V -V 0+κ(T -T 0)S 1l 01+κ(T -T 0) =p 0+ρ0g S ′S 1l 0+ρ0g S ′ V -V 0-S 1l 01+κ(T -T 0) ≈p 0+ρ0gS 1l 0S ′+ρ0g S ′(V -V 0-S 1l 0)[1-κ(T -T 0)]=p 0+ρ0gS 1l 0S ′+ρ0g S ′⎣⎡⎦⎤(V -V 0-S 1l 0)(1+κT 0)-κnR PV (V -V 0-S 1l 0) ⑪ ≈p 0+ρ0gS 1l 0S ′+ρ0g S ′(V -V 0-S 1l 0)(1+κT 0)+ρ0g S ′ κS 1l 0nR PV=p 0+ρ0gS 1l 0S ′+ρ0g S ′(V -2V 0)(1+κT 0)+ρ0g S ′ κV 0nR PV=p 0+ρ0gS 1l 0S ′+ρ0g S ′(V -2V 0)(1+κT 0)+ρ0g S ′ κT 0p 0PV 式中应用了κ(T -T 0)<κ(T 1-T 0)=0.0060,V -V 0S 1l 0<V 1-V 0S 1l 0=0.0057 ⑪式可改写成p =p 0+ρ0gS 1l 0S ′+ρ0g S ′(V -2V 0)(1+κT 0)1-ρ0g S ′ κT 0p 0V =-(1+κT 0)p 0κT 0+1+2κT 02κT 0p 0-ρ0gV 0S ′(1+2κT 0)1-ρ0g S ′ κT 0p 0V ⑫ 从封闭水罐后至中午,罐内空气对外界做的功为W =⎠⎛V 0V 1pdV =⎠⎜⎛V 0V 1⎣⎢⎡⎦⎥⎤-1+2κT 02κT 0p 0-ρ0gV 0S ′(1+2κT 0)1-ρ0g S ′ κT 0p 0V dV=-(1+κT 0)p 0κT 0⎣⎢⎡⎦⎥⎤V -V 0+⎝⎛⎭⎫S ′p 0ρ0gκT 0-V 0ln S ′p 0-ρ0gκT 0V 1S ′p 0-ρ0gκT 0V 0 ⑬ =-1.9×103J现计算罐内空气的内能变化.由能量均分定理知,罐内空气中午相对于清晨的内能改变为:ΔU =52nR (T 1-T 0)=52 p 0V 0T 0(T 1-T 0)=5.72×104J ⑭ 式中5是常温下空气分子的自由度.由热力学第一定律得罐内空气的吸热为:ΔQ =W +ΔU =5.54×104J ⑮从封闭水罐后至中午,罐内空气在这个过程中的热容量为:C =ΔQ T 1-T 0=2.77×103J/K ⑯ 参考评分:第(1)问10分,①②③④⑤⑥⑦⑧式各1分,⑨式2分;第(2)问10分,⑩⑪⑫式各1分,⑬⑭⑮式各2分,⑯式1分.3.(32届复赛7)如图,1mol 单原子理想气体构成的系统分别经历循环过程abcda 和abc ′a .已知理想气体在任一缓慢变化过程中,压强p 和体积V 满足函数关系p =f (V ).(1)试证明:理想气体在任一缓慢变化过程的摩尔热容可表示为C π=C V +pR p +V dp dV,式中,C V 和R 分别为定容摩尔热容和理想气体常数;(2)计算系统经bc ′直线变化过程中的摩尔热容;(3)分别计算系统经bc ′直线过程中升降温的转折点在p-V 图中的坐标A 和吸放热的转折点在p-V 图中的坐标B ;(4)定量比较系统在两种循环过程的循环效率.解析:(1)根据热力学第一定律有:dU =δQ +δW ① 这里对于1mol 理想气体经历的任一缓慢变化过程中,δQ 、δW 和dU 可分别表示为δQ =C πdT 、δW =-pdV 、dU =C V dT ②将理想气体状态方程pV =RT 两边求导得p dV dT +V dp dV dV dT=R ③ 式中利用了dp dT =dp dV dV dT ,根据③式有:dV dT =R p +V dp dV④ 联立①②③④式得:C π=C V +pR p +V dp dV⑤ (2)设bc ′过程方程为p =α-βV ⑥根据C π=C V +pR p +V dp dV 可得该直线过程的摩尔热容为:C π=C V +α-βV α-2βV )R ⑦ 式中C V =32R 是单原子理想气体的定容摩尔热容. 对bc ′过程的初态(3p 1,V 1)和终态(p 1,5V 1)有:3p 1=α-βV 1、p 1=α-5βV 1 ⑧由⑧式得:α=72p 1、β=p 12V 1⑨ 由⑥⑦⑧⑨式得:C π=8V -35V 14V -14V 1R ⑩ (3)根据过程热容的定义有:C π=ΔQ ΔT⑪ 式中,ΔQ 是气体在此直线过程中,温度升高ΔT 时从外界吸收的热量.由⑩⑪式得:ΔT =4V -14V 18V -35V 1R ΔQ ⑫ ΔQ =8V -35V 14V -14V 1ΔT R ⑬ 由⑫式可知,bc ′过程中的升降温的转折点A 在p -V 图上的坐标为A (72V 1,74p 1) ⑭ 由⑩式可知,bc ′过程中的吸放热的转折点B 在p -V 图上的坐标为B (358V 1,2116p 1) ⑮ (4)对于abcda 循环过程,ab 和bc 过程吸热,cd 和da 过程放热Q ab =nC V (T b -T a )=1.5(RT b -RT a )=3p 1V 1Q bc =nC p (T c -T b )=2.5(RT c -RT b )=15p 1V 1 ⑯式中已知n =1mol ,单原子理想气体定容摩尔热容C V =32R ,定压摩尔热容C V =52R 气体在abcda 循环过程中的效率可表示为循环过程中对外做的功处以总吸热,即ηabcda =W abcda Q ab +Q bc =4p 1V 118p 1V 1=0.22 ⑰ 对于abc ′a 循环过程,ab 和bB 过程吸热,Bc ′和c ′a 过程放热.由热力学第一定律可得bB 过程吸热为:Q bc′=ΔU bB -W bB =nC V (T B -T b )+12(p B +3p 1)(V B -V 1)=11.39p 1V 1 ⑱ 所以循环过程abc ′a 的效率为ηabc′a =W abc′a Q ab +Q bc′=4p 1V 114.39p 1V 1=0.278 ⑲ 由⑰⑲式可知,ηabc′a >ηabcda ⑳ 参考评分:第(1)问5分,①②③④⑤式各1分;第(2)问5分,⑥⑦⑧⑨⑩式各1分;第(3)问7分,⑪式1分,⑫⑬式各2分,⑭⑮式各1分;第(4)问5分,⑯⑰⑱⑲⑳式各1分.4.(31届复赛2)一种测量理想气体的摩尔热容比γ=C p /C V 的方法(Clement-Desormes 方法)如图所示:大瓶G 内装满某种理想气体,瓶盖上通有一个灌气(放气)开关H ,另接出一根U 形管作为压强计M .瓶内外的压强差通过U 形管右、左两管液面的高度差来确定.初始时,瓶内外的温度相等,瓶内气体的压强比外面的大气压强稍高,记录此时U 形管液面的高度差h i .然后打开H ,放出少量气体,当瓶内外压强相等时,即刻关闭H .等待瓶内外温度又相等时,记录此时U 形管液面的高度差h f .试由这两次记录的实验数据h i 和h f ,导出瓶内气体的摩尔热容比γ的表达式.(提示:放气过程时间很短,可视为无热量交换;且U 形管很细,可忽略由高差变化引起的瓶内气体在状态变化前后的体积变化)→解析:解法(一)瓶内理想气体经历如下两个气体过程:(p i ,V 0,T 0,N i )——――——→放气(绝热膨胀)(p 0,V 0,T ,N f )—―——→等容升温(p f ,V 0,T 0,N f )其中,(p i ,V 0,T 0,N i )、(p 0,V 0,T ,N f )、(p f ,V 0,T 0,N f )分别是瓶内气体在初态、中间态与末态的压强、体积、温度和摩尔数.根据理想气体方程pV =NkT ,考虑到由于气体初、末态的体积和温度相等,有p f p i =N f N i① 另一方面,设V ′是初态气体在保持其摩尔数不变的条件下绝热膨胀到压强为p 0时的体积,即:(p i ,V 0,T ,N i )—―——→绝热膨胀(p 0,V ′,T 0,N i )此绝热过程满足V 0V ′=⎝⎛⎭⎫p 0p i 1γ ② 由状态方程有p 0V ′=N i kT 和p 0V 0=N f kT ,所以N f N i =V 0V ′③ 联立①②③式得p f p i =⎝⎛⎭⎫p 0p i 1γ ④ 此即γ=ln p i p 0ln p i p f⑤ 由力学平衡条件有p i =p 0+ρgh i ⑥ p f =p 0+ρgh f ⑦ 式中,p 0+ρgh 0为瓶外的大气压强,ρ是U 形管中液体的密度,g 是重力加速度的大小.由⑤⑥⑦式得γ=ln ⎝⎛⎭⎫1+h i h 0ln ⎝⎛⎭⎫1+h i h 0-ln ⎝⎛⎭⎫1+h f h 0 ⑧ 利用近似关系式:当x <<1,ln(1+x )≈x ,以及h i h 0<<1,h f h 0<<1有 γ=h ih 0h i h 0-h f h 0=h i h i -h f ⑨ 参考评分:本题16分.①②③⑤⑥⑦⑧⑨式各2分.解法(二)若仅考虑留在容器内的气体:它首先经历了一个绝热膨胀过程ab ,再通过等容升温过程bc 达到末态(p i ,V 1,T 0)绝热膨胀ab ——————→(p 0,V 0,T )等容升温bc —————→(p f ,V 0,T 0) 其中,(p i ,V 1,T 0)、(p 0,V 0,T )、和(p f ,V 0,T 0)分别是留在瓶内的气体在初态、中间态和末态的压强、体积与温度.留在瓶内的气体先后满足绝热方程和等容过程方程ab :p 1γ-1T 0γ=p 0γ-1T γ ①bc :p 0T =p f T 0② 由①②式得: p f p i =⎝⎛⎭⎫p 0p i 1γ ③此即γ=ln p i p 0ln p i p f ④ 由力学平衡条件有p i =p 0+ρgh i ⑤ p f =p 0+ρgh f ⑥ 式中,p 0+ρgh 0为瓶外的大气压强,ρ是U 形管中液体的密度,g 是重力加速度的大小.由④⑤⑥式得ln ⎝⎛⎭⎫1+h i h 0ln ⎝⎛⎭⎫1+h i h 0-ln ⎝⎛⎭⎫1+h f h 0 ⑦ 利用近似关系式:当x <<1,ln(1+x )≈x ,以及h i h 0<<1,h f h 0<<1有 γ=h ih 0h i h 0-h f h 0=h i h i -h f ⑧ 参考评分:本题16分.①②式各3分,④⑤⑥⑦⑧式各2分.5.(30届复赛6)温度开关用厚度均为0.20mm 的钢片和青铜片作感温元件;在温度为20℃时,将它们紧贴,两端焊接在一起,成为等长的平直双金属片.若钢和青铜的线膨胀系数分别为 1.0×10-5/度和2.0×10-5/度.当温度升高到120℃时,双金属片将自动弯成圆弧形,如图所示.试求双金属片弯曲的曲率半径.(忽略加热时金属片厚度的变化.)解析:设弯成的圆弧半径为r ,金属片原长为l ,圆弧所对的圆心角为φ,钢和青铜的线膨胀系数分别为α1和α2,钢片和青铜片温度由T 1=20℃升高到T 2=120℃时的伸长量分别为Δl 1和Δl 2. 对于钢片 (r -d 2)φ=l +Δl 1 ① Δl 1=lα1(T 2-T 1) ②式中,d =0.20mm .对于青铜片(r +d 2)φ=l +Δl 2 ③ Δl 2=lα2(T 2-T 1) ④联立以上各式得r =2+(α1+α2)(T 2-T 1)2(α2-α1)(T 2-T 1)d =2.0×102mm ⑤ 参考评分:本题15分.①式3分,②式3分,③式3分,④式3分,⑤式3分. 6.(29届复赛6)如图所示,刚性绝热容器A 和B 水平放置,一根带有绝热阀门和多孔塞的绝热刚性细短管把容器A 、B 相互连通.初始时阀门是关闭的,A 内装有某种理想气体,温度为T 1;B 内为真空.现将阀门打开,气体缓慢通过多孔塞后进入容器B 中.当容器A 中气体的压强降到与初始时A 中气体压强之比为α时,重新关闭阀门.设最后留在容器A 内的那部分气体与进入容器B 中的气体之间始终无热量交换,求容器B 中气体质量与气体总质量之比.已知:1mol 理想气体的内能为u =CT ,其中C 是已知常量,T 为绝对温度;一定质量的理想气体经历缓慢的绝热过程时,其压强p 与体积V 满足过程方程常量=+CR C pV ,其中R 为普适气体常量.重力影响和连接管体积均忽略不计.解析:设重新关闭阀门后容器A 中气体的摩尔数为n 1,B 中气体的摩尔数为n 2,则气体总摩尔数为n =n 1+n 2 ① 把两容器中的气体作为整体考虑,设重新关闭阀门后容器A 中气体温度为T 1′,B 中气体温度为T 2,重新关闭阀门之后与打开阀门之前气体内能的变化可表示为 ΔU =n 1C (T 1′-T 1)+n 2C (T 2-T 1) ② 由于容器是刚性绝热的,按热力学第一定律有ΔU =0 ③ 令V 1表示容器A 的体积, 初始时A 中气体的压强为p 1,关闭阀门后A 中气体压强为αp 1,由理想气体状态方程可知n =p 1V 1RT 1 ④n 1=(αp 1)V 1RT 1′ ⑤ 由以上各式可解得:T 2=(1-α)T 1T 1′T 1′-αT 1由于进入容器B 中的气体与仍留在容器A 中的气体之间没有热量交换,因而在阀门打开到重新关闭的过程中留在容器A 中的那部分气体经历了一个绝热过程,设这部分气体初始时体积为V 10 (压强为p 1时),则有 p 1V 10C +RC =(αp 1)V 1C +R C ⑥ 利用状态方程可得p 1V 10T 1=(αp 1)V 1T 1′⑦ 由①②③④⑤⑥⑦式得,阀门重新关闭后容器B 中气体质量与气体总质量之比n 2n =2-αR C +R -αCC +R2―α―αR C +R⑧ 参考评分:本题15分.①式1分,②式3分,③式2分,④⑤式各1分,⑥式3分,⑦式1分,⑧式3分.7.(28届复赛6)如图所示为圆柱形气缸,气缸壁绝热,气缸的右端有一小孔与大气相通,大气的压强为P 0.用一热容量可忽略的导热隔板N 和一绝热活塞M 将气缸分为A 、B 、C 三室,隔板与气缸固连,活塞相对气缸可以无摩擦地移动但不漏气.气缸的左端A 室中有一电加热器Ω.已知在A 、B 室中均盛有1摩尔同种理想气体,电加热器加热前,系统处于平衡状态,A 、B 两室中气体的温度均为T 0,A 、B 、C 三室的体积均为V 0.现通过电加热器对A 室中气体缓慢加热,若提供的总热量为Q 0,试求B 室中气体的末态体积和A 室中气体的末态温度.(设A 、B 两室中气体1摩尔的内能为U =52RT ,式中R 为普适气体常量,T 为绝对温度)在电加热器对A 室中气体加热的过程中,由于隔板N 是导热的,B 室中气体的温度要升高,活塞M 将向右移动.当加热停止时,活塞M 有可能刚移到气缸最右端,亦可能尚未移到气缸最右端. 当然亦可能活塞已移到气缸最右端但加热过程尚未停止.解析:(1)设加热恰好能使活塞M 移到气缸的最右端,则B 室气体末态的体积 V B =2V 0 ① 根据题意,活塞M 向右移动过程中,B 中气体压强不变,用T B 表示B 室中气体末态的温度,有V 0T 0=V B T B② 由①②式得 T B =2T 0 ③Ω A B C由于隔板N 是导热的,故A 室中气体末态的温度 T A =2T 0 ④ 下面计算此过程中的热量Q m .在加热过程中,A 室中气体经历的是等容过程,根据热力学第一定律,气体吸收的热量等于其内能的增加量,即Q A =52R (T A -T 0) ⑤ 由④⑤两式得 Q A =52RT 0 ⑥ B 室中气体经历的是等压过程,在过程中B 室气体对外做功为W B =p 0(V B -V 0) ⑦ 由①⑦式及理想气体状态方程得W B =RT 0 ⑧内能改变为ΔU B =52R (T B -T 0) ⑨ 由④⑨两式得ΔU B =52RT 0 ⑩ 根据热力学第一定律和⑧⑩两式, B 室气体吸收的热量为Q B =ΔU B +W B =72RT 0 ⑪ 由⑥⑪两式可知电加热器提供的热量为Q m =Q A +Q B =6RT 0 ⑫ 若Q 0=Q m ,B 室中气体末态体积为2V 0,A 室中气体的末态温度2T 0.(2)若Q 0>Q m ,则当加热器供应的热量达到Q m 时,活塞刚好到达气缸最右端,但这时加热尚未停止,只是在以后的加热过程中气体的体积保持不变,故热量Q 0-Q m 是A 、B 中气体在等容升温过程中吸收的热量.由于等容过程中气体不做功,根据热力学第一定律,若A 室中气体末态的温度为T A ′,有Q 0-Q m =52R (T A ′-2T 0)+52R (T A ′-2T 0) ⑬ 由⑫⑬两式可求得T A ′=Q 05R +45T 0 ⑭ B 中气体的末态的体积V B ′=2V 0 ⑮(3)若Q 0<Q m ,则隔板尚未移到气缸最右端,加热停止,故B 室中气体末态的体积V B ″<2V 0.设A 、B 两室中气体末态的温度为T A ″,根据热力学第一定律,注意到A 室中气体经历的是等容过程,其吸收的热量Q A =52R (T A ″-T 0) ⑯ B 室中气体经历的是等压过程,吸收热量Q B =52R (T A ″-T 0)+p 0(V B ″-V 0) ⑰ 利用理想气体状态方程,上式变为Q B =72R (T A ″-T 0) ⑱ 由上可知Q 0=Q A +Q B =6R (T A ″-T 0)T 0 ⑲所以A 室中气体的末态温度T A ″=Q 06R+T 0 ⑳ B 室中气体的末态体积V B ″=V 0T 0T A ″=⎝⎛⎭⎫Q 06RT 0+1V 0 ○21 参考评分:本题20分.得到Q 0=Q m 的条件下①④式各1分;⑫式6分,得到Q 0>Q m 的条件下的⑭式4分,⑮式2分;得到Q 0<Q m 的条件下的⑳式4分,○21式2分. 8.(27届复赛7)地球上的能量从源头上说来自太阳辐射到达地面的太阳辐射(假定不计大气对太阳辐射的吸收)一部分被地球表面反射到太空,其余部分被地球吸收.被吸收的部分最终转换成为地球热辐射(红外波段的电磁波).热辐射在向外传播过程中,其中一部分会被温室气体反射回地面,地球以此方式保持了总能量平衡.作为一个简单的理想模型,假定地球表面的温度处处相同,且太阳和地球的辐射都遵从斯忒蕃一玻尔兹曼定律:单位面积的辐射功率J 与表面的热力学温度T 的四次方成正比,即J =σT 4,其中σ是一个常量.已知太阳表面温度T s =5.78×103K ,太阳半径R s =6.69×105km ,地球到太阳的平均距离d =1.50×108km .假设温室气体在大气层中集中形成一个均匀的薄层,并设它对热辐射能量的反射率为ρ=0.38.(1)如果地球表面对太阳辐射的平均反射率α=0.30,试问考虑了温室气体对热辐射的反射作用后,地球表面的温度是多少?(2)如果地球表面一部分被冰雪覆盖,覆盖部分对太阳辐射的反射率为α1=0.85,其余部分的反射率处α2=0.25.间冰雪被盖面占总面积多少时地球表面温度为273K . 解析:(1)根据题意,太阳辐射的总功率P S =4πR 2S σT 4S ,太阳辐射各向同性的向外传播.设地球半径为r E ,可以认为地球所在处的太阳辐射是均匀的,故地球接收太阳辐射的总功率为:P I =σT 4S ⎝⎛⎭⎫R S d 2πr 2E ① 地球表面反射太阳辐射的总功率为αP I .设地球表面的温度为T E ,则地球的热辐射总功率为:P E =4πr 2E σT 4E ② 考虑到温室气体向地球表面释放的热辐射,则输入地球表面的总功率为P I +βP E .当达到热平衡时,输入的能量与输出的能量相等,有:P I +βP E =αP I +P E ③ 由以上各式得:T E =T S 22⎝ ⎛⎭⎪⎫1-α1-β14⎝⎛⎭⎫R S d 12 错误!未定义书签。
高中物理《热力学定律》练习题(附答案解析)
高中物理《热力学定律》练习题(附答案解析)学校:___________姓名:___________班级:___________一、单选题1.关于物体内能的变化,下列说法中正确的是( )A .物体吸收了热量,它的内能可以减小B .物体的机械能变化时,它的内能也一定随着变化C .外界对物体做功,它的内能一定增加D .物体既吸收热量,又对外界做功,它的内能一定不变2.一定质量的理想气体在某一过程中,外界对气体做了4810J ⨯的功,气体的内能减少了51.210J ⨯,则下列各式中正确的是( )A .454810J 1.210J 410J W U Q =⨯∆=⨯=⨯,,B . 455810J 1.210J 210J W U Q =⨯∆=-⨯=-⨯,,C . 454810J 1.210J 210J W U Q =-⨯∆=⨯=⨯,,D . 454810J 1.210J 410J W U Q =-⨯∆=-⨯=-⨯,,3.关于两类永动机和热力学的两个定律,下列说法正确的是( )A .第二类永动机不可能制成是因为违反了热力学第一定律B .第一类永动机不可能制成是因为违反了热力学第二定律C .由热力学第一定律可知做功不一定改变内能,热传递也不一定改变内能,但同时做功和热传递一定会改变内能D .由热力学第二定律可知从单一热源吸收热量,完全变成功是可能的4.关于固体、液体和气体,下列说法正确的是( )A .晶体一定有规则的几何形状,形状不规则的金属一定是非晶体B .把一枚针轻放在水面上,它会浮在水面,这是由于水表面存在表面张力的缘故C .木船浮在水面上是由于表面张力D .外界对物体做功,物体的内能一定增加5.下列说法正确的是( )A .α射线、β射线和γ射线是三种波长不同的电磁波B .根据玻尔理论可知,氢原子核外电子跃迁过程中电子的电势能和动能之和不守恒C.分子势能随着分子间距离的增大,可能先增大后减小D.只要对物体进行不断的冷却,就可以把物体的温度降为绝对零度6.关于能源,下列说法正确的是()A.根据能量守恒定律,我们不需要节约能源B.化石能源、水能和风能都是不可再生的能源C.华龙一号(核电技术电站)工作时,它能把核能转化为电能D.能量的转化、转移没有方向性7.关于热现象,下列说法正确的是()A.固体很难被压缩,是因为分子间存在斥力B.液体分子的无规则运动称为布朗运动C.气体吸热,其内能一定增加D.0°C水结成冰的过程中,其分子势能增加8.加气站储气罐中天然气的温度随气温升高的过程中,若储气罐内气体体积及质量均不变,则罐内气体(可视为理想气体)()A.压强增大,内能减小B.压强减小,分子热运动的平均动能增大C.吸收热量,内能增大D.对外做功,分子热运动的平均动能减小二、多选题9.下列关于热力学第二定律的理解正确的是()A.一切与热现象有关的宏观自然过程都是不可逆的B.空调既能制热又能制冷,说明热传递不存在方向性C.从微观的角度看,热力学第二定律表明一个孤立系统总是向无序度更大的方向发展D.没有漏气、摩擦、不必要的散热等损失,热机可以把燃料产生的内能全部转化为机械能10.一定质量的理想气体,其状态变化过程的p-V图像如图所示。
高中物理热学计算题以及答案
1. 问题:一个容积为V的容器中充满了1mol的气体,此时容器的温度为T1,请计算容器中气体的平均动能。
答案:平均动能=(3/2)nRT1,其中n为气体的物质的量,R为气体常数。
2. 一个容积为V的容器中装满了水,水的温度为t℃,水的重量为m,水的热容为c,此时将容器中的水加热,经过一段时间后,水的温度升高到T℃,请计算:
(1)水加热的总热量
Q=mc(T-t)
(2)水加热的平均热量
Qavg=Q/t
3..一元系统中,向容器中加入了$m$克汽油,汽油的温度为$T_1$,容器中的水的温度为$T_2$,汽油和水的比容为$V_1$和$V_2$,如果汽油和水的温度最终变为$T_3$,那么汽油的最终温度$T_4$为多少?
解:$T_4=\frac{mT_1V_1+T_2V_2}{mV_1+V_2}T_3$
4. 一定体积的气体在温度为273K,压强为100kPa时,改变温度到273K,压强到400kPa,求气体的体积。
解:由比容量关系可得:
V2/V1=P2/P1
V2=V1×P2/P1
V2=V1×400/100
V2=4V1
答案:V2=4V1。
【单元练】(必考题)高中物理选修3第三章【热力学定律】经典练习(答案解析)
一、选择题1.下列例子中,通过热传递改变物体内能的是( )A .火炉将水壶中的水煮开B .汽车紧急刹车时轮胎发热C .压缩气体放气后温度降低D .擦火柴,火柴就燃烧A解析:AA .火炉将水壶中的水煮开,是通过热传递改变水内能,故A 正确;B .汽车紧急刹车时轮胎发热是通过摩擦做功改变物体内能,故B 错误;C .压缩气体放气后温度降低是通过气体对外做功使自身内能减小,故C 错误;D .擦火柴,火柴就燃烧是通过摩擦做功使物体内能增大,故D 错误。
故选A 。
2.一定质量的理想气体(分子力不计),体积由V 1膨胀到V 2,如果通过压强不变的过程实现,对外做功大小为W 1,传递热量的值为Q 1,内能变化为∆U 1;如果通过温度不变的过程来实现,对外做功大小为W 2,传递热量的值为Q 2,内能变化为∆U 2。
则( ) A .W 1>W 2,Q 1<Q 2,∆U 1> ∆U 2B .W 1>W 2,Q 1>Q 2,∆U 1> ∆U 2C .W 1<W 2,Q 1=Q 2,∆U 1< ∆U 2D .W 1=W 2,Q 1>Q 2,∆U 1> ∆U 2B解析:B在p − V 图象作出等压过程和等温过程的变化图线,如图所示根据图象与坐标轴所围的面积表示功,可知12W W > 第一种情况,根据pV C T=(常数)可知,气体压强不变,体积增大,因此温度升高,∆U 1> 0,根据热力学第一定律有 111ΔU Q W =-则有11Q W >第二种情况等温过程,气体等温变化,∆U 2= 0,根据热力学第一定律有222ΔU Q W =-则有22Q W =由上可得12ΔΔU U >,12Q Q >故选B 。
3.下列说法正确的是A .自然界中涉及热现象的宏观过程都具有方向性B .气体压强越大,气体分子的平均动能就越大C .气体从外界吸收了热量,内能必定增加D .在绝热过程中,外界对气体做功,气体的内能减少A解析:AA .自然界中进行的涉及热现象的宏观过程都具有方向性,故A 正确;B .气体压强越大,温度不一定很高,所以气体分子的平均动能不一定越大,故B 错误; D .气体从外界吸收了热量,但气体对外做功,根据U W Q ∆=+,则气体内能不一定增加,故C 错误;C .在绝热过程中外界对气体做功,根据U W Q ∆=+得气体的内能必然增加,故D 错误;故选A .4.下列改变物体内能的物理过程中,不属于对物体做功来改变物体内能的有( ) A .用锯子锯木料,锯条温度升高B .阳光照射地面,地面温度升高C .锤子敲击钉子,钉子变热D .擦火柴时,火柴头燃烧起来B解析:B【解析】【分析】改变物体内能的方式有两种:做功与热传递;分析各种情景,确定改变内能的方式,然后答题.用锯子锯木料,需要克服摩擦阻力,属于做功的方式,阳光照射地面,是阳光热量传递给地面,属于热传递;用锤子敲击钉子,通过做功的方式使钉子的内能增加,钉子变热;擦火柴的过程有摩擦力做功,是通过做功方法改变物体内能的,故B 正确.5.有人设想在夏天用电冰箱来降低房间的温度.他的办法是:关好房间的门窗然后打开冰箱的所有门让冰箱运转,且不考虑房间内外热量的传递,则开机后,室内的温度将( ) A .逐渐有所升高B .保持不变C .开机时降低,停机时又升高D .开机时升高,停机时降低A解析:A【解析】冰箱工作,会产生热量,即消耗电能,产生了内能,且房间与外界没有能量交换,所以房内温度会升高,A正确.6.一定质量的理想气体,从状态M开始,经状态N、Q回到原状态M,其p—V图像如图所示,其中QM平行于横轴,NQ平行于纵轴,M、N在同一等温线上。
高中热力学试题及答案
高中热力学试题及答案一、选择题1. 热力学第一定律的数学表达式是:A. ΔU = Q + WB. ΔH = Q - WC. ΔS = Q/TD. ΔG = Q - TΔS答案:A2. 根据熵增原理,孤立系统的熵总是:A. 增加B. 减少C. 保持不变D. 无法确定答案:A3. 以下哪个过程是可逆过程?A. 摩擦生热B. 气体自由膨胀C. 气体在活塞下缓慢压缩D. 气体在活塞下快速压缩答案:C二、填空题4. 热力学第二定律的开尔文表述是:不可能从单一热源吸热使之完全转化为功而不引起其他变化。
__________________________。
5. 理想气体的内能只与温度有关,与体积和压强无关。
对于一定质量的理想气体,其内能变化ΔU等于__________。
答案:nCvΔT三、简答题6. 简述热力学第二定律的克劳修斯表述。
答案:热力学第二定律的克劳修斯表述是:不可能实现一个循环过程,其唯一结果就是将热量从低温物体传递到高温物体。
7. 解释什么是熵,以及熵增原理的意义。
答案:熵是热力学中描述系统无序度的物理量,通常用符号S表示。
熵增原理表明,在孤立系统中,自发过程总是向着熵增加的方向发展,这反映了自然界趋向于无序的普遍趋势。
四、计算题8. 一个理想气体在等压过程中,温度从T1升高到T2,求该过程中气体的熵变ΔS。
答案:首先,根据等压过程的性质,体积V与温度T的关系为V/T = 常数。
对于理想气体,熵变ΔS可以通过以下公式计算:ΔS = nCln(T2/T1) + Rln(V2/V1)由于V/T = 常数,所以V2/V1 = T2/T1,代入公式得:ΔS = nCln(T2/T1)9. 一个质量为m,温度为T的物体,通过热传导的方式与环境达到热平衡,求物体的最终温度。
答案:当物体与环境达到热平衡时,物体的温度将等于环境的温度。
因此,物体的最终温度就是环境的温度。
结束语:本试题涵盖了高中热力学的基本概念和计算方法,旨在帮助学生理解和掌握热力学的基本原理及其应用。
高中物理热学试题及答案
高中物理热学试题及答案一、选择题(每题3分,共30分)1. 热量的单位是()A. 焦耳B. 牛顿C. 瓦特D. 帕斯卡2. 热力学第一定律的数学表达式是()A. ΔU = Q + WB. ΔH = Q - WC. ΔS = Q/TD. ΔG = Q + W3. 温度是物体冷热程度的度量,其单位是()A. 米B. 千克C. 开尔文D. 秒4. 热传导的微观解释是()A. 粒子的布朗运动B. 粒子的碰撞C. 粒子的扩散D. 粒子的波动5. 物体的比热容是指()A. 单位质量的物体温度升高1℃所吸收的热量B. 单位质量的物体温度升高1℃所放出的热量C. 单位质量的物体温度降低1℃所吸收的热量D. 单位质量的物体温度降低1℃所放出的热量6. 理想气体的内能只与()有关A. 体积B. 温度C. 压力D. 质量7. 热机效率是指()A. 热机输出功率与输入功率的比值B. 热机输出功率与输入功率的差值C. 热机输入功率与输出功率的比值D. 热机输入功率与输出功率的差值8. 热力学第二定律的开尔文表述是()A. 不可能从单一热源吸热使之完全变为功而不产生其他影响B. 不可能使热量从低温物体传到高温物体而不产生其他影响C. 不可能从单一热源吸热使之完全变为功并产生其他影响D. 不可能使热量从高温物体传到低温物体而不产生其他影响9. 绝对零度是()A. -273.15℃B. 0℃C. 273.15℃D. 100℃10. 热力学第三定律表明()A. 绝对零度不可能达到B. 绝对零度可以轻易达到C. 绝对零度是温度的极限D. 绝对零度是温度的起点二、填空题(每题2分,共20分)1. 热力学第一定律表明,能量在转化和转移过程中______。
2. 热力学第三定律指出,当温度趋近于绝对零度时,所有纯物质的______趋于零。
3. 热传导、热对流和热辐射是热传递的三种基本方式,其中热辐射不需要______。
4. 物体吸收或放出热量时,其温度不一定变化,例如冰在熔化过程中______。
高中物理热学--理想气体状态方程试题及答案
高中物理热学--理想气体状态方程试题及答案、单选题1•一定质量的理想气体,在某一平衡状态下的压强、体积和温度分别为压强、体积和温度分别为P2、V2、A. p i =p2, V i=2V2, T i= 1T22 C. p i =2p2, V i=2V2, T i= 2T2 T2,下列关系正确的是iB. p i =p2, V i= 2 V2 , T i= 2T2D . p i =2p2 , V i=V2, T i= 2T22.已知理想气体的内能与温度成正比。
如图所示的实线为汽缸内一定质量的理想气体由状态i到状态2的变化曲线,则在整个过程中汽缸内气体的内能A.先增大后减小C.单调变化B.先减小后增大D.保持不变3•地面附近有一正在上升的空气团,它与外界的热交热忽略不计•已知大气压强随高度增加而降低,则该气团在此上升过程中(不计气团内分子间的势能)A.体积减小,温度降低B.体积减小,温度不变C•体积增大,温度降低 D.体积增大,温度不变4.下列说法正确的是A. 气体对器壁的压强就是大量气体分子作用在器壁单位面积上的平均作用力B. 气体对器壁的压强就是大量气体分子单位时间作用在器壁上的平均冲量C. 气体分子热运动的平均动能减少,气体的压强一定减小D. 单位面积的气体分子数增加,气体的压强一定增大5 .气体内能是所有气体分子热运动动能和势能的总和,其大小与气体的状态有关,分子热运动的平均动能与分子间势能分别取决于气体的A .温度和体积B .体积和压强C.温度和压强 D .压强和温度6.带有活塞的汽缸内封闭一定量的理想气体。
气体开始处于状态a,然后经过程ab到达状态b或进过过程ac到状态c, b、c状态温度相同,如V-T所示。
设气体在状态b和状态c的压强分别为Pb、和PC ,在过程ab和ac 吸收的热量分别为Qab和Qac,贝UA. Pb >Pc, Qab>QacB. Pb >Pc, Qab<QacC. Pb <Pc, Qab>QacD. Pb <Pc, Qab<Qac中7.下列说法中正确的是A. 气体的温度升高时,分子的热运动变得剧烈,分子的平均动能增大,撞击器壁时对器壁的作用力增大,从而气体的压强一定增大B. 气体的体积变小时,单位体积的分子数增多,单位时间内打到器壁单位面积上的分子数增多,从而气体的压强一定增大C. 压缩一定量的气体,气体的内能一定增加D. 分子a从远处趋近固定不动的分子b,当a到达受b的作用力为零处时,a的动能一定最大&对一定量的气体,若用N表示单位时间内与器壁单位面积碰撞的分子数,则p i、V i、T i,在另一平衡状态下的14.一定质量的理想气体由状态A 经状态B 变为状A 当体积减小时,V 必定增加B 当温度升高时,N 必定增加C 当压强不变而体积和温度变化时,D 当压强不变而体积和温度变化时,二、双选题9•一位质量为60 kg 的同学为了表演“轻功”,他用打气筒 只相同的气球充以相等质量的空气(可视为理想气体) ,然 这4只气球以相同的方式放在水平放置的木板上, 在气球的 放置一轻质塑料板,如图所示。
高中物理经典题库-热学试题
五、热学试题集粹(15+5+9+20=49个)一、选择题(在每小题给出的四个选项中,有的小题只有一个选项正确,有的小题有多个选项正确)1.下列说法正确的是[]A.温度是物体内能大小的标志B.布朗运动反映分子无规则的运动C.分子间距离减小时,分子势能一定增大D.分子势能最小时,分子间引力与斥力大小相等2.关于分子势能,下列说法正确的是[]A.分子间表现为引力时,分子间距离越小,分子势能越大B.分子间表现为斥力时,分子间距离越小,分子势能越大C.物体在热胀冷缩时,分子势能发生变化D.物体在做自由落体运动时,分子势能越来越小3.关于分子力,下列说法中正确的是[]A.碎玻璃不能拼合在一起,说明分子间斥力起作用B.将两块铅压紧以后能连成一块,说明分子间存在引力C.水和酒精混合后的体积小于原来体积之和,说明分子间存在的引力D.固体很难拉伸,也很难被压缩,说明分子间既有引力又有斥力4.下面关于分子间的相互作用力的说法正确的是[]A.分子间的相互作用力是由组成分子的原子内部的带电粒子间的相互作用而引起的B.分子间的相互作用力是引力还是斥力跟分子间的距离有关,当分子间距离较大时分子间就只有相互吸引的作用,当分子间距离较小时就只有相互推斥的作用C.分子间的引力和斥力总是同时存在的D.温度越高,分子间的相互作用力就越大5.用r表示两个分子间的距离,Ep表示两个分子间的相互作用势能.当r=r0时两分子间的斥力等于引力.设两分子距离很远时Ep=0 []A.当r>r0时,Ep随r的增大而增加B.当r<r0时,Ep随r的减小而增加C.当r>r0时,Ep不随r而变D.当r=r0时,Ep=06.一定质量的理想气体,温度从0℃升高到t℃时,压强变化如图2-1所示,在这一过程中气体体积变化情况是[]图2-1A.不变B.增大C.减小D.无法确定7.将一定质量的理想气体压缩,一次是等温压缩,一次是等压压缩,一次是绝热压缩,那么[]A.绝热压缩,气体的内能增加B.等压压缩,气体的内能增加C.绝热压缩和等温压缩,气体内能均不变D.三个过程气体内能均有变化8.如图2-2所示,0.5mol理想气体,从状态A变化到状态B,则气体在状态B时的温度为[]图2-2A.273KB.546KC.810KD.不知TA所以无法确定9.如图2-3是一定质量理想气体的p-V图线,若其状态由a→b→c→a(ab为等容过程,bc为等压过程,ca为等温过程),则气体在a、b、c三个状态时[]图2-3A.单位体积内气体分子数相等,即na=nb=ncB.气体分子的平均速度va>vb>vcC.气体分子在单位时间内对器壁单位面积碰撞次数Na>Nb>NcD.气体分子在单位时间内对器壁单位面积作用的总冲量Ia>Ib=Ic10.一定质量的理想气体的状态变化过程如图2-4所示,MN为一条直线,则气体从状态M到状态N的过程中[]图2-4A.温度保持不变B.温度先升高,后又减小到初始温度C.整个过程中气体对外不做功,气体要吸热D.气体的密度在不断减小题号 1 2 3 4 5 6 7 8 9 10答案BD BC BD C AB C A C CD BD11.一定质量的理想气体自状态A经状态B变化到状态C,这一过程在V-T图中的表示如图2-5所示,则[]A.在过程AB中,气体压强不断变大B.在过程BC中,气体密度不断变大C.在过程AB中,气体对外界做功D.在过程BC中,气体对外界放热12.如图2-6所示,一圆柱形容器上部圆筒较细,下部的圆筒较粗且足够长.容器的底是一可沿下圆筒无摩擦移动的活塞S,用细绳通过测力计F将活塞提着,容器中盛水.开始时,水面与上圆筒的开口处在同一水平面上(如图),在提着活塞的同时使活塞缓慢地下移.在这一过程中,测力计的读数[]图2-6A.先变小,然后保持不变B.一直保持不变C.先变大,然后变小D.先变小,然后变大13.如图2-7所示,粗细均匀的U形管,左管封闭一段空气柱,两侧水银面的高度差为h,U型管两管间的宽度为d,且d<h,现将U形管以O点为轴顺时针旋转90°至两个平行管水平,并保持U形管在竖直平面内,两管内水银柱的长度分别变为h1′和h2′.设温度不变,管的直径可忽略不计,则下列说法中正确的是[]图2-7A.h1增大,h2减小B.h1减小,h2增大,静止时h1′=h2′C.h1减小,h2增大,静止时h1′>h2′D.h1减小,h2增大,静止时h1′<h2′14.如图2-8所示,一根竖直的弹簧支持着一倒立气缸的活塞,使气缸悬空而静止,设活塞与缸壁间无摩擦且可以在缸内自由移动,缸壁导热性能良好使缸内气体总能与外界大气温度相同,则下述结论中正确的是[]A.若外界大气压增大,则弹簧将压缩一些B.若外界大气压增大,则气缸上底面距地面的高度将减小C.若气温升高,则气缸上底面距地面的高度将减小D.若气温升高,则气缸上底面距地面的高度将增大15.如图2-9所示,导热气缸开口向下,内有理想气体,气缸固定不动,缸内活塞可自由滑动且不漏气.活塞下挂一个砂桶,砂桶装满砂子时,活塞恰好静止.现给砂桶底部钻一个小洞,细砂慢慢漏出,外部环境温度恒定,则[]图2-9A.气体压强增大,内能不变B.外界对气体做功,气体温度不变C.气体体积减小,压强增大,内能减小D.外界对气体做功,气体内能增加题号11 12 13 14 15答案ABD A A BD AB二、填空题1.估算一下,可知地球表面附近空气分子之间的距离约为________m(取一位有效数字);某金属的摩尔质量为M,密度为ρ,阿伏加德罗常量为N.若把金属分子视为球形,经估算该金属的分子直径约为________.2.高压锅的锅盖通过几个牙齿似的锅齿与锅镶嵌旋紧,锅盖与锅之间有橡皮制的密封圈,不会漏气.锅盖中间有一排气孔,上面套上类似砝码的限压阀,将排气孔堵住.当加热高压锅,锅内气体压强增大到一定程度时,气体就把限压阀顶起来,蒸汽即从排气孔中排出锅外.已知某高压锅限压阀的质量为0.1kg,排气孔直径为0.3cm,则锅内气体压强最大可达________Pa.3.圆筒内装有100升1atm的空气,要使圆筒内空气压强增大到10atm,应向筒内打入同温度下2atm的压缩气体________L.4.如图2-10所示为一定质量理想气体的状态变化过程的图线A→B→C→A,则B→C的变化是________过程,若已知TA=300K,TB=400K,则TC=________K.图2-105.一圆柱形的坚固容器,高为h,上底有一可以打开和关闭的密封阀门.现把此容器沉入水深为H 的湖底,并打开阀门,让水充满容器,然后关闭阀门.设大气压强为p0,湖水密度为ρ.则容器内部底面受到的向下的压强为________.然后保持容器状态不变,将容器从湖底移到湖面,这时容器内部底面受到的向下压强为________.填空题参考答案1.3×10-9 2.2.4×105 3.450 4.等压1600/3 5.p0+ρgHρgH三、实验题1.在“验证玻意耳定律”的实验中,对气体的初状态和末状态的测量和计算都正确无误,结果末状态的pV值与初状态的p0V0值明显不等,造成这一结果的可能原因是实验过程中:[]A.气体温度发生变化B.气体与外界有热传递C.有气体泄漏D.气体体积改变得太迅速2.如图2-11所示为实验室常用的气压计结构示意图,它是根据托里拆里实验原理制成的,管中水银柱的高度(即为当时的大气压数值)通过带有游标的刻度尺读出,图中的读数部分被放大,从放大的图中读出,测量的大气压强值为________mmHg.图1-113.在利用带刻度的注射器做“验证玻意耳定律”的实验中.(1)甲同学用水银气压计测大气压强,读数时,观察发现气压计上20分度的游标尺(游标尺上每等分刻度线间距为1.95mm)上的第6条刻度线(第6条刻度线是从0刻度线数起的第7条线)与主尺上的77.1cm刻度线正好对齐.(1)此时大气压强为________mmHg.图2-12(2)乙、丙两同学各自对气体观察测量计算后又改变气体状态,得到几组值,并在同一坐标内画出p-(1/V)图线如图1-12所示,由图线知,这是由于它们的________不同使得两图线并不重合.4.在“验证玻意耳定律”的实验中(1)某同学列出所需要的实验器材:带框架的注射器(有刻度),橡皮帽,钩码(若干个),弹簧秤,天平(带砝码),铁架台(连铁夹),润滑油.问:该同学漏选了哪些器材?答:________.(2)图2-13是甲、乙两同学在同一次实验中得到的p-(1/V)图.若两人实验时操作均正确无误,且选取坐标标度相同,那么两图线斜率不同的主要原因是________.图2-135.在河边,给你一根60cm左右的两端开口的均匀细玻璃管,米尺一把,请设法测定大气压的值,写出主要实验步骤及相应的所需测量的物理量(不得下水测量).答:.计算大气压的公式p0=.6.一位同学分别在两天用注射器做两次“验证玻意耳定律”的实验,操作过程和方法都正确,根据实验数据他在同一p-V坐标中画出了两条不重合的甲、乙两条双曲线,如图2-15所示,产生这种情况的原因可能是:(1).(2).图2-15 图2-167.用“验证玻意尔定律实验”的装置来测量大气压强,所用注射器的最大容积为Vm,刻度全长为L,活塞与钩码支架的总质量为M,注射器被固定在竖直方向上,如图2-16.在活塞两侧各悬挂1个质量为m的钩码时注射器内空气体积为V1;除去钩码后,用弹簧秤向上拉活塞,达到平衡时注射器内空气体积为V2,弹簧秤的读数为F(整个过程中,温度保持不变).由这些数据可以求出大气压强p0=.8.一学生用带有刻度的注射器做“验证玻意耳定律”的实验.他在做了一定的准备工作后,通过改变与活塞固定在一起的框架上所挂钩码的个数得到了几组关于封闭在注射器内部空气的压强p和体积V的数据.用横坐标表示体积的倒数,用纵坐标表示压强,由实验数据在坐标系中画出了p-1/V图,其图线为一条延长线与横轴有较大截距OA的直线,如图2-17所示.由图线分析下列四种情况,在实验中可能出现的是A.记录气压计指示的大气压强时,记录值比指示值明显减小B.记录气压计指示的大气压强时,记录值比指示值明显偏大C.测量活塞和框架的质量时,测量值比指示值明显偏小D.测量活塞和框架的质量时,测量值比指示值明显偏大答:.图2-17 图2-189.验证查理定律的实验装置如图2-18所示,在这个实验中,测得压强和温度的数据中,必须测出的一组数据是和.首先要在环境温度条件下调节A、B管中水银面,此时烧瓶中空气压强为,再把烧瓶放进盛着冰水混合物的容器里,瓶里空气的温度下降至跟冰水混合物的温度一样,此时烧瓶中空气温度为K,B管中水银面将,再将A管,使B管中水银面.这时瓶内空气压强等于.实验题参考答案1.ACD2.756.5 3.759.30 气体质量4.(1)气压计,刻度尺(2)两人实验时封闭气体质量不同 5.①测玻璃管长l0;②将管部分插入水中,测量管水上部分长度l1;③手指封住上口,将管提出水面,测管内空气柱长l2.(l0-l2)l2ρ水g/(l2-l1) 6.(1)质量不同;(2)温度不同. 7.p0=L(MgV1-MgV2+2mgV1+FV2)/Vm(V2-V1) 8.AC 9.当时大气压,当时温度,等高,大气压,273,上移,下降,回复到原来标度的位置,大气压强减去A、B管中水银面高度差四、计算题1.如图2-14所示,有一热气球,球的下端有一小口,使球内外的空气可以流通,以保持球内外压强相等,球内有温度调节器,以便调节球内空气的温度,使气球可以上升或下降,设气球的总体积V0=500m3(不计算壳体积),除球内空气外,气球质量M=180kg.已知地球表面大气温度T0=280K,密度ρ0=1.20kg/m3,如果把大气视为理想气体,它的组成和温度几乎不随高度变化.问:为使气球从地面飘起,球内气温最低必须加热到多少开?图2-142.已知一定质量的理想气体的初始状态Ⅰ的状态参量为p1、V1、T1,终了状态Ⅱ的状态参量为p2、V2、T2,且p2>p1,V2>V1,如图2-15所示.试用玻意耳定律和查理定律推导出一定质量的理想气体状态方程.要求说明推导过程中每步的根据,最后结果的物理意义,且在p-V图上用图线表示推导中气体状态的变化过程.图2-153.在如图2-16中,质量为mA的圆柱形气缸A位于水平地面,气缸内有一面积S=5.00×10-3m2,质量mB=10.0kg的活塞B,把一定质量的气体封闭在气缸内,气体的质量比气缸的质量小得多,活塞与气缸的摩擦不计,大气压强=1.00×105Pa.活塞B经跨过定滑轮的轻绳与质量为mC=20.0kg的圆桶C相连.当活塞处于平衡时,气缸内的气柱长为L/4,L为气缸的深度,它比活塞的厚度大得多,现在徐徐向C桶内倒入细沙粒,若气缸A能离开地面,则气缸A的质量应满足什么条件?图2-164.如图2-17所示,一圆柱形气缸直立在水平地面上,内有质量不计的可上下移动的活塞,在距缸底高为2H0的缸口处有固定的卡环,使活塞不会从气缸中顶出,气缸壁和活塞都是不导热的,它们之间没有摩擦.活塞下方距缸底高为H0处还有一固定的可导热的隔板,将容器分为A、B两部分,A、B中各封闭同种的理想气体,开始时A、B中气体的温度均为27℃,压强等于外界大气压强p0,活塞距气缸底的高度为1.6H0,现通过B中的电热丝缓慢加热,试求:图2-17(1)与B中气体的压强为1.5p0时,活塞距缸底的高度是多少?(2)当A中气体的压强为1.5p0时,B中气体的温度是多少?5.如图2-18所示是一个容积计,它是测量易溶于水的粉末物质的实际体积的装置,A容器的容积V3.S是通大气的阀门,C是水银槽,通过橡皮管与容器B相通.连通A、B的管道很细,容积A=300cm可以忽略.下面是测量的操作过程:(1)打开S,移动C,使B中水银面降低到与标记M相平.(2)关闭S,缓慢提升C,使B中水银面升到与标记N相平,量出C中水银面比标记N高h1=25cm.(3)打开S,将待测粉末装入容器A中,移动C使B内水银面降到M标记处.(4)关闭S,提升C使B内水银面升到与N标记相平,量出C中水银面比标记N高h2=75cm.(5)从气压计上读得当时大气压为p0=75cmHg.设整个过程温度保持不变.试根据以上数据求出A中待测粉末的实际体积.图2-186.某种喷雾器贮液筒的总容积为7.5L,如图2-19所示,现打开密封盖,装入6L的药液,与贮液筒相连的活塞式打气筒,每次能压入300cm3、1atm的空气,若以上过程温度都保持不变,则图2-19(1)要使贮气筒中空气压强达到4atm,打气筒应该拉压几次?(2)在贮气筒内气体压强达4atm,才打开喷嘴使其喷雾,直至内外气体压强相等,这时筒内还剩多少药液?7.(1)一定质量的理想气体,初状态的压强、体积和温度分别为p1、V1、T1,经过某一变化过程,气体的末状态压强、体积和温度分别为p2、V2、T2.试用玻意耳定律及查理定律推证:p1V1/T1=p2V2/T2.(2)如图2-19,竖直放置的两端开口的U形管(内径均匀),内充有密度为ρ的水银,开始两管内的水银面到管口的距离均为L.在大气压强为p0=2ρgL时,用质量和厚度均不计的橡皮塞将U形管的左侧管口A封闭,用摩擦和厚度均不计的小活塞将U形管右侧管口B封闭,橡皮塞与管口A内壁间的最大静摩擦力fm=ρgLS(S为管的内横截面积).现将小活塞向下推,设管内空气温度保持不变,要使橡皮塞不会从管口A被推出,求小活塞下推的最大距离.图2-198.用玻马定律和查理定律推出一定质量理想气体状态方程,并在图2-20的气缸示意图中,画出活塞位置,并注明变化原因,写出状态量.图2-209.如图2-21所示装置中,A、B和C三支内径相等的玻璃管,它们都处于竖直位置,A、B两管的上端等高,管内装有水,A管上端封闭,内有气体,B管上端开口与大气相通,C管中水的下方有活塞顶住.A、B、C三管由内径很小的细管连接在一起.开始时,A管中气柱长L1=3.0m,B管中气柱长L2=2.0m,C管中水柱长L0=3m,整个装置处于平衡状态.现将活塞缓慢向上顶,直到C管中的水全部被顶到上面的管中,求此时A管中气柱的长度L1′,已知大气压强p0=1.0×105Pa,计算时取g=10m/s2.图2-2010.麦克劳真空计是一种测量极稀薄气体压强的仪器,其基本部分是一个玻璃连通器,其上端玻璃管A与盛有待测气体的容器连接,其下端D经过橡皮软管与水银容器R相通,如图2-22所示.图中K1、K2是互相平行的竖直毛细管,它们的内径皆为d,K1顶端封闭.在玻璃泡B与管C相通处刻有标记m.测量时,先降低R使水银面低于m,如图2-22(a).逐渐提升R,直到K2中水银面与K1顶端等高,这时K1中水银面比顶端低h,如图2-22(b)所示.设待测容器较大,水银面升降不影响其中压强,测量过程中温度不变.已知B(m以上)的容积为V,K1的容积远小于V,水银密度为ρ.(1)试导出上述过程中计算待测压强p的表达式.(2)已知V=628cm3,毛细管的直径d=0.30mm,水银密度ρ=13.6×103kg/m3,h=40mm,算出待测压强p(计算时取g=10m/s2,结果保留2位数字).图2-2111.如图2-23所示,容器A和气缸B都是透热的,A放置在127℃的恒温箱中,而B放置在27℃、1atm的空气中,开始时阀门S关闭,A内为真空,其容器VA=2.4L;B内轻活塞下方装有理想气体,其体积为VB=4.8L,活塞上方与大气相通.设活塞与气缸壁之间无摩擦且不漏气,连接A和B的细管容积不计.若打开S,使B内封闭气体流入A,活塞将发生移动,待活塞停止移动时,B内活塞下方剩余气体的体积是多少?不计A与B之间的热传递.图2-22 图2-2312.如图2-23有一热空气球,球的下端有一小口,使球内外的空气可以流通,以保持球内外压强相等,球内有温度调节器,以便调节球内空气温度,使气球可以上升或下降,设气球的总体积V0=500 m3(不计球壳体积),除球内空气外,气球质量M=180kg.已知地球表面大气温度T0=280K,密度ρ0=1.20kg/m3,如果把大气视为理想气体,它的组成和温度几乎不随高度变化,问:为使气球从地面飘起,球内气温最低必须加热到多少开?13.如图2-25均匀薄壁U形管,左管上端封闭,右管开口且足够长,管的横截面积为S,内装密度为ρ的液体.右管内有一质量为m的活塞搁在固定卡口上,卡口与左管上端等高,活塞与管壁间无摩擦且不漏气.温度为T0时,左、右管内液面高度相等,两管内空气柱长度均为L,压强均为大气压强p0.现使两边温度同时逐渐升高,求:(1)温度升高到多少时,右管活塞开始离开卡口上升?(2)温度升高到多少时,左管内液面下降h?图2-24 图2-2514.如图2-26所示的装置中,装有密度ρ=7.5×102kg/m3的液体的均匀U形管的右端与体积很大的密闭贮气箱相连通,左端封闭着一段气体.在气温为-23℃时,气柱长62cm,右端比左端低40cm.当气温升至27℃时,左管液面上升了2cm.求贮气箱内气体在-23℃时的压强为多少?(g取10m/s2)15.两端开口、内表面光滑的U形管处于竖直平面内,如图2-27所示,质量均为m=10kg的活塞A、B在外力作用下静止于左右管中同一高度h处,将管内空气封闭,此时管内外空气的压强均为p0=1.0×105Pa.左管和水平管横截面积S1=10cm2,右管横截面积S2=20cm2,水平管长为3h.现撤去外力让活塞在管中下降,求两活塞稳定后所处的高度.(活塞厚度略大于水平管直径,管内气体初末状态同温,g取10m/s2)图2-26 图2-2716.如图2-28,圆筒固定不动,活塞A的横截面积是2S,活塞B的横截面积是S,圆筒内壁光滑,圆筒左端封闭,右端与大气相通,大气压为p0,A、B将圆筒分为两部分,左半部分是真空,A、B之间是一定质量的气体,活塞B通过劲度系数为k的弹簧与圆筒左端相连,开始时粗筒和细筒的封闭的长度均为L,现用水平向左的力F=pS/2作用在活塞A上,求活塞A移动的距离?(设气体温度不变)17.如图2-29所示,圆柱形气缸内的活塞把气缸分隔成A、B两部分,A内为真空,用细管将B与U形管相连,细管与U形管内气体体积可忽略不计.大气压强p0=76cmHg.开始时,U型管中左边水银面比右边高6cm,气缸中气体温度为27℃.(1)将活塞移到气缸左端,保持气体温度不变,稳定后U形管中左边水银面比右边高62cm.求开始时气缸中A、B两部分体积之比.(2)再将活塞从左端缓缓向右推动,并在推动过程中随时调节气缸B内气体的温度,使气体压强随活塞移动的距离均匀增大,且最后当活塞回到原处时气体的压强和温度都恢复到最初的状态,求此过程中气体的最高温度.图2-28 图2-2918.如图2-30所示装置,C为一长方体容器,体积为1000cm3,C上端有一细玻璃管通过活栓S与大气相通,又通过细管A与球形容器B相连,B下端的玻璃管口用橡皮管接有一个水银压强计,压强计的动管为D.(1)现打开活栓S,这时管A、容器C、B皆与大气相通,上下移动D使管内水银面在B下端的n处,这时再关闭S,上举D,使水银面达到B上端的m处,这时D管内水银面高出m点h1=12cm.(2)然后打开S,把0.50kg矿砂通过S放入C,同时移动D,使水银面对齐n,然后关闭S,再上举D,使水银面再次达到m处,这时D管水银面高出m点h2=15cm.设容器内空气温度不变,求矿砂的密度.(连接C、B的细管A和连接C、S之间细管的容积都可忽略不计)19.如图2-31所示,静止车厢内斜靠着一个长圆气缸,与车厢底板成θ角,气缸上方活塞质量为M,缸内封有长为l0的空气柱,活塞面积为S,不计摩擦,大气压强为p0.设温度不变,求:(1)当车厢在水平轨道上向右做匀加速运动时,发现缸内空气压强与p0相同,此时车厢加速度多大?(2)上述情况下,气缸内空气柱长度多大?图2-30 图2-3120.如图2-32所示,在直立的圆柱形气缸内,有上、下两个活塞A和B,质量相等,连接两活塞的轻质弹簧的劲度系数k=50N/m,活塞A上方气体的压强p=100Pa,平衡时两活塞之间的气体的压强为p=100Pa,气体的厚度l1=0.20m,活塞B下方的气体的厚度l2=0.24m,气缸的横截面积S=0.10m2.起初,气缸内气体的温度是T=300K,现让气体的温度缓慢上升,直到温度达到T′=500K.求在这一过程中,活塞A向上移动的距离.计算题参考答案1.解:设使气球刚好从地面飘起时球内空气密度为ρ,则由题意知ρ0gV0=Mg+ρgV0,设温度为T、密度为ρ、体积为V0的这部分气体在温度为T0,密度为ρ0时体积为V,即有ρV0=ρ0V.由等压变化有V0/T=V/T0,解得T=400K.2.解:设气体先由状态Ⅰ(p1、V1、T1),经等温变化至中间状态A(pA、V2、T1),由玻意耳定律,得p1V1=pAV2,①再由中间状态A(pA、V2、T1)经等容变化至终态Ⅱ(p2、V2、T2),由查理定律,得pA/T1=p2/T2,②由①×②消去pA,可得p1V1/T1=p2V2/T2,上式表明:一定质量的理想气体从初态(p1、V1、T1)变到终态(p2、V2、T2),压强和体积的乘积与热力学温度的比值是不变的.过程变化如图6所示.图63.解:取气缸内气柱长为L/4的平衡态为状态1,气缸被缓慢提离地面时的平衡态为状态2.以p1、p2表示状态1、2的压强,L2表示在状态2中气缸内气柱长度.由玻意耳定律,得p1L/4=p2L2,①在状态1,活塞B处于力学平衡状态,由力学平衡条件得到p1S+mCg=p0S+mBg,②在状态2,气缸A处于力学平衡状态,由力学平衡条件得到p2S+mAg=p0S,③由①、②、③三式解得mA=(p0S/g)-((p0S+mBg-mCg)/4g)(L/L2),以题给数据代入就得到mA=(50-10(L/L2))kg,由于L2最大等于L.故由⑤式得知,若想轻绳能把气缸A提离地面,气缸的质量应满足条件mA≤40kg.4.(1)B中气体做等容变化,由查理定律pB/p′B=TB/T′B,求得压强为1.5p0时气体的温度T′B=450K.A中气体做等压变化,由于隔板导热,A、B中气体温度相等,A中气体温度也为450K.对A中气体VA′/VA=TA′/TA,VA′=(TB′/TA)VA=0.9H0S,活塞距离缸底的高度为1.9H0.(2)当A中气体压强为1.5p0,活塞将顶在卡环处,对A中气体pAVA/TA=p″AV"A/T"A,得T"A=(p"AV"A/pAVA)TA=750K.即B中气体温度也为750K.5.解:对于步骤①②,以A、B中气体为研究对象.初态p1=p0,V1=VA+VB,末态p2=p0+h1,V2=VA,依玻意耳定律p1V1=p2V2,解得VB=100cm3.对于步骤③④,以A、B中气体为研究对象,初态p′1=p0,V′1=V,末态p′2=p0+h2,V′2=V-VB,依玻意耳定律p′1V′1=p′2V′2,解得V=200cm3,粉末体积V0=VA+VB-V=200cm3.6.解:(1)贮液筒装入液体后的气体体积V1=V总-V液①设拉力n次打气筒压入的气体体积V2=nV0,②根据分压公式:(温度T一定)pV1=p1V1+p1V2,③解①②③,可得n=(pV1-p1V1)/p1V0=15(次),④(2)对充好气的贮液筒中的气体,m,T一定喷雾后至内外压强相等,贮液筒内气体体积为V2,pV1=p2V2,⑤贮液筒内还剩有药液体积V剩=V总-V2⑥解⑤⑥得:V剩=1.5L.⑦7.(1)证明:在如图5所示的p-V图中,一定质量的气体从初状态A(p1,V1,T1)变化至末状态B(p2,V2,T2),假设气体从初状态先等温变化至C(pC,V2,T1),再等容变化至B(p2,V2,T2).第一个变化过程根据玻耳定律有,p1V1=pCV2.第二个变化过程根据查理定律有,pC/p2=T1/T2.由以上两式可解得:p1V1/T1=p2V2/T2.。
高中热力学试题及答案
高中热力学试题及答案一、选择题(每题3分,共30分)1. 热力学第一定律的数学表达式是:A. ΔU = Q - WB. ΔH = Q + WC. ΔG = Q - WD. ΔS = Q/T答案:A2. 在绝热过程中,系统与外界没有热交换,以下说法正确的是:A. 系统内能增加B. 系统内能减少C. 系统内能不变D. 无法确定系统内能变化答案:D3. 根据热力学第二定律,以下说法正确的是:A. 热量可以从低温物体自发地传递到高温物体B. 热量不能自发地从低温物体传递到高温物体C. 所有自然过程都是可逆的D. 所有自然过程都是不可逆的答案:B4. 熵是热力学中描述系统无序程度的物理量,以下说法正确的是:A. 熵总是增加的B. 熵总是减少的C. 熵可以增加也可以减少D. 熵在孤立系统中总是增加的答案:D5. 理想气体状态方程是:A. PV = nRTB. PV = nTC. PV = mRTD. PV = RT答案:A6. 根据热力学第三定律,绝对零度是:A. 温度的极限B. 熵的极限C. 能量的极限D. 压力的极限答案:B7. 卡诺循环效率的数学表达式是:A. 1 - Tc/ThB. 1 - Tc/TaC. 1 - Tc/TbD. 1 - Ta/Th答案:A8. 以下哪种过程是不可逆的:A. 理想气体的等温膨胀B. 理想气体的绝热膨胀C. 理想气体的等压膨胀D. 理想气体的等熵膨胀答案:B9. 热力学温标的单位是:A. 摄氏度B. 开尔文C. 华氏度D. 兰氏度答案:B10. 以下哪种物质在标准状态下不是理想气体:A. 氦气B. 氢气C. 氧气D. 水蒸气答案:D二、填空题(每题2分,共20分)1. 热力学第一定律表明能量______,即能量守恒。
答案:守恒2. 热力学第二定律指出,不可能从单一热源取热使之完全转换为功而不产生其他影响。
答案:不可能3. 熵变ΔS等于系统吸收的热量Q除以绝对温度T,即ΔS = ______。
高中物理热学试题 及答案
热学试题一选择题:1.只知道下列那一组物理量,就可以估算出气体中分子间的平均距离A.阿伏加徳罗常数,该气体的摩尔质量和质量B.阿伏加徳罗常数,该气体的摩尔质量和密度C.阿伏加徳罗常数,该气体的质量和体积D.该气体的质量、体积、和摩尔质量2.关于布朗运动下列说法正确的是A.布朗运动是液体分子的运动B.布朗运动是悬浮微粒分子的运动C.布朗微粒做无规则运动的原因是由于它受到水分子有时吸引、有时排斥的结果D.温度越高,布朗运动越显著3.铜的摩尔质量为μ(kg/ mol),密度为ρ(kg/m3),若阿伏加徳罗常数为N A,则下列说法中哪个是错误..的A.1m3铜所含的原子数目是ρN A/μ B.1kg铜所含的原子数目是ρN AC.一个铜原子的质量是(μ / N A)kg D.一个铜原子占有的体积是(μ / ρN A)m3 4.分子间同时存在引力和斥力,下列说法正确的是A.固体分子间的引力总是大于斥力B.气体能充满任何仪器是因为分子间的斥力大于引力C.分子间的引力和斥力都随着分子间的距离增大而减小D.分子间的引力随着分子间距离增大而增大,而斥力随着距离增大而减小5.关于物体内能,下列说法正确的是A.相同质量的两种物体,升高相同温度,内能增量相同B.一定量0℃的水结成0℃的冰,内能一定减少C.一定质量的气体体积增大,既不吸热也不放热,内能减少D.一定质量的气体吸热,而保持体积不变,内能一定减少6.质量是18g的水,18g的水蒸气,32g的氧气,在它们的温度都是100℃时A.它们的分子数目相同,分子的平均动能相同B.它们的分子数目相同,分子的平均动能不相同,氧气的分子平均动能大C.它们的分子数目相同,它们的内能不相同,水蒸气的内能比水大D.它们的分子数目不相同,分子的平均动能相同7.有一桶水温度是均匀的,在桶底部水中有一个小气泡缓缓浮至水面,气泡上升过程中逐渐变大,若不计气泡中空气分子的势能变化,则A.气泡中的空气对外做功,吸收热量 B.气泡中的空气对外做功,放出热量C.气泡中的空气内能增加,吸收热量 D.气泡中的空气内能不变,放出热量8.关于气体压强,以下理解不正确的是A.从宏观上讲,气体的压强就是单位面积的器壁所受压力的大小B.从微观上讲,气体的压强是大量的气体分子无规则运动不断撞击器壁产生的C.容器内气体的压强是由气体的重力所产生的D.压强的国际单位是帕,1Pa=1N/m29.一定质量的理想气体处于平衡状态Ⅰ,现设法使其温度降低而压强升高,达到平衡状态Ⅱ,则( )A .状态Ⅰ时气体的密度比状态Ⅱ时的大B .状态Ⅰ时分子的平均动能比状态Ⅱ时的大C .状态Ⅰ时分子的平均距离比状态Ⅱ时的大D .状态Ⅰ时每个分子的动能都比状态Ⅱ时分子平均动能大10.如图所示,气缸内装有一定质量的气体,气缸的截面积为S ,其活塞为梯形,它的一个面与气缸成θ角,活塞与器壁间的摩擦忽略不计,现用一水平力F 推活塞,汽缸不动,此时大气压强为P 0,则气缸内气体的压强P 为A .P=P 0+θcos S F B .P=P 0+S FC .P=P 0+S F θcosD .P=P 0+SF θsin11.如图所示,活塞质量为m ,缸套质量为M ,通过弹簧吊在天花板上,气缸内封住一定质量的空气 ,缸套与活塞无摩擦,活塞截面积为S ,大气压强为p 0,则 A. 气缸内空气的压强为p 0-Mg /S B .气缸内空气的压强为p 0+mg /SC .内外空气对缸套的作用力为(M +m )gD .内外空气对活塞的作用力为Mg12.关于热力学温度的下列说法中, 不正确的是( ) A. B.热力学温度的零度等于-273.15 C. D.气体温度趋近于绝对零度时,13.若在水银气压计上端混入少量空气, 气压计的示数与实际大气压就不一致, 在这种情况下( )A.气压计的读数可能大于外界大B.C.只要外界大气压不变,D.14、根据分子动理论,下列关于气体的说法中正确的是 A .气体的温度越高,气体分子无规则运动越剧烈 B .气体的压强越大,气体分子的平均动能越大 C .气体分子的平均动能越大,气体的温度越高D .气体的体积越大,气体分子之间的相互作用力越大15. .如图所示,绝热隔板K 把绝热的气缸分隔成体积相等的两部分,K 与气缸壁的接触是光滑的。
高中物理《热学实验》练习题(附答案解析)
高中物理《热学实验》练习题(附答案解析)学校:___________姓名:___________班级:___________一、单选题1.把n 滴石油滴在水面上,石油在水面上形成一层单分子油膜,测得油膜的面积为S ,设每滴石油的体积为V ,则可以估算出该石油分子的直径为 ( ) A ./nS VB ./nV SC ./S VD ./V S2.某同学在做油膜法估测分子直径的实验,滴下油酸酒精溶液后,发现痱子粉迅速散开形成如图所示的“锯齿”边沿图案,可能是由于( )A .盆中水太多B .痱子粉撒得太多,且厚度不均匀C .盆太小,导致油酸无法形成单分子层D .油酸酒精溶液浓度过大3.在“用油膜法估测分子大小”的实验中,配制好适当比例的油酸酒精溶液,用注射器和量筒测得1mL 含上述溶液50滴,把1滴该溶液滴入盛水的浅盘内,让油膜在水面上尽可能散开,测出油膜的面积,便可算出油酸分子的直径。
某同学计算出的油酸分子的直径结果明显偏大,可能的原因是( ) A .油酸未完全散开 B .油酸中含有大量酒精C .计算油膜面积时将所有不足一格的方格均记为了一格D .求每滴溶液中纯油酸的体积时,1mL 溶液的滴数多记了几滴4.在“油膜法估测分子的直径”实验中将油酸分子看成是球形的,所采用的方法是( ) A .等效替代法B .控制变量法C .理想模型法D .比值定义法5.在“用油膜法估测油酸分子的大小”实验中,用到了“数格子”的方法,是为了估算( ) A .一滴油酸的体积B .一滴油酸酒精溶液中纯油酸形成的油膜的面积C .一个油酸分子的体积D .一个油酸分子的面积6.分子动理论较好地解释了物质的宏观热学性质。
根据分子动理论,判断下列说法中正确的是()A.显微镜下观察到墨水中的小炭粒在不停地做无规则运动,这反映了炭粒分子运动的无规则性B.磁铁可以吸引铁屑,这一事实说明分子间存在引力C.压缩气体比压缩液体容易得多,这是因为气体分子间距离远大于液体分子间距离D.将体积为V的油酸酒精溶液滴在平静的水面上,扩展成面积为S的单分子油膜,则该油酸分子直径为V S7.在做“用油膜法估测分子的大小”实验时,配制好浓度为0.06%的油酸酒精溶液(单位体积溶液中含有纯油酸的体积),1 mL上述溶液用注射器刚好滴75滴;在撒有均匀痱子粉的水面上用注射器滴1滴油酸酒精溶液,水面上形成油酸薄膜,下图为油膜稳定后的形状,每个正方形小方格的边长为10 mm。
高中热力学试题及答案大全
高中热力学试题及答案大全一、选择题1. 热力学第一定律的数学表达式是:A. ΔU = Q - WB. ΔH = Q + WC. ΔS = Q/TD. ΔG = ΔH - TΔS答案:A2. 以下哪个过程是不可逆过程?A. 理想气体的等温膨胀B. 理想气体的绝热膨胀C. 理想气体的等压膨胀D. 理想气体的等熵膨胀答案:B3. 熵增加原理表明,在孤立系统中,自发过程的熵:A. 保持不变B. 减少C. 增加D. 先减少后增加答案:C二、填空题1. 热力学第二定律表明,不可能从单一热源_______而产生其他影响。
答案:吸热2. 在热力学中,一个系统与外界交换能量的两种基本方式是_______和_______。
答案:做功;热传递三、简答题1. 简述热力学第二定律的克劳修斯表述和开尔文-普朗克表述。
答案:热力学第二定律的克劳修斯表述是:不可能实现一个循环过程,其唯一结果就是从一个热源吸热并将这热量完全转化为功。
开尔文-普朗克表述是:不可能从单一热源吸热使之完全转化为功而不产生其他影响。
2. 什么是熵?熵在热力学中的意义是什么?答案:熵是热力学中描述系统无序程度的物理量,通常用符号S表示。
熵在热力学中的意义是衡量系统状态的无序程度,是热力学第二定律的数学表达形式之一,反映了能量分散的程度。
四、计算题1. 一个理想气体在等压过程中从体积V1 = 1m³膨胀到V2 = 2m³,气体的摩尔质量为M = 0.029kg/mol,气体常数R = 8.314J/(mol·K),初始温度T1 = 300K。
求气体的最终温度T2。
答案:首先计算气体的摩尔数n = (M/V1)。
然后利用等压过程中温度与体积的关系T1V1/n = T2V2/n,解得T2 = (T1V1/V2) = (300K *1m³ / 2m³) = 150K。
结束语:通过本试题及答案的练习,同学们可以加深对热力学基本概念、原理和计算方法的理解。
高中物理热学实验试题及答案
高中物理热学实验试题及答案一、选择题1. 温度是描述物体冷热程度的物理量,它与物体的哪个属性有关?A. 压力B. 体积C. 分子热运动的快慢D. 质量答案:C2. 热力学第一定律表明能量守恒,其数学表达式为:A. ΔU = Q + WB. ΔU = Q - WC. ΔU = W - QD. ΔU = Q / W答案:B3. 以下哪种情况下,物体的内能会增加?A. 吸收热量同时对外做功B. 放出热量同时对外做功C. 吸收热量同时不做功D. 放出热量同时不做功答案:C二、填空题4. 热力学第二定律表明了热的传导具有________方向性,即热量只能自发地从高温物体传递到低温物体。
答案:单向5. 理想气体状态方程为 PV = nRT,其中P代表压强,V代表体积,n代表物质的量,R是________常数,T代表温度。
答案:气体三、简答题6. 简述热力学温度与摄氏温度的关系,并给出转换公式。
答案:热力学温度与摄氏温度的关系是T = t + 273.15 K,其中T是热力学温度,单位是开尔文(K),t是摄氏温度,单位是摄氏度(°C)。
四、计算题7. 一个理想气体在等压过程中,体积从V1 = 2m³变化到V2 = 3m³,压强P = 1 atm。
求气体在这个过程中所做的功W。
答案:根据理想气体做功的公式W = PΔV,首先计算体积变化ΔV = V2 - V1 = 3m³ - 2m³ = 1m³。
由于是等压过程,压强P = 1 atm = 101325 Pa。
带入公式得W = 101325 Pa × 1m³ = 101325 J。
五、实验题8. 实验目的:探究气体的等容变化过程中温度与压强的关系。
实验器材:定容容器、温度计、压强计、加热器。
实验步骤:a. 将一定量的气体充入定容容器中,并记录初始压强和温度。
b. 使用加热器对容器内的气体进行加热,观察并记录压强的变化。
高一物理热学基础练习题及答案
高一物理热学基础练习题及答案1.选择题:1) 以下哪个物理量与热平衡无关?A. 热容B. 热温度C. 热量D. 内能答案:A. 热容2) 单位质量物质升高1摄氏度所需的热量称为:A. 热容B. 热比热容C. 内能D. 热传导答案:B. 热比热容3) 热平衡是指两个物体:A. 温度相等B. 热量相等C. 热容相等D. 内能相等答案:A. 温度相等4) 以下哪个选项是正确的?A. 温度是物体的固有属性B. 温度是热量的度量C. 温度只能用温度计来测量D. 温度是物体内能的度量答案:D. 温度是物体内能的度量5) 热量是一个:A. 宏观物理量B. 微观物理量C. 化学物理量D. 学院物理量答案:A. 宏观物理量2.填空题:1) 定容状态下若物体的体积变小,则温度___。
答案:升高2) 0摄氏度与摄氏度的冷热程度相同。
答案:相同3) 理想气体在等压过程中热容与()相等。
答案:等压热容4) 热量可以用___来度量。
答案:焦耳5) 热平衡是指两个物体之间没有___流动。
答案:热量3.计算题:1) 质量为0.5kg的物体热容为400J/kg·°C,现有一物体温度由20°C 升高到40°C,需要吸收多少热量?答案:ΔQ = mcΔθΔQ = 0.5kg × 400J/kg·°C × (40°C - 20°C)ΔQ = 400J2) 一瓶装满水的热水袋的质量为0.8kg,其初始温度为80°C,现要将其温度升高到100°C,需要吸收多少热量?(水的比热容为4200J/kg·°C)答案:ΔQ = mcΔθΔQ = 0.8kg × 4200J/kg·°C × (100°C - 80°C)ΔQ = 6720J3) 一个物体的质量为2kg,它的比热容为1000J/kg·°C,将其温度由20°C升高到60°C,需要吸收多少热量?(不考虑相变)答案:ΔQ = mcΔθΔQ = 2kg × 1000J/kg·°C × (60°C - 20°C)ΔQ = 80000J总结:本篇文章涵盖了高一物理热学基础练习题及答案,分为选择题、填空题和计算题三个部分。
高中热学试题及答案
高中热学试题及答案一、选择题(每题2分,共20分)1. 热力学第一定律的数学表达式是:A. ΔU = Q + WB. ΔH = Q - WC. ΔG = Q + WD. ΔS = Q/T2. 根据理想气体状态方程,当温度不变时,气体的压强与体积成:A. 正比B. 反比C. 无关D. 对数关系3. 热机效率是指:A. 热机输出的功与输入的热量之比B. 热机输入的热量与输出的功之比C. 热机输出的功与消耗的燃料量之比D. 热机消耗的燃料量与输出的功之比4. 绝对零度是:A. -273.15°CB. 0°CC. 273.15°CD. 无法达到的温度5. 热传导、热对流和热辐射是热传递的三种基本方式,其中不依赖于物质的传递的是:A. 热传导B. 热对流C. 热辐射D. 以上都不是6. 气体的内能只与气体的:A. 温度有关B. 体积有关C. 压强有关D. 质量有关7. 根据热力学第二定律,不可能制造一种循环效率为100%的热机,这是因为:A. 能量守恒定律B. 热机的机械效率不可能达到100%C. 热机的热效率不可能达到100%D. 热机的摩擦损失8. 熵是热力学中表示系统无序程度的物理量,其单位是:A. 焦耳B. 焦耳/摩尔C. 焦耳/开尔文D. 开尔文9. 理想气体的绝热过程满足以下关系:A. (PV)^γ = 常数B. (PV^γ) = 常数C. (PV)^(1/γ) = 常数D. (PV^(1/γ)) = 常数10. 热力学温标与摄氏温标之间的关系是:A. T = t + 273.15B. T = t - 273.15C. T = 273.15 - tD. T = 2t - 273.15答案:1-5 A B A C C 6-10 A C B A A二、填空题(每空1分,共10分)1. 热力学第一定律表明能量______,但能量的______可以转移。
2. 理想气体的内能仅与______有关,而与体积和压强无关。
高中物理热学试题及答案
高中物理热学试题及答案一、选择题1. 热力学第一定律的数学表达式是:A. ΔU = Q + WB. ΔU = Q - WC. ΔU = W - QD. ΔU = Q / W答案:B2. 理想气体的内能只与温度有关,这是因为:A. 气体分子的平动动能B. 气体分子的转动动能C. 气体分子的振动动能D. 气体分子的平动和转动动能答案:D3. 根据热力学第二定律,下列哪种情况是不可能发生的?A. 在没有外界影响的情况下,热量从低温物体自发地传递到高温物体B. 热量从高温物体传递到低温物体C. 气体自发地从高压区扩散到低压区D. 气体自发地从低压区扩散到高压区答案:A二、填空题4. 热力学温度T与气体的压强P、体积V和物质的量n之间的关系可以用_________定律来描述。
答案:理想气体状态5. 当气体发生绝热膨胀时,气体的内能_________,温度_________。
答案:减小;降低三、简答题6. 什么是熵?熵在热力学第二定律中扮演着什么角色?答案:熵是热力学中表示系统无序程度的物理量,通常用符号S表示。
熵在热力学第二定律中扮演着核心角色,第二定律可以表述为在孤立系统中,熵总是倾向于增加,这意味着自发过程总是朝着熵增的方向进行。
四、计算题7. 一个理想气体在等压过程中,从体积V1=2m³增加到V2=4m³,压强P=1atm,气体常数R=8.31J/(mol·K),求气体的温度变化。
答案:首先,根据盖-吕萨克定律,PV/T = 常数。
由于是等压过程,我们有V1/T1 = V2/T2。
将已知数值代入,得到2/T1 = 4/T2,解得T1 = 0.5T2。
又因为T1 = P1V1/(nR),T2 = P2V2/(nR),由于是等压过程,P1 = P2 = P,所以T1 = T2。
将T1 = 0.5T2代入T1 = P1V1/(nR),解得T1 = 283K,T2 = 566K。
高中物理3-3《热学》计算题专项练习题(含答案)
热学计算题(二)1.如图所示,一根长L=100cm、一端封闭的细玻璃管开口向上竖直放置,管内用h=25cm长的水银柱封闭了一段长L1=30cm的空气柱.已知大气压强为75cmHg,玻璃管周围环境温度为27℃.求:Ⅰ.若将玻璃管缓慢倒转至开口向下,玻璃管中气柱将变成多长?Ⅱ.若使玻璃管开口水平放置,缓慢升高管内气体温度,温度最高升高到多少摄氏度时,管内水银不能溢出.2.如图所示,两端开口、粗细均匀的长直U形玻璃管内由两段水银柱封闭着长度为15cm的空气柱,气体温度为300K时,空气柱在U形管的左侧.(i)若保持气体的温度不变,从左侧开口处缓慢地注入25cm长的水银柱,管内的空气柱长为多少?(ii)为了使空气柱的长度恢复到15cm,且回到原位置,可以向U形管内再注入一些水银,并改变气体的温度,应从哪一侧注入长度为多少的水银柱?气体的温度变为多少?(大气压强P0=75cmHg,图中标注的长度单位均为cm)3.如图所示,U形管两臂粗细不等,开口向上,右端封闭的粗管横截面积是开口的细管的三倍,管中装入水银,大气压为76cmHg。
左端开口管中水银面到管口距离为11cm,且水银面比封闭管内高4cm,封闭管内空气柱长为11cm。
现在开口端用小活塞封住,并缓慢推动活塞,使两管液面相平,推动过程中两管的气体温度始终不变,试求:①粗管中气体的最终压强;②活塞推动的距离。
4.如图所示,内径粗细均匀的U形管竖直放置在温度为7℃的环境中,左侧管上端开口,并用轻质活塞封闭有长l1=14cm,的理想气体,右侧管上端封闭,管上部有长l2=24cm的理想气体,左右两管内水银面高度差h=6cm,若把该装置移至温度恒为27℃的房间中(依然竖直放置),大气压强恒为p0=76cmHg,不计活塞与管壁间的摩擦,分别求活塞再次平衡时左、右两侧管中气体的长度.5.如图所示,开口向上竖直放置的内壁光滑气缸,其侧壁是绝热的,底部导热,内有两个质量均为m的密闭活塞,活塞A导热,活塞B绝热,将缸内理想气体分成Ⅰ、Ⅱ两部分.初状态整个装置静止不动且处于平衡状态,Ⅰ、Ⅱ两部分气体的高度均为l0,温度为T0.设外界大气压强为P0保持不变,活塞横截面积为S,且mg=P0S,环境温度保持不变.求:在活塞A上逐渐添加铁砂,当铁砂质量等于2m时,两活塞在某位置重新处于平衡,活塞B下降的高度.6.如图,在固定的气缸A和B中分别用活塞封闭一定质量的理想气体,活塞面积之比为S A:S B=1:2,两活塞以穿过B的底部的刚性细杆相连,可沿水平方向无摩擦滑动.两个气缸都不漏气.初始时,A、B 中气体的体积皆为V0,温度皆为T0=300K.A中气体压强P A=1.5P0,P0是气缸外的大气压强.现对A加热,使其中气体的体积增大V0/4,,温度升到某一温度T.同时保持B中气体的温度不变.求此时A中气体压强(用P0表示结果)和温度(用热力学温标表达)7.如图所示为一简易火灾报警装置.其原理是:竖直放置的试管中装有水银,当温度升高时,水银柱上升,使电路导通,蜂鸣器发出报警的响声.27℃时,空气柱长度L1为20cm,水银上表面与导线下端的距离L2为10cm,管内水银柱的高度h为13cm,大气压强P0=75cmHg. (1)当温度达到多少摄氏度时,报警器会报警?(2)如果要使该装置在87℃时报警,则应该再往玻璃管内注入多少cm高的水银柱?8.如图所示,导热气缸A与导热气缸B均固定于地面,由刚性杆连接的导热活塞与两气缸间均无摩擦,两活塞面积S A、S B的比值4:1,两气缸都不漏气;初始状态系统处于平衡,两气缸中气体的长度皆为L,温度皆为t0=27℃,A中气体压强P A=7P0/8,P0是气缸外的大气压强;(Ⅰ)求B中气体的压强;(Ⅱ)若使环境温度缓慢升高,并且大气压保持不变,求在活塞移动位移为L/2时环境温度为多少摄氏度?9.如图,两气缸AB粗细均匀,等高且内壁光滑,其下部由体积可忽略的细管连通;A的直径为B的2倍,A上端封闭,B上端与大气连通;两气缸除A顶部导热外,其余部分均绝热.两气缸中各有一厚度可忽略的绝热轻活塞a、b,活塞下方充有氮气,活塞a上方充有氧气;当大气压为P0,外界和气缸内气体温度均为7℃且平衡时,活塞a离气缸顶的距离是气缸高度的1/4,活塞b在气缸的正中央.(ⅰ)现通过电阻丝缓慢加热氮气,当活塞b升至顶部时,求氮气的温度;(ⅱ)继续缓慢加热,使活塞a上升,当活塞a上升的距离是气缸高度的1/16时,求氧气的压强.10.A 、B 汽缸的水平长度均为20 cm 、截面积均为10 cm 2,C 是可在汽缸内无摩擦滑动的、体积不计的活塞,D 为阀门.整个装置均由导热材料制成.起初阀门关闭,A 内有压强A P =4.0×105 Pa 的氮气.B 内有压强=B P 2.0×105 Pa 的氧气.阀门打开后,活塞C 向右移动,最后达到平衡.求活塞C 移动的距离及平衡后B 中气体的压强.11.如图所示,内壁光滑长度为4l 、横截面积为S 的汽缸A 、B ,A 水平、B 竖直固定,之间由一段容积可忽略的细管相连,整个装置置于温度27℃、大气压为p 0的环境中,活塞C 、D 的质量及厚度均忽略不计.原长3l 、劲度系数03p S k l=的轻弹簧,一端连接活塞C 、另一端固定在位于汽缸A 缸口的O 点.开始活塞D 距汽缸B 的底部3l .后在D 上放一质量为0p S m g =的物体.求: (1)稳定后活塞D 下降的距离;(2)改变汽缸内气体的温度使活塞D 再回到初位置,则气体的温度应变为多少?热学计算题(二)答案解析1.解:Ⅰ.以玻璃管内封闭气体为研究对象,设玻璃管横截面积为S,初态压强为:P1=P0+h=75+25=100cmHg,V1=L1S=30S,倒转后压强为:P2=P0﹣h=75﹣25=50cmHg,V2=L2S,由玻意耳定律可得:P1L1=P2L2 ,100×30S=50×L2S,解得:L2=60cm;Ⅱ.T1=273+27=300K,当水银柱与管口相平时,管中气柱长为:L3=L﹣h=100﹣25cm=75cm,体积为:V3=L3S=75S,P3=P0﹣h=75﹣25=50cmHg,由理想气体状态方程可得:代入数据解得:T3=375K,t=102℃2.解:(ⅰ)由于气柱上面的水银柱的长度是25cm,所以右侧水银柱的液面的高度比气柱的下表面高25cm,所以右侧的水银柱的总长度是25+5=30cm,试管的下面与右侧段的水银柱的总长45cm,所以在左侧注入25cm长的水银后,设有长度为x的水银处于底部水平管中,则 50﹣x=45解得 x=5cm即5cm水银处于底部的水平管中,末态压强为75+(25+25)﹣5=120cmHg,由玻意耳定律p1V1=p2V2代入数据,解得:L2=12.5cm(ⅱ)由水银柱的平衡条件可知需要也向右侧注入25cm长的水银柱才能使空气柱回到A、B之间.这时空气柱的压强为:P3=(75+50)cmHg=125cmHg由查理定律,有: =解得T3=375K3.①88cmHg;②4.5cm①设左管横截面积为S,则右管横截面积为3S,以右管封闭气体为研究对象.初状态p1=80 cmHg,V1=11×3S=33S,两管液面相平时,Sh1=3Sh2,h1+h2=4 cm,解得h2=1 cm,此时右端封闭管内空气柱长l=10 cm,V2=10×3S=30S气体做等温变化有p1V1=p2V2即80×33S=p2×30S 解得p2=88cmHg②以左管被活塞封闭气体为研究对象p1′=76 cmHg,V1′=11S,p2=p2′=88 cmHg气体做等温变化有p1′V1′=p2′V2′解得V2′=9.5S活塞推动的距离为L=11 cm+3 cm-9.5 cm=4.5cm4.解:设管的横截面积为S,活塞再次平衡时左侧管中气体的长度为l′,左侧管做等压变化,则有:其中,T=280K,T′=300K,解得:设平衡时右侧管气体长度增加x,则由理想气体状态方程可知:其中,h=6cmHg解得:x=1cm所以活塞平衡时右侧管中气体的长度为25cm.5.解:对I气体,初状态,末状态由玻意耳定律得:所以,对 II气体,初状态,末状态由玻意耳定律得:所以,l2=l0B活塞下降的高度为: =l0;6.解:活塞平衡时,由平衡条件得:P A S A+P B S B=P0(S A+S B)①,P A′S A+P B′S B=P0(S A+S B)②,已知S B =2S A ③,B 中气体初、末态温度相等,设末态体积为V B ,由玻意耳定律得:P B ′V B =P B V 0 ④,设A 中气体末态的体积为V A ,因为两活塞移动的距离相等, 故有=⑤,对A 中气体,由理想气体状态方程得:⑥, 代入数据解得:P B =,P B ′=,P A ′=2P 0,V A =,V B =,T A ==500K ,7.①177℃②8 cm ①封闭气体做等压变化,设试管横截面积为S ,则初态:V 1=20S ,T 1=300K ,末态:V 2=30S ,由盖吕萨克定律可得:1v T =22v T ,解得T 2=450K ,所以t 2=177℃. ②设当有xcm 水银柱注入时会在87℃报警,由理想气体状态方程可得:111p v T =222p v T , 代入数据解得x=8 cm .8.解:(1)设初态汽缸B 内的压强为p B ,对两活塞及刚性杆组成的系统由平衡条件有:p A S A +p 0S B =p B S B +p 0S A …①据已知条件有:S A :S B =4:1…②联立①②有:p B =;(2)设末态汽缸A 内的压强为p A ',汽缸B 内的压强为p B ',环境温度由上升至的过程中活塞向右移动位移为x ,则对汽缸A 中的气体由理想气体状态方程得:…③对汽缸B 中的气体,由理想气体状态方程得:…④对末态两活塞及刚性杆组成的系统由平衡条件有:p A 'S A +p 0S B =p B 'S B +p 0S A …⑤联立③④⑤得:t=402℃.9.解:(ⅰ)活塞b 升至顶部的过程中,活塞a 不动,活塞a 、b 下方的氮气经历等压过程.设气缸A 的容积为V 0,氮气初态体积为V 1,温度为T 1,末态体积为V 2,温度为T 2,按题意,气缸B 的容积为V 0,则得:V 1=V 0+•V 0=V 0,①V 2=V 0+V 0=V 0,②根据盖•吕萨克定律得: =,③由①②③式和题给数据得:T 2=320K ; ④(ⅱ)活塞b 升至顶部后,由于继续缓慢加热,活塞a 开始向上移动,直至活塞上升的距离是气缸高度的时,活塞a 上方的氧气经历等温过程,设氧气初态体积为V 1′,压强为P 1′,末态体积为V 2′,压强为P 2′,由题给数据有,V 1′=V 0,P 1′=P 0,V 2′=V 0,⑤由玻意耳定律得:P 1′V 1′=P 2′V 2′,⑥由⑤⑥式得:P 2′=P 0.⑦ 10.7.6cm 3×105Pa 解析:由玻意耳定律,对A 部分气体有 S x L P LS P A )(+= ① 对B 部分气体有S x L P LS P B )(-= ②代入相关数据解得x =320=7.6cm ,P =3×105 Pa11.解:(1)开始时被封闭气体的压强为,活塞C 距气缸A 的底部为l ,被封气体的体积为4lS ,重物放在活塞D 上稳定后,被封气体的压强为:活塞C 将弹簧向左压缩了距离,则活塞C 受力平衡,有:根据玻意耳定律,得:解得:x=2l活塞D 下降的距离为:(2)升高温度过程中,气体做等压变化,活塞C 的位置不动,最终被封气体的体积为,对最初和最终状态,根据理想气体状态方程得解得:。
高中物理热学综合试题及答案
高中物理热学综合试题及答案一、选择题(每题2分,共10分)1. 温度是表示物体冷热程度的物理量,其单位是____。
A. 米B. 千克C. 开尔文D. 牛顿2. 热力学第一定律可以表示为△U = Q + W,其中Q代表____。
A. 功B. 热量C. 温度D. 压强3. 热机的效率是指____。
A. 热机输出的功与输入的热量之比B. 热机输入的热量与输出的功之比C. 热机输入的热量与消耗的燃料量之比D. 热机消耗的燃料量与输入的热量之比4. 根据热力学第二定律,下列说法正确的是____。
A. 热量可以自发地从低温物体传向高温物体B. 热量不能自发地从低温物体传向高温物体C. 热量可以自发地从高温物体传向低温物体D. 热量不能自发地从高温物体传向低温物体5. 理想气体的内能仅仅与温度有关,而与体积和压强无关。
这是因为理想气体分子之间的____。
A. 距离很小B. 距离很大C. 作用力很强D. 作用力很弱二、填空题(每题2分,共10分)6. 绝对零度是温度的下限,其数值为________开尔文。
7. 根据理想气体状态方程 PV = nRT,当压强不变,温度升高时,气体的体积将________。
8. 热传导、热对流和热辐射是热传递的三种基本方式,其中热辐射不需要________介质。
9. 热机的效率不可能达到100%,这是由于热力学第二定律的限制。
10. 根据热力学第三定律,当温度趋近于绝对零度时,系统的熵趋近于________。
三、简答题(每题10分,共20分)11. 简述热力学第一定律和第二定律的基本内容。
12. 解释什么是熵,并简述熵增原理。
四、计算题(每题15分,共30分)13. 一个理想气体从初始状态(P1, V1, T1)开始等压膨胀到最终状态(P2, V2, T2)。
如果P1 = 1 atm,V1 = 2 m³,T1 = 300 K,P2 = 1.5 atm,求气体的最终体积V2。
高中物理《热学》练习题(附答案解析)
高中物理《热学》练习题(附答案解析)学校:___________姓名:___________班级:___________一、单选题1.关于两类永动机和热力学的两个定律,下列说法正确的是( )A .第二类永动机不可能制成是因为违反了热力学第一定律B .第一类永动机不可能制成是因为违反了热力学第二定律C .由热力学第一定律可知做功不一定改变内能,热传递也不一定改变内能,但同时做功和热传递一定会改变内能D .由热力学第二定律可知从单一热源吸收热量,完全变成功是可能的2.下列关于系统是否处于平衡态的说法,正确的是( )A .将一根铁丝的一端插入100℃的水中,另一端插入0℃的冰水混合物中,经过足够长的时间,铁丝处于平衡态B .两个温度不同的物体相互接触时,这两个物体组成的系统处于非平衡态C .0℃的冰水混合物放入1℃的环境中,冰水混合物处于平衡态D .压缩密闭容器中的空气,空气处于平衡态3.分子直径和分子的质量都很小,它们的数量级分别为( )A .102610m,10kg d m --==B .102910cm,10kg d m --==C .102910m,10kg d m --==D .82610m,10kg d m --==4.下列现象中,通过传热的方法来改变物体内能的是( )A .打开电灯开关,灯丝的温度升高,内能增加B .太阳能热水器在阳光照射下,水的温度逐渐升高C .用磨刀石磨刀时,刀片的温度升高,内能增加D .打击铁钉,铁钉的温度升高,内能增加5.图甲是一种导热材料做成的“强力吸盘挂钩”,图乙是它的工作原理图。
使用时,按住锁扣把吸盘紧压在墙上(图乙1),吸盘中的空气(可视为理想气体)被挤出一部分。
然后把锁扣缓慢扳下(图乙2),让锁扣以盘盖为依托把吸盘向外拉出。
在拉起吸盘的同时,锁扣对盘盖施加压力,致使盘盖以很大的压力压住吸盘,保持锁扣内气体密闭,环境温度保持不变。
下列说法正确的是( )A .锁扣扳下后,吸盘与墙壁间的摩擦力增大B .锁扣扳下后,吸盘内气体分子平均动能增大C .锁扣扳下过程中,锁扣对吸盘中的气体做正功,气体内能增加D .锁扣扳下后吸盘内气体分子数密度减小,气体压强减小6.以下说法正确的是( )A .气体对外做功,其内能一定减小B .分子势能一定随分子间距离的增加而增加C .烧热的针尖接触涂有蜂蜡薄层的云母片背面,熔化的蜂蜡呈椭圆形,说明蜂蜡是晶体D .在合适的条件下,某些晶体可以转变为非晶体,某些非晶体也可以转变为晶体7.在汽缸右侧封闭一定质量的理想气体,压强与大气压强相同。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
热学试题一选择题:1.只知道下列那一组物理量,就可以估算出气体中分子间的平均距离A.阿伏加徳罗常数,该气体的摩尔质量和质量B.阿伏加徳罗常数,该气体的摩尔质量和密度C.阿伏加徳罗常数,该气体的质量和体积D.该气体的质量、体积、和摩尔质量2.关于布朗运动下列说法正确的是A.布朗运动是液体分子的运动B.布朗运动是悬浮微粒分子的运动C.布朗微粒做无规则运动的原因是由于它受到水分子有时吸引、有时排斥的结果D.温度越高,布朗运动越显著3.铜的摩尔质量为μ(kg/ mol),密度为ρ(kg/m3),若阿伏加徳罗常数为N A,则下列说法中哪个是错误..的A.1m3铜所含的原子数目是ρN A/μ B.1kg铜所含的原子数目是ρN AC.一个铜原子的质量是(μ / N A)kg D.一个铜原子占有的体积是(μ / ρN A)m3 4.分子间同时存在引力和斥力,下列说法正确的是A.固体分子间的引力总是大于斥力B.气体能充满任何仪器是因为分子间的斥力大于引力C.分子间的引力和斥力都随着分子间的距离增大而减小D.分子间的引力随着分子间距离增大而增大,而斥力随着距离增大而减小5.关于物体内能,下列说法正确的是A.相同质量的两种物体,升高相同温度,内能增量相同B.一定量0℃的水结成0℃的冰,内能一定减少C.一定质量的气体体积增大,既不吸热也不放热,内能减少D .一定质量的气体吸热,而保持体积不变,内能一定减少6.质量是18g 的水,18g 的水蒸气,32g 的氧气,在它们的温度都是100℃时 A .它们的分子数目相同,分子的平均动能相同B .它们的分子数目相同,分子的平均动能不相同,氧气的分子平均动能大C .它们的分子数目相同,它们的内能不相同,水蒸气的内能比水大D .它们的分子数目不相同,分子的平均动能相同7.有一桶水温度是均匀的,在桶底部水中有一个小气泡缓缓浮至水面,气泡上升过程中逐渐变大,若不计气泡中空气分子的势能变化,则A .气泡中的空气对外做功,吸收热量B .气泡中的空气对外做功,放出热量C .气泡中的空气内能增加,吸收热量D .气泡中的空气内能不变,放出热量 8.关于气体压强,以下理解不正确的是A .从宏观上讲,气体的压强就是单位面积的器壁所受压力的大小B .从微观上讲,气体的压强是大量的气体分子无规则运动不断撞击器壁产生的C .容器内气体的压强是由气体的重力所产生的D .压强的国际单位是帕,1Pa =1N/m 29.一定质量的理想气体处于平衡状态Ⅰ,现设法使其温度降低而压强升高,达到平衡状态Ⅱ,则( )A .状态Ⅰ时气体的密度比状态Ⅱ时的大B .状态Ⅰ时分子的平均动能比状态Ⅱ时的大C .状态Ⅰ时分子的平均距离比状态Ⅱ时的大D .状态Ⅰ时每个分子的动能都比状态Ⅱ时分子平均动能大10.如图所示,气缸内装有一定质量的气体,气缸的截面积为S ,其活塞为梯形,它的一个面与气缸成θ角,活塞与器壁间的摩擦忽略不计,现用一水平力F 推活塞,汽缸不动,此时大气压强为P 0,则气缸内气体的压强P 为 A .P=P 0+cos S F B .P=P 0+SFC .P=P 0+S F θcos D .P=P 0+SF θsin 11.如图所示,活塞质量为m ,缸套质量为M ,通过弹簧吊在天花板上,气缸内封住一定质量的空气 ,缸套与活塞无摩擦,活塞截面积为S ,大气压强为p 0,则 A. 气缸内空气的压强为p 0-Mg /S B .气缸内空气的压强为p 0+mg /S C .内外空气对缸套的作用力为(M +m )g D .内外空气对活塞的作用力为Mg12.关于热力学温度的下列说法中, 不正确的是( ) A.热力学温度与摄氏温度的每一度的大小是相同的 B.热力学温度的零度等于-℃ C.热力学温度的零度是不可能达到的 D.气体温度趋近于绝对零度时, 其体积趋近于零13.若在水银气压计上端混入少量空气, 气压计的示数与实际大气压就不一致, 在这种情况下( )A.气压计的读数可能大于外界大气压B.气压计的读数总小于实际大气压C.只要外界大气压不变, 气压计的示数就是定值D.可以通过修正气压计的刻度来予以校正14、根据分子动理论,下列关于气体的说法中正确的是A .气体的温度越高,气体分子无规则运动越剧烈B .气体的压强越大,气体分子的平均动能越大C .气体分子的平均动能越大,气体的温度越高D .气体的体积越大,气体分子之间的相互作用力越大15. .如图所示,绝热隔板K 把绝热的气缸分隔成体积相等的两部分,K 与气缸壁的接触是光滑的。
两部分中分别盛有相同质量、相同温度的同种气体a 和b 势能可忽略。
现通过电热丝对气体a 加热一段时间后,a 、b 各自达到新的平衡A .a 的体积增大了,压强变小了B .b 的温度升高了C .加热后a 的分子热运动比b 的分子热运动更激烈D .a 增加的内能大于b 增加的内能a K b16封闭在气缸内一定质量的气体,如果保持气体体积不变,当温度升高时,以下说法正确的是( )A.气体的密度增大C.气体分子的平均动能减小B.气体的压强增大D.每秒撞击单位面积器壁的气体分子数增多17.如图是氧气分子在不同温度(0℃和100℃)下的速率分布,由图可得信息A.同一温度下,氧气分子呈现出“中间多,两头少”的分布规律B.随着温度的升高,每一个氧气分子的速率都增大C.随着温度的升高,氧气分子中速率小的分子所占的比例高D.随着温度的升高,氧气分子的平均速率变小18.一定质量的理想气体, 处于某一初态, 现要使它经过一些状态变化后回到原来初温, 下列哪些过程可能实现( )A.先等压压缩, 再等容减压B.先等压膨胀, 再等容减压C.先等容增压, 再等压膨胀D.先等容减压, 再等压膨胀19.用r表示两分子之间的距离,E p表示两个分子间的相互作用势能,当r=r0时时,两个分子之间引力等于斥力,设两个分子间相距较远时,E p=0,则()A.当分子间距r 变小时,引力减小,斥力增大B.当r>r0时,引力大于斥力,r增大时分子力做负功,E p增加C.当r<r0时,引力大于斥力,r减小时分子力做负功,E p减小D.当r=r0时, E p=020.如图所示,一端封闭的玻璃管开口向下竖直倒插在水银槽中,其位置保持固定。
已知封闭端内有少量空气。
若大气压强变小一些,则管中在水银槽水银面上方的水银柱高度h和封闭端内空气的压强p将如何变化( )变小,p变大变大,p变大变大,p变小变小,p变小21.一定质量的理想气体经历如图所示的一系列变化过程,ab、bc、cd和da这四个过程中在P-T图上都是直线段,其中ab的延长线通过坐标原点O,bc垂直于ab而cd平行于ab,由图可以判断( )过程中气体体积不断增大过程中气体体积不断减小过程中气体体积不断增大过程中气体体积不断减小22、下列说法不符合分子动理论观点的是A.用气筒打气需外力做功,是因为分子间的后斥力作用B.温度升高,布朗运动显著,说明悬浮颗粒的分子运动剧烈C.相距较远的两个分子相互靠近的过程中,分子势能先减小后增大D.相距较远的两个分子相互靠近的过程中,分子间引力先增大后减小23、关于气体的压强,下列说法中正确的是A.气体的压强是气体分子间的吸引和排斥产生的B.气体分子的平均速率增大,气体的压强一定增大C.当某一容器自由下落时,容器中气体的压强将变为零24、下列说法正确的是A.分子间同时存在着引力和斥力B.拉伸物体时,分子间引力增大,斥力减小,所以分子间引力大于斥力C.在真空容器中注入气体,气体分子迅速散开充满整个容器,是因为气体分子间的斥力大于引力D.当分子间相互作用力做正功时,分子势能增大25、用r表示两个分子间的距离,Ep表示两个分子间的相互作用的势能,当r=r0时两分子间斥力大小等于引力大小,设两分子相距很远时E P=0,则A.当r>r0时,Ep随r的增大而增加B. 当r<r0时,Ep随r的减小而增加C.当r>r0时,Ep不随r而变D. 当r=r0时,Ep=026、关于布朗运动,下列叙述正确的是:A.我们所观察到的布朗运动,就是液体分子的无规则运动B.布朗运动是悬浮在液体中的固体分子的无规则运动C.布朗动动的激烈程度与温度无关D.悬浮在液体中的颗粒越小,它的布朗运动就越显著17.若以M表示水的摩尔质量,V表示水的摩尔体积,ρ表示水的密度。
N A为阿伏加德罗常数,m表示水的分子质量,V′表示水分子体积。
则下列关系中正确的是()A.N A=V/V′B.V=M/ρC.m=M/N A D.V=ρM28.关于分子势能下面说法中,正确的是()A.当分子距离为r0=10-10m时分子势能最大B.当分子距离为r0=10-10m时分子势能最小,但不一定为零C.当分子距离为r0=10-10m时,由于分子力为零,所以分子势能为零D.分子相距无穷远时分子势能为零,在相互靠近到不能再靠近的过程中,分子势能逐渐增大29.下列说法正确的是()A.一定质量的理想气体,温度不变时,体积减小,压强增大B.在失重的情况下,密闭容器内的气体对器壁没有压强C.外界对气体做功,气体的内能一定增大D.气体的温度越高,气体分子无规则运动的平均动能越大30.被活塞封闭在气缸中的一定质量的理想气体温度升高,压强保持不变,则:()(A)气缸中每个气体分子的速率都增大(B)气缸中单位体积内气体分子数减少(C)气缸中的气体吸收的热量等于气体内能的增加量(D)气缸中的气体吸收的热量大于气体内能的增加量三、计算题:31、如图所示,重G1的活塞a和重G2的活塞b,将长为L的气室分成体积比为1﹕2的A、B两部分,温度是127℃,系统处于平衡状态,当温度缓慢地降到27℃时系统达到新的平衡,求活塞a、b移动的距离。
热 学 测 试 题 答 题 卷一、选择题:每小题4分,共52分二、计算题:每题6分,共18分31解:如图所示,设b 向上移动y ,a 向上移动 x , 因为两个气室都做等压变化 所以由盖.吕萨克定律有:对于A 室系统: 300)(4003131S x L LS -= (4分) 对于B 室系统: 300)(4003232S x y L LS +-= (4分) 解得:x=L/12 (2分)y=L/4 (2分)。