信号检测与处理电路-1
论音频信号的反相检测与处理

论音频信号的反相检测与处理随着广播技术的不断发展,人们对广播信号的音质要求也越来越高,随着调频接收机的普及,人们把从最初对调幅广播的喜爱也转移到了调频广播上,与调幅广播相比,调频广播是高品质广播,具有抗干扰能力强,可以实现立体声广播等优点,就我台而言,目前调频广播已覆盖全省85﹪以上,对我台广播事业发展起到了一定的推动作用,而信号反相问题也一直困扰我台,据了解,其他电台也面临着同样问题,目前,没有有效的措施来改善现状,节目上只能在管理加大力度,尽量少出现问题,技术上只能在发现反相时利用反相线暂时处理,待反相结束后重新恢复,往往信号反相现象反映到技术值班面前时,已过去了几分钟甚至十几分钟时间,这无疑已造成了劣播现象。
鉴于此种情况,我开始对国内外的一些音频设备进行考察,目前,还没有关于音频信号反相的处理设备。
于是我查阅了一些的国内、外的技术资料,做了一些仿真试验,终于研制出了一种简便的《音频信号的反相检测与处理》电路,本电路具有三大特点1、本电路线路简单,操作简便、运行稳定、造价低廉;2、本电路能及时检测到反相信号并做出快速响应,不会出现劣播现象;3、本电路不对播出系统中的音频信号进行处理,因此,不影响原播出系统的通路指标。
电路整体方框图见《图一》就信号反相来讲,造成信号反相的原因一般有三种,第一是直播室调音台被人为误动作,出现信号反相现象,特别是模拟调音台最易出现此类现象。
现在大型电台所使用的直播室调音台技术含量都高,一般都具有功能锁,技术人员调整时把一些不常用的功能都已上锁,信号反相现象基本已杜绝。
第二是设备通路,一般是音频设备之间连接时信号正负极接反,特别是矩阵连接,由于输入输出信号线特别多最易出错,在测试通路时这种现象就能得到纠正。
第三是自动播出信号,这一部分来自于录播节目,反相信号绝大部分都是它造成的,因此,控制住自动播出信号基本上就杜绝了反响现象的发生。
目前各大电台对音频信号的监测分为两种,一种为视觉监测(彩条监测),一种为听觉监测(音箱),就我台而言监测信号有八路,如此众多信号根本就无法判断某一路信号某一段时间发生了反相。
测控电路课后习题答案(全)

一部现代的汽车往往装有几十个不同传感器�对点火时间、燃油喷射、空
积分等、非线性环节的线性化处理、逻辑判断等。
1-6 测量电路的输入信号类型对其电路组成有何影响�试述模拟式测量电路与 增量码数字式测量电路的基本组成及各组成部分的作用。 随着传感器类型的不同�输入信号的类型也随之而异。主要可分为模拟式
信号与数字式信号。随着输入信号的不同�测量电路的组成也不同。 图 X1-1 是模拟式测量电路的基本组成。传感器包括它的基本转换电路�如
应用于要求共模抑制比大于 100dB 的场合�例如人体心电测量。
2-8 图 2-8b 所示电路�N1、N2 为理想运算放大器�R4=R2=R1=R3=R�试求其闭环电压放大倍 数。 由图 2-8b 和题设可得 u01 =ui1 (1+R2 /R1) = 2ui1 , u0=ui2 (1+R4 /R3 )–2ui1 R4/R3 =2ui2–2
电桥�传感器的输出已是电量�电压或电流�。根据被测量的不同�可进行相应
的量程切换。传感器的输出一般较小�常需要放大。图中所示各个组成部分不 一定都需要。例如�对于输出非调制信号的传感器�就无需用振荡器向它供电� 也不用解调器。在采用信号调制的场合�信号调制与解调用同一振荡器输出的 信号作载波信号或参考信号。利用信号分离电路�常为滤波器��将信号与噪声 分离�将不同成分的信号分离�取出所需信号。有的被测参数比较复杂�或者 为了控制目的�还需要进行运算。对于典型的模拟式电路�无需模数转换电路 和计算机�而直接通过显示执行机构输出�因此图中将模数转换电路和计算机 画在虚线框内。越来越多的模拟信号测量电路输出数字信号�这时需要模数转 换电路。在需要较复杂的数字和逻辑运算、或较大量的信息存储情况下�采用 计算机。
信号调理电路.

V IN -
+
R2
A1
-
放大
输入 信号
RG (外接)
R 1
的差
R 1
值
RS
(外接)
A3
V O UT
负载
R2
RS
A2
V IN+
外接地
(a) 经典的前置放大器
电路结构: 对称输入级,由运放A1、A2组成 差动输出级,由运放A3组成
对称输入级对共模干扰信号具有很强的抑制能力 差动输出级将电路双端输入方式变换成单端对地输出方式
理想运放分析要点: 假设运放为理想运放,输入阻抗无穷大、开环放大倍数为无穷 大、输出阻抗为零,不计偏置电流和失调电压。
(1)虚断 (2)虚短 测量常用运放:
OPO7 uA741 LM324 LM358 等
放大电路关键器件-运算放大器
实际运放的设计指标考虑: (1) 输入失调电压 (2) 输入偏置电流
四. 隔离放大器
隔离放大电路定义 隔离放大电路的输入、输出和电源电路之间没
有直接的电路耦合,即信号在传输过程中没有公共 的接地端。
隔离放大器的应用于场合
隔离放大电路主要用于便携式测量仪器和某些测控系 统(如生物医学人体测量、自动化试验设备、工业过程控 制系统等)中,能在噪声环境下以高阻抗、高共模抑制能 力传送信号。它对消除来自大地回路的各种干扰和噪声具 有积极的作用。
C1:隔直电容 R3 :C1的放电回路
R2
R1 ui N1
R3
(3) 交流电压跟随电路
R2
同相放大电路的特例
为减小失调电流,R3= R2
ui C1
-∞ +
uo
+ N1
第5章信号运算电路

由同相运算放大器构成的峰值检测电路如下 图所示。其中(a)、(b)分别为正、负峰值检测电 路。
以(a)为例:当ui大于UC时,D2截止,D1导通, 电路实现采样u0=ui 。当ui下降,IC1同相电位低 于反相电位时, IC1 为跟随器,D1截止,D2导
uic 0 Rif R ROf 0
uI uN uN uO
R
Rf
Af
Rf R
uo
Rf R
uI
5.1.3 差分比例运算放大电路 两个输入端均有输入,参数对称。
Af
u0 ui1 ui2
Rf R
5.2 加减运算电路
5.2.1 同相加法运算电路
其中:Rp=R1∥R2 ∥R3 ∥R4 RN=R∥Rf
uI
0
0
uo
t
uo
0
t
0
0 t
uo
0 t
uO
1 RC
U Im sint(
dt)
UIm cost RC
二、比例积分电路
在模拟电子控 制技术中,可用运 算放大器来实现比 例积分电路,即PI 调节器,其线路如 图所示。
C1 R1
+
R0
Uin
A
+
Uex
+
Rbal
比例积分(PI)调节器
PI输入输出关系如何?
下面介绍各种运算电路的结构、特点和应用。
5.1 比例运算放大电路
电路中的信号调理与检测

电路中的信号调理与检测在电子领域中,信号调理与检测是非常重要的一部分。
它们在各种电路中起着关键的作用,帮助我们获取、处理和分析信号,在不同应用中实现精确的控制和测量。
首先,我们来讨论信号调理。
电路中的信号往往需要经过一系列的调理才能被有效地处理。
信号调理的主要目的是消除干扰并增强信号质量。
在实际应用中,信号往往会受到来自外部环境的各种干扰,例如噪声、电磁干扰等。
为了解决这些问题,我们需要使用各种信号调理技术,如滤波、放大、增益控制等。
滤波是最常见的信号调理技术之一。
它通过选择性地通过或阻塞一定频率范围内的信号来削弱或消除干扰。
常见的滤波器包括低通滤波器、高通滤波器、带通滤波器和带阻滤波器。
低通滤波器可以通过消除高频噪声来提高信号质量,而高通滤波器则可以削弱低频噪声。
带通滤波器和带阻滤波器则可以在指定的频率范围内增强或抑制信号。
通过合理选择滤波器类型和参数,我们可以根据不同需求对信号进行调理。
除了滤波,放大也是信号调理的重要手段之一。
放大器可以增加信号的幅度,从而提高信号的强度和可靠性。
常见的放大器有运算放大器、差分放大器、功放等。
运算放大器是最常见的放大器之一,它具有高开环增益和输入输出之间的线性关系。
通过选择合适的反馈电阻或电容,我们可以根据需要调整放大器的增益,实现对信号的精确放大。
除了信号调理,信号检测也是电路中的重要环节。
信号检测的主要目的是确定信号的存在和参数,例如频率、幅度、相位等。
对于连续信号,我们通常使用一些传统的检测方法,如幅度检测和频谱分析。
幅度检测可以通过采样和测量信号的幅值来确定信号的强度和变化。
频谱分析则可以将信号分解成不同频率分量,帮助我们研究和理解信号的频域特性。
对于数字信号,我们通常使用数字信号处理技术进行检测和处理。
数字信号处理涉及到信号的数字化、滤波和变换等过程。
通过AD转换器,我们可以将连续信号转换为数字信号,并利用数字滤波器对信号进行滤波。
此外,我们还可以使用快速傅里叶变换等技术对信号进行频谱分析和频域处理。
光纤光栅微弱信号检测的解调电路

u ai n s se , e印 p ia in o a pi a i a e e t n te r b s d o e d s n o e d l t n c ru t f ih sg a l t y tm t o h l t f we ko t l sg l d t c o o y, a e n t e i f d mo u ai ic i o g in l c o a c n i h h g a o h
crutw r sdt c iv eb s n iemac igcrut ew e eaaa c ep oo i ea ddgtla ao in l o v rin i i eeu e ahe et et os thn i i b t e nt v n h h tdo n ii ・ lgsg a n eso , c o h c h l d an c
常用的检测电路

量放大器, AD521集成测量放大器管脚说明和
基本应用电路如图3所示。
图3 AD521管脚及应用电路
该测量放大器的放大倍数按下面公式计算:
U0 RS G Ui Rg (10.6)
在使用AD521时,要特别注意为偏置电流提供回路。 图4给出了传感器与检测电路几种不同的耦合方式下 的接地方法:
图4 AD521输入信号耦合方式
图2 三运算放大器构成的测量放大器
根据运算放大器的基本分析方法,图2中的输出 电压:
2R1 U 0 (U 01 U 02 ) (1 )(U i1 U i 2 ) ( 10.4) R R R2
Uid Ui1 Ui2 设 ,则输出为: Rf 2R1 U0 (1 )U id R R2
本节内容不作具体转换电路的分析,只介绍有转换电路类型及功能。
1、模/数转换器 A/D转换可分为直接法和间接法。 直接法是把电压直接转换为数字量,如逐次比 较型的A/D转换器。 间接法是把电压先转换成某一中间量,再把中 间量转换成数字量。 (1) 逐次比较型模/数转换器 逐次比较型A/D转换就是将输入模拟信号与不 同的参考电压做多次比较,使转换所得的数字量在 数值上逐次逼近输入模拟量的对应值。
1、一阶低通有源滤波器
一阶有源低通滤波器由RC网络和运算放大器 构成,如图12(a)所示。
图12 一阶低通滤波器及其幅频特性
由图12(a)可得
U 1 1 jC Ui Ui (9) 1 1 jRC R jC
又由虚短,则
U 0 (1
Rf
Ui ) (10) R1 1 jRC
Uo Rf R Ui (10.8)
图11 ISO100的基本接法
2 信号处理电路
红外对管的典型应用电路

红外对管的典型应用电路红外对管是一种常见的红外接收器件,广泛应用于红外遥控、红外测距、红外反射传感等领域。
本文将介绍红外对管的典型应用电路。
一、红外对管的基本原理红外对管是一种具有红外敏感元件的光电转换器件。
它的工作原理基于红外光的吸收和转换。
当红外光照射到红外对管上时,红外光被红外敏感元件吸收,并产生电流信号。
通过对这个电流信号的处理和分析,可以实现对红外光的检测和测量。
红外对管的典型应用电路主要包括信号检测电路、放大电路、滤波电路以及输出电路等部分。
1. 信号检测电路红外对管的信号检测电路主要用于检测红外光的存在与否。
它通常由一个光敏二极管和一个电阻组成。
当红外光照射到光敏二极管上时,光敏二极管产生电流,通过电阻产生的电压信号可以检测到红外光的存在。
2. 放大电路红外对管输出的电流信号比较微弱,需要经过放大电路进行放大。
放大电路通常采用运放作为放大元件,通过调节运放的增益大小,可以实现对红外光信号的放大。
3. 滤波电路由于红外对管对其他频段的光也有一定的响应,为了减少干扰和提高检测精度,需要在电路中加入滤波电路。
滤波电路可以通过选择合适的滤波器件,如电容、电感等,来滤除非红外光信号。
4. 输出电路红外对管经过信号检测、放大和滤波等处理后,最终需要输出一个电压或电流信号。
输出电路可以根据具体的应用需求选择合适的电路设计,如电压输出、电流输出或开关输出等。
三、红外对管的典型应用场景1. 红外遥控红外对管广泛应用于遥控器中,用于接收和解码遥控器发送的红外信号。
当用户按下遥控器上的按键时,遥控器会发送一个特定的红外信号,红外对管接收到这个红外信号后,将其转换为电信号,通过解码电路解码后,可实现对电视、空调、音响等家电的遥控操作。
2. 红外测距红外对管还可以用于测量物体的距离。
通过发射红外光,并接收反射回来的红外光,可以计算出物体与红外对管的距离。
这种红外测距技术被广泛应用于自动门、机器人导航、智能驾驶等领域,实现对物体距离的快速测量和定位。
信号检测及处理电路图

信号检测及处理电路图
下图是由红热释电红外传感器、光敏电阻、BISS0001组成的信号检测及处理电路。
红热释电红外传感器只对波长为10μm(人体辐射红外线波长)左右的红外辐射敏感,所以除人体以外的其他物体不会引发探头动作。
探头内包含两个互相串联或并联的热释电元,而且制成的两个电极化方向正好相反,环境背景辐射对两个热释元件几乎具有相同的作用,使其产生释电效应相互抵消,于是探测器无信号输出。
一旦人侵入探测区域内,人体红外辐射通过部分镜面聚焦,并被热释电元接收,但是两片热释电元接收到的热量不同,热释电也不同,不能抵消,于是输出检测信号。
BISS0001是由运算放大器、电压比较器、状态控制器、延迟时间定时器以及封锁时间定时器等构成的数模混合专用集成电路。
当外界光强较强时,光敏电阻阻值很小,BISS0001检测到低电平,从而封锁14脚,禁止传感器infare1的信号。
当外界光强较弱时,光敏电阻阻值很大,BISS0001检测到低电平,开启14脚;infare1检测到人体信号时,产生微弱的信号输出,经R5、R1005、R4、C1、C6、C7组成的信号放大滤波电路。
R1000、R1001、C1000和C1001组成的延时电路。
信号经处理后从2脚输出。
表面肌电信号检测电路的多通道数据同步与处理

表面肌电信号检测电路的多通道数据同步与处理表面肌电信号(Surface electromyography,sEMG)是一种用来检测肌肉活动的非侵入性技术。
sEMG信号具有多通道性,即可以同时采集来自不同肌肉群的信号。
在多通道数据采集过程中,需要解决数据同步与处理的问题,以确保数据的准确性和可靠性。
一、数据同步的重要性sEMG信号的采集过程中,通常会使用多个传感器来获取不同部位的信号。
然而,由于不同传感器之间的触发或采样时间存在微小差异,导致数据之间存在时间偏移。
若未进行同步处理,将会对后续数据分析的结果产生负面影响。
二、多通道数据同步方法在多通道数据同步方面,有多种方法可供选择,如硬件同步和软件同步。
1. 硬件同步方法硬件同步方法通过外部触发信号和时钟信号来确保数据的同步采集。
具体实现方法包括:- 使用专门的同步电路,通过触发器将不同通道的采样信号同步;- 采用一致的时钟源,使不同通道的采样频率相同;- 借助同步电源,确保不同通道的传感器工作在同一电压或电流水平。
2. 软件同步方法软件同步方法通过信号处理算法来实现数据的同步。
主要步骤包括:- 采集所有通道的原始数据;- 对数据进行预处理,去除噪声和干扰;- 通过时间戳或触发信号,对不同通道的数据进行对齐;- 调整采样频率,使得不同通道的数据以相同的速率进行存储。
三、多通道数据处理方法在多通道数据采集后,需要进行一系列处理方法,以提取有用信息并消除噪声。
1. 滤波处理sEMG信号存在大量噪声,影响数据的准确性。
滤波处理可以采用低通滤波器、高通滤波器、带通滤波器等来消除噪声,同时保留信号的主要频域特征。
2. 特征提取特征提取是对sEMG信号进行分析和处理的重要步骤。
常用的特征提取方法包括时域特征和频域特征两种。
时域特征包括均值、方差、波形长度等;频域特征则包括功率谱密度、谱熵等。
3. 模式识别与分类通过设计有效的模式识别算法,可以将sEMG信号与相应的肌肉活动进行关联,并对不同运动状态进行分类。
表面肌电信号检测电路的高速数据采集与处理

表面肌电信号检测电路的高速数据采集与处理随着生物医学领域的发展,表面肌电信号检测技术在康复和运动控制中发挥着重要作用。
为了能够准确、高效地采集和处理表面肌电信号,需要设计一套高速数据采集与处理电路。
本文将介绍这一电路的设计原理、关键组成部分以及实现过程。
1. 背景介绍表面肌电信号是人体肌肉运动产生的电活动信号,可以用来评估肌肉的活动状态和疾病情况。
传统的表面肌电信号采集电路存在信号干扰和低采样率等问题,为了解决这些问题,需要设计一套高速数据采集与处理电路,以提高信号采样的质量和效率。
2. 设计原理高速数据采集与处理电路的设计原理主要包括信号采集、信号放大和信号处理三个环节。
信号采集:采用表面电极,将电极与肌肉表面紧密贴合,实时采集肌肉活动产生的微弱电信号。
信号放大:使用高增益的信号放大器将采集到的微弱电信号放大成适合模数转换器(ADC)输入的电压范围。
信号处理:采用数字信号处理器(DSP)对放大后的信号进行数字滤波、特征提取和模式识别等处理,以得到有用的信息。
3. 关键组成部分(1)表面电极:通过选用导电材料和适当设计形状,保证电极与肌肉表面接触良好,能够准确采集肌肉信号。
(2)信号放大器:采用低噪声、高增益的运算放大器,通过对信号进行放大来提高信号质量,并将信号调整至ADC的输入范围。
(3)模数转换器(ADC):将模拟电信号转换为数字信号,并根据设定的采样率进行采样,以便后续数字信号处理。
(4)数字信号处理器(DSP):对采集到的数字信号进行数字滤波、特征提取和模式识别等处理,以获得有关肌肉活动的信息。
4. 实现过程(1)电路设计:根据上述原理和组成部分,设计相应的电路图,确定各个元器件的连接和参数。
(2)电路制作:按照电路图进行元器件的选取和布局,将各个部分连接起来,形成完整的电路板。
(3)电路调试:将制作好的电路连接到电源和计算机等设备上,测试电路的工作状态,并进行调试和优化,以确保电路的正常运行。
习题答案

第8章信号检测与处理电路8.1 教学内容与要求本章重点讲述集成运放在信号检测与处理中的应用,介绍了集成运放在解决实际工程问题中的作用,以及信号检测系统中常用的仪用放大电路、有源滤波器电路、电压比较器电路的组成结构、工作原理及工程应用。
教学内容与教学要求如表8.1所示。
表8.1 第8章教学内容与要求特性难以匹配,电阻值也不可能特别精确,因此放大还有一定的误差,在要求较高的场合,可采用集成仪用放大器。
电荷放大器可以将电荷量转换成电压量,主要用于电容类传感器的电荷放大。
采样保持电路用于A/D 转换过程中,保持采样值不变,直到A/D转换结束。
精密整流电路用于对小信号的整流。
8.2.2 有源滤波电路1. 滤波电路的基础知识(1)滤波电路的功能:选择有用频率信号,同时抑制无用频率成分。
(3)对滤波电路频率特性的要求:通常把能够通过的信号频率范围定义为滤波器的通带,在通带内,滤波电路的增益应为保持为常数。
把受阻或衰减的信号频率范围称为阻带,在阻带内,滤波电路的增益应该为零或很小。
(3)滤波电路的分类:按处理的信号不同,可分为模拟滤波电路和数字滤波电路。
按使用的元件不同,分为LC滤波器、RC滤波器和RLC滤波器。
按有无使用有源器件分,有源滤波器和无源滤波器。
按幅频特性不同,分为低通滤波器、高通滤波器、带通滤波器、带阻滤波器和全通滤波器。
(4)滤波电路的主要参数①通带电压增益A up对于低通电路,A up是频率f=0时的输出电压与输入电压之比;对于高通滤波电路,当集成运放性能理想时,A up是频率f=∞时的输出电压与输入电压之比。
(1)在频率特性性上的对偶关系当低通滤波电路和高通滤波电路的通带增益和截止频率分别相等时,两者的幅频特性曲线相对于垂直线f=f0对称。
(2)在传递函数上的对偶关系将低通中的sC换成1/R,而将R换成1/(sC),则变成对应的高通滤波电路的传递函数。
(3)在电路结构上的对偶关系把低通滤波电路中起滤波作用的R换成C,以及起滤波作用的C换成R,则低通滤波电路就转化为对应的高通滤波电路了。
计算机控制技术练习题目(考试)

4、采样保持器有什么作用?
保持模拟量信号不变,以便完成A/D转换; 同时采样几个模拟信号,以便进行数据处理和测量; 减少D/A转换器的输出“毛刺”; 把一个D/A转换器的输出分配到几个输出点,以保证输出电压的稳 定性。
5、试说明保持电容的大小对数据采集系统的影响
(1)保持电容值小,则采样状态时充电时间常数小,即保 持电容充电快,输出对输入信号的跟随特性好,但在保持状 态时放电时间常数也小,即保持电容放电快,故保持性能差; (2)反之,保持电容值大,保持性能好,但跟随特性差
过程通道可分为1模拟量输入通道2模拟量输出通道3数字量输入通道4数字量输出通道2什么是信号的采样量化和编码时间上连续的模拟信号变成一连串时间上不连续的脉冲信号的过程称为采样采样信号不能直接输入计算机将其整量化后成为数字信号的过程称为量化把量化信号转换为二进制代码的过程称为编码3什么是香农采样定理只有采样频率大于最高信号频率的2倍采样信号和连续信号输入信号的频谱才是相等的5试说明保持电容的大小对数据采集系统的影响把一个da转换器的输出分配到几个输出点以保证输出电压的稳定性
7、什么是直接数字控制系统?画出其原理框图
• DDC(Direct Digital Control)系统就是通过检测元件对一 个或多个被控参数进行巡回检测,经输入通道送给微机, 微机将检测结果与设定值进行比较,再进行控制运算, 然后通过输出通道控制执行机构,使系统的被控参数达 到预定的要求。
外部设备
模拟输入 (1~16)
S1 AD7506
GND OUT
S16 A0 A1 A2 A3 EN
模拟输出 15V NC 15V
模拟输入 (17~32)
S1 AD7506
测试技术与信号处理课后答案

机械工程测试技术基础习题解答教材:机械工程测试技术基础,熊诗波 黄长艺主编,机械工业,2006年9月第3版第二次印刷。
第一章 信号的分类与描述1-1 求周期方波(见图1-4)的傅里叶级数(复指数函数形式),划出||–ω和φn –ω图,并与表1-1对比。
解答:在一个周期的表达式为00 (0)2() (0)2T A t x t T A t ⎧--≤<⎪⎪=⎨⎪≤<⎪⎩积分区间取(-T/2,T/2)00000002202002111()d =d +d =(cos -1) (=0, 1, 2, 3, )T T jn tjn tjn t T T n c x t et Aet Ae tT T T Ajn n n ωωωππ-----=-±±±⎰⎰⎰所以复指数函数形式的傅里叶级数为001()(1cos )jn tjn tn n n Ax t c ejn e n∞∞=-∞=-∞==--∑∑ωωππ,=0, 1, 2, 3, n ±±±。
(1cos ) (=0, 1, 2, 3, )0nI nR A c n n n c ⎧=--⎪±±±⎨⎪=⎩ππ21,3,,(1cos )00,2,4,6,n An A c n n n n ⎧=±±±⎪==-=⎨⎪=±±±⎩πππ 1,3,5,2arctan1,3,5,200,2,4,6,nI n nRπn c πφn c n ⎧-=+++⎪⎪⎪===---⎨⎪=±±±⎪⎪⎩图1-4 周期方波信号波形图没有偶次谐波。
其频谱图如下图所示。
1-2 求正弦信号0()sin x t x ωt =的绝对均值x μ和均方根值rms x 。
解答:00002200000224211()d sin d sin d cos TTT Tx x x x x μx t t x ωt t ωt t ωt T T TT ωT ωπ====-==⎰⎰⎰222200rms0000111cos 2()d sin d d 22T T Tx x ωtx x t t x ωt t t T T T-====⎰⎰⎰1-3 求指数函数()(0,0)at x t Ae a t -=>≥的频谱。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
-
R1
A1
A
-∞
I R2 B
+
+
uO
-∞
R1R
A3 RF
uI2
+ + uO2
A2
图8-2 差分测量电路
模 拟电子技术
模 拟电子技术
uo1
uo2
(1
2R1 R2
)(ui1
ui2 )
uo
RF R
(uo1 uo2 )
RF R
(1
2R1 R2
)(ui1
ui
2
)
总结:
•当UI1=UI2=UIC时,相当于电路输出了共模信号,电压输为0, 该电路总的结:共模信号被抑制。 •调节R2的阻值,可以改变电路的放大倍数。
(3)集成仪用放大器
14
4.44k
2
404
3
40.04
4
5
7
6
15
1 16
+∞ +
A1
20k 5p
5p 20k
12 9
V+
V-
5p
20k
20k
-∞ +
+
20k
A320k
-∞
5p
+
+
A2
13
11
6,7脚相连: 增益1;
10
2,6,7脚相连:增益10;
8
3,6,7脚相连: 增益100;
4,7,5,6脚相连: 增益1000;
(2)但是,根据传感器的基本原理,作为信号源的传感 器,多数的等效电阻均不是常量,它们随所测物理量 和环境的变化而变。
(3)这样,对于放大电路而言,相当于信号源内阻是变 量,根据前述源电压放大倍数的表达式
Aus
Ri Ri Rs
Au
模 拟电子技术
(1) 电路组成和工作原理
uI1
+∞ +
uO1 R
RF
图8-5 滤波器的效果图
模 拟电子技术
2.滤波器的主要技术指标
通带: 能够通过信号的频率范围。
通带放大倍数
阻带: 不能够通过信号的频率范围。 通带与阻带之间称为过渡带。
传递函数:类似前面介绍的放大倍数。 幅频特性:放大倍数的模随频率的变化关系。
截止频率:当放大倍数下降到通带放大倍数的0.707倍时, 相应的频率。
•为了较少误差,要求采用精密电阻。
•实际中A1和A2的特性难以匹配,电阻值也不能特别精确,因 此放大会有一定误差。
模 拟电子技术
(2)应用举例
VCC
us1+Δus1 + ∞
uO1 R
RF
+
-
R
R
R2
A1
R1 R1
-∞
+
+
uO
R
Rt
-∞
R
A3 RF
us2
+ + uO2
A2
图8-3 温度测量电路
模 拟电子技术
模 拟电子技术
分类:
按处理 方法分
硬件滤波 软件滤波
按构成 无源滤波器 器件分
有源滤波器
按所处理 信号分
模拟滤波器 数字滤波器
按频率 特性分
低通滤波器 高通滤波器 带通滤波器 带阻滤波器
模 拟电子技术
3. 滤波电路的种类
低通滤波器(LPF) 通带放大倍数
理想幅频特性 无过渡带
通带截止频率
下降速率
用幅频特性描述滤波特性,要研究 Aup 、Au ( f0、下降速率)。
模 拟电子技术
理想滤波器的幅频特性
高通滤波器(HPF)
阻容耦合
带通滤波器(BPF)
通信电路
带阻滤波器(BEF))
抗已知频率的干扰
全通滤波器(APF))
f-φ转换
电路组成和分析方法; 5.掌握高通、带通和带阻滤波电路的的结构和
分析方法; 6. 理解集成运算放大器的非线性应用的特点; 7. 掌握电压比较器的基本特性和分析方法。
模 拟电子技术
电子信息系统的组成
信号的 提取
信号的 预处理
信号的 加工
传放
滤
感大
波
器器
器
取
A/D
样
转
保
换
持
器
控制电路
图8-1 信号检测系统基本框图
信号的
执行
计 算 机 系 统 总 线
模 拟电子技术
8.1 信号检测系统中的放大电路
8.1.1 精密仪用放大器
一、精密仪用放大器的特点 二、精密仪用差分放大器电路
模 拟电子技术
一、精密仪用放大器的特点
(1)在实际信号检测系统中,通常前端都用传感器获取 信号,即把被测物理量通过传感器转换为电信号,然 后进行放大。
模Байду номын сангаас拟电子技术
第 8 章 信号检测与 处理电路
8.1 信号检测系统中的放大电路 8.2 有源滤波电路 8.3 电 压比较器
小结
模 拟电子技术
本章教学基本要求
1.理解精密仪用放大器的电路结构和工作原理; 2.掌握滤波器的有关概念; 3. 理解有源滤波电路的工作原理和分析方法; 4.掌握一阶LPF,简单二阶LPF,压控二阶LPF的
图8-4 INA102集成仪用放大器
模 拟电子技术
8. 2 有源滤波电路
8.2.1 有源低通滤波电路 8.2.2 有源高通滤波电路 8.2.3 有源带通滤波电路
模 拟电子技术
1.滤波器的用途
引言
滤波器主要用来滤除信号中无用的频率成分, 例如,有一个较低频率的信号,其中包含一些较 高频率成分的干扰。滤波过程如图8-5所示.。
模 拟电子技术
等效品质因数Q
对于低通和高通滤波器而言,当外加信号的频率 f=f0时,放大倍数的模与通带电压放大倍数之比。
Q Au f f0
1
Aup
3 Aup
对于带通和带阻滤波器而言,等效品质因数等于 中心频率与带宽的比值。对于带通滤波器而言, Q值越大,频带越窄,选频特性越好。
Q f0 BW