高考金钥匙数学解题技巧大揭秘10专题十 数列求和

合集下载

数列求和的几种常见方法

数列求和的几种常见方法

数列求和的几种常见方法数列求和是数学中一种常见的问题,主要目的是计算给定数列的所有项的和。

在数学中,有许多不同的方法可以解决这个问题。

下面将介绍几种常见的数列求和方法。

1.数学归纳法:数学归纳法是一种常见的求和方法。

它基于数学归纳法的思想,即从其中一条件的正确性推出下一个条件的正确性。

当我们想计算一个数列的和时,可以尝试使用归纳法进行推导。

首先,我们假设数列的和为S(n),即前n个项的和。

然后,我们找到S(n+1)与S(n)的关系,例如通过观察求和式的规律。

最后,我们使用归纳法证明S(n+1)与S(n)的关系成立,并找到S(n)的表达式。

2.公式求和法:一些数列具有明确的求和公式,通过使用这些公式,可以直接计算数列的和。

例如,等差数列的求和公式为S(n) = n(a1 + an) / 2,其中n为项数,a1为首项,an为末项。

类似地,等比数列的求和公式为S(n) = a1(1 - r^n) / (1-r),其中a1为首项,r为公比。

利用这些公式,我们可以快速计算出数列的和。

3.差分法:差分法是另一种常见的数列求和方法。

它通过求取数列的差分数列来简化求和问题。

差分数列是指将数列中每个相邻的项相减得到的新数列。

通过计算差分数列的和,我们可以得到原始数列的和。

差分法的思路是将原本的复杂数列转化为更加简单的等差或等比数列。

4.数列分解法:数列分解法是一种将复杂的数列拆分为更简单的数列的方法。

通过拆分数列,我们能够找到更简单的求和规律,从而快速计算出数列的和。

数列分解法常用于特殊数列的求和,例如和差数列、间隔数列等。

5.递推法:递推法是通过逐步迭代计算数列的每一项来求和的方法。

我们首先计算出数列的前几个项,然后利用递推关系计算出下一个项,并将其加入到已有的和中。

通过不断迭代,我们可以逐步计算出所有项的和。

递推法常用于递推数列或递归数列的求和。

除了以上提到的求和方法,还有一些其他的方法,如等差数列的部分和、等比数列的部分和、级数求和、积分求和等。

2021高三数学专题 数列求和的基本方法和技巧

2021高三数学专题 数列求和的基本方法和技巧

2021高三数学专题数列求和的基本方法和技巧2021高三数学专题数列求和的基本方法和技巧数列求和的基本方法和技巧数列是高中代数的重要内容,又是学习高等数学的基础.在高考和各种数学竞赛中都占有重要的地位.数列求和是数列的重要内容之一,除了等差数列和等比数列有求和公式外,大部分数列的求和都需要一定的技巧.下面,就几个历届高考数学和数学竞赛试题来谈谈数列求和的基本方法和技巧.一、使用通用求和公式利用下列常用求和公式求和是数列求和的最基本最重要的方法.1、等差数列求和公式:s(a1?an)n(n?n?n2?na1)1?2d?na1(q?1)2、等比数列求和公式:s??ann??1(1?q)a1?anq?1?q?1?q(q?1)nn3、s1n(n?1)4、s21n??KNK12? Kn(n1)(2n1)k?16n5、s3n??K[1n(n?1)]2k?12[例1]已知日志?13x?日志,x?x2?x3xn前23项的总和。

日志13x?log3?日志log13x?32? 十、二2由等比数列求和公式得sn?x?x2?x3xn1n(11=x(1?x)2?2n)1?x==1-11? 12n2[例2]设sn=1+2+3+…+n,n∈n*,求f(n)?sn(n?32)s的最大值.N1解决方案:s1n是从算术序列的求和公式中获得的?2n(n?1),s1n?2(n?1)(n?2)∴f(n)?snn(n?32)s=2n?1n?34n?64一(利用常用公式)(利用常用公式)=1n?34? 64n=(n?18n?)2?50150∴当N18,也就是说,当n=8时,f(n)max?508二、错位相减法求和该方法用于推导等比序列的前n项和公式。

该方法主要用于求序列{anbn}的前n项之和,其中{an},{BN}分别是等差序列和等比序列[例3]求和:sn?1?3x?5x2?7x3(2n?1)xn?1………………………①解决方案:从这个问题可以看出,{(2n?1)xn?1}的通项是等差序列{2n-1}的通项和等比序列{xn?1}的通项的乘积设xsn?1x?3x2?5x3?7x4(2n?1)xn……………………….②(设制错位)①-②得(1?x)sn?1?2x?2x2?2x3?2x42xn?1?(2n?1)xn(错位相减)1.xn?1.(2n?1)xn然后使用等比序列的求和公式来获得:(1?X)Sn?1.2倍?1.x(2n?1)xn?1.(2n?1)xn?(1?x)∴sn?2(1?X)[例4]找到序列2462n,2,3,,n,前n项的和.22222n1解:由题可知,{n}的通项是等差数列{2n}的通项与等比数列{n}的通项之积222462n套序列号??2.3.n、…………………………………①222212462nsn?2?3?4n?1………………………………②(设制错位)222221222222n①-②得(1?)sn??2?3?4n?n?1(错位相减)22222212N?2.N1.N一22n?2∴sn?4?n?1二三、反序相加法求和这是用来推导算术序列的前n项和公式的方法,也就是说,将一个序列倒置(按相反顺序),然后将其与原始序列进行比较2当序列被添加时,可以得到n(A1?An)012n[例5]求证:cn?3cn?5cn(2n?1)cn?(n?1)2n012n证明:设置序列号?中国…………………………。

数列求和的几种方法

数列求和的几种方法

数列求和的几种方法数列是数学中的重要概念,求和是数列中常见的问题之一、在数学中,求和通常用符号Σ来表示,它的形式为Σan,表示从n=1到n=N的所有项an的和。

下面将介绍数列求和的几种方法。

一、等差数列求和等差数列是一种常见的数列形式,其中每一项与前一项的差值都是固定的。

等差数列的求和可以通过以下几种方法进行计算:1. 直接求和法:对于等差数列an = a1 + (n-1)d,其中a1为首项,d为公差,n为项数。

可以直接将等差数列的每一项相加即可求得总和Sn。

例如,等差数列1, 3, 5, 7, 9的和可以直接计算为S5 = 1 + 3 + 5 +7 + 9 = 252. 利用等差数列的性质:等差数列的前n项和Sn可以通过公式Sn= n/2 * (a1 + an)来计算,其中a1为首项,an为前n项的最后一项。

例如,等差数列1, 3, 5, 7, 9的和可以计算为S5 = 5/2 * (1 + 9) = 25、这种方法适用于已知首项和公差的等差数列。

3.利用公式:等差数列的和也可以通过公式Sn=n/2*(2a1+(n-1)d)来计算,其中a1为首项,d为公差。

这个公式可以通过展开Sn的表达式得到。

同样以等差数列1,3,5,7,9为例,可以计算为S5=5/2*(2*1+(5-1)*2)=25、这种方法适用于已知首项和项数的等差数列。

二、等比数列求和等比数列是一种每一项与前一项的比值都是固定的数列形式。

等比数列的求和可以通过以下几种方法进行计算:1. 直接求和法:对于等比数列an = a1 * r^(n-1),其中a1为首项,r为公比,n为项数。

可以直接将等比数列的每一项相加即可求得总和Sn。

例如,等比数列2, 4, 8, 16的和可以直接计算为S4 = 2 + 4 + 8 + 16 = 30。

2.利用等比数列的性质:等比数列的前n项和Sn可以通过公式Sn=a1*(1-r^n)/(1-r)来计算,其中a1为首项,r为公比。

备战2021高考数学黄金解题模板 数列求和方法

备战2021高考数学黄金解题模板 数列求和方法

备战2021高考数学黄金解题模板数列求和方法备战2021高考数学黄金解题模板数列求和方法【高考状态】数列是高中数学的重要内容,又是高中数学与高等数学的重要衔接点,其涉及的基础知识、数学思想与方法,在高等数学的学习中起着重要作用,因而成为历年高考久考不衰的热点题型,在历年的高考中都占有重要地位。

数列求和的常用方法是我们在高中数学学习中必须掌握的基本方法,是高考的必考热点之一。

此类问题中除了利用等差数列和等比数列求和公式外,大部分数列的求和都需要一定的技巧。

下面,就近几年高考数学中的几个例子来谈谈数列求和的基本方法和技巧。

【方法点评】方法一公式法解题模板:第一步结合所求结论,寻找已知与未知的关系;第二步根据已知条件列方程求出未知量;第三步利用前n项和公式求和结果例1设{an}为等差序列,Sn为序列{an}的前n项之和,S7?7,s15?75,TN是序列{sum,find TNsn}的前n项n【评估】直接应用公式求和时,注意公式的适用范围。

例如,当等比序列的公比是一个参数(字母)时,讨论其公比是否为1。

序列的常用求和公式如下:等差数列前n项和公式:sn?n(a1?an)n(n?1)?na1?d.22?na1(q?1)?等比数列前n项和公式:sn??a1(1?qn)a1?anq.(问题1)?1.q1?Q自然数幂和公式:1?2.3.N1n(n?1)2112?22? 32 氮气?n(n?1)(2n?1)6113?23?33n3?[n(n?1)]22[variant drill 1]已知{an}是一个算术序列,a1+A2=4,a7+A8=28,那么序列的前10项和S10等于()a.64b 100c。

110天。

120[答]B考点:等差数列通项公式及求和方法二分组法解题模板:第一步定通项公式:即根据已知条件求出数列的通项公式;第二步是将其划分为几个序列,这些序列可以根据通用项公式的特点直接求和;第三步是分别对每个序列求和;第四步组合:即把拆分后每个数列的求和进行组合,可求得原数列的和.例2已知序列{an}为3+2-1,6+2-1,9+2-1,12+2-1,?,写出序列{an}的一般项公式,找出前n项23四sn.[variant drill 2]在已知序列A1中?1,a2?2.和安?2.一2.2.1.Nn*,那么S2022的值是()A.2022?1010? 1b。

解答数列求和问题的三个妙招

解答数列求和问题的三个妙招

差、常数数列的求和问题或简单的运算问题,这样才
能顺利求得数列的和.
一、倒序相加
有些数列的首尾两端等距离的两项之和等于首 尾两项之和,即 a1 + an = a2 + an - 2 = a3 + an - 3⋯ = an - m + am ,此时可采用倒序相加的技巧来解题,分别列出数 列 的 正 序 和 Sn = a1 + a2 + ⋯ + an 与 倒 序 和 Sn = an +an - 1 + ⋯ + a1 ,然 后 将 两 式 相 加 ,使 得 2Sn =(a1 + an)
an 2n
,求数列
{bn} 的前 n 项和 Sn .
解:

a1
+
2a2
+
3a3
+

+
na
n
=
1 12
n
(
n
+
1)(2n
+
1),


a1
+
2a2
+
3a3
+⋯
+
(n
-
)1 an - 1
=
1 12
n(n
-
1)(2n -
1) (n ≥ 2) ,②
将 ① - ② 可得,
nan
=
1 12
n[(n
+
1)(2n
+
1)
,④

③-




,12
Sn
=
1 22
+
1 23

高考数学压轴题数列求和十种方法总结

高考数学压轴题数列求和十种方法总结

高考数学压轴题数列求和十种方法总结数列是高考数学的重要内容,其中数列的求和尤为重要,除了等差数列等比数列有各自的求和公式,其余数列的求和讲究一定的技巧。

题型一、公式求和1、 等差数列求和公式:d n n na a a n S n n 2)1(2)(11-+=+=2、等比数列求和公式:⎪⎩⎪⎨⎧≠--=--==)1(11)1()1(111q q q a a qq a q na S n nn3、 )1(211+==∑=n n k S nk n 4、 )12)(1(6112++==∑=n n n k S nk n 5、 213)]1(21[+==∑=n n k S n k n例1、已知{}na 是一个首项为a ,公比为(01)q q <≤的等比数列,求2222*123()n n S a a a a n N =++++∈解:由已知得1n n a aq-=,222(1)2212222n n n n a a q q a a q+-+-∴== ∴{}2n a 是首项为2a ,公比为2q 的等比数列。

当1q =时,222212.n n S a a a na =+++=当1q ≠时,2222122[1()](1)11n n n a q a q S q q--==--例2、 已知3log 1log 23-=x ,求⋅⋅⋅++⋅⋅⋅+++nx x x x 32的前n 项和。

解:由321log log 3x -=得33log log 2x =-,∴ 12x =, 由等比数列求和公式得 n n x x x x S +⋅⋅⋅+++=32=x x x n--1)1(=211)211(21--n =112n -例3、 设*123,()n S n n N =+++⋅⋅⋅+∈,求1)32()(++=n nS n S n f 的最大值.解:由等差数列求和公式得 )1(21+=n n S n , 11(1)(2)2n S n n +=++ ∴ 1)32()(++=n n S n S n f =64342++n n n=nn 64341++=50)8(12+-nn 501≤∴ 当=,即8n =时,m x 1()50a f n =二、倒序相加法求和倒序相加法是推导等差数列的前n 项和公式时所用的方法,就是将一个数列倒过来排列(反序),再把它与原数列相加,就可以得到n 个)(1n a a +例1、求89sin 88sin 3sin 2sin 1sin 22222++⋅⋅⋅+++的值解:设89sin 88sin 3sin 2sin 1sin 22222++⋅⋅⋅+++=S …………. ① 将①式右边反序得1sin 2sin 3sin 88sin 89sin 22222+++⋅⋅⋅++=S …… ② 又因为 1cos sin ),90cos(sin 22=+-=x x x x,①+②得2222222(sin 1cos 1)(sin 2cos 2)(sin 89cos 89)89S =++++⋅⋅⋅++=∴ 44.5S =例2、已知函数()()R x x f x ∈+=241,点()111,y x P ,()222,y x P 是函数()x f 图象上的两个点,且线段21P P 的中点P 的横坐标为21. (Ⅰ)求证:点P 的纵坐标是定值; (Ⅱ)若数列{}n a 的通项公式为n n a f m ⎛⎫= ⎪⎝⎭(),1,2,,m N n m ∈=⋅⋅⋅求数列{}n a 的前m 项的和m S 。

高中数学解题方法系列:数列中求和问题的7种方法

高中数学解题方法系列:数列中求和问题的7种方法

高中数学解题方法系列:数列中求和问题的7种方法一、公式法利用下列常用求和公式求和是数列求和的最基本最重要的方法.1、等差数列求和公式:d n n na a a n S n n 2)1(2)(11-+=+=2、等比数列求和公式:⎪⎩⎪⎨⎧≠--=--==)1(11)1()1(111q q qa a q q a q na S n nn 3、)1(211+==∑=n n k S nk n 4、)12)(1(6112++==∑=n n n k S nk n 5、213)]1(21[+==∑=n n k S nk n [例1]求⋅⋅⋅++⋅⋅⋅+++nx x x x 32的前n 项和.[例2]设S n =1+2+3+…+n,n∈N *,求1)32()(++=n nS n S n f 的最大值.二、错位相减法(等差乘等比)[例3]求和:132)12(7531--+⋅⋅⋅++++=n n xn x x x S [例4]求数列⋅⋅⋅⋅⋅⋅,22,,26,24,2232n n前n 项的和.解:由题可知,{n n 22}的通项是等差数列{2n}的通项与等比数列{n 21}的通项之积设n n nS 2226242232+⋅⋅⋅+++=…………………………………①14322226242221++⋅⋅⋅+++=n n nS ………………………………②(设制错位)①-②得1432222222222222211(+-+⋅⋅⋅++++=-n n n nS (错位相减)1122212+---=n n n ∴1224-+-=n n n S 三、倒序相加法这是推导等差数列的前n 项和公式时所用的方法,就是将一个数列倒过来排列(反序),再把它与原数列相加,就可以得到n 个)(1n a a +.[例5]求证:nnn n n n n C n C C C 2)1()12(5321+=++⋅⋅⋅+++证明:设nn n n n n C n C C C S )12(5321++⋅⋅⋅+++=…………………………..①把①式右边倒转过来得113)12()12(nn n n n n n C C C n C n S ++⋅⋅⋅+-++=-(反序)又由mn nmn C C -=可得n n n n n n n C C C n C n S ++⋅⋅⋅+-++=-1103)12()12(…………..……..②①+②得nnn n n n n n n C C C C n S 2)1(2))(22(2110⋅+=++⋅⋅⋅+++=-(反序相加)∴nn n S 2)1(⋅+=[例6]求89sin 88sin 3sin 2sin 1sin 22222++⋅⋅⋅+++的值解:设89sin 88sin 3sin 2sin 1sin 22222++⋅⋅⋅+++=S ………….①将①式右边反序得1sin 2sin 3sin 88sin 89sin 22222+++⋅⋅⋅++=S …………..②(反序)又因为1cos sin ),90cos(sin 22=+-=x x x x①+②得(反序相加))89cos 89(sin )2cos 2(sin )1cos 1(sin 2222222 ++⋅⋅⋅++++=S =89∴S=44.5四、分组法求和有一类数列,既不是等差数列,也不是等比数列,若将这类数列适当拆开,可分为几个等差、等比或常见的数列,然后分别求和,再将其合并即可.[例7]求数列的前n 项和:231,,71,41,1112-+⋅⋅⋅+++-n aa a n ,…[例8]求数列{n(n+1)(2n+1)}的前n 项和.解:设k k k k k k a k ++=++=2332)12)(1(∴∑=++=n k n k k k S 1)12)(1(=)32(231k k k nk ++∑=将其每一项拆开再重新组合得S n=kk k nk nk nk ∑∑∑===++1213132(分组)五、裂项法求和这是分解与组合思想在数列求和中的具体应用.裂项法的实质是将数列中的每项(通项)分解,然后重新组合,使之能消去一些项,最终达到求和的目的.通项分解(裂项)如:(1))()1(n f n f a n -+=(2)nn n n tan )1tan()1cos(cos 1sin -+=+(3)111)1(1+-=+=n n n n a n (4)121121(211)12)(12()2(2+--+=+-=n n n n n a n (5)])2)(1(1)1(1[21)2)(1(1++-+=+-=n n n n n n n a n (6)nnn n n n n n S n n n n n n n n n a 2)1(11,2)1(12121)1()1(221)1(21+-=+-⋅=⋅+-+=⋅++=-则[例9]求数列⋅⋅⋅++⋅⋅⋅++,11,,321,211n n 的前n 项和.[例10]在数列{a n }中,11211++⋅⋅⋅++++=n n n n a n ,又12+⋅=n n n a a b ,求数列{b n }的前n 项的和.[例11]求证:1sin 1cos 89cos 88cos 12cos 1cos 11cos 0cos 12=+⋅⋅⋅++解:设89cos 88cos 12cos 1cos 11cos 0cos 1+⋅⋅⋅++=S ∵n n n n tan )1tan()1cos(cos 1sin -+=+(裂项)∴89cos 88cos 12cos 1cos 11cos 0cos 1+⋅⋅⋅++=S (裂项求和)=]}88tan 89[tan )2tan 3(tan )1tan 2(tan )0tan 1{(tan 1sin 1-+-+-+-=)0tan 89(tan 1sin 1 -=1cot 1sin 1⋅=1sin 1cos 2∴原等式成立六、合并法求和针对一些特殊的数列,将某些项合并在一起就具有某种特殊的性质,因此,在求数列的和时,可将这些项放在一起先求和,然后再求S n .[例12]求cos1°+cos2°+cos3°+···+cos178°+cos179°的值.解:设S n =cos1°+cos2°+cos3°+···+cos178°+cos179°∵)180cos(cosn n --=(找特殊性质项)∴S n =(cos1°+cos179°)+(cos2°+cos178°)+(cos3°+cos177°)+···+(cos89°+cos91°)+cos90°(合并求和)=0[例13]数列{a n }:n n n a a a a a a -====++12321,2,3,1,求S 2002.解:设S 2002=2002321a a a a +⋅⋅⋅+++由n n n a a a a a a -====++12321,2,3,1可得,2,3,1654-=-=-=a a a ,2,3,1,2,3,1121110987-=-=-====a a a a a a ……2,3,1,2,3,1665646362616-=-=-====++++++k k k k k k a a a a a a ∵0665646362616=+++++++++++k k k k k k a a a a a a (找特殊性质项)∴S 2002=2002321a a a a +⋅⋅⋅+++(合并求和)=)()()(66261612876321++++⋅⋅⋅+++⋅⋅⋅+⋅⋅⋅+++⋅⋅⋅+++k k k a a a a a a a a a a 2002200120001999199819941993)(a a a a a a a +++++⋅⋅⋅+++⋅⋅⋅+=2002200120001999a a a a +++=46362616+++++++k k k k a a a a =5[例14]在各项均为正数的等比数列中,若103231365log log log ,9a a a a a +⋅⋅⋅++=求的值.解:设1032313log log log a a a S n +⋅⋅⋅++=由等比数列的性质qp n m a a a a q p n m =⇒+=+(找特殊性质项)和对数的运算性质NM N M a a a ⋅=+log log log 得)log (log )log (log )log (log 6353932310313a a a a a a S n ++⋅⋅⋅++++=(合并求和)=)(log )(log )(log 6539231013a a a a a a ⋅+⋅⋅⋅+⋅+⋅=9log 9log 9log 333+⋅⋅⋅++=10七、利用数列的通项求和先根据数列的结构及特征进行分析,找出数列的通项及其特征,然后再利用数列的通项揭示的规律来求数列的前n 项和,是一个重要的方法.[例15]求11111111111个n ⋅⋅⋅+⋅⋅⋅+++之和.解:由于)110(91999991111111-=⋅⋅⋅⨯=⋅⋅⋅k k k个个(找通项及特征)∴11111111111个n ⋅⋅⋅+⋅⋅⋅+++=)110(91)110(91)110(91)110(91321-+⋅⋅⋅+-+-+-n (分组求和)=)1111(91)10101010(911321 个n n +⋅⋅⋅+++-+⋅⋅⋅+++=9110)110(1091n n ---⋅=)91010(8111n n --+数列练习一、选择题1.已知等比数列}{n a 的公比为正数,且3a ·9a =225a ,2a =1,则1a =A.21 B.22 C.2 D.22.已知为等差数列,,则等于A.-1B.1C.3D.73.公差不为零的等差数列{}n a 的前n 项和为n S .若4a 是37a a 与的等比中项,832S =,则10S 等于A.18B.24C.60D.90.4设n S 是等差数列{}n a 的前n 项和,已知23a =,611a =,则7S 等于A.13B.35C.49D.635.已知{}n a 为等差数列,且7a -24a =-1,3a =0,则公差d =(A )-2(B )-12(C )12(D )26.等差数列{n a }的公差不为零,首项1a =1,2a 是1a 和5a 的等比中项,则数列的前10项之和A.90B.100C.145D.1907.等差数列{}n a 的前n 项和为n S ,已知2110m m ma a a -++-=,2138m S -=,则m =(A)38(B)20(C)10(D)9.8.设{}n a 是公差不为0的等差数列,12a =且136,,a a a 成等比数列,则{}n a 的前n 项和n S =A.2744n n+B.2533n n+C.2324n n+D.2n n+9.等差数列{n a }的公差不为零,首项1a =1,2a 是1a 和5a 的等比中项,则数列的前10项之和是A.90 B.100 C.145 D.190.二、填空题1设等比数列{}n a 的公比12q =,前n 项和为n S ,则44S a =.2.设等差数列{}n a 的前n 项和为n S ,则4S ,84S S -,128S S -,1612S S -成等差数列.类比以上结论有:设等比数列{}n b 的前n 项积为n T ,则4T ,,,1612T T 成等比数列.3.在等差数列}{n a 中,6,7253+==a a a ,则____________6=a .4.等比数列{n a }的公比0q >,已知2a =1,216n n n a a a +++=,则{n a }的前4项和4S =.数列练习参考答案一、选择题1.【答案】B【解析】设公比为q ,由已知得()22841112a q a q a q⋅=,即22q=,又因为等比数列}{n a的公比为正数,所以q =,故2122a a q ===,选B 2.【解析】∵135105a a a ++=即33105a =∴335a =同理可得433a =∴公差432d a a =-=-∴204(204)1a a d =+-⨯=.选B。

高考数学高分的数列求和的基本方法和技巧!

高考数学高分的数列求和的基本方法和技巧!

高考数学高分的数列求和的基本方法和技巧!高考数学高分的数列求和的基本方法和技巧!导语:书是人类进步的阶梯,书是人类的导师,书是学问的海洋,书是饥饿人的点心,书是打开学问大门的金钥匙。

下面是我为大家整理的,数学学习技巧,希望对大家有所关怀,欢迎阅读,仅供参考,更多相关的学问,请关注CNFLA学习网!一.公式法假如一个数列是等差数列或等比数列,则求和时直接利用等差、等比数列的前n项和公式.留意等比数列公示q的取值要分q=1和q1.二.倒序相加法假如一个数列的首末两端等"距离'的两项的和相等,那么求这个数列的前n项和即可用倒序相加法,如等差数列的前n项和公式即是用此法推导的.三.错位相减法假如一个数列的各项和是由一个等差数列和一个等比数列的对应项之积构成的,那么这个数列的前n项和即可用此法来求,如等比数列的前n项和公式就是用此法推导的.四.裂项相消法把数列的通项拆成两项之差,在求和时中间的一些项可以相互抵消,从而求得其和.用裂项相消法求和时应留意抵消后并不愿定只剩下第一项和最终一项,也可能前面剩两项,后面也剩两项,前后剩余项是对称消逝的.五.分组求和法若一个数列的通项公式是由若干个等差数列或等比数列或可求和的数列组成,则求和时可用分组求和法,分别求和然后相加减.六.并项求和法一个数列的前n项和中,若可两两结合求解,则称之为并项求和法.形如类型,可接受两项合并求解.数列学问整合1、在把握等差数列、等比数列的定义、性质、通项公式、前n项和公式的基础上,系统把握解等差数列与等比数列综合题的规律,深化数学思想方法在解题实践中的指导作用,灵敏地运用数列学问和方法解决数学和实际生活中的有关问题。

2、在解决综合题和探究性问题实践中加深对基础学问、基本技能和基本数学思想方法的熟识,沟通各类学问的`联系,形成更完整的学问网络,提高分析问题和解决问题的力气。

进一步培育同学阅读理解和创新力气,综合运用数学思想方法分析问题与解决问题的力气。

高考数列求和解题方法大全

高考数列求和解题方法大全

高考数列求和解题方法大全数列求和问题是数列的基本内容之一,也是高考的热点和重点。

由于数列求和问题题型多样,技巧性也较强,以致成为数列的一个难点。

鉴于此,下面就数列求和问题的常见题型及解法技巧作一归纳,以提高同学们数列求和的能力。

一、利用常用求和公式求和利用下列常用求和公式求和是数列求和的最基本最重要的方法. 1、等差数列求和公式:d n n na a a n S n n 2)1(2)(11-+=+=2、等比数列求和公式:⎪⎩⎪⎨⎧≠--=--==)1(11)1()1(111q q q a a qq a q na S n nn3、)1(211+==∑=n n k S nk n 4、)12)(1(6112++==∑=n n n k S nk n例1. 已知3log 1log 23-=x ,求⋅⋅⋅++⋅⋅⋅+++n x x x x 32的前n 项和. 解:由212log log 3log 1log 3323=⇒-=⇒-=x x x , 由等比数列求和公式得 n n x x x x S +⋅⋅⋅+++=32=x x x n--1)1(=211)211(21--n =1-n 21 二、错位相减法求和这种方法是在推导等比数列的前n 项和公式时所用的方法,这种方法主要用于求数列{a n · b n }的前n 项和,其中{ a n }、{ b n }分别是等差数列和等比数列.例2. 求和:132)12(7531--+⋅⋅⋅++++=n n x n x x x S ………………………①解:由题可知,{1)12(--n x n }的通项是等差数列{2n -1}的通项与等比数列{1-n x }的通项之积当时1=x ,()()[]22121127531n n n n S n =-+=-+++++=当时1≠x设n n x n x x x x xS )12(7531432-+⋅⋅⋅++++=……………② (设制错位)①-②得 n n n x n x x x x x S x )12(222221)1(1432--+⋅⋅⋅+++++=-- (错位相减)再利用等比数列的求和公式得:n n n x n x x x S x )12(1121)1(1----⋅+=-- ∴ 21)1()1()12()12(x x x n x n S n n n -+++--=+ 例3.已知1,0≠>a a ,数列{}n a 是首项为a ,公比也为a 的等比数列,令)(lg N n a a b n n n ∈⋅=,求数列{}n b 的前n 项和n S 。

高考数学命题热点名师解密专题:数列求和的方法规律(理)

高考数学命题热点名师解密专题:数列求和的方法规律(理)

一.【学习目标】1.熟练掌握等差、等比数列前n项和公式.2.熟练掌握非等差、等比数列求和的几种方法,如错位相减、裂项相消以及分组求和等.二.【知识要点】求数列前n项和的基本方法(1)公式法数列{a n}为等差或等比数列时直接运用其前n项和公式求和.若{a n}为等差数列,则S n=(a1+a n)n2=____________________.若{a n}为等比数列,其公比为q,则当q=1时,S n=_________({a n}为常数列);当q≠1时,S n=______________=_________(2)裂项相消求和法数列{a n}满足通项能分裂为两项之差,且分裂后相邻的项正负抵消从而求得其和.(3)倒序相加法如果一个数列{a n}的前n项中首末两端等“距离”的两项的和相等或等于同一个常数,那么求这个数列的前n 项的和即可用倒序相加法,如等差数列前n项的和公式就是用此法推导的.(4)错位相减法如果一个数列的各项是由一个等差数列和一个等比数列的对应项之积构成的,那么这个数列的前n项和即可用此法来求,如等比数列的前n项和公式就是用此法推导的.(5)分组转化求和法一个数列的通项公式是由若干个等差数列或等比数列或可求和的数列组成,则求和时可用分组求和法,分别求和而后相加减.(6)并项求和法一个数列的前n项和中,可两两结合求解,则称为并项求和.形如a n=(-1)n f(n)类型,可采用两项合并求解.例如,S n=1002-992+982-972+…+22-12=(100+99)+(98+97)+…+(2+1)=5050.三.【方法总结】1.常用基本求和法均对应数列通项的特殊结构特征,分析数列通项公式的特征,联想相应的求和方法既是根本,又是关键.2.数列求和实质就是求数列{S n }的通项公式,它几乎涵盖了数列中所有的思想策略、方法和技巧,对学生的知识和思维有很高的要求,应充分重视并系统训练.练习3.已知函数,则的值为_____.【答案】2.裂项求和例2.数列{}n a 的前n 项和为n S ,若,则5S 等于()1656130【答案】【解析】选练习1.数列的前项的和为()11【答案】【解析】故数列的前10项的和为选练习6.数列{}n a 满足11a =,且对于任意的*n N Î都有,则等于()20162017403220172017201840342018【答案】D练习7.设数列{}n a 满足,且,若[]x 表示不超过x 的最大整数,则()【答案】【解析】构造,则,由题意可得,故数列{}n b 是为首项为公差的等差数列,故,故以上个式子相加可得,解得,∴,∴,∴20172018则.故答案为:.练习8.已知幂函数()a f x x =的图象过点()4,2,令(*n N Î),记数列{}n a 的前n项和为n S ,则2018S =()11-1+1【答案】故选:.练习9.已知数列{}n a 的首项为9,且,若,则数列{}n b 的前n项和n S =__________.【答案】2119101n--练习10.设数列{}n a 的前项为n S ,点,n S n næöç÷èø,()*n N Î均在函数32y x =-的图象上.(1)求数列{}n a 的通项公式。

高考数学-数列求和的方法总结(有答案)

高考数学-数列求和的方法总结(有答案)

两式相加得: 2S 9 f
1 10
9 9 f 9 ,所以 S . 2 10
2
例 5.求和: S n 2 3 5 解: S n 2 3 5

1
4 3 5 6 3 5
n(n 1) 2 ,1+3+5+„„+(2n-1)= n , 2
2
n(n 1)(2n 1) n(n 1) 3 3 3 3 1 2 3 ……+n = , 1 2 3 ……+n = 等。 6 2
2 2 2 2
2.错位相减法: 若数列各项是由一个等差数列和一个等比数列对应项相乘得到, 即数列是一个 “差比数列” , 则采用错位相减法。错位相减法的求解步骤:①在等式两边同时乘以“差比”数列中等比数列 的公比 q ;②将两个等式相减;③利用等比数列的前 n 项和的公式求和。 3.裂项相消法: 把数列的通项拆成两项之差,即数列的每一项都可按此法拆成两项之差,在求和时一些正 负项相互抵消,于是前 n 项的和变成首尾若干少数项之和,这一求和方法称为裂项相消法。该
c an an 1 方法适用于类似 的数列,其中 an 是各项不为零的等差数列,c 为常数。用裂项相消
法求和,需要掌握一些常见的裂项方法:
1 1 1 1 11 1 n n 1 n n 1 nn k k n n k ① ,特别地当 k 1 时, ;
﹣ )+ ( ﹣ ﹣ )
) . ﹣ ) + ﹣ +…+ ﹣ ) )+ ( ﹣ )
)]= .
=

故答案为:

高中数学解数列的常用技巧和方法详解

高中数学解数列的常用技巧和方法详解

高中数学解数列的常用技巧和方法详解数列是高中数学中非常重要的一个概念,它在各种数学问题中都有广泛的应用。

解数列问题需要掌握一些常用的技巧和方法,本文将详细介绍其中的一些重要内容。

一、等差数列的求和公式等差数列是指数列中相邻两项之间的差值是一个常数的数列。

对于等差数列,我们可以通过求和公式来快速计算前n项的和。

设等差数列的首项为a1,公差为d,前n项的和为Sn,则有以下公式:Sn = (n/2)(a1 + an)其中,an为数列的第n项。

这个公式的推导可以通过数学归纳法来证明,但在解题时我们可以直接使用。

例如,对于等差数列1, 3, 5, 7, 9,要求前4项的和,可以直接套用求和公式:S4 = (4/2)(1 + 9) = 20二、等比数列的求和公式等比数列是指数列中相邻两项之间的比值是一个常数的数列。

对于等比数列,我们同样可以通过求和公式来计算前n项的和。

设等比数列的首项为a1,公比为r,前n项的和为Sn,则有以下公式:Sn = a1(r^n - 1) / (r - 1)这个公式同样可以通过数学归纳法来证明,但在解题时我们也可以直接使用。

例如,对于等比数列2, 4, 8, 16,要求前5项的和,可以直接套用求和公式:S5 = 2(2^5 - 1) / (2 - 1) = 62三、数列的通项公式除了求和公式,我们还需要掌握数列的通项公式,即可以通过该公式直接计算数列的第n项。

数列的通项公式可以通过观察数列的规律来得出,也可以通过已知的前几项来推导。

例如,对于等差数列1, 4, 7, 10,我们可以观察到每一项都比前一项大3,因此可以猜测数列的通项公式为an = 3n - 2。

我们可以验证这个猜测是否正确:当n = 1时,an = 3(1) - 2 = 1,符合数列的首项;当n = 2时,an = 3(2) - 2 = 4,符合数列的第二项;当n = 3时,an = 3(3) - 2 = 7,符合数列的第三项;当n = 4时,an = 3(4) - 2 = 10,符合数列的第四项。

专题--数列求和的基本方法和技巧

专题--数列求和的基本方法和技巧

数列求和的基本方法和技巧数列是高中代数的重要内容,又是学习高等数学的基础. 在高考和各种数学竞赛中都占有重要的地位. 数列求和是数列的重要内容之一,除了等差数列和等比数列有求和公式外,大部分数列的求和都需要一定的技巧. 下面,就几个历届高考数学和数学竞赛试题来谈谈数列求和的基本方法和技巧.一、利用常用求和公式求和利用下列常用求和公式求和是数列求和的最基本最重要的方法. 1、 等差数列求和公式:d n n na a a n S n n 2)1(2)(11-+=+=2、等比数列求和公式:⎪⎩⎪⎨⎧≠--=--==)1(11)1()1(111q q q a a qq a q na S n nn3、 )1(211+==∑=n n k S nk n 4、)12)(1(6112++==∑=n n n k S nk n5、 213)]1(21[+==∑=n n k S nk n [例1] 已知3log 1log 23-=x ,求⋅⋅⋅++⋅⋅⋅+++nx x x x 32的前n 项和. 解:由212log log 3log 1log 3323=⇒-=⇒-=x x x由等比数列求和公式得 n n x x x x S +⋅⋅⋅+++=32 (利用常用公式)=xx x n--1)1(=211)211(21--n =1-n 21[例2] 设S n =1+2+3+…+n ,n ∈N *,求1)32()(++=n nS n S n f 的最大值.解:由等差数列求和公式得 )1(21+=n n S n , )2)(1(21++=n n S n (利用常用公式) ∴ 1)32()(++=n nS n S n f =64342++n n n =nn 64341++=50)8(12+-nn 501≤∴ 当 88-n ,即n =8时,501)(max =n f二、错位相减法求和这种方法是在推导等比数列的前n 项和公式时所用的方法,这种方法主要用于求数列{a n · b n }的前n 项和,其中{ a n }、{ b n }分别是等差数列和等比数列.[例3] 求和:132)12(7531--+⋅⋅⋅++++=n n x n x x x S ………………………①解:由题可知,{1)12(--n x n }的通项是等差数列{2n -1}的通项与等比数列{1-n x}的通项之积设n n x n x x x x xS )12(7531432-+⋅⋅⋅++++=………………………. ② (设制错位) ①-②得 n n n x n x x x x x S x )12(222221)1(1432--+⋅⋅⋅+++++=-- (错位相减)再利用等比数列的求和公式得:n n n x n xx x S x )12(1121)1(1----⋅+=-- ∴ 21)1()1()12()12(x x x n x n S n n n -+++--=+[例4] 求数列⋅⋅⋅⋅⋅⋅,22,,26,24,2232n n前n 项的和. 解:由题可知,{n n 22}的通项是等差数列{2n}的通项与等比数列{n 21}的通项之积设n n nS 2226242232+⋅⋅⋅+++=…………………………………①14322226242221++⋅⋅⋅+++=n n nS ………………………………② (设制错位) ①-②得1432222222222222)211(+-+⋅⋅⋅++++=-n n n nS (错位相减)1122212+---=n n n∴ 1224-+-=n n n S三、反序相加法求和这是推导等差数列的前n 项和公式时所用的方法,就是将一个数列倒过来排列(反序),再把它与原数列相加,就可以得到n 个)(1n a a +.[例5] 求证:nnn n n n n C n C C C 2)1()12(5321+=++⋅⋅⋅+++证明: 设nn n n n n C n C C C S )12(5321++⋅⋅⋅+++=………………………….. ①把①式右边倒转过来得113)12()12(nn n n n n n C C C n C n S ++⋅⋅⋅+-++=- (反序) 又由mn nm n C C -=可得 n nn n n n n C C C n C n S ++⋅⋅⋅+-++=-1103)12()12(…………..…….. ② ①+②得 n n n n n n n n n C C C C n S 2)1(2))(22(2110⋅+=++⋅⋅⋅+++=- (反序相加)∴ n n n S 2)1(⋅+=[例6] 求89sin 88sin 3sin 2sin 1sin 22222++⋅⋅⋅+++的值解:设89sin 88sin 3sin 2sin 1sin 22222++⋅⋅⋅+++=S …………. ①将①式右边反序得1s i n 2s i n 3s i n 88sin 89sin 22222+++⋅⋅⋅++=S …………..② (反序) 又因为 1cos sin ),90cos(sin 22=+-=x x x x①+②得 (反序相加))89cos 89(sin )2cos 2(sin )1cos 1(sin 2222222 ++⋅⋅⋅++++=S =89∴ S =44.5四、分组法求和有一类数列,既不是等差数列,也不是等比数列,若将这类数列适当拆开,可分为几个等差、等比或常见的数列,然后分别求和,再将其合并即可. [例7] 求数列的前n 项和:231,,71,41,1112-+⋅⋅⋅+++-n a a a n ,… 解:设)231()71()41()11(12-++⋅⋅⋅++++++=-n aa a S n n将其每一项拆开再重新组合得)23741()1111(12-+⋅⋅⋅+++++⋅⋅⋅+++=-n aa a S n n (分组) 当a =1时,2)13(n n n S n -+==2)13(nn + (分组求和)当1≠a 时,2)13(1111n n aa S n -+--==2)13(11n n a a a n -+--- [例8] 求数列{n(n+1)(2n+1)}的前n 项和.解:设k k k k k k a k ++=++=2332)12)(1(∴ ∑=++=n k n k k k S 1)12)(1(=)32(231k k knk ++∑=将其每一项拆开再重新组合得S n =k k k nk n k nk ∑∑∑===++1213132(分组)=)21()21(3)21(2222333n n n +⋅⋅⋅++++⋅⋅⋅++++⋅⋅⋅++=2)1(2)12)(1(2)1(22++++++n n n n n n n (分组求和) =2)2()1(2++n n n五、裂项法求和这是分解与组合思想在数列求和中的具体应用. 裂项法的实质是将数列中的每项(通项)分解,然后重新组合,使之能消去一些项,最终达到求和的目的. 通项分解(裂项)如:(1))()1(n f n f a n -+= (2)n n n n tan )1tan()1cos(cos 1sin -+=+ (3)111)1(1+-=+=n n n n a n (4))121121(211)12)(12()2(2+--+=+-=n n n n n a n(5)])2)(1(1)1(1[21)2)(1(1++-+=+-=n n n n n n n a n(6) nnn n n n n n S n n n n n n n n n a 2)1(11,2)1(12121)1()1(221)1(21+-=+-⋅=⋅+-+=⋅++=-则 [例9] 求数列⋅⋅⋅++⋅⋅⋅++,11,,321,211n n 的前n 项和.解:设n n n n a n -+=++=111 (裂项)则 11321211+++⋅⋅⋅++++=n n S n (裂项求和)=)1()23()12(n n -++⋅⋅⋅+-+- =11-+n[例10] 在数列{a n }中,11211++⋅⋅⋅++++=n n n n a n ,又12+⋅=n n n a a b ,求数列{b n }的前n 项的和. 解: ∵ 211211n n n n n a n =++⋅⋅⋅++++=∴ )111(82122+-=+⋅=n n n n b n (裂项)∴ 数列{b n }的前n 项和)]111()4131()3121()211[(8+-+⋅⋅⋅+-+-+-=n n S n (裂项求和) =)111(8+-n = 18+n n[例11] 求证:1sin 1cos 89cos 88cos 12cos 1cos 11cos 0cos 12=+⋅⋅⋅++ 解:设89cos 88cos 12cos 1cos 11cos 0cos 1+⋅⋅⋅++=S∵n n n n tan )1tan()1cos(cos 1sin -+=+ (裂项) ∴ 89cos 88cos 12cos 1cos 11cos 0cos 1+⋅⋅⋅++=S (裂项求和)=]}88tan 89[tan )2tan 3(tan )1tan 2(tan )0tan 1{(tan 1sin 1-+-+-+- =)0tan 89(tan 1sin 1 -=1cot 1sin 1⋅= 1sin 1cos 2 ∴ 原等式成立六、合并法求和针对一些特殊的数列,将某些项合并在一起就具有某种特殊的性质,因此,在求数列的和时,可将这些项放在一起先求和,然后再求S n .[例12] 求cos1°+ cos2°+ cos3°+···+ cos178°+ cos179°的值.解:设S n = cos1°+ cos2°+ cos3°+···+ cos178°+ cos179°∵ )180cos(cosn n --= (找特殊性质项)∴S n = (cos1°+ cos179°)+( cos2°+ cos178°)+ (cos3°+ cos177°)+···+(cos89°+ cos91°)+ cos90° (合并求和)= 0[例13] 数列{a n }:n n n a a a a a a -====++12321,2,3,1,求S 2002.解:设S 2002=2002321a a a a +⋅⋅⋅+++由n n n a a a a a a -====++12321,2,3,1可得,2,3,1654-=-=-=a a a,2,3,1,2,3,1121110987-=-=-====a a a a a a……2,3,1,2,3,1665646362616-=-=-====++++++k k k k k k a a a a a a∵ 0665646362616=+++++++++++k k k k k k a a a a a a (找特殊性质项) ∴ S 2002=2002321a a a a +⋅⋅⋅+++ (合并求和) =)()()(66261612876321++++⋅⋅⋅+++⋅⋅⋅+⋅⋅⋅+++⋅⋅⋅+++k k k a a a a a a a a a a2002200120001999199819941993)(a a a a a a a +++++⋅⋅⋅+++⋅⋅⋅+=2002200120001999a a a a +++ =46362616+++++++k k k k a a a a =5[例14] 在各项均为正数的等比数列中,若103231365log log log ,9a a a a a +⋅⋅⋅++=求的值.解:设1032313log log log a a a S n +⋅⋅⋅++=由等比数列的性质 q p n m a a a a q p n m =⇒+=+ (找特殊性质项) 和对数的运算性质 N M N M a a a ⋅=+log log log 得)log (log )log (log )log (log 6353932310313a a a a a a S n ++⋅⋅⋅++++= (合并求和)=)(log )(log )(log 6539231013a a a a a a ⋅+⋅⋅⋅+⋅+⋅ =9log 9log 9log 333+⋅⋅⋅++ =10七、利用数列的通项求和先根据数列的结构及特征进行分析,找出数列的通项及其特征,然后再利用数列的通项揭示的规律来求数列的前n 项和,是一个重要的方法.[例15] 求11111111111个n ⋅⋅⋅+⋅⋅⋅+++之和.解:由于)110(91999991111111-=⋅⋅⋅⨯=⋅⋅⋅kk k个个 (找通项及特征) ∴ 11111111111个n ⋅⋅⋅+⋅⋅⋅+++ =)110(91)110(91)110(91)110(91321-+⋅⋅⋅+-+-+-n (分组求和) =)1111(91)10101010(911321 个n n +⋅⋅⋅+++-+⋅⋅⋅+++ =9110)110(1091nn ---⋅=)91010(8111n n --+ [例16] 已知数列{a n }:∑∞=+-+++=11))(1(,)3)(1(8n n n n a a n n n a 求的值.解:∵ ])4)(2(1)3)(1(1)[1(8))(1(1++-+++=-++n n n n n a a n n n (找通项及特征)=])4)(3(1)4)(2(1[8+++++⋅n n n n (设制分组)=)4131(8)4121(4+-+++-+⋅n n n n (裂项)∴ ∑∑∑∞=∞=∞=++-+++-+=-+1111)4131(8)4121(4))(1(n n n n n n n n n a a n (分组、裂项求和)=418)4131(4⋅++⋅ =313说明:本资料适用于高三总复习,也适用于高一“数列”一章的学习。

湖南高中数列求和简答题技巧方法

湖南高中数列求和简答题技巧方法

湖南高中数列求和简答题技巧方法一、理解数列求和的概念数列求和是指将数列中的数字加在一起形成一个总数。

在湖南高中的数学考试中,数列求和是常见的题型,需要学生掌握基本的求和方法。

二、熟悉常用的求和公式1. 等差数列求和:等差数列是指每一项与其前一项的差都是一个常数的数列。

对于等差数列,我们可以使用求和公式:Sn =n/2(a1 + an),其中Sn是数列的和,n是项数,a1是第一项,an是最后一项。

2. 等比数列求和:等比数列是指每一项与其前一项的商都是一个常数的数列。

对于等比数列,我们可以用求和公式:Sq = (a1-an*r^n)/(1-r),其中Sn是数列的和,n是项数,a1是第一项,an是最后一项,r是公比。

3. 倒序相加法:对于一些特殊的数列,如一些求通项公式的题目,可以通过倒序相加法求和。

这种方法需要学生掌握数列的特性,灵活运用。

三、解题技巧1. 观察法:首先观察题目中的数列特点,确定适合的求和公式。

如果题目中的数列比较特殊,可能需要使用倒序相加法等技巧。

2. 代数法:将数列中的数字用代数式表示,然后代入求和公式进行计算。

这种方法需要学生具备一定的代数知识。

3. 简化法:对于一些复杂的数列,可以通过简化数字或通项公式的技巧,使求和过程更加简便。

四、注意事项1. 不要急于求成,要仔细审题,理解题意后再进行解题。

2. 不要忽视细节,如符号、小数点等。

3. 对于一些特殊的数列,要灵活运用各种求和方法,找到最适合的方法。

总之,湖南高中数列求和简答题需要学生掌握基本的概念、公式和技巧,同时注意细节和特殊情况。

通过不断的练习和实践,学生可以逐渐提高自己的解题能力。

高考数学命题热点名师解密专题 数列求和的方法规律(理)

高考数学命题热点名师解密专题 数列求和的方法规律(理)

一.【学习目标】1.熟练掌握等差、等比数列前n 项和公式.2.熟练掌握非等差、等比数列求和的几种方法,如错位相减、裂项相消以及分组求和等. 二.【知识要点】求数列前n 项和的基本方法 (1)公式法数列{a n }为等差或等比数列时直接运用其前n 项和公式求和. 若{a n }为等差数列,则S n =(a 1+a n )n 2=____________________.若{a n }为等比数列,其公比为q ,则当q =1时,S n =_________({a n }为常数列); 当q ≠1时,S n =______________=_________ (2)裂项相消求和法数列{a n }满足通项能分裂为两项之差,且分裂后相邻的项正负抵消从而求得其和. (3)倒序相加法如果一个数列{a n }的前n 项中首末两端等“距离”的两项的和相等或等于同一个常数,那么求这个数列的前n 项的和即可用倒序相加法,如等差数列前n 项的和公式就是用此法推导的. (4)错位相减法如果一个数列的各项是由一个等差数列和一个等比数列的对应项之积构成的,那么这个数列的前n 项和即可用此法来求,如等比数列的前n 项和公式就是用此法推导的. (5)分组转化求和法一个数列的通项公式是由若干个等差数列或等比数列或可求和的数列组成,则求和时可用分组求和法,分别求和而后相加减. (6)并项求和法一个数列的前n 项和中,可两两结合求解,则称为并项求和.形如a n =(-1)n f (n )类型,可采用两项合并求解.例如,S n =1002-992+982-972+…+22-12=(100+99)+(98+97)+…+(2+1)=5 050. 三.【方法总结】1.常用基本求和法均对应数列通项的特殊结构特征,分析数列通项公式的特征,联想相应的求和方法既是根本,又是关键.2.数列求和实质就是求数列{S n }的通项公式,它几乎涵盖了数列中所有的思想策略、方法和技巧,对学生的知识和思维有很高的要求,应充分重视并系统训练.练习3. 已知函数,则的值为 _____.【答案】2.裂项求和例2. 数列{}n a 的前n 项和为n S ,若,则5S 等于( )16 56 130【答案】【解析】选练习1.数列的前项的和为( )111- 111-11【答案】【解析】故数列的前10项的和为选练习6.数列{}n a 满足11a =,且对于任意的*n N ∈都有,则等于( )20162017403220172017201840342018【答案】D练习7.设数列{}n a 满足,且,若[]x 表示不超过x 的最大整数,则( )【答案】 【解析】构造,则,由题意可得,故数列{}n b 是为首项为公差的等差数列, 故,故以上个式子相加可得,解得,∴,∴,∴20172018则.故答案为:.练习8. 已知幂函数()a f x x =的图象过点()4,2,令(*n N ∈),记数列{}n a 的前n 项和为n S ,则2018S =( )20181+20181- 20191+ 20191-【答案】故选:.练习9. 已知数列{}n a 的首项为9,且,若,则数列{}n b 的前n 项和n S =__________. 【答案】2119101n --练习10.设数列{}n a 的前项为n S ,点,n S n n⎛⎫ ⎪⎝⎭, ()*n N ∈均在函数32y x =-的图象上. (1)求数列{}n a 的通项公式。

高考数学命题热点名师解密专题 数列求和的方法规律(理)

高考数学命题热点名师解密专题 数列求和的方法规律(理)

一.【学习目标】1.熟练掌握等差、等比数列前n 项和公式.2.熟练掌握非等差、等比数列求和的几种方法,如错位相减、裂项相消以及分组求和等. 二.【知识要点】求数列前n 项和的基本方法 (1)公式法数列{a n }为等差或等比数列时直接运用其前n 项和公式求和. 若{a n }为等差数列,则S n =(a 1+a n )n 2=____________________.若{a n }为等比数列,其公比为q ,则当q =1时,S n =_________({a n }为常数列); 当q ≠1时,S n =______________=_________ (2)裂项相消求和法数列{a n }满足通项能分裂为两项之差,且分裂后相邻的项正负抵消从而求得其和. (3)倒序相加法如果一个数列{a n }的前n 项中首末两端等“距离”的两项的和相等或等于同一个常数,那么求这个数列的前n 项的和即可用倒序相加法,如等差数列前n 项的和公式就是用此法推导的. (4)错位相减法如果一个数列的各项是由一个等差数列和一个等比数列的对应项之积构成的,那么这个数列的前n 项和即可用此法来求,如等比数列的前n 项和公式就是用此法推导的. (5)分组转化求和法一个数列的通项公式是由若干个等差数列或等比数列或可求和的数列组成,则求和时可用分组求和法,分别求和而后相加减. (6)并项求和法一个数列的前n 项和中,可两两结合求解,则称为并项求和.形如a n =(-1)n f (n )类型,可采用两项合并求解.例如,S n =1002-992+982-972+…+22-12=(100+99)+(98+97)+…+(2+1)=5 050. 三.【方法总结】1.常用基本求和法均对应数列通项的特殊结构特征,分析数列通项公式的特征,联想相应的求和方法既是根本,又是关键.2.数列求和实质就是求数列{S n }的通项公式,它几乎涵盖了数列中所有的思想策略、方法和技巧,对学生的知识和思维有很高的要求,应充分重视并系统训练.练习3. 已知函数,则的值为 _____.【答案】2.裂项求和例2. 数列{}n a 的前n 项和为n S ,若,则5S 等于( )16 56 130【答案】【解析】选练习1.数列的前项的和为( )111- 111-11【答案】【解析】故数列的前10项的和为选练习6.数列{}n a 满足11a =,且对于任意的*n N ∈都有,则等于( )20162017403220172017201840342018【答案】D练习7.设数列{}n a 满足,且,若[]x 表示不超过x 的最大整数,则( )【答案】 【解析】构造,则,由题意可得,故数列{}n b 是为首项为公差的等差数列, 故,故以上个式子相加可得,解得,∴,∴,∴20172018则.故答案为:.练习8. 已知幂函数()a f x x =的图象过点()4,2,令(*n N ∈),记数列{}n a 的前n 项和为n S ,则2018S =( )20181+20181- 20191+ 20191-【答案】故选:.练习9. 已知数列{}n a 的首项为9,且,若,则数列{}n b 的前n 项和n S =__________. 【答案】2119101n --练习10.设数列{}n a 的前项为n S ,点,n S n n⎛⎫ ⎪⎝⎭, ()*n N ∈均在函数32y x =-的图象上. (1)求数列{}n a 的通项公式。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

专题十 数列求和1.已知等差数列{a n }的前n 项和为S n ,a 5=5,S 5=15,则数列⎩⎨⎧⎭⎬⎫1a n a n +1的前100项和为( ).A.100101B.99101C.99100D.101100答案: A [设数列{a n }的公差为d ,则a 1+4d =5,S 5=5a 1+5×42d =15,得d =1,a 1=1,故a n =1+(n -1)×1=n ,所以1a n a n +1=1n (n +1)=1n -1n +1,所以S 100=1-12+12-13+…+1100-1101=1-1101=100101,故选A.] 2.设S n 为等差数列{a n }的前n 项和,若a 1=1,公差d =2,S k +2-S k =24,则k =( ). A .8 B .7 C .6D .5答案:D [∵{a n }是等差数列,a 1=1,d =2,∴a n =2n -1.由已知得S k +2-S k =a k +2+a k+1=2(k +2)+2(k +1)-2=4k +4=24,所以k =5,故选D.]3.设等差数列{a n }的前n 项和为S n .若a 1=-11,a 4+a 6=-6,则当S n 取最小值时,n 等于( ).A .6B .7C .8D .9答案:A [∵{a n }是等差数列,∴a 4+a 6=2a 5=-6,即a 5=-3,d =a 5-a 15-1=-3+114=2得{a n }是首项为负数的递增数列,所有的非正项之和最小.∵a 6=-1,a 7=1,∴当n =6时,S n 取最小.故选A.]4.已知数列{a n }的前n 项和S n 满足S n +S m =S n +m ,且a 1=1,那么a 10=________. 解析 ∵S n +S m =S n +m ,且a 1=1,∴S 1=1,可令m =1,得S n +1=S n +1,∴S n +1-S n =1,即当n ≥1时,a n +1=1,∴a 10=1.答案 1本部分是高考重点考查的内容,题型有选择题、填空题和解答题.对于数列的通项问题,求递推数列(以递推形式给出的数列)的通项是一个难点,而数列的求和问题多从数列的通项入手,并与不等式证明或求解结合,有一定难度.(1)牢固掌握等差数列和等比数列的递推公式和通项公式,以一阶线性的递推公式求通项的六种方法(观察法、构造法、猜归法、累加法、累积法、待定系数法)为依托,掌握常见的递推数列的解题方法.对于既非等差又非等比的数列要综合运用观察、归纳、猜想、证明等方法进行研究,要善于将其转化为特殊数列,这是一种非常重要的学习能力.(2)对于数列求和部分的复习要注意以下几点:①熟练掌握等差数列、等比数列的求和公式及其应用,这是数列求和的基础;②掌握好分组、裂项、错位相减、倒序相加法这几种重要的求和方法,特别要掌握好裂项与错位相减求和的方法,这是高考考查的重点;③掌握一些与数列求和有关的综合问题的解决方法,如求数列前n项和的最值,研究前n项和所满足的不等式等.必备知识求通项公式的方法(1)观察法:找项与项数的关系,然后猜想检验,即得通项公式a n ;(2)利用前n 项和与通项的关系a n =⎩⎪⎨⎪⎧ S 1S n -S n -1(n =1),(n ≥2);(3)公式法:利用等差(比)数列求通项公式;(4)累加法:如a n +1-a n =f (n ),累积法,如a n +1a n =f (n );(5)转化法:a n +1=Aa n +B (A ≠0,且A ≠1). 常用公式等差数列的前n 项和,等比数列的前n 项和,1+2+3+…+n =n (n +1)2,12+22+32+…+n 2=n (n +1)(2n +1)6.常用裂项方法 (1)1n (n +1)=1n -1n +1; (2)1n (n +k )=1k 1n -1n +k .必备方法1.利用转化,解决递推公式为S n 与a n 的关系式:数列{a n }的前n 项和S n 与通项a n 的关系:a n =⎩⎪⎨⎪⎧S 1,n =1,S n -S n -1,n ≥2.通过纽带:a n =S n -S n -1(n ≥2),根据题目求解特点,消掉一个a n 或S n .然后再进行构造成等差或者等比数列进行求解.如需消掉S n ,可以利用已知递推式,把n 换成(n +1)得到新递推式,两式相减即可.若要消掉a n ,只需把a n =S n -S n -1代入递推式即可.不论哪种形式,需要注意公式a n =S n -S n -1成立的条件n ≥2.2.裂项相消法的基本思想是把数列的通项a n 分拆成a n =b n +1-b n 或者a n =b n -b n +1或者a n =b n +2-b n 等,从而达到在求和时逐项相消的目的,在解题中要善于根据这个基本思想变换数列{a n }的通项公式,使之符合裂项相消的条件.3.错位相减法适用于数列由一个等差数列和一个等比数列对应项的乘积构成的数列的求和,乘以等比数列的公比再错位相减,即依据是:c n =a n b n ,其中{a n }是公差为d 的等差数列,{b n }是公比为q (q ≠1)的等比数列,则qc n =qa n b n =a n b n +1,此时c n +1-qc n =(a n +1-a n )b n+1=db n +1,这样就把对应相减的项变为了一个等比数列,从而达到求和的目的.数列的求和数列的递推关系一直是高考“久考不衰”的考点,具有题型新颖、方法灵活等特点,求通项的常用方法有:定义法、公式法、累加法、累乘法、构造转化法等.【例1】► 已知数列{a n }的首项a 1=35,且a n +1=3a n2a n +1,n =1,2,….(1)证明:数列1a n-1是等比数列;(2)令b n =1a n -1,试求数列{n ·b n }的前n 项和S n .[审题视点] [听课记录][审题视点] 对于第(1)问,由条件利用等比数列的定义即可证明;对于第(2)问,求数列{n ·b n }的前n 项和S n ,只需利用错位相减法即可.(1)证明 由已知,得1a n +1=13·1a n +23,n =1,2,…,∴1a n +1-1=131a n -1,n =1,2,….∴数列⎩⎨⎧⎭⎬⎫1a n -1是以13为公比,23为首项的等比数列.(2)解 由b n =1a n -1=23n (n ≥1),得S n =1·b 1+2·b 2+3·b 3+…+(n -1)·b n -1+n ·b n =1·23+2·232+3·233+…+(n -1)·23n -1+n ·23n .∴13S n =1·232+2·233+3·234+…+(n -1)·23n +n ·23n +1. ∴23S n =23+232+233+234+…+23n -n ·23n +1 =231-13n 1-13-n ·23n +1.∴S n =321-13n -32n ·23n +1=32-3+2n 2·3n.对于由数列的递推关系式求数列通项a n 的问题,一般有以下几种题型:(1)类型a n +1=ca n +d (c ≠0,1),可以通过待定系数法设a n +1+λ=c (a n +λ),求出λ后,化为等比数列求通项;(2)类型a n +1=a n +f (n )与a n +1=f (n )·a n ,可以分别通过累加、累乘求得通项;(3)类型a n +1=ca n +r n(c ≠0,r ≠0),可以通过两边除以r n +1,得a n +1r n +1=c r ·a n r n +1r,于是转化为类型(1)求解.【突破训练1】 在数列{a n }中,a 1=2,a n +1=4a n -3n +1,n ∈N *. (1)证明:数列{a n -n }是等比数列; (2)求数列{a n }的前n 项和S n ;(3)证明:不等式S n +1≤4S n 对任意n ∈N *皆成立. (1)证明 由题设a n +1=4a n -3n +1,得 a n +1-(n +1)=4(a n -n ),n ∈N *.又a 1-1=1,所以数列{a n -n }是首项为1,公比为4的等比数列.(2)解 由(1)可知a n -n =4n -1,于是数列{a n }的通项公式为a n =4n -1+n .所以,数列{a n }的前n 项和S n =4n -13+n (n +1)2.(3)证明 对任意的n ∈N *,S n +1-4S n =4n +1-13+(n +1)(n +2)2-44n -13+n (n +1)2=-12(3n 2+n -4)≤0,所以不等式S n +1≤4S n 对任意n ∈N *皆成立.裂项相消法在数列中的应用裂项法求和是近几年高考的热点,试题设计年年有变、有创新,但变的仅仅是试题的外壳,有效地转化、化归问题是解题的关键,常与不等式综合命制解答题.【例2】► 已知二次函数y =f (x )的图象经过坐标原点,其导函数为f ′(x )=6x -2,数列{a n }的前n 项和为S n ,点(n ,S n )(n ∈N *)均在函数y =f (x )的图象上.(1)求数列{a n }的通项公式;(2)设b n =3a n a n +1,T n 是数列{b n }的前n 项和,求使得T n <m20对所有n (n ∈N *)都成立的最小正整数m .[审题视点] [听课记录][审题视点] (1)由f ′(x )=6x -2可求f (x ),则可得S n 与n 的关系式,再由a n =S n -S n -1(n ≥2)求a n .(2)由裂项求和求T n ,再由单调性求T n 的最大值. 解 (1)设函数f (x )=ax 2+bx (a ≠0), 则f ′(x )=2ax +b ,由f ′(x )=6x -2, 得a =3,b =-2,所以f (x )=3x 2-2x .又因为点(n ,S n )(n ∈N *)均在函数y =f (x )的图象上, 所以S n =3n 2-2n .当n ≥2时,a n =S n -S n -1=(3n 2-2n )-[3(n -1)2-2(n -1)] =6n -5.当n =1时,a 1=S 1=3×12-2×1=1,所以,a n =6n -5(n ∈N *).(2)由(1)知b n =3a n a n +1=3(6n -5)[6(n +1)-5]=1216n -5-16n +1,故T n =b 1+b 2+…+b n =121-17+17-113+…+16n -5-16n +1 =121-16n +1. 因此,要使121-16n +1<m20(n ∈N *)成立,则m 需满足12≤m20即可,则m ≥10,所以满足要求的最小正整数m 为10.使用裂项法求和时,要注意正负项相消时消去了哪些项,保留了哪些项,切不可漏写未被消去的项,未被消去的项有前后对称的特点,实质上造成正负相消是此法的根源与目的.【突破训练2】 已知数列{a n }是首项a 1=14的等比数列,其前n 项和S n 中S 3=316.(1)求数列{a n }的通项公式;(解 (1)若q =1,则S 3=34≠316不符合题意,∴q ≠1.当q ≠1时,由⎩⎨⎧a 1=14,S 3=a 1(1-q 3)1-q=316得q =-12.∴a n =14·-12n -1=-12n +1.(2)∵b n =log 12|a n |=log 12⎪⎪⎪⎪-12n +1=n +1,∴1b n b n+1=1(n+1)(n+2)=1n+1-1n+2,∴T n=1b1b2+1b2b3+…+1b n b n+1=12-13+13-14+…+1n+1-1n+2=12-1n+2.错位相减法在数列中的应用错位相减法求和作为求和的一种方法在近几年高考试题中经常出现,复习时要熟练掌握错位相减法求和的特点.【例3】已知数列{a n }中,a 1=5且a n =2a n -1+2n -1(n ≥2且n ∈N *).(1)证明:数列⎩⎨⎧⎭⎬⎫a n -12n 为等差数列;(2)求数列{a n -1}的前n 项和S n . [审题视点] [听课记录][审题视点] (1)作差:a n -12n -a n -1-12n -1后,把a n =2a n -1+2n -1代入;(2)求出a n -1,利用错位相减法求和.(1)证明 设b n =a n -12n ,b 1=5-12=2.∴b n -b n -1=a n -12n -a n -1-12n -1=12n (a n -2a n -1)+1=12n (2n -1)+1=1. 所以数列⎩⎨⎧⎭⎬⎫a n -12n 为首项是2,公差是1的等差数列.(2)解 由(1)知,a n -12n =a 1-12+(n -1)×1,∴a n -1=(n +1)·2n .∵S n =2·21+3·22+…+n ·2n -1+(n +1)·2n ,① ∴2S n =2·22+3·23+…+n ·2n +(n +1)·2n +1.② ①-②,得-S n =4+(22+23+…+2n )-(n +1)·2n +1, ∴S n =-4-4(2n -1-1)+(n +1)·2n +1, ∴S n =n ·2n +1.错位相减法求数列的前n 项和是一类重要方法.在应用这种方法时,一定要抓住数列的特征.即数列的项可以看作是由一个等差数列和一个等比数列对应项相乘所得数列的求和问题.所谓“错位”,就是要找“同类项”相减,要注意的是相减后得到部分等比数列的和,此时一定要查清其项数.【突破训练3】已知{a n }是等差数列,其前n 项和为S n ,{b n }是等比数列,且a 1=b 1=2,a 4+b 4=27,S 4-b 4=10.(1)求数列{a n }与{b n }的通项公式;(2)记T n =a n b 1+a n -1b 2+…+a 1b n ,n ∈N *,证明:T n +12=-2a n +10b n (n ∈N *).(1)解 设等差数列{a n }的公差为d ,等比数列{b n }的公比为q .由a 1=b 1=2,得a 4=2+3d ,b 4=2q 3,S 4=8+6d .由条件,得方程组⎩⎪⎨⎪⎧ 2+3d +2q 3=27,8+6d -2q 3=10,解得⎩⎪⎨⎪⎧d =3,q =2. 所以a n =3n -1,b n =2n ,n ∈N *.(2)证明 法一 由(1)得T n =2a n +22a n -1+23a n -2+…+2n a 1,①2T n =22a n +23a n -1+…+2n a 2+2n +1a 1.②由②-①,得T n =-2(3n -1)+3×22+3×23+…+3×2n +2n +2=12(1-2n -1)1-2+2n +2-6n +2=10×2n -6n -10. 而-2a n +10b n -12=-2(3n -1)+10×2n -12=10×2n -6n -10,故T n +12=-2a n +10b n ,n ∈N *.法二 ①当n =1时,T 1+12=a 1b 1+12=16,-2a 1+10b 1=16,故等式成立;②证明:假设当n =k 时等式成立,即T k +12=-2a k +10b k ,则当n =k +1时有:T k+1=a k+1b1+a k b2+a k-1b3+…+a1b k+1=a k+1b1+q(a k b1+a k-1b2+…+a1b k)=a k+1b1+qT k=a k+1b1+q(-2a k+10b k-12)=2a k+1-4(a k+1-3)+10b k+1-24=-2a k+1+10b k+1-12即T k+1+12=-2a k+1+10b k+1.因此n=k+1时等式也成立.由①和②,可知对任意n∈N*,T n+12=-2a n+10b n成立.数列综合题中的转化与推理数列是一个既有相对独立性,又与其他知识易交汇的知识点,命题者为体现考查思维的综合性与创新性,经常让数列与一些其他知识交汇,有效地考查考生对数学思想与方法的深刻理解,以及考生的数学潜能与思维品质.因此,要利用转化与推理将大问题(或综合性问题)分解为小问题(或基础性问题),降低问题难度.【示例】已知数列{a n}的各项均为正数,记A(n)=a1+a2+…+a n,B(n)=a2+a3+…+a n+1,C(n)=a3+a4+…+a n+2,n=1,2,….(1)若a1=1,a2=5,且对任意n∈N*,三个数A(n),B(n),C(n)组成等差数列,求数列{a n}的通项公式;(2)证明:数列{a n}是公比为q的等比数列的充分必要条件是:对任意n∈N*,三个数A(n),B(n),C(n)组成公比为q的等比数列.[满分解答](1)对任意n∈N*,三个数A(n),B(n),C(n)成等差数列,所以B(n)-A(n)=C (n )-B (n ),即a n +1-a 1=a n +2-a 2,亦即a n +2-a n +1=a 2-a 1=4.故数列{a n }是首项为1,公差为4的等差数列.于是a n =1+(n -1)×4=4n -3.(5分)(2)①必要性:若数列{a n }是公比为q 的等比数列,则对任意n ∈N *,有a n +1=a n q .由a n >0知,A (n ),B (n ),C (n )均大于0,于是B (n )A (n )=a 2+a 3+…+a n +1a 1+a 2+…+a n =q (a 1+a 2+…+a n )a 1+a 2+…+a n=q , C (n )B (n )=a 3+a 4+…+a n +2a 2+a 3+…+a n +1=q (a 2+a 3+…+a n +1)a 2+a 3+…+a n +1=q , 即B (n )A (n )=C (n )B (n )=q ,所以三个数A (n ),B (n ),C (n )组成公比为q 的等比数列.(8分) ②充分性:若对任意n ∈N *,三个数A (n ),B (n ),C (n )组成公比为q 的等比数列,则B (n )=qA (n ),C (n )=qB (n ).于是C (n )-B (n )=q [B (n )-A (n )],得a n +2-a 2=q (a n +1-a 1),即a n +2-qa n +1=a 2-qa 1. 由n =1有B (1)=qA (1),即a 2=qa 1,从而a n +2-qa n +1=0.因为a n >0,所以a n +2a n +1=a 2a 1=q .故数列{a n }是首项为a 1,公比为q 的等比数列. 综上所述,数列{a n }是公比为q 的等比数列的充分必要条件是:对任意n ∈N *,三个数A (n ),B (n ),C (n )组成公比为q 的等比数列.(12分)老师叮咛:本题看似新颖,但揭开面纱却很平常.它很好地考查了考生的应试心理和推理论证的能力,用到的知识却很简单,失去信心是本题失分的主要原因.第(1)问根据B (n )-A (n )=C (n )-B (n )即可轻松解决;第(2)问需分充分性和必要性分别证明,其依据完全是非常简单的等比数列的定义,其关键是要有较好的推理论证能力.【试一试】在等差数列{a n }中,a 3+a 4+a 5=84,a 9=73.(1)求数列{a n }的通项公式;(2)对任意m ∈N *,将数列{a n }中落入区间(9m,92m )内的项的个数记为b m ,求数列{b m }的前m 项和S m .解 (1)因为{a n }是一个等差数列, 所以a 3+a 4+a 5=3a 4=84,a 4=28. 设数列{a n }的公差为d ,则5d =a 9-a 4=73-28=45,故d =9. 由a 4=a 1+3d 得,28=a 1+3×9,即a 1=1. 所以a n =a 1+(n -1)d =1+9(n -1)=9n -8(n ∈N *).(2)对m ∈N *,若9m <a n <92m ,则9m +8<9n <92m +8. 因此9m -1+1≤n ≤92m -1.故得b m =92m -1-9m -1. 于是S m =b 1+b 2+b 3+…+b m=(9+93+…+92m -1)-(1+9+…+9m -1) =9×(1-81m )1-81-(1-9m )1-9=92m +1-10×9m +180.。

相关文档
最新文档