数学分析

合集下载

数学分析知识点总结

数学分析知识点总结

数学分析知识点总结一、实数系与复数系1.1 实数系的定义实数系是我们熟知的数系,包括有理数和无理数。

实数系满足加法、乘法封闭性、交换律、结合律、分配律等运算性质。

在实数系中,每个数都可以用小数形式表示,例如π=3.1415926535…,e=2.7182818284…等。

1.2 复数系的定义复数系是由实部和虚部组成的数,常用形式为a+bi,其中a为实部,b为虚部,i为虚数单位,满足虚数单位的定义i²=-1。

复数系具有加法、乘法运算,也满足封闭性、交换律、结合律、分配律等运算性质。

1.3 实数系与复数系的关系实数系是复数系的一个子集,所有实数可以看作复数系中的实部为零的复数。

实数系和复数系是数学分析中的基础,涉及了数的概念和性质,对后续的学习具有重要的作用。

二、函数与极限2.1 函数的定义函数是一种对应关系,如果对于每一个自变量x,都有唯一确定的函数值f(x),那么称f是x的函数,在数学分析中,常见的函数有多项式函数、指数函数、对数函数、三角函数等。

2.2 极限的概念极限是数学分析中的重要概念,用来描述函数在某一点附近的表现。

通俗地说,极限是函数在某一点上的“接近值”,用数学语言来描述,如果当自变量x趋近于a时,函数值f(x)趋近于L,那么称L是函数f(x)在x=a处的极限,记作lim(x→a)f(x)=L。

2.3 极限的性质极限有一些重要的性质,包括唯一性、局部有界性、保号性等。

同时,极限还具有四则运算性质,即两个函数的极限之和、差、积、商等于分别对应的函数的极限之和、差、积、商。

这些性质为求解极限问题提供了便利。

2.4 极限存在的条件函数在某一点处极限存在的条件有界性、单调性、有序性、保号性等。

在实际问题中,要根据极限存在的条件来判断函数在某一点处的极限是否存在。

2.5 极限的计算方法极限的计算方法包括用极限的性质、夹逼定理、洛必达法则等,这些方法能够帮助我们求解复杂的极限问题,对于深入理解函数的性质有很大的帮助。

数学分析pdf

数学分析pdf

数学分析pdf数学分析是一种应用于数学研究的技术。

它使用精密的数学语言对外部客观世界和内部抽象世界的大量杂乱的事实、规律、关系、性质、过程和结果进行深入地描述、解释和预测。

数学分析技术围绕着许多学科展开,如概率数学、统计数学、动态系统分析、矩阵分析、拓扑学等。

一、数学分析的定义数学分析是一种专门研究函数、极限、积分、微分方程以及复杂几何体的数学技术。

它主要关注该学科的理论基础,并研究在特定条件下的函数的行为以及它们之间的关系。

二、数学分析的用途数学分析有着应用于各行各业的广泛,它可以被运用在物理学和工程学中,以解决各类实际问题,如拟计划优化、精确测量、力学和热学等。

它还是建立数学模型的基础,可用于研究现实世界的有限变量的不确定性。

三、数学分析的内容数学分析含有诸多概念、定义和定理,主要包括下列几部分:(1)实数与有理数:实数和有理数的定义,以及它们的性质。

(2)函数:定义、基本概念,多项式、参数方程和曲线的性质,例如局部极值、凹凸性等。

(3)微积分:求导数、积分、初等函数,定义和求证坐标系下函数的最大值、最小值等内容。

(4)复数分析:复数的定义及其在极坐标、相位表达式和极角表示中的性质,以及与微积分相关的定理。

(5)线性代数:向量、向量空间、矩阵、特殊形式、行列式、线性等式组、变换和子空间等,还包括齐次线性方程组和线性方程组的解法。

四、数学分析的应用数学分析也是物理学、工程学中数学运用的基础。

数学分析在许多领域都得到了广泛应用,如品质管理、计算机科学、金融学、经济学、生命科学、机械工程等。

它的理论和方法在许多实用领域得到了广泛,如建模仿真、最优化解决方案、计算解析和数值计算等。

数学分析(考研必看)

数学分析(考研必看)

数学分析第一章实数集与函数§1.实数一、 实数及其性质1. 实数的定义:实数,是有理数和无理数的总称。

2. 实数的六大性质:①(四则运算封闭性):实数集R 对加、减、乘、除(除数不为0)四则运算封闭,即任意两个实数的和、差、积、商(除数不为0)仍然是实数。

②(有序性):实数集是有序的,即任意两个实数a, b 必满足以下三种关系之一:a<b 、a=b 、a>b 。

③(传递性):实数的大小关系具有传递性,即若a>b, b>c 则a>c 。

④(阿基米德性):实数具有阿基米德性,即对任何a, b ∈R, 若b>a>0,则存在正整数na>b.⑤(稠密性):实数集R 具有稠密性,即任意两个不相等的实数之间必有另外一个实数,且既有有理数也有无理数。

⑥实数集R 与数轴上点一一对应。

二、 绝对值与不等式1. 实数绝对值的性质: ①0;00a a a a =-≥==当且仅当时有 ②-a a a ≤≤ ③;a h h a h a h h a h <<=>-<<≤<=>-≤≤ ④a b a b a b -≤±≤+三角不等式⑤ab a b = ⑥(0)a a b b b=≠ §2数集·确界原理一、 区间与邻域1. 有限区间:开区间:{}x a x b <<记作(),a b ;闭区间:{}x a x b ≤≤记作[],a b ;半开半闭区间:{}x a x b ≤<记作[),a b ,{}x a x b <≤记作(],a b无限区间:(]{},a x a -∞=≤,(){},a x x a -∞=≤,(){},a x x a +∞=>,(){},x x R -∞+∞=-∞<<+∞=2. 邻域:设a R ∈,0>,满足绝对值不等式x a -<的全体实数x 的集合称为点a 的邻域,记作();U a 或写作()U a ,即有(){}();,U a x x a a a =-<=-+。

数学分析报告(3篇)

数学分析报告(3篇)

数学分析报告(3篇)数学分析报告(精选3篇)数学分析报告篇1动手做题巩固了基础概念后,就应该把“理论”与“实际”结合起来了,也就是做题,做题是最好的检验基础是否扎实的方法。

做题可以掌握做题的方法,积累解题的思路,对所学内容逐步进行练习,最后达到看到题目就可以将步骤一字不差的解出来。

这个阶段做题主要做课本上的例题还有课后的练习题。

很多考生喜欢看题,对照着答案看了一遍觉得懂了,这样做是不对的。

不实际的做题是肯定不会知道自己到底是在哪一步卡住而使题做不下去了。

所以一定要动手做题,“眼高手低”是复习中的大忌。

通过做题也可以透彻理解各章节的知识点及其应用,达到相辅相成的理想复习效果。

第一遍复习时,需要认真研究各种题型的求解思路和方法,做到心中有数,同时对自己的强项和薄弱环节有清楚的认识,这样在第二遍复习的时候就可以有针对性地加强自己不擅长的题型的练习了,经过这样的系统梳理,相信解题能力一定会有飞跃性的提高。

做历年真题在做真题的.时候一定要全身心的投入,把每一年的真题当做考试题来做,把握好时间,将做每份真题的时间控制在两个半小时之内,做完之后按照考研阅卷人给出的评分标准对自己的试卷进行打分,记录并分析试卷中出错的地方,找出与阅卷人所给答案不符合的地方,逐渐完善自己的做题思路,逐渐向阅卷人的思路靠拢。

另外除了做真题之外大家还要学会总结归纳历年真题,将历年真题中的考点列成表格,这样可以有助于大家预测考点。

做全真模拟题与参考书基础题其次,要做典型题。

做题时要有这样一种态度:做题是对知识点掌握情况的检验,在做题过程中不能只是为了做题而做题,要积极、主动的思考,这样才能更深入的理解、掌握知识,所学的知识才能变成自己的知识,这样才能使自己具有独立的解题能力。

从历年的考研真题来看,线性代数的计算量比较大,但出纯计算的可能性比较少,一般都是证明中带有计算,抽象中夹带计算。

所以考生在做题时要注意证明题的逻辑严紧性,掌握一些知识点在证明一些结论时的基本使用方法,虽然线性代数的考试可以考的很灵活,但这些基本知识点的使用方法却比较固定,只要熟练掌握各种拼接方式即可。

《数学分析》教学大纲

《数学分析》教学大纲

《数学分析》教学大纲《数学分析》教学大纲一、课程概述《数学分析》是数学专业的一门重要基础课,它旨在为学生提供深入的数学分析知识和技能,为后续的高级数学课程打下坚实的基础。

本课程的目标是培养学生的逻辑思维能力、抽象思维能力和解决问题的能力。

二、课程目标1、理解并掌握数学分析的基本概念、原理和方法,包括极限、导数、微分、积分等。

2、理解并掌握数学分析中的一些重要定理和公式,包括微积分基本定理、泰勒定理、格林公式等。

3、培养学生的逻辑思维能力、抽象思维能力和解决问题的能力,使学生能够运用所学的数学分析知识解决复杂的数学问题。

4、培养学生的自学能力,使学生能够自主地学习新的数学分析知识和技能。

三、课程内容1、数列的极限、函数的极限、连续函数、导数、微分、不定积分、定积分、级数、泰勒定理等基本概念和原理。

2、微分中值定理、洛必达法则、泰勒公式、导数的应用、积分的应用、多元函数的微分和积分等进阶内容。

3、一些重要的数学分析方法和技巧,包括无穷级数、瑕积分、傅里叶分析、微分方程等。

4、数学分析在其他领域中的应用,如物理学、计算机科学、经济学等。

四、课程安排本课程分为两个学期,每个学期为36个学时,每个学时为45分钟。

每周安排4个学时,共12周。

五、教学方法本课程采用讲授、演示、练习、讨论等多种教学方法,使学生能够更好地理解和掌握数学分析知识。

六、作业和考试本课程要求学生完成一定数量的作业,包括课堂练习和课外作业。

作业内容主要是针对课堂讲授的知识和技能进行练习和巩固。

考试形式为笔试,考试内容主要是针对学生掌握的数学分析知识和技能进行测试。

七、教师队伍本课程的教师队伍由具有丰富教学经验和深厚数学分析知识的教授和副教授组成,他们将为学生提供全面的教学支持和指导。

八、教学资源本课程将提供各种教学资源,包括教材、参考书籍、网上资料、教学视频等,以帮助学生更好地学习和掌握数学分析知识和技能。

九、课程评估本课程的评估将采用多种方式进行,包括作业、考试、课堂表现等。

数学分析-课件-(完整版)

数学分析-课件-(完整版)

x)dx
f(x)(x)0,
发散。
f (x) dx
a
比较判别法II(用极限比较)
设函数 f (在x) [a,有定) 义,在任意有限区间
[a, A上] 可积,且
(x)0s.t.x l im | f((x x))|l,
(1)若 0l, 则
(
收敛 x)dx
a
收敛;
a f (x)dx
(2)若
,则
小结
第十五章 多元函数的极限与连续性
§1 平面点集
§2 多元函数的极限与连续性
目录
第十六章
偏导数与全微分
§1 偏导数与全微分的概念 §2 复合函数微分法
§3 几何应用
§4 方向导数
§5 泰勒公式
小结
第十七章
隐函数存在定理
§1 单个方程的情形
§2 方程组情形
第十八章
极值与条件极值
§1 极值与最小二乘法
(2)若 a f ( x) dx
lim (xa)p| f(x)|l,

x a

收敛,
0l , p1

b
a f ( x发)散d。x
b
0l , p1 a f ( x) dx

b
a
f
( x)d有x 唯一暇点
a.
(Dirichlet)
g(x)单 a bf(调 x)xld iam x 有 且 g(x) 界 0 a bf(x)g(x)d收 x 敛
(a,a]
无界。若
b
存在,则称瑕积分
b
lim
f (x)dx
收敛0, 且a积分值为该极限值,记为
a f (x)dx
b

数学分析课件

数学分析课件
算一些复杂的极限表达式。
连续性
01 02
连续性的定义
连续性是函数的一种性质,它描述了函数在某一点处的变化情况。如果 函数在某一点处的左右极限相等且等于该点的函数值,则函数在该点处 连续。
连续性的性质
连续性具有一些重要的性质,如局部保序性、介值定理等。这些性质在 数学分析中有着广泛的应用。
03
连续性的判定
判定一个函数是否连续,可以通过计算该函数的左右极限并检查它们是
否相等来实现。此外,还可以利用连续性的性质进行判定。
导数
导数的定义
导数是函数的一种性质,它描述了函 数在某一点处的切线斜率。导数的定 义包括函数在某一点的导数和函数在 某区间的导数。
导数的性质
导数的计算
计算导数的方法有很多种,如直接法、 乘积法则、复合函数求导法则等。这 些方法可以帮助我们计算一些复杂的 导数表达式。
电子工程
在电子工程中,数学分析用于信号处理、图像处 理和通信系统设计。
计算机科学
在计算机科学中,数学分析用于算法设计、数据 分析和人工智能等领域。
06 数学分析的习题与解答
CHAPTER
习题的选择与解答
精选习题
选择具有代表性的数学分析题目,涵盖各个知识点,难度适中, 适合学生巩固所学内容。
详细解答
极限的计算方法
计算极限的方法有很多种,如直接代入法、分解因式法、等价无穷小替换法、洛必达法则 等。根据不同的情况选择合适的方法可以简化计算过程。
导数问题
导数的定义
导数描述了函数在某一点处的切线斜率,是函数局部性质的一种体现。导数可以分为一阶导数、二阶导数等,高阶导 数可以用来研究函数的拐点、凸凹性等性质。
03 数学分析的定理与证明

数学分析第一章

数学分析第一章
1 < 1 (b a). n2
前页 后页 返回

k
是满足
k n
a
的最大的正整数,即
k +1 n
> a.
于是, a < k + 1 < k + 2 < b, 则 k + 1, k + 2 是
nn
nn
a 与 b 之间的有理数, 而 k + 1 + π 是 a 与 b 之间 n 4n
的无理数.
例2 若a,b R,对 > 0,a < b + ,则 a b.
3.实数集的大小关系具有传递性.即若a > b, b > c,则有
a>c.
4.实数具有阿基米德性 , 即对任何 a, b R, 若 b > a > 0
则存在正整数 n, 使得na > b.
5.实数集R具有稠密性.即任何两个不相等的实数之间必 有另一个实数,且既有有理数,也有无理数.
6.实数集R与数轴上的点具有一一对应关系.即任一实数 都对应数轴上唯一的一点,反之,数轴上的每一点也都唯 一的代表一个实数.
证 倘若a > b,设 a b > 0, 则 a b + ,
与 a < b + 矛盾.
前页 后页 返回
(6)实数与数轴上的点一一对应
实数集 R与数轴上的点可建立一一对应关系.
1. 这种对应关系,粗略地可这样描述: 设 P 是数轴上的一点 (不妨设在 0的右边), 若 P 在 整数 n与 n + 1之间,则 a0 n. 把(n, n + 1]十等分, 若点 P 在第 i 个区间,则 a1 i. 类似可得到 an, n 2, 3, L . 这时, 令点 p 对应于 a0 .a1a2 L an L .

《数学分析》课件 (完整版)

《数学分析》课件 (完整版)
第十一章 广义积分
§1 无穷限广义积分
定积分的两个限制
积分区间的有界性 被积函数的有界性 实践中,我们却经常要打破这两个限制。如:关于级数收敛的Cauchy积分判别法;概率统计中,随机变量的空间通常是无限的;第二宇宙速度;物理中的 函数;量子运动;‥‥‥
无穷限积分的定义
设函数 在 有定义,在任意有限区间 上可积。若 存在,则称之为 在 上的广义积分,记为 此时亦称积分 收敛;若 不存在,则称积分 发散。
P.S. 为一符号,表示的是一无穷积分;而当它收敛时,还有第二重意义,可用来表示其积分值。
1. 2. 当 , 均收敛时,定义 显然, 的值与 的选取无关。
类似地,我们可以给出其它无穷积分的定义:
特别地,我们若可利用Taylor公式,求得

时 收敛, 时 发散, 时,只能于 时推得 收敛。
Question
我们将参照物取为幂函数 ,而有了上述的比较判别法;那么,将参照物取为指数函数 ,结果又如何呢? 无穷限的广义积分有着与级数非常类似的比较判别法,都是通过估计其求和的对象大小或收敛于0的速度而判断本身的敛散性;而且,我们还有Cauchy积分判别法,使某些级数的收敛与某些无穷限积分的收敛等价了起来。那么,是否可以将关于级数中结论推广至无穷限积分中来呢?某些结论不能推广的原因是什么呢?
1. 结合律
对于收敛级数,可任意加括号,即
2. 交换律
仅仅对于绝对收敛的级数,交换律成立 而对于条件收敛的级数,是靠正负抵消才可求和的,故重排后结果将任意。可见,绝对收敛才是真正的和。
定理 10.19 若级数 绝对收敛,其和为 ,设 为 的任意重排,则 亦绝对收敛,且和仍为
第十章 数项级数
§5 无穷级数与代数运算 有限和中的运算律,如结合律,交换律,分配律,在无穷和中均不成立。具体地,我们有下面的一些结论。

数学分析ppt课件

数学分析ppt课件

有限覆盖定理
总结词
有限覆盖定理是实数完备性定理中的另一个 重要结论,它涉及到实数集的覆盖问题。
详细描述
有限覆盖定理说明,任意一个开覆盖${(a_n, b_n)}$的实数集都可以被有限个开区间覆盖 。换句话说,对于任意一个实数集$S$,都 存在有限的开区间${(a_1, b_1), (a_2, b_2), ldots, (a_n, b_n)}$,使得$S subseteq cup_{i=1}^{n} (a_i, b_i)$。这个定理在证 明紧空间的性质和实数完备性中起到了关键 作用。
3
实数系中的基本运算
实数系中可以进行加法、减法、乘法和 除法等基本运算,这些运算具有交换律 、结合律、分配律等性质。此外,实数 系中还可以定义绝对值、最大值、最小 值等概念。
极限理论
01
极限的定义
极限是数学分析中的一个基本概念,它描述了当自变量趋向某一值时,
函数值的变化趋势。极限的定义包括数列极限和函数极限两种形式。
详细描述
介绍向量值函数和空间曲线的定义,通过实例说明向量值函 数和空间曲线的性质,并解释其在数学分析中的重要性和应 用。
06
实数完备性定理
区间套定理
总结词
区间套定理是实数完备性定理中的一个 重要组成部分,它描述了闭区间套的性 质。
VS
详细描述
区间套定理指出,如果存在一个闭区间套 ,即一列闭区间${[a_n, b_n]}$,满足 $a_n < b_n$且$a_n < a_{n+1} < b_{n+1} < b_n$(对任意$n$),则该区 间套中至少存在一个实数。这个定理在数 学分析中有着广泛的应用,例如在证明连 续函数的性质和极限理论中。

数学分析讲义全

数学分析讲义全

数学分析讲义全第一章:实数本章主要介绍实数的定义及其性质。

1.1 实数的定义实数包括有理数和无理数两部分。

有理数是可以表示为两个整数之间的比,无理数则不能用有理数表示。

1.2 实数的性质实数满足一些基本性质,如实数的加法、乘法满足交换律、结合律和分配律等。

第二章:极限与连续本章主要介绍数列极限、函数极限和连续函数的定义及其相关概念。

2.1 数列极限数列极限是数列逐渐逼近某个确定值的概念。

包括数列迫敛、数列发散等。

2.2 函数极限函数极限是函数在某点逐渐接近某个确定值的概念。

包括左极限、右极限等。

2.3 连续函数连续函数是函数在某点处无间断、无跳跃的性质。

第三章:导数与微分本章主要介绍导数、微分的定义及其相关性质。

3.1 导数的定义导数描述了函数在某一点的变化率。

包括函数的导数定义、导数的性质等。

3.2 微分的定义微分是函数在某点处的线性近似。

包括函数的微分定义、微分的性质等。

第四章:积分与定积分本章主要介绍积分、定积分的定义及其应用。

4.1 积分的定义积分是函数的反导数。

包括不定积分、定积分等。

4.2 定积分的性质定积分具有线性性质、加法性质、区间可加性等。

第五章:级数本章主要介绍级数的概念及其计算方法。

5.1 级数的定义级数是无穷数列之和的概念。

包括级数收敛、级数发散等。

5.2 级数的计算方法级数的计算方法具有求和、判定级数收敛性等。

这份讲义全面介绍了数学分析的基础知识,希望能帮助到您。

数学分析的概念是什么

数学分析的概念是什么

数学分析的概念是什么数学分析是一门基础数学课程,它主要研究函数的性质、极限、连续性、可积性、微积分等方面。

它是现代数学的基石之一,也是其他科学与技术领域所需的基础知识之一。

数学分析是逐步建立在数学上的自然科学的基础,用于解释物理实验结果、讨论物理理论推导、分析工程问题以及研究天文、自然界与经济社会生活中的问题。

因此,数学分析的概念非常重要。

数学分析的核心概念是函数。

函数是一种描述数学对象之间关系的映射关系,将一个数学对象的输入值映射到另一个数学对象的输出值。

在数学分析中,函数常被用来描述物理、经济、生物等领域中的量,如速度、距离、功率、密度等。

数学分析的核心是对函数进行分析、求解其性质及其行为,包括函数的极限、导数、积分、微分方程等,这些都是研究函数性质的重要工具。

数学分析中最基本的概念是极限。

极限是指当变量趋于某个值时函数的值趋于某个值的过程。

例如,当自变量x接近某个值a时,函数f(x)的值也会接近某个值L。

在数学中,我们通常用符号“lim”表示极限,且写作:lim f(x) = L (x →a)其中,x →a表示当自变量x趋于a时,函数f(x)的取值趋于L,这个L即为函数f(x)在a点处的极限。

求函数极限的方法有多种,如夹逼定理、洛必达法则等。

极限在数学分析中具有重要的意义,它可以描述了函数在某个点附近的行为,是导数、积分等概念的基础。

另外,在数学分析中,导数是一个重要的概念。

导数是函数对自变量的变化率,它可以描述函数的增长趋势或下降趋势,它的数值等于函数在某一点的切线的斜率。

利用导数,我们可以求出函数的最大值、最小值、极值等,还可以进行函数的微分方程的求解,这些都是在很多领域中求解问题所必需的。

除了导数,积分也是数学分析中基本的概念之一。

积分就是对函数在区间上的面积或体积的计算。

它可以用来计算一定时间内的速度、路程、物体的质量、电荷量、能量等。

积分有多种形式,如不定积分、定积分、线积分、曲线积分、面积积分等。

数学分析目录

数学分析目录

数学分析目录
一、极限与连续性
数列的极限定义与性质极限的运算法则极限存在的条件函数的极限函数在某点的极限函数在某无穷点的极限无穷小量与无穷大量函数的连续性连续性的定义间断点及其分类连续函数的性质与运算
二、导数与微分
导数的概念定义与几何意义可导与连续的关系导数的计算基本初等函数的导数导数的四则运算法则复合函数、隐函数、参数方程函数的导数微分微分的定义与性质微分的计算与应用
三、微分中值定理
罗尔定理拉格朗日中值定理柯西中值定理泰勒中值定理
四、不定积分
不定积分的概念与性质不定积分的计算基本积分公式换元积分法分部积分法有理函数与三角函数的不定积分
五、定积分
定积分的概念与性质定积分的计算定积分的计算法则微积分基本定理定积分的应用面积计算体积计算物理应用(如质心、动量等)
六、级数与幂级数
数列与级数的概念级数的收敛与发散级数的性质正项级数的审敛法比较审敛法比值审敛法根值审敛法幂级数幂级数的收敛域幂级数的运算函数的幂级数展开
七、多元函数分析
多元函数的极限与连续性偏导数与全微分多元函数的极值隐函数定理与雅可比矩阵多元函数的泰勒公式
八、曲线与曲面积分
曲线积分第一类曲线积分第二类曲线积分(即线积分)格林公式及其应用曲面积分第一类曲面积分第二类曲面积分(即面积分)高斯公式及其应用场论初步向量场与标量场方向导数与梯度散度与旋度此目录为数学分析的主要章节概要,每个章节下包含的具体内容可能更为详细和深入,需结合具体的教材或教学要求进行进一步的学习与讨论。

数学专业的数学分析

数学专业的数学分析

数学专业的数学分析数学分析,作为数学专业的一门核心课程,是研究实数、函数、极限、连续性、微分和积分等数学概念及其相互关系的一门学科。

它对于数学专业的学生来说具有重要的理论和实践意义。

本文将对数学专业的数学分析进行深入探讨,并探索其在实际应用中的作用。

一、数学分析的基础概念与理论1. 实数与函数数学分析的起点是实数与函数的概念。

实数是数学中最基本的概念之一,它包括有理数和无理数两部分。

函数则是实数到实数的映射关系,是数学分析的核心对象。

2. 极限和连续性极限是数学分析中的重要概念之一,它描述了函数在某一点附近的行为。

极限理论是数学分析的基础,涉及到无穷小量、无穷大量、极限的性质和计算等方面。

连续性则是极限的概念的推广,描述了函数在整个定义域内的连贯性。

3. 微分与积分微分和积分是数学分析的两大重要工具。

微分研究函数的变化率和切线问题,积分研究函数的面积、曲线长度等问题。

它们在数学专业的其他课程和实际应用中有着广泛的应用。

二、数学分析在数学专业中的作用1. 培养逻辑思维数学分析是数学专业中重要的思维训练课程。

通过学习数学分析,学生需要逐步培养出严密的逻辑思维能力,并能够准确地运用证明方法和推理技巧解决数学问题。

2. 打下数学基础数学分析是数学专业的基础课程,它为后续的高级数学课程和专业课程奠定了坚实的基础。

掌握数学分析的理论和方法,对于深入学习数学专业其他课程和进行科学研究具有重要的意义。

3. 支持科学研究数学分析在科学研究中有着广泛的应用。

许多科学问题都可以归结为数学问题,并通过数学分析的方法进行求解。

无论是物理学、力学学、经济学还是工程学等领域,数学分析都具备着重要的应用价值。

4. 推动数学应用数学分析在现实生活中的应用也十分广泛。

例如,金融工程、风险管理、信号处理、图像处理等领域都少不了数学分析的技术支持。

掌握好数学分析的方法和理论,可以更好地应对实际应用中的问题和挑战。

三、数学分析的学习方法与实践1. 理论学习与实例分析相结合在学习数学分析的过程中,理论学习是基础,但仅停留在理论层面往往难以理解和应用。

数学分析的名词解释

数学分析的名词解释

数学分析的名词解释数学分析是数学的一个重要分支,是研究实数、复数、向量等数学对象的连续性、极限、微积分等性质的学科。

通过数学分析,我们可以深入探究数学中的概念、原理和定理,帮助我们更好地理解数学的本质和应用。

一、实数在数学分析中,实数是主要的研究对象。

实数是指包含有理数和无理数的集合,它们可以表示出来的数都具有实际意义。

实数满足数轴的等距性和线段延伸性,并且可以进行加法、乘法运算,还有大小比较运算。

二、连续性连续性是数学分析的核心概念之一,指的是函数的图像在整个定义域上没有断裂,没有跳跃或奇异点。

在实数集上,一个函数在某一点处连续,意味着当自变量趋近这一点时,函数值也趋近于该点的函数值。

连续性的研究使我们能够更好地理解函数的行为,并为后续的数学推理提供了基础。

三、极限极限是数学分析中最为重要的概念之一。

它描述的是函数自变量趋向某一值时,函数值的趋势和变化规律。

在函数中,数学分析定义了两类极限:函数极限和数列极限。

函数极限研究的是自变量趋近于某点函数值的趋势,而数列极限则是研究数列中的元素随着项数增加而趋近的趋势。

通过对极限的研究,我们可以更准确地描述函数和数列的性质。

四、微积分微积分是数学分析的重要分支,由导数和积分组成。

导数描述的是函数在某一点处的变化率,它可以帮助我们研究函数的图像、极值以及曲线的斜率。

积分则是导数的逆运算,它可以求出函数在某一区间上的曲线下的面积或曲线的长度。

微积分的出现,极大地拓展了数学的研究范围,并在物理、经济学以及工程学等领域应用广泛。

五、微分方程微分方程是数学分析中的重要内容之一,是描述自然界和社会经济现象变化规律的数学工具。

微分方程可以通过函数及其导数之间的关系来表示,它可以帮助我们预测和解释如物理、生物等自然现象以及金融、生产等经济现象。

微分方程的解析解和数值解求解方法在实际应用中得到广泛应用,例如天气预报、医学领域的药物动力学等。

六、级数级数是数学分析中的另一个重要概念,它是由一列数的和所形成的数列。

数学数学分析

数学数学分析

数学数学分析数学分析数学分析是数学的一个重要分支,它主要研究实数和复数上的函数及其性质。

通过对函数的极限、连续性、可微性、可积性等性质的研究,数学分析为解决许多实际问题提供了数学工具和方法。

一、极限理论在数学分析中,极限是一个基本概念。

我们将讨论实数函数的极限,该函数可能定义在一个区间内。

设函数$f(x)$定义在区间$(a,b)$上,如果当$x$趋于$c$时,函数值$f(x)$无限地接近某一个常数$L$,则称$L$是$f(x)$在$x=c$处的极限,记作$\lim_{x\to c}f(x)=L$。

通过极限的研究,我们可以推导出导数、积分等重要的数学概念和方法。

二、连续性与可导性在数学分析中,连续性和可导性是研究函数性质时非常重要的概念。

如果函数$f(x)$在某一点$c$的左右极限存在且相等,并且函数在$c$处的函数值等于该极限值,则称函数在$c$处连续。

如果函数$f(x)$在一个区间内每一点都连续,我们称该函数在该区间内连续。

一旦函数在某一点处连续,我们还可以研究函数的可导性。

如果函数在某一点$c$的导数存在,我们称函数在该点处可导。

可导性和连续性是密切相关的,连续函数未必可导,但可导函数必定连续。

三、微分学与积分学微分学是数学分析研究中的一个重要分支,主要研究函数的导数和微分,对函数的性质进行研究。

导数表示函数在某一点处的变化率,是微分学的基本概念。

通过导数,我们可以求解函数的极值、判断函数的凹凸性以及研究函数的增减性等。

积分学是数学分析中另一个重要的分支,主要研究函数的积分和不定积分。

积分表示函数在某一区间上的累积变化量。

通过积分,我们可以求解曲线与坐标轴所包围的面积、求解定积分以及研究曲线的长度等。

四、级数理论级数理论是数学分析中一个重要而复杂的分支,主要研究无穷级数的性质和收敛性。

在级数理论中,我们讨论了级数的收敛和发散的概念,以及柯西收敛准则、比较判别法、绝对收敛等重要定理。

五、函数的一般性质除了以上讨论的主要内容外,数学分析还研究了函数的一般性质,例如函数的单调性、导数的性质、函数的极值点等。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一讲 微积分思想的产生与发展历史 在微积分产生之前,数学发展处于初等数学时期。

人类只能研究常量,而对于变量则束手无策。

在几何上只能讨论三角形和圆,而对于一般曲线则无能为力。

到了17世纪中叶,由于科学技术发展的需要,人们开始关注变量与一般曲线的研究。

在力学上,人们关心如何根据路程函数去确定质点的瞬时速度,或者根据瞬时速度去求质点走过的路程。

在几何上,人们希望找到求一般曲线的切线的方法,并计算一般曲线所围图形的面积。

令人惊讶的是,不同领域的问题却归结为相同模式的数学问题:求因变量在某一时刻对自变量的变化率;因变量在一定时间过程中所积累的变化。

前者导致了微分的概念;后者导致了积分的概念。

两者都包含了极限与无穷小的思想。

1.极限、无穷小、微分、积分的思想在中国古代早已有之公元前4世纪,中国古代思想家和哲学家庄子在《天下篇》中论述:“至大无外,谓之大一;至小无内,谓之小一。

”其中大一和小一就是无穷大和无穷小的概念。

而“一尺之棰,日取其半,万世不竭。

”更是道出了无限分割的极限思想。

公元3世纪,中国古代数学家刘徽首创的割圆术,即用无穷小分割求面积的方法,就是古代极限思想的深刻表现。

他用圆内接正多边形的边长来逼近圆周,得到了142704.3141024.3<<π ,并深刻地指出:“割之弥细,所失弥少;割之又割,以至于不可割,则与圆周合体而无所失矣。

”我国南北朝时期的数学家祖暅(中国古代数学家祖冲之之子)发展了刘徽的思想,在求出球的体积的同时,得到了一个重要的结论(后人称之为“祖暅原理”):“夫叠基成立积,缘幂势既同,则积不容异。

”用现在的话来讲,一个几何体(“立积”)是由一系列很薄的小片(“基”)叠成的;若两个几何体相应的小片的截面积(“幂势”)都相同,那它们的体积(“积”)必然相等。

利用祖暅原理求球体的体积:取一个几何体为上半球体{};将圆柱体 {2222,x y z R z ++≤≥0222x y R +≤,0z R ≤≤}减去(即挖去)倒立的圆锥{222x y z +≤,0z R ≤≤}视为另一个几何体。

则对任意的0z R ≤≤,过(0,0,)z 点作水平截面,得到的截口面积相等, 都为,由此得到球体的体积为(22R z π−)343V R π=。

2.十七世纪前微分学与积分学的发展历史公元前5世纪,古希腊数学家安提丰(Antiphon )创立了“穷竭法”,认为圆内接正多边形当边数不断增加,最后多边形就与圆相合。

公元前2世纪,古希腊数学家阿基米德(Archimedes )对“穷竭法”作出了巧妙的应用,他在《论抛物线求积法》中用“穷竭法”求抛物弓形的面积,他构造一系列三角形使它们的面积和不断接近抛物弓形的面积,这就是极限理论的最初形式。

在《论球和柱体》一书中,阿基米德首先得到了球和球冠的表面积、球和球缺的体积的正确公式。

阿基米德的著作代表了古希腊数学的顶峰。

1615年,德国数学家开普勒(J. Kepler, 1571-1630)用无穷小微元来确定曲边形的面积与体积。

他把圆看作边数无限多的多边形,圆周上每一点看作是顶点在圆心高等于半径的极小等腰三角形的底,于是圆面积就等于圆周长与半径乘积之半。

他把球看作面数无限多的多面体,球面上每一点看作是顶点在球心高等于半径的极小圆锥的底,于是球体积就等于球表面积与半径乘积之三分之一。

他还用无穷小方法精确地计算出酒桶的体积,并写了《测量酒桶体积的新科学》,书中包含了87种不同的旋转体的体积计算。

开普勒最重要的贡献是提出了行星运行三大定律:(1)行星在椭圆轨道上绕太阳运动,太阳在此椭圆的一个焦点上。

(2)从太阳到行星的向径在相等的时间内扫过相等的面积。

(3)行星绕太阳公转周期的平方与其椭圆轨道的半长轴的立方成正比。

可以说这是天文学上划时代的贡献,也是数学史上重要的里程碑。

牛顿就是应用开普勒的行星运行三大定律,通过严格的数学推导,发现了万有引力定律。

为了确定第二定律,Kepler将椭圆中被扫过的那部分图形分割成许多小的“扇形”,并近似地将它们看成一个个小的三角形,运用了一些出色的技巧对它们的面积之和求极限,成功地计算出了所扫过的面积。

在其卓有成效的工作中,已包含了现代定积分思想的雏形。

积分学的历史可追溯至古希腊,它跨越了二千多年历史。

而微分学的历史相对要短得多,这是因为积分学研究的问题是静态的,而微分学研究的问题是动态的,它涉及到运动。

直到17世纪,微分学才得到重大突破。

微分学主要来源于两个问题的研究:曲线的切线问题与函数的极大、极小问题。

法国数学家费尔马(P. Fermat, 1744-1825)在这两个问题上作出了主要贡献。

费尔马在处理这两个问题时,都是先对自变量取增量,再让增量趋于零,这就是微分学的本质所在。

费尔马也在积分学方面做了许多工作,如求面积、体积、重心等问题。

但可惜的是他没有发现微分学与积分学这两类问题之间的基本联系。

另一位已经走到了微积分基本定理的门口的是英国数学家巴罗(I. Barrow, 1630-1677),他是牛顿的老师,是剑桥大学卢卡斯讲座教授,后来他认为牛顿已经超过了他,就把这一讲座教授的位置让给了牛顿。

他在《光学和几何学讲义》一书中,已经把求曲线的切线与求曲线下区域的面积问题联系了起来,也就是说,他把微分学和积分学的两个基本问题联系了起来。

但可惜的是巴罗没有从一般概念的意义下进一步深入地研究它们。

3.牛顿和莱布尼兹对微积分学科的功绩微积分学科的建立,归功于两位伟大的科学先驱:牛顿和莱布尼兹。

关键在于他们认识到,过去一直分别研究的微分和积分这两个运算,是彼此互逆的两个过程,它们是由牛顿—莱布尼兹公式联系起来的。

1669年英国大数学家牛顿(I. Newton, 1643-1727)提出微积分学说存在正反两个方面的运算,例如面积计算和切线斜率计算就是互逆的两种运算,即微分和积分互为逆运算,从而完成了微积分运算的决定性步骤。

但由于种种原因,他决定不向外界公开他的数学成果,他的成果只是以手稿的形式在少数几个同事中传阅,而这一决定在以后给他带来了大麻烦。

直到1687年,牛顿才出版了他的著作《自然哲学的数学原理》,在这个划时代的著作中,他陈述了他的伟大创造—微积分,并应用微积分理论,从开普勒关于行星的三大定律导出了万有引力定律。

牛顿还将微积分广泛应用于声学、光学、流体运动等学科,充分显示了微积分理论的巨大威力。

牛顿是人类历史上最伟大的数学家之一。

英国著名诗人波普(Pope)是这样描述牛顿的:自然和自然的规律沉浸在一片混沌之中,上帝说,生出牛顿,一切都变得明朗。

牛顿本人却很谦虚:“我不知道世间把我看成什么人,但是对我自己来说,就象一个海边玩耍的小孩,有时找到一块比较平滑的卵石或格外漂亮的贝壳,感到高兴,而在我面前是未被发现的真理的大海。

”德国数学家莱布尼兹(G. W. Leibniz, 1646-1716) 也致力于研究切线问题和面积问题,并探索两类问题之间的关系。

他把有限量的运算与无穷小量的运算进行类比,创立了无穷小量求商法和求积法,即微分和积分运算。

1684年,他发表了论文《求极大值和极小值以及切线的新方法,对有理量和无理量都适用的,一种值得注意的演算》,两年后他又发表了他在积分学上的早期结果。

牛顿和莱布尼兹对微积分的研究都达到了同一目标,但两人的方法不同。

牛顿发现最终结果比莱布尼兹早一些,但莱布尼兹发表自己的结论比牛顿早一些。

关于谁是微积分的创始者,英国数学家与欧洲大陆的数学家经历了一场旷日持久的论战,这场论战持续了100多年。

正是由于牛顿和莱布尼兹的功绩,微积分成为了一门独立的学科,求微分与求积分的问题,不再是孤立地进行处理了,而是有了统一的处理方法。

虽然关于谁是微积分的创始者,英国数学家与欧洲大陆的数学家经历了100多年的论战,但公正的历史评价是不应该把发明微积分这一伟大的成就完全归功于一两个人的偶然的和不可思议的灵感,公正地说,微积分的产生历史,说明了这样一个真理:人类科技发展史上的任何一个进步,都是站在巨人的肩膀上取得的。

牛顿说他就是站在巨人的肩膀上,在当时这个巨人已经形成,这个巨人包括了一大批微积分的先驱们,如:阿基米德、开普勒、费尔马、巴罗等数学家。

微积分的诞生具有划时代的意义,是数学史上的分水岭与转折点,是人类探索大自然的艰苦努力的一项伟大的成功,是人类思维的最伟大的成就之一。

这个伟大发明所产生的新数学与旧数学有本质的区别:旧数学是关于常量的数学,新数学是关于变量的数学;旧数学是静态的,新数学是动态的;旧数学只涉及固定的和有限的量,新数学则包含了运动、变化和无限。

关于微积分的地位,恩格斯这样评论:“在一切理论成就中,未必再有什么象17世纪下半叶微积分的发现那样被看作人类精神的最高胜利了。

如果在某个地方我们看到人类精神的纯粹的和唯一的功绩,那正是在这里。

”微积分诞生后,数学引来了一次空前的繁荣时期。

18世纪被称为数学史上的英雄世纪。

数学家们把微积分应用于天文学、力学、光学、热学等各个领域,获得了丰硕的成果。

在数学本身,他们把微积分作为工具,又发展出微分方程、微分几何、无穷级数等理论分支,大大扩展了数学研究的范围。

4.微积分严格理论体系的完善微积分建立之后,出现了两个极不协调的情景;一方面是微积分广泛应用于各个领域,取得了辉煌的成就;另一方面是人们对于微积分的基本概念的合理性提出了强烈的质疑。

19世纪以前,无穷小量概念始终缺少一个严格的数学定义,因此导致了相当严重的混乱。

1734年英国哲学家红衣主教贝克莱(G . Berkeley, 1685-1753)对微积分基础的可靠性提出强烈质疑,从而引发了第二次数学危机。

他认为微积分的发展包含了偷换假设的逻辑错误。

例如对求导数(当时称为求流数),要先假设自变量有一个无穷小增量“”,它不能为零,但在计算后半部,又要把这增量取为零:3x y =022233300330)0(x x x x x =+⋅+=−+。

所以他说:无论怎样看,牛顿的流数计算是不合逻辑的。

为了克服微积分运算在逻辑上的矛盾,为微积分学科建立严格的数学基础,数学家们又经历了长期而艰苦的努力。

1750年法国数学家达朗贝尔(J. R. d’Alembert, 1717-1783)用极限方法取代无穷小量方法;后来法国数学家柯西(L. Cauchy, 1780-1857)在达朗贝尔通俗的极限基础上,从变量和函数角度出发给出极限的定义,从而把微积分的基础严格地奠定在极限概念之上。

最后德国数学家魏尔斯特拉斯(K. Weierstrass, 1815-1897)用静态的δε−语言来刻画动态的极限与连续概念,使极限的定义达到了最清晰最严密的程度,直到如今人们仍然在使用他的定义。

由于严格的极限理论的建立,而无穷小量可用极限的语言清楚地加以描述,这才解决了有关的逻辑困难。

相关文档
最新文档