高考数学百大经典例题——两平面垂直的判定和性质

合集下载

两个平面垂直的判定和性质

两个平面垂直的判定和性质

两个平面垂直的判定和性质年级__________ 班级_________ 学号_________ 姓名__________ 分数____一、选择题(共50题,题分合计250分)1.已知菱形ABCD 的边长是1,∠DAB =60°,将这个菱形沿AC 折成120°的二面角,则BD 两点间的距离是A.21B.23C.23D.432.在正方体AC 1中,过与顶点A 相邻的三个顶点作平面α,过与顶点C 1相邻的三个顶点作平面β,那么平面α与平面β的位置关系是A.垂直B.平行C.斜交D.斜交或平行3.已知a,b 是异面直线,β是平面,且α⊥β,则A.b 与β相交B.b 与β不相交C.b 与β不平行D.b 与β不垂直4.设直线l 和平面α、β,且直线l ⊄α,l ⊄β,给出下列论断:①l ⊥α②α⊥β③l ∥β,从中取两个作为条件,其余的一个作为结论,在构成的诸命题中,正确命题的个数是 A.0 B.1 C.2 D.35..已知二面角α-l -β的大小为60°,b 和c 是两条异面直线,则在下列四个条件中,能使b 和c 的角为60O的是A.b ∥α,c ⊥βB.b ∥α,c ⊥βC.b ⊥α,c ⊥βD.b ⊥α,c ∥β6.已知α,β是平面,m,n 是直线.下列命题中不正确的是A.若m ∥n ,m ⊥α,则n ⊥αB.若m ∥α, α∩β=n ,则m ∥nC.若m ⊥α,m ⊥β,则α∥βD.若m ⊥α,β⊂m ,则α⊥β7.已知a 、b 为两条不同的直线,α、β为两个不同的平面,且a ⊥α,b ⊥β,则下列命题中的假命题是A.若a ∥b ,则α∥βB.若α⊥β,则a ⊥bC.若a 、b 相交,则α、β相交D.若α、β相交,则a 、b 相交8.过正方形ABCD 的顶点A 作线段A A ' ⊥平面ABCD ,若A A ' = AB ,则平面A 'AB 与平面A 'CD 所成的角度是A. 30°B. 45°C. 60°D. 90°9.在直二面角α-AB -β的棱AB 上取一点P ,过P 分别在α、β两个平面内作与棱成45°的斜线PC 、PD ,那么∠CPD 的大小为A.45°B.60°C.120°D.60°或120°10.两个平面α、β与另一平面所成的角相等,则A.α∥βB.α与β相交C.α∥β或α与β相交D.以上都不对11.如图,等腰直角△ABC ,沿其斜边AB 边上的高CD 对折,使△ACD 与△BCD 所在的平面垂直,此时∠ACB 等于A.45°B.60°C.90°D.120°12.已知三条直线m 、n 、l ,三个平面α、β、γ,下面四个命题中,正确的是A.αγβγ⇒⎭⎬⎫⊥⊥a ∥βB.ββ⊥⇒⎭⎬⎫⊥l m l m // C.nm m //////⇒⎭⎬⎫γβγ D.n m n m //⇒⎭⎬⎫⊥⊥γγ13.α、β是两个不同的平面,m 、n 是平面α及β外的两条不同直线,给出四个论断:①m ⊥n ;②α⊥β;③n ⊥β;④m ⊥α,以其中三个结论作为条件,另一个论断作为结论,则所得命题正确的个数是 A.1 B.2 C.3 D.414.平面α与平面β相交,m 是α内的一条定直线,则下列结论正确的是A.在β内必存在与m 平行的直线B.在β内必存在与m 垂直的直线C.在β内必不存在与m 平行的直线D.在β内不存在与m 垂直的直线15.对于直线m 、n 和平面α、β、γ,下列命题中,正确命题的个数为①若m ∥α,n ⊥m ,则n ⊥α②若m ⊥α,n ⊥m ,则n ∥α③若α⊥β,γ⊥β,则α∥γ④若m ⊥α,m ⊂β,则α⊥βA.1B.2C.3D.416.A 为直二面角α-l -β的棱上的一点,两条长度都等于a 的线段AB 、AC 分别在α、β内并且都与l 成45°角,则BC 的长为A.aB.a 或3aC.a 或2aD.a 或5a17.过平面外的两个点A 、B 有无穷多个平面都与α垂直,则一定有A.直线AB ∥αB.直线AB 与α成60°角C.A 、B 两点在α的一条垂线上D.A 、B 两点到α的距离相等18.对于直线m 、n 和平面α、β,α⊥β的一个充分条件是A.m ⊥n ,m ∥α,n ∥βB.m ⊥n ,α∩β=m ,n ⊂αC.m ∥n ,n ⊥β,m ⊂αD.m ∥n ,m ⊥α,n ⊥β19.已知直线L ⊥平面α,直线m ⊂平面β,有下面四个命题:①α∥β⇒L ⊥m ②α⊥β⇒L ∥m ③L ∥m ⇒α⊥β④L ⊥m ⇒α∥β其中正确的两个命题是A. ①与②B. ③与④C. ②与④D. ①与③20.过正方形ABCD 的顶点A 作线段⊥'A A 平面ABC D.若AB B A =',则平面AB A '与平而CD A '所成角的度数是A.30°B.45°C.60°D.90°21.如图:二面角α-AB -β的平面角是锐角,C 是面α内一点(它不在棱AB 上),点D 是点C 在面β上的射影,点E 是棱AB 上满足∠CEB 为锐角的任一点,那么A.∠CEB >∠DEBB.∠CEB =∠DEBC.∠CEB <∠DEBD.∠CEB 与∠DEB 的大小关系不能确定22.设直线m 、n 和平面α、β,则下列命题中,正确的是A.m∥n,m⊂α,n⊂β⇒α∥βB.m⊥α,m⊥n,n⊂β⇒α∥βC.m∥n,n⊥β,m⊂α⇒α⊥βD.m∥n,m⊥α,n⊥β⇒α⊥β23.设有不同的直线a、b和不同的平面α、β、γ,给出下列三个命题①若a∥α,b∥α,则a∥b;②若a∥α,a∥β,则α∥β;③若α⊥γ,β⊥γ,则α∥β其中正确命题的个数为A.0B.1C.2D.324.若有平面α与β,且α∩β=l,α⊥β,P∈α,P∉l,则下列命题中的假命题是A.过点P且垂直于α的直线平行于βB.过点P且垂直于l的平面垂直于βC.过点P且垂直于β的直线在α内D.过点P且垂直于l的直线在α内25.已知直线l、m,平面α、β,且l⊥α,m⊂β,给出下列四个命题:(1)若α∥β,则l⊥m(2)若l⊥m,则α∥β(3)若α⊥β,则l∥m(4)若l∥m,则α⊥β其中正确命题的个数是A.1个B.2个C.3个D.4个26.已知直线l、m,平面α、β,且l⊥α,m⊂β,给出下列四个命题:(1)若α∥β,则l⊥m(2)若l⊥m,则α∥β(3)若α⊥β,则l∥m(4)若l∥m,则α⊥β其中正确命题的个数是A.1个B.2个C.3个D.4个27.下列三个命题,其中正确命题的个数为①平面α∥平面β,β⊥平面γ,则α⊥γ②平面α∥平面β,β∥平面γ,则α∥γ③平面α⊥平面β,平面γ⊥β,则α⊥γA.1B.2C.3D.028.下列命题正确的是A.若直线a∥平面α,直线b⊥a,b⊂平面β,则α⊥βB.若直线a⊥直线b,a⊥平面α,b⊥平面β,则α⊥βC.过平面外的一条直线有且只有一个平面与已知平面垂直D.过平面外一点有且只有一个平面与已知平面垂直29.二面角α-l-β的平面角为120°,A,B∈l,AC⊆α,BD⊆β,AC⊥l,BD⊥l,若AB=AC=BD=1,则CD等于A.2B.3C.2D.530.二面角α-MN-β=60º,直线AB与α、β分别交于A、B,AB⊥MN,若AB与α、β所成角分别是θ1、θ2,则A.θ1+θ2=120ºB.θ1+θ2>120ºC.θ1+θ2<120ºD.以上都不对31.设平面α⊥平面β,直线a⊂α,直线b⊂β,且a⊥b,则A.a⊥βB.b⊥αC.a⊥β与b⊥α中至少有一个成立D.a⊥β与b⊥α同时成立32.正方形纸片ABCD,沿对角线AC对折,使D点在面ABC外,这时DB与面ABC所成的角一定不等于A.30°B.45°C.60°D.9033.a、b表示直线,α、β、γ表示平面,有下列四个命题:(1)若α∩β=a,b⊂α,a⊥b,则α⊥β;(2)若α⊥β,α∩γ=a,β∩γ=b,则a⊥b;(3)若a不垂直于平面α,则a不可能垂直于α内的无数条直线;(4)若a⊥α,b⊥β,a ∥b,则α∥β,其中不正确命题的个数为A.1B.2C.3D.434.正方形ABCD沿对角线AC折成直二面角后,AB与CD所成的角为A.30°B.45°C.60°D.90°35.自大于90°的二面角内一点分别向两个面引垂线,它们所成的角与二面角的平面角的大小关系是A.相等B.互补C.相等或互补D.无关36.设二面角α-AB-β面上一点D,DP在α内与AB成45°,与平面β成30°角,则二面角α-AB-β的度数是A.15°B.30°C.45°D.60°37.设平面α⊥平面β,在平面α内的一条直线a垂直于平面β内的一条直线b,则A.直线a必垂直于平面βB.直线b必垂直于平面αC.直线a不一定垂直于平面βD.过a的平面与过b的平面垂直38.下列命题中错误的是A.如果α⊥β,那么α内所有直线都垂直于平面βB.如果α⊥β,那么α内一定存在直线平行于平面βC.如果α不垂直于β,那么α内一定不存在直线垂直于平面βD.如果平面α⊥平面γ,平面β⊥γ,α∩β=l,那么l⊥γ39.如图,四边形BCEF、AFED都是矩形,且平面AFED⊥平面BCEF,则下列式子中正确的是A.cosα=cosβ·cosθB.sinα=sinβ·cosθC.cosβ=cosα·cosθD.sinβ=sinα·cosθ40.如果直线l 、m 与平面α、β、γ满足:l =β∩γ,l ∥α,m ⊂α和m ⊥γ,那么必有A.α⊥γ且l ⊥mB.α⊥γ且m ∥βC.m ∥β且l ⊥mD.α∥β且α⊥γ41.设有不同的直线a 、b 和不同的平面α、β、γ,给出下列三个命题:(1)若a ∥α,b ∥α,则a ∥b. (2)若a ∥α,α∥β,则α∥β.(3)若α⊥γ,β⊥γ,则α∥β.其中正确的个数是 A.0 B.1 C.2 D.342.若平面α⊥平面β,平面β⊥平面γ,则A.α∥γB.α⊥γC.α与γ相交但不垂直D.以上都有可能43.已知直线a 、b 和平面α、β、γ,可以使α∥β的条件是A.a ⊂α,b ⊂β,a ∥bB.a ⊂α,b ⊂α,a ∥β,b ∥βC.α⊥γ,β⊥γD.a ⊥α,a ⊥β44.设a,b,c 表示三条直线,α、β表示两个平面,则下列命题中逆命题不成立的是βαβα//c ,.A ,则若⊥⊥c b a c a .B ⊥⊥⊂则内的射影,若在是,b c b ββ βααβ⊥⊥⊂,则若b ,.C b c b c b // //c ,,.D 则若ααα⊄⊂45.如图,四边形ABCD 中,AD //BC ,AD=AB ,∠BCD =45°,∠BAD =90°,将△ABD 沿BD 折起,使平面ABD ⊥平面BCD ,构成三棱锥A -BC D.则在三棱锥A -BCD ,下列命题正确的是A.平面ABD ⊥平面ABCB.平面ADC ⊥平面BDCC.平面ABC ⊥平面BDCD.平面ADC ⊥平面ABC46.已知△ABC 中,AB =2,BC =4,∠ABC =45°.BC 在α内,且△ABC 所在平面与平面α成30°角,则△ABC 在α内射影面积是A.26B.36C.26D.647.一个直角三角形的两个直角边长为a 、b ,沿斜边高折成直二面角,则两个直角边所夹角的余弦值为A.22b a ab +B.222b a ab+ C.22b a ab+ D.22b a ab +48.一条直线与一个直二面角的两个面所成的角分别为θ和ϕ,则θ+ϕA.≤90°B.≠90°C.≥90°D.无法确定49.设有不同的直线a 、b 和不同的平面α、β、γ,给出下列三个命题:⑴若a ∥α,b ∥α,则a ∥b ;⑵若a ∥α,a ∥β,则α∥β; ⑶若α⊥γ,β⊥γ,则α∥β.其中正确命题的个数是 A.0 B.1 C.2 D.350.一间民房的屋顶有如图三种不同的盖法:①单向倾斜;②双向倾斜;③四向倾斜.记三种盖法屋顶面积分别为P 1、P 2、P 3.①若屋顶斜面与水平面所成的角都是α,则A.P 3=P 2>P 1B.P 3>P 2=P 1C.P 3>P 2>P 1D.P 3=P 2=P 1二、填空题(共8题,题分合计36分)1.若三个平面两两垂直,则它们的交线________.2.已知m 、l 是直线,α、β是平面,给出下列命题:①若l 垂直于α内的两条相交直线,则l ⊥α; ②若l 平行于α,则l 平行于α内的所有直线; ③若m ⊂α, l ⊂β,且l ⊥m , 则α⊥β; ④若l ⊂β,且 l ⊥α,则α⊥β; ⑤若m ⊂α, l ⊂β,且α∥β,则m ∥l.其中正确的命题的序号是___________.(注:把你认为正确的命题的序号都填上)3.设α、β表示平面,l 表示不在α内也不在β内的直线,存在下列三个事实①l ⊥α,②l ∥β,③α⊥β,若以其中两个作为条件,另一个作为结论,可构成三个命题,其中真命题是________ .(要求写出所有真命题)4.两腰长均是1的等腰Rt △ABC 1和等腰Rt △ABC 2所在平面成60°的二面角,则两点C 1与C 2的距离是___________________.5.正方形ABCD 的边长是2,E 、F 分别是AB 和CD 的中点,将正方形沿EF 折成直二面角,M 为矩形AEFD 内点,如果∠MBE =∠MBC ,MB 和平面BCF 所成角的正切值为21,那么点M 到直线EF 的距离为.6.设有四个条件:①平面γ与平面α、β所成的锐二面角相等; ②直线a ∥b ,a ⊥平面α,b ⊥β;③a 、b 是异面直线,βα⊂⊂b a ,,且a∥β,b∥α;④平面α内距离为d 的两条直线在平面β内的射影仍为两条距离为d 的平行线,其中能推出α∥β的条件有.(填写所有正确条件的代号)7.如图,∠BAD =90°的等腰直角三角形ABD 与正三角形CBD 所在平面互相垂直,E 是BC 的中点,则AE 与平面BCD所成角的大小为.8.50.在空间,下列命题正确的是____________.(注:把你认为正确的命题的序号都填上)①如果两条直线a 、b 分别与直线l 平行,那么a ∥b②如果一条直线a与平面β内的一条直线b平行,那么a∥β③如果直线a与平面β内的两条直线b、c都有垂直,那么a⊥β④如果平面β内的一条直线a垂直平面γ,那么β⊥γ三、解答题(共27题,题分合计287分)1.若P为正ΔABC外的一点,且P A=PB=PC,N为BC的中点,则平面P AN⊥平面AB C.2.已知Rt△ABC中,BC为斜边,点S为平面ABC外一点,且SA=SB=SC.(1)求证:平面SBC⊥平面ABC;.(2)若△ABC为等腰直角三角形,且BC=2,点S到平面ABC的距离为1,求二面角B-SA-C的大小3.如图:过正方形ABCD的顶点A,引P A⊥平面AC,若P A=AB,则平面ABP和平面CDP所成的二面角的大小是A.30°B.45°C.60°D.90°4.从120°二面角的棱上两点A和B,分别在它的两个半平面α、β内作垂直于棱的线段AC、BD,已知AB=2a,AC=BD=a,求CD的长.5.长为2a的线段AB的两端点在直二面角α-l-β的两个面内,且于这个面都成30°角,求异面直线AB与l所成的角.6.已知△ABC,∠ABC=30°,P A⊥平面ABC,PC⊥BC,PB与平面ABC成45°的角.(1)求证:平面PBC⊥平面P AC;(2)求二面角A-PB-C的正弦值.7.已知平面α⊥平面β,长度为2a的线段AB的两端点分别在α、β内,且AB与α与45°角与β成30°角,求这条线段两个端点在两个平面交线上垂足间的距离.8.已知平面α⊥平面β,直线a⊥β,aα,试判断a与α的关系.9.已知平面α⊥平面γ,平面α∥平面β,求证:β⊥γ10.已知平面α⊥平面β,a∥α,a垂直于α与β的交线AB,试判断a与β的位置关系.11.已知SA⊥平面ABC,AB⊥BC,SA=AB,SB=BC,E是SC的中点,DE⊥SC交AC于D.求二面角E-BD-C的大小.12.如图,平面α∩平面β=a,α⊥平面γ,β⊥平面γ,α和β同时平行于直线b,求证:(1)a⊥γ;(2)b⊥γ.13.点P在平面ABC处,△ABC是等腰直角三角形,∠ABC=90°,△P AB是正三角形,P A⊥BC.(1)求证:平面P AB⊥平面ABC;(2)求二面角P-AC-B的大小.14.如图,ABCD是正方形,E、F分别是AD、BC边上的点,EF∥AB,EF交AC于点O,以EF为棱把它折成直二面角A-EF-D后,求证:不论EF怎样移动,∠AOC是定值.15.如图,AB是圆O的直径,P A垂直于圆O所在的平面,C是圆周上不同于A,B的任意一点,求证:平面P AC⊥平面PBC.B16.Rt△ABC的两直角边长分别为AC=2,BC=3,P是斜边BC上一点,沿PC将起折为直二面角A-PC-B,此时AB =7,求二面角P-AC-B的大小APBC C APB17.如图,在三棱锥S-ABC中,SA⊥底面ABC,AB⊥BC,DE垂直平分SC,且分别交AC、SC于点D、E,又SA=AB,SB=BC,求以BD为棱,以BDE与BDC为面的二面角的度数.C18.如图,设△ABC和△DBC所在的两个平面互相垂直,且AB=BC=BD,∠CBA=∠DBC=120°,求:(91上海)(1)AD的连线与平面BCD所成的角;(2)AD得连线与直线BC所成的角;(3)二面角A-BD-C的大小.19.如图所示,在四面体ABCD中,AB⊥BC,AB⊥BD,BC⊥CD,且AB=BC=1.(1)求证:平面CBD⊥平面ABD;(2)是否存在这样的四面体,使二面角C-AD-B的平面角为30°?如果存在,求出CD的长;如果不存在,试确定角θ的范围,使得这样的四面体存在且二面角C-AD-B的平面角为θ.20.已知正方体ABCD-A1B1C1D1的棱长为2,P,Q分别是BC,CD上的动点,且|PQ|=2,建立如图所示的坐标系.(1)确定P,Q的位置,使得B1Q⊥D1P;(2)当B1Q⊥D1P时,求二面角C1-PQ-A的大小.21.已知二面角P-l-Q的大小为120°,点A∈P,点B∈Q,点A、B到棱l的距离分别为2和4,AB=10,求:(1)AB与棱l所成角的正弦;(2)求AB和l的距离.22.已知四边形ABCD为矩形,P A⊥平面ABCD,M、N、E分别是AB、PC、CD的中点.(1)求证:MN∥平面P AD;(2)当MN⊥平面PCD时,求二面角P-CD-B的大小.23.如图,在梯形ABCD 中,AD ∥BC ,∠ABC =2,AB =a ,AD =3a ,且∠ADC =a r c sin 55,又PA ⊥平面ABCD ,PA =a求(1)二面角P-CD-A 的大小(用反三角函数表示) (2)点A 到平面PBC 的距离24.如图,设平面AC 和BD 相交于BC ,它们所成的一个二面角为45o,P 为面AC 内一点,Q 为面BD 内一点,已知直线MQ 是直线PQ 在平面BD 内的射影,并且M 在BC 中,又设PQ 与平面BD 所成的角为β,∠CMQ =θ(0o <θ<90o ),线段PM 的长为a ,求线段PQ 的长.QA B C MP Da25.如图,在二面角α-l -β中,A 、B ∈α,C 、D ∈l ,ABCD 为矩形,P ∈β,P A ⊥α,且P A =AD ,M 、N 依次是AB 、PC 的中点(96上海)(1)求二面角α-l -β的大小; (2)求证:MN ⊥AB ;(3)求异面直线P A 与MN 所成角的大小.26.如图,正方形ABCD 、ABEF 的边长都是1,而且平面ABCD 、ABEF 互相垂直.点M 在AC 上移动,点N 在BF 上移动,若CM =BN =a (0<a <1) (1)求MN 的长;(2).当a 为何值时,MN 的长最小;(3).当MN 长最小时,求面MNA 与面MNB 所成的二面角α的大小.AFED27.如图,已知二面角α-PQ -β为60°,点A 和点B 分别在平面α和平面β上,点C 在棱PQ 上,∠ACP =∠BCP =30°,CA =CB =a. (1)求证:AB ⊥PQ . (2)求点B 到平面α的距离.(3)设R 是线段CA 上的一点,直线BR 与平面α所成角的大小为45°,求线段CR 的长度.两个平面垂直的判定和性质答案一、选择题(共50题,合计250分)1.5348答案:C2.5421答案:B3.5536答案:D4.5545答案:C5.5554答案:C6.5574答案:B7.5608答案:D8.5622答案:B9.5648答案:D10.5753答案:C11.5758答案:B12.5775答案:D13.5796答案:B14.6086答案:B15.6087答案:A16.6088答案:B17.6089答案:C18.6289答案:C19.6290答案:D20.6314答案:B21.6387答案:A22.6409答案:C23.6411答案:A24.6412答案:D25.6413答案:B26.6414答案:B27.6479答案:B 28.6480答案:B 29.5696答案:C 30.5764答案:D 31.5770答案:C 32.5784答案:D 33.5793答案:C 34.5814答案:C 35.6091答案:B 36.6092答案:C 37.6104答案:C 38.6105答案:A 39.6106答案:B 40.6291答案:A 41.6302答案:A 42.6475答案:D 43.6476答案:D 44.5626答案:C 45.5652答案:D 46.5697答案:D 47.6090答案:C 48.6107答案:A 49.6329答案:A 50.6333答案:D二、填空题(共8题,合计36分)1.6112答案:互相垂直2.5635答案: ①④3.5639答案: ①②⇒③,①③⇒②4.5778答案:22, 1,25.5779答案:226.5781答案:②③7.6305答案:∠AEF =45°. 8.6354答案: ①④三、解答题(共27题,合计287分)1.5801答案:见注释2.5641答案:(2)∠BEC =31arccos-π3.6076答案:B4.6101答案:CD =7a .5.6102答案:AB 与l 所成的角为45°6.6103答案:(2)sin AED =510=AEAD . 7.6115答案:线段AB 两个端点在两个平面交线上垂足间的距离为a . 8.6116答案:见注释 9.6117答案:见注释 10.6118答案:见注释 11.6119答案:见注释 12.6120答案:见注释13.6121答案:(2)二面角P -AC -B 的大小为arctan 6.14.6122答案:见注释 15.6416答案:见注释 16.6417答案: θ=45° 17.6418答案:∠EDC =60o. 18.6419答案:(1)∠ADO =45°(2)BC 与AD 所成交为90°(3)二面角A -BD -C 的大小为π-arctan219.5526答案:(2)不存在。

两个平面垂直的判定和性质二

两个平面垂直的判定和性质二

两个平面垂直的判定和性
质二
Revised by BLUE on the afternoon of December 12,2020.
§两个平面垂直的判定和性质(二)
1.选择题
(1)已知两个平面互相垂直,一条直线与两个平面相交,那么这条直线与两
个平面所成的角的和是
( )
(A )小于90 (B )等于90 (C )大于90 (D )不大于90
(2)A 为二面角-l -棱l 上一点,AP 在内,且与l 成45角,与成30角,则二
面角-l -平面角的度数是 ( ) (A )30 (B )45 (C )60 (D )90
2.已知如图,空间四边形ABCD ,及两条对角线AC 、BD ,AB =AC =AD =a ,
BD =DC =CB =b ,A H ⊥面BCD ,垂足为H ,求平面ABD 与平面BCD 所成角的大小.
3.矩形ABCD ,AB =3,BC =4,设对角线BD 把⊿ABD 折起,使点A 在平面BCD 上的射影A ′落在BC 上,求二面角A -BD -C 的大小.
4.如图,边长为a 的正三角形ABC ,PA ⊥平面ABC ,PA =a ,QC ⊥平面ABC ,
DC =2a ,求平面PQB 与平面ABC 所成的角.
5.将棱长为a 的正四面体的一个面与棱长为a 的正四棱锥的一个侧面吻合,则吻合后的几何体呈现几个面
A C
B D A D
C A ′ B B
A C Q P。

两个平面垂直的判定和性质

两个平面垂直的判定和性质
C A D B
α
l
所以 BD⊥α,BD⊥BC, 所以△CBD是 ⊥ , ⊥ , 所以△ 是 直角三角形, 直角三角形, 在直角△ 在直角△BAC中,BC= 3 + 4 = 5 中
2 2
在直角△CBD中,CD= 52 + 122 = 13 在直角△ 中 所以CD的长为 所以 的长为13cm. 的长为
β β α α
2. 平面与平面垂直的判定定理: . 平面与平面垂直的判定定理: ①文字语言:如果一个平面过另一个平面 文字语言: 的一条垂线,则这两个平面互相垂直; 的一条垂线,则这两个平面互相垂直; ②图形语言: 图形语言:
α
A B
β
③符号语言:AB⊥β,AB∩β=B, 符号语言: ⊥ , , AB
ALeabharlann 平面ACD⊥平面BDC; ⊥平面 平面 ;
D B C
(2)在原图中,直角△BAC,因为 )在原图中,直角△ , AB=AC=a,所以 ,所以BC= 2 a, , 所以 BD=DC=
2 2
a, ,
△BDC是等腰直角三角形。 是等腰直角三角形。 是等腰直角三角形 所以BC= 所以BC= 2 BD= a A 是等腰直角三角形。 △BDC是等腰直角三角形。 是等腰直角三角形 所以AB=AC=BC, , 所以 因此∠ 因此∠BAC=60°. °
B D C
练习题 1. 下列命题中正确的是( C ) . 下列命题中正确的是( 分别过两条互相垂直的直线, (A)平面 和β分别过两条互相垂直的直线, )平面α和 分别过两条互相垂直的直线 则α⊥β ⊥ 内的一条直线垂直于平面β内 (B)若平面 内的一条直线垂直于平面 内 )若平面α内的一条直线垂直于平面 的两条平行直线, 的两条平行直线,则α⊥β ⊥ 内的一条直线垂直于平面β内 (C)若平面 内的一条直线垂直于平面 内 )若平面α内的一条直线垂直于平面 的两条相交直线, 的两条相交直线,则α⊥β ⊥ 内的一条直线垂直于平面β内 (D)若平面 内的一条直线垂直于平面 内 )若平面α内的一条直线垂直于平面 的无数条直线, 的无数条直线,则α⊥β ⊥

平面与平面垂直的性质和判定

平面与平面垂直的性质和判定

判定定理:如果一个平面经过另一个平面的 ,那么这两个平面互相垂直。

性质定理:如果两个平面互相垂直,那么在一个平面内垂直于他们的交线的直线垂直于另一个平面。

面面垂直的判定方法① 面面垂直的定义:两个平面相交所成的二面角是②面面平行的性质结论:γαβα⊥,//⇒βγ⊥平面与平面垂直的性质一、 选择题:1、下列命题中,不正确的是( )A. 一条直线垂直于平面内无数条直线,则这条直线垂直于这个平面B. 平面的垂线一定与平面相交C. 过一点有且只有一条直线与已知平面垂直D. 过一点有且只有一个平面与已知直线垂直2、已知平面a ⊥平面β,l =βα ,点P ∈l ,则给出下面四个结论:①过P 和l 垂直的直线在平面α内; ②过P 和平面β垂直的直线在平面α内;③过P 和l 垂直的直线必与β垂直; ④过P 和平面β垂直的平面必与l 垂直。

其中真命题是:( )A. ②B. ③C. ①、④D. ②、③3、夹在直二面角两个半平面间的一条线段与两个平面所成的角分别是30°和45°,如果这条线段的长是5,则它在二面角棱上的射影长为( )A. 2.5B. 5C. 10D. 84、关于直线m 、n 与平面α、β,有下列四个命题:①βα//,//n m 且βα//,则n m //; ②βα⊥⊥n m ,且βα⊥,则n m ⊥;③βα//,n m ⊥且βα//,则n m ⊥; ④βα⊥n m ,//且βα⊥,则n m //. 其中真命题的序号是( )A. ①、②B. ③、④C. ①、④D. ②、③5、设m 、n 是两条不同的直线,α、β是两个不同的平面.考查下列命题,其中正确的命题是( )A .βαβα⊥⇒⊥⊂⊥n m n m ,,B .n m n m ⊥⇒⊥βαβα//,,//C .n m n m ⊥⇒⊥⊥βαβα//,,D .ββαβα⊥⇒⊥=⊥n m n m ,,6、若m n ,是两条不同的直线,α、β、γ三个不同的平面,则下列命题中的真命题是( )A .若m βαβ⊂⊥,,则m α⊥B .若m αγ=,n βγ=,m n ∥,则αβ∥C .若m β⊥,m α∥,则αβ⊥D .若αγ⊥,αβ⊥,则βγ⊥二、填空题7、两个平面互相垂直,一条直线与其中一个平面平行,则这条直线与另一个平面的位置关系是8、设直线l 和平面βα、,且βα⊄⊄l l ,,给出如下三个论证:①α⊥l ;②βα⊥;③l ∥β从中任取两个作条件,余下一个作为结论,在构成的诸命题中,写出你认为正确的一个命题是9、下面四个命题: ①三个平面两两互相垂直,则它们的交线也两两互相垂直;②三条共点的直线两两互相垂直,分别由每两条直线所确定的平面也两两互相垂直;③分别与两条互相垂直的直线垂直的平面互相垂直;④分别经过两条互相垂直的直线的两个平面互相垂直。

两个平面垂直的判定与性质

两个平面垂直的判定与性质

• 两个平面垂直的判定定理 • 两个平面垂直的性质 • 两个平面垂直的判定与性质的关
系 • 两个平面垂直在实际生活中的应
用 • 两个平面垂直的典型例题解析
目录
01
两个平面垂直的判定定理
判定定理的内容
01
02
03
判定定理
如果一个平面内的两条相 交直线与另一个平面垂直, 则这两个平面垂直。
线来证明。
性质的应用
01
在几何学中,两个平面垂直的性 质可以用于证明空间几何中的一 些定理和性质,例如空间几何中 的勾股定理等。
02
在物理学中,两个平面垂直的性 质可以用于研究物体的运动和力 的作用,例如物体在重力作用下 的运动轨迹等。
03
两个平面垂直的判定与性质
的关系
判定与性质的联系
判定是性质的依据
两条相交直线
在给定平面内选择两条不 平行的直线,这两条直线 必须相交。
垂直关系
这两条相交直线必须与另 一个平面垂直。
判定定理的证明
证明思路
通过反证法证明,假设两个平面不垂直,则它们必然存在一个公共点,由此可以确定一条过该点的直线。由于这 条直线同时位于两个平面内,因此它必然与两个平面都垂直。这与题目中给定的条件矛盾,因此假设不成立,所 以两个平面垂直。
家装设计
在家装设计中,需要确保墙面、 地面和天花板之间的垂直度,以
提高家居的美观度和舒适度。
家具摆放
在家具摆放时,需要确保家具与 地面垂直,以提高家具的稳定性
和安全性。
悬挂物品
在悬挂物品时,需要确保物品与 墙面垂直,以提高物品的稳定性
和安全性。
05
两个平面垂直的典型例题解

例题一解析

两平面垂直的判定与性质

两平面垂直的判定与性质

05
两平面垂直的实例分析
实例一:简单的几何图形
总结词
通过观察几何图形,可以直观地判断两平面是否垂直。
详细描述
在平面几何中,常见的图形如矩形、正方形和正六面体等,它们的相对面都是垂直的。通过观察这些图形的角和 边,可以直观地判断两平面是否垂直。
பைடு நூலகம்
实例二:建筑模型的分析
总结词
建筑模型中的墙面和地面通常都是垂直的。
判定定理的应用
应用场景
判定两平面是否垂直,特别是在几何、工程和物理学等领域中,两平面垂直的判 定定理具有广泛的应用价值。
实际应用
在建筑学中,为了确保结构的稳定性和安全性,需要判定各个平面是否垂直;在 机械工程中,判定两平面是否垂直对于零件的设计和制造至关重要;在物理学中 ,两平面垂直的判定定理可用于研究物体的运动轨迹和力的分布。
判定定理的证明
• 证明过程:设两平面分别为α和β,且α内的两条相交直线a和b 分别与β垂直。在直线a上任取一点A,由于a与β垂直,作直线c 平行于a且在β内,使得A落在c上。同理,在直线b上任取一点B, 作直线d平行于b且在β内,使得B落在d上。由于a和b相交,所 以点A和B确定了一个平面γ。由于c和d都在β内,且c与d相交, 所以β包含在γ内。又因为α与γ内的两条相交直线a和b都垂直, 所以α与γ垂直。由此可知,α与β垂直。
详细描述
在建筑领域,墙面和地面通常都是垂直的。这是因为垂直的 平面能够提供更好的支撑和稳定性。通过观察建筑物的结构 和设计,可以分析出两平面是否垂直。
实例三:物理实验的现象分析
总结词
物理实验中经常涉及到两平面垂直的情 况,如重力的方向与地面垂直。
VS
详细描述
在物理实验中,很多现象都涉及到两平面 垂直的情况。例如,在研究重力时,重力 的方向总是垂直于地面向下。通过分析这 些实验的现象和结果,可以深入理解两平 面垂直的性质和应用。

两个平面垂直的判定

两个平面垂直的判定

a
A
D
C B
a
证明:设 =CD
AB AB、CD共面 AB ┴ CD AB ┴ CD
设垂足为B,过B点在平面 内作BE ┴ CD
则∠ABE是二面角 CD 的平面角
又 AB ┴ BE ∴∠ABE是直角
-CD- 是直二面角

A
D
B
E
C
2、判定定理:
如果一个平面经过另一个平面
作业:
1、书P40 习题12、13、14 2、教测P119 例1、例2
两个平面垂直的判定
1、定义:
两个平面相交,如果它们所成的二 面角是直二面角,则两个平面垂直。
记作α⊥β
性质: 1、凡是直二面角都相等
2、两个平面相交,可引成四个二面角,如 果其中有一个是直二面角,那么其他各个 二面角都是直二面角
AB a
已知:AB┴β AB
想一想 求证: ┴β
两个平面相交,如果其中一个 平面内只有一条直线垂直于另一个 平面,能否得到两个平面垂直?
3、性质定理:
如果两个平面垂直,那么在一个
平面内垂直于它们交线的直线垂直于
另一个平面
在β内引直线BE⊥CD,垂足为B,
A
则∠ABE是二面角α-CD-β的平面角
D
由α⊥β知,AB⊥BE
B
E
C
又AB⊥CD 而Βιβλιοθήκη E和CD是β内的两条相交直线所以AB⊥β
面面垂直
线面垂直
小 结:
1、两个平面互相垂直的定义 2、两个平面互相垂直的判定定理 3、两个平面互相垂直的性质定理
的一条垂线,那么这两个平面互相
垂直。
A
D
B
C

两个平面垂直判定与性质

两个平面垂直判定与性质
06
垂直于平面的直线,必垂直于该平面内任一直线。
思考题与讨论
1. 思考
如何证明两个平面垂直?有哪些 方法?
• 答案
可以通过找到两平面的垂线,或者 证明一个平面内的一条直线垂直于 另一个平面来证明两个平面垂直。
2. 讨论
两个平面垂直的性质在实际应用中 有哪些用途?请举例说明。
思考题与讨论
01 02
ቤተ መጻሕፍቲ ባይዱ
举例分析
例子1
在空间中,已知直线$l$经过点$A(1,2,3)$,且方向向量 为$mathbf{a} = (1,1,1)$。平面$alpha$经过点 $B(2,3,4)$和点$C(3,4,5)$,且法向量为$mathbf{n} = (1,1,1)$。判断直线$l$与平面$alpha$是否垂直。
分析
直。
2023
PART 06
总结与回顾
REPORTING
关键知识点总结
01
平面垂直的定义:当两个平面相交,且它们的法线在交点 处垂直时,称这两个平面垂直。
02
判定定理:若一个平面过另一个平面的垂线,则这两个平 面垂直。
03
性质
04
垂直于同一平面的两个平面平行。
05
若两个平面都垂直于第三个平面,则它们的交线垂直于第 三个平面。
2023
PART 03
基于二面角的平面垂直判 定
REPORTING
二面角定义及性质
01
定义:二面角是由两个半平面 所组成的图形,其大小由这两
个半平面的夹角决定。
02
性质
03
04
二面角的大小与它的夹角的平 面角的大小相等。
当两个二面角的平面角相等时 ,称这两个二面角相等。

2020届高考数学例解两平面垂直的判定和性质

2020届高考数学例解两平面垂直的判定和性质

2020届高考数学例解两平面垂直的判定和性质例1.依照表达作图,指出二面角的平面角并证明.〔1〕如图1,l A l ∈=⋂,βα.在α内作l PA ⊥于A ,在β内作l QA ⊥于A .〔2〕如图2,l A A l ∉∈=⋂,,αβα.作β⊥AP 于P ,在α内作l AQ ⊥于Q ,连结PQ .〔3〕βαβα∉∉=⋂A A l ,,.作α⊥AP 于P ,β⊥AQ 于Q ,⋂l 平面H PAQ =,连结PH 、QH .作图与证明在此省略.讲明:此题介绍了作二面角的平面角的三种常用方法,其中用三垂线定理及逆定理的方法最常用,还需补充这种方法的其他典型图形.典型例题二例2. 如图,在立体图形ABC D -中,假设E CD AD CB AB ,,==是AC 的中点,那么以下命题中正确的选项是〔 〕.〔A 〕平面ABC ⊥平面ABD〔B 〕平面ABD ⊥平面BDC〔C 〕平面ABC ⊥平面BDE ,且平面ADC ⊥平面BDE〔D 〕平面ABC ⊥平面ADC ,且平面ADC ⊥平面BDE分析:要判定两个平面的垂直关系,就需固定其中一个平面,找另一个平面内的一条直线与第一个平面垂直.解:因为,CB AB =且E 是AC 的中点,因此,AC BE ⊥同理有AC DE ⊥,因此⊥AC 平面BDE .因为⊂A C 平面ABC ,因此平面ABC ⊥平面BDE .又由于⊂AC 平面ACD ,因此平面ACD ⊥平面BDE .因此选C.讲明:此题意图是训练学生观看图形,发觉低级位置关系以便得到高级位置关系.在某一个平面内,得到线线垂直的重要途径是显现等腰三角形底边的中线,由线线垂直得到线面垂直,由线面垂直可得到面面垂直.典型例题三例3.如图,P 是ABC ∆所在平面外的一点,且⊥PA 平面ABC ,平面⊥PAC 平面PBC .求证AC BC ⊥.分析:条件是线面垂直和面面垂直,要证明两条直线垂直,应将两条直线中的一条纳入一个平面中,使另一条直线与该平面垂直,即从线面垂直得到线线垂直..证明:在平面PAC 内作PC AD ⊥,交PC 于D .因为平面⊥PAC 平面PBC 于PC ,⊂AD 平面PAC ,且PC AD ⊥,因此PBC AD 平面⊥.又因为⊂BC 平面PBC ,因此有BC AD ⊥①.另外⊥PA 平面ABC ,⊂BC 平面ABC ,因此BC PA ⊥.由①②及A PA AD = ,可知⊥BC 平面PAC .因为⊂AC 平面PAC ,因此AC BC ⊥.讲明:在空间图形中,高一级的垂直关系中包蕴着低一级的垂直关系,通过此题能够看到,面面垂直⇒线面垂直⇒线线垂直.典型例题四例4.如图,AB 是⊙O 的直径,PA 垂直于⊙O 所在的平面,C 是圆周上异于A 、B 的任意一点,求证:平面PAC ⊥平面PBC .分析:证明面面垂直的有两个依据,一是证明二面角的平面角为直角,二是利用两个平面垂直的判定定理.由于C 点的任意性,用方法一的可能性不大,因此要寻求线面垂直.证明:因为AB 是⊙O 的直径,C 是圆周上的点,因此有AC BC ⊥①.因为⊥PA 平面ABC ,⊂BC 平面ABC ,那么BC PA ⊥②.由①②及A PA AC = ,得⊥BC 平面PAC .因为⊂BC 平面PBC ,有平面PAC ⊥平面PBC .讲明:低一级的垂直关系是判定高一级垂直关系的依据,依照条件,由线线垂直⇒线面垂直⇒面面垂直.通过那个例题展现了空间直线与平面的位置关系的内在联系,垂直关系的判定和性质共同构成了一个完整的知识体系.典型例题五例5.如图,点A 在锐二面角βα--MN 的棱MN 上,在面α内引射线AP ,使AP 与MN 所成的角PAM ∠为 45,与面β所成的角大小为30,求二面角βα--MN 的大小.分析:第一依照条件作出二面角的平面角,然后将平面角放入一个可解的三角形中〔最好是直角三角形〕,通过解三角形使咨询题得解.解:在射线AP 上取一点B ,作β⊥BH 于H ,连结AH ,那么BAH ∠为射线AP 与平面β所成的角,30=∠∴BAH .再作MN BQ ⊥,交MN 于Q ,连结HQ ,那么HQ 为BQ 在平面β内的射影.由三垂线定理的逆定理,MN HQ ⊥,BQH ∠∴为二面角βα--MN 的平面角.设a BQ =,在BAQ Rt ∆中,a AB BAM BQA 2,45,90=∴=∠=∠ ,在Rt △BHQ 中,,22,,90a BH a BQ BHQ ===∠ 2222sin ===∠a a BQ BH BQH , BQH ∠ 是锐角, 45=∠∴BQH ,即二面角βα--MN 等于 45.讲明:此题综合性较强,在一个图形中显现了两条直线所称的角,斜线与平面所称的角,二面角等空间角,这些空间角都要转化为平面角,而且还要彼此联系相互依存,要依照各个平面角的定义添加适当的辅助线.典型例题六例6.如图,将边长为a 的正三角形ABC 以它的高AD 为折痕折成一个二面角C AD C --'.〔1〕指出那个二面角的面、棱、平面角;〔2〕假设二面角C AD C --'是直二面角,求C C '的长;〔3〕求C A '与平面CD C '所成的角;〔4〕假设二面角C AD C --'的平面角为 120,求二面角D C C A -'-的平面角的正切值.分析:依照咨询题及图形依次解决.解:〔1〕∴'⊥⊥∴⊥,,,C D AD DC AD BC AD 二面角C AD C --'的面为ADC 和面C AD ',棱为AD ,二面角的平面角为C CD '∠.〔2〕假设 90='∠C CD ,a C C a C D DC a AC 22,21,='∴='=∴= .〔3〕⊥∴⊥'⊥AD DC AD C D AD ,, 平面C C D ',D C A '∠∴为C A '与平面CD C '所成的角.在直角三角形C AD '中, 30,21='∠∴='=CDA AC C D DC ,因此 60='∠D C A .〔4〕取C C '的中点E ,连结AE 、DE , C C DE C C AE AC C A DC C D '⊥'⊥∴='=',,, ,AED ∠∴为二面角D C C A -'-的平面角.,41,21,120a DE a CD D C DC C =∴=='='∠ 在直角三角形AED 中,,23a AD =DE AD AED =∠∴tan 324123==a a . 讲明:这是一个折叠咨询题,要不断地将折叠前后的图形加以比较,抓住折叠前后的变与不变量.典型例题七例7 正方体1111D C B A ABCD -的棱长为1,P 是AD 的中点.求二面角P BD A --1的大小.分析:求二面角关键是确定它的平面角,按定义在二面角的棱上任取了点,在二个半平面上分不作棱的垂线,方法虽简便,但因与其他条件没有联系,要求那个平面角一样是专门不容易的,因此在解题中不大应用.在解题中应用得较多的是〝三垂线定理〞的方法,如图考虑到AB 垂直于平面1AD ,1BD 在平面1AD 上的射影确实是1AD .再过P 作1AD 的垂线PF ,那么PF ⊥面1ABD ,过F 作B D 1的垂线FE ,PEF ∠即为所求二面角的平面角了.解:过P 作1BD 及1AD 的垂线,垂足分不是E 、F ,连结EF .∵AB ⊥面1AD ,PF ⊂面1AD ,∴PF AB ⊥,又1AD PF ⊥,∴PF ⊥面1ABD .又∵1BD PE ⊥,∴1BD EF ⊥,∴PEF ∠为所求二面角的平面角.∵D AD Rt 1∆∽PFA ∆,∴11AD AP DD PF =. 而21=AP ,11=DD ,21=AD ,∴42=PF . 在1PBD ∆中,251==PB PD . ∵1BD PE ⊥,∴2321==BD BE . 在PEB Rt ∆中,2222=-=BE PB PE , 在PEF Rt ∆中,21sin ==∠PE PF PEF , ∴︒=∠30PEF . 典型例题八例8 在ABC ∆所在平面外有一点S ,AB SC ⊥,SC 与底面ABC 所成角为θ,二面角C AB S --的大小为ϕ,且︒=+90ϕθ.求二面角A SB C --的大小.分析:由题设易证SD SC ⊥,由得SC ⊥平面SAB ,明显所求的二面角是直二面角,现在只需证明二面有的两个面垂直即可.在解这种类型题时,假如去作二面角A SB C --的平面角,那么可能会走弯路.解:如下图,作SO ⊥平面ABC 于O ,连结CO 并延长交AB 于D ,连结SD . ∵SO ⊥平面ABC ,∴SCO ∠是SC 与平面ABC 所成角,θ=∠SCO .∵SO ⊥平面ABC ,AB SC ⊥,∴CD AB ⊥,SD AB ⊥.∴SDO ∠是二面角C AB S --的平面角,ϕ=∠SDO .∵︒=+90ϕθ,∴SD SC ⊥.又∵AB SC ⊥,∴SC ⊥平面SAB ,∴平面SBC ⊥平面SAB ,∴二面角A SB C --的大小为︒90.讲明:二面角的平面角满足三个条件:(1)顶点在棱上,(2)两边在面内,(3)两边与棱垂直.应注意CSB ∠不满足第(3)条,不是二面角A SB C --的平面角.在求二面角大小时,假设其平面角不易作出时,那么可考虑判定两平面是否垂直,假如两平面垂直,那么其二面角为︒90,反之亦然.典型例题九例9 假如αβ⊥,αγ⊥,a =γβ ,那么α⊥a .分析:(1)此题是一道高考题,考查线面垂直和面面垂直的性质和逻辑推理能力.要证α⊥a ,只要证明直线a 与平面α内的两条相交直线垂直就能够了,从而借助平面与平面垂直的性质达到证明α⊥a 的目的;(2)要证α⊥a ,只要证明a 平行于平面α的一条垂线就能够了,这也能够借助面面垂直的性质加以考虑;(3)能够用〝同一法〞来证明.证法一:如下图,设b =βα ,c =γα ,过平面α内一点P 作b PA ⊥于A ,作c PB ⊥于B .∵αβ⊥,∴β⊥PA .又a =γβ ,∴a PA ⊥,同理可证a PB ⊥.∵P PB PA = 且α⊂PB PA 、,∴α⊥a .证法二:如下图,设b =βα ,在平面β内作直线b l ⊥1.∵βα⊥,∴α⊥1l .设c =γα ,在平面γ内作直线c l ⊥2.同理可证a l ⊥2,因此21//l l .由于β⊂1l ,β⊄2l ,∴β//2l .而γ⊂2l ,γβ =a ,∴a l //2.故由a l //2知,α⊥a .证法三:如下图过直线a 上一点P 作直线α⊥'a .∵γβ =a ,a P ∈,∴β∈P ,依照课本第37页例2〔假如两个平面互相垂直,那么通过第一个平面内的一点垂直于第二个平面的直线在第一个平面内〕,∴β⊂'a .同理可证γ⊂'a ,故γβ ='a .椐公理2可知,直线'a 与直线a 重合.∴α⊥a讲明:(1)本例实际上可作为两个平面垂直的性质定理,要紧用于判定直线和平面的垂直,在专门多习题中都能够用到本例的结论.(2)本例的三种证明方法其思维角度不同,但差不多上围绕〝面面垂直〞、〝线面面垂直〞的判定与性质定理来进行摸索的,期望同学们今后在解题中多进行这方面的训练,这对提高数学思维能力是大有裨益的. 典型例题十例10 设由一点S 发出三条射线SA 、SB 、SC ,α=∠ASB ,β=∠BSC ,θ=∠ASC ,α、β、θ均为锐角,且θβαcos cos cos =⋅.求证:平面ASB ⊥平面BSC . 分析:欲证两平面垂直,只需证明其中一平面内有一直线垂直于另一平面即可,此题设法通过线段关系过渡.证明:如图,任取点A ,作SB AB ⊥于B ,过B 作SC BC ⊥于C ,连结AC . ∵αcos ⋅=AS SB ,βcos ⋅=SB SC ,故βαcos cos ⋅⋅=AS SC .又由θβαcos cos cos =⋅,那么θcos ⋅=AS SC ,从而可得︒=∠90ACS ,即SC AC ⊥,已作SC BC ⊥,故SC ⊥平面ACB ,即有SC AB ⊥,已作SB AB ⊥,从而AB ⊥平面BSC ,故平面ASB ⊥平面BSC .讲明:此题易犯错误是:作SB AB ⊥于B ,作SC BC ⊥于C ,连结AC ,由三垂线定理得AC SC ⊥,∴SC ⊥平面ACB ,∴SC AB ⊥,∴AB ⊥平面SBC .其错误缘故是作SB AB ⊥后,将AB 误认为是平面SBC 的垂线.此题的证明也能够作SB AB ⊥于B ,SC AC ⊥于C ,连结BC .在SBC ∆中,由余弦定理及条件θβαcos cos cos =⋅,证明222SC BC SB +=,从而BC SC ⊥,∴SC ⊥面ABC ,∴SC AB ⊥.由此进一步证明,平面ASB ⊥平面BSC .典型例题十一例11 假如二面角βα--l 的平面角是锐角,点P 到α、β和棱l 的距离分不为22、4、24,求二面角的大小.分析:假如二面角βα--l 内部,也可能在外部,应区不处理.解:如图甲是点P 在二面角βα--l 的内部时,乙是点P 在二面角βα--l 的外部时.∵α⊥PA ,∴l PA ⊥.∵l AC ⊥,∴面l PAC ⊥.同理,面l PBC ⊥,而面PAC 面PBC PC =∴面PAC 与面PBC 应重合,即A 、C 、B 、P 在同一平面内,ACB ∠是二面角的平面角.在APC Rt ∆中,212422sin ===∠PB PA ACP , ∴︒=∠30ACP .在BPC Rt ∆中,22244sin ===∠PC PB BCP , ∴︒=∠45BCP ,故︒=︒+︒=∠754530ACB 〔图甲〕或︒=︒-︒=∠153045ACB 〔图乙〕.讲明:作一个垂直于棱的平面,此平面与两个半平面的交线所成的角确实是二面角的平面角.这是此题得到二面平面角的方法,即所谓垂面法.典型例题十二例12 P 为︒120的二面角βα--a 内一点,P 到α和β的距离均为10,求点P 到棱a 的距离.分析:此题二面角的大小而求点到直线的距离,须做出二面角的平面角,然后将条件揉和在一起,便可解决咨询题.解:如图,过点P 作α⊥PA 于A ,β⊥PB 于B ,设相交直线PA 、PB 确定的平面为γ,O a =γ ,那么OA =αγ ,OB =βγ 连结PO ,那么10==BP AP∵α⊥PA ,β⊥PB ,∴γ⊥a ,而⊂PO 平面γ,∴PO a ⊥,∴PO 的长即为点P 到直线a 的距离. 又∵γ⊥a ,γ⊂OA ,γ⊂OB∴AOB ∠是二面角βα--a 的平面角,即︒=∠120AOB .而四边形AOBP 为一圆内接四边形,且PO 为该四边形的外接圆直径.∵四边形AOBP 的外接圆半径等于由A 、B 、O 、P 中任意三点确定的三角形的外接圆半径,因此求PO 的长可利用APB ∆.在APB ∆中,10==BP AP ,︒=∠60APB ,∴10=AB .由正弦定理:332060sin 2=︒==AB R PO . 讲明:(1)该题查找︒120的二面角的平面角,所采取的方法即为垂面法,由此可见,假设题目可找到与棱垂直的平面,用〝垂面法〞确定二面角的平面角也是一种可取的方法. (2)充分借助于四边形PAOB 为一圆内接四边形,∵OA PA ⊥,OB PB ⊥,∵PO 即为其外接圆直径,然后借助于四边有的外接圆直径等于其中任一三角形的外接圆直径进行转移,由正弦定理关心解决了咨询题.典型例题十三例13 如图,正方体的棱长为1,O BC C B =11 ,求: (1)AO 与11C A 所成的角;(2)AO 与平面AC 所成角的正切值; (3)平面AOB 与平面AOC 所成的角.解:(1)∵AC C A //11,∴AO 与11C A 所成的角确实是OAC ∠. ∵OB OC ⊥,⊥AB 平面1BC , ∴OA OC ⊥〔三垂线定理〕. 在AOC Rt ∆中,22=OC ,2=AC ,∴︒=∠30OAC .(2)作BC OE ⊥,平面1BC ⊥平面AC .∴OE ⊥平面AC ,OAE ∠为OA 与平面AC 所成的角. 在OAE Rt ∆中,21=OE ,25)21(122=+=AE .∴55tan ==∠AE OE OAE . (3)∵OA OC ⊥,OB OC ⊥,∴⊥OC 平面AOB . 又∵⊂OC 平面AOC ,∴平面AOB ⊥平面AOC .讲明:此题包含了线线角、线面角和面面角三类咨询题.求角度咨询题要紧是求两条异面直线所成角⎥⎦⎤⎝⎛2,0π,直线和平面所成角⎥⎦⎤⎢⎣⎡2,0π,二面角(]π,0三种. 典型例题十四例14 如图,矩形ABCD ,PD ⊥平面ABCD ,假设2=PB ,PB 与平面PCD 所成的角为︒45,PB 与平面ABD 成︒30角,求:(1)CD 的长;(2)求PB 与CD 所在的角;(3)求二面角D PB C --的余弦值.分析:从图中能够看出,四面体BCD P -是一个基础四面体,前面已推导出平面PBC 与平面BCD 所成的二面角的余弦值为333221=⨯⨯=⋅⋅BD PC BC PD ,可见,基础四面体作为一部分,经常显现在某些几何体中.解:(1)∵⊥PD 平面ABCD ,∴BC PD ⊥. 又⊥BC 平面PDC ,∴BPC ∠为PB 与平面PCD 所在的角, 即︒=∠45BPC .同理:PBD ∠即为PB 与平面ABD 所成的角, ∴︒=∠30PBD ,在PBC Rt ∆中,∵2=PB ,∴2==PC BC .在PBD Rt ∆中,︒=∠30PBD ,∴1=PD ,3=BD . 在BCD Rt ∆中,2=BC ,3=BD ,∴1=CD .(2)∵CD AB //,∴PB 与CD 所成的角,即为PB 与AB 所成的角,PBA ∠即为PB 与AB 所成的角∵⊥PD 平面ABCD ,AB AD ⊥,∴AB PA ⊥〔三垂线定理〕. 在PAB Rt ∆中,1==CD AB ,2=PB ,∴︒=∠60PBA .(3)由点C 向BD 作垂线,垂足为E ,由点E 向PB 作垂线,垂足为F ,连结CF . ∵⊥PD 平面ABCD ,∴CE PD ⊥. 又BD CE ⊥,∴⊥CE 平面PBD ,CF 为平面PBD 的斜线,由于PB EF ⊥, ∴由三垂线定理:CF PB ⊥.∴CEF ∠为二面角D PB C --的平面角 在BCD Rt ∆中,2=BC ,1=DC ,3=BD ,∴36=⋅=BD CD BC CE . 在PCB Rt ∆中,2=BC ,2=PC ,2=PB ,∴1=⋅=PBCPBC CF , ∴36sin ==∠CF CB CFE . ∴33cos =∠CFE , ∴二面角D PB C --的余弦值为33. 讲明:解空间几何运算咨询题,一样要做两件事:一件是依照咨询题的需要作必要证明,如此题中的线线所成的角、面面所成的角从理认上都必须讲清晰怎么讲是谁;另一件事才是运算,这两件事是依照咨询题解答逻辑上的需要有机的结合在一起的.典型例题十五例15 过点S 引三条不共面的直线SA 、SB 、SC ,如图,︒=∠90BSC ,︒=∠=∠60ASB ASC ,假设截取a SC SB SA ===(1)求证:平面ABC ⊥平面BSC ; (2)求S 到平面ABC 的距离.分析:要证明平面ABC ⊥平面BSC ,依照面面垂直的判定定理,须在平面ABC 或平面BSC 内找到一条与另一个平面垂直的直线.(1)证明:∵a SC SB SA ===, 又︒=∠=∠60ASB ASC ,∴ASB ∆和ASC ∆差不多上等边三角形, ∴a AC AB ==,取BC 的中点H ,连结AH ,∴BC AH ⊥. 在BSC Rt ∆中,a CS BS ==,∴BC SH ⊥,a BC 2=,∴2)22(222222a a a CH AC AH =-=-=,∴222a SH =. 在SHA ∆中,∴222a AH =,222a SH =,22a SA =,∴222HA SH SA +=,∴SH AH ⊥,∴⊥AH 平面SBC .∵⊂AH 平面ABC ,∴平面ABC ⊥平面BSC . 或:∵AB AC SA ==,∴顶点A 在平面BSC 内的射影H 为BSC ∆的外心, 又BSC ∆为∆Rt ,∴H 在斜边BC 上,又BSC ∆为等腰直角三角形,∴H 为BC 的中点, ∴⊥AH 平面BSC .∵⊂AH 平面ABC ,∴平面ABC ⊥平面BSC .(2)解:由前所证:AH SH ⊥,BC SH ⊥,∴⊥SH 平面ABC , ∴SH 的长即为点S 到平面ABC 的距离,a BC SH 222==, ∴点S 到平面ABC 的距离为a 22. 典型例题十六例16 判定以下命题的真假(1)两个平面垂直,过其中一个平面内一点作与它们交线垂直的直线,必垂直于另一个平面.(2)两个平面垂直,分不在两个平面内且互相垂直的两直线,一定分不与另一平面垂直; (3)两平面垂直,分不在这两个平面内的两直线互相垂直.分析:(1)假设该点在两个平面的交线上,那么命题是错误的,如图,正方体C A 1中,平面AC ⊥平面1AD ,平面 AC 平面1AD AD =,在AD 上取点A ,连结1AB ,那么AD AB ⊥1,即过棱上一点A 的直线1AB 与棱垂直,但1AB 与平面ABCD 不垂直,其错误的缘故是1AB 没有保证在平面11A ADD 内.能够看出:线在面内这一条件的重要性;(2)该命题注意了直线在平面内,但不能保证这两条直线都与棱垂直,如图,在正方体C A 1中,平面1AD ⊥平面AC ,1AD ⊂平面11A ADD ,AB ⊂平面ABCD ,且1AD AB ⊥,即AB 与1AD 相互垂直,但1AD 与平面ABCD 不垂直;(3)如上图,正方体C A 1中,平面11A ADD ⊥平面ABCD ,1AD ⊂平面11A ADD ,⊂AC 平面ABCD ,1AD 与AC 所成的角为︒60,即1AD 与AC 不垂直.讲明:必须注意两个平面垂直的性质定理成立的条件:(1)线在面内,(2)线垂直于交线,从而可得出线面垂直.典型例题十七例17 如图,在︒60二面角βα--a 内有一点P ,P 到α、β的距离分不为3和5,求P 到交线a 的距离.解:作α⊥PA 于A ,β⊥PB 于B , 设PA ,PB 所确定的平面为γ,Q a = γ, 连AQ ,BQ ,∵α⊥PA , ∴a PA ⊥.同理a PB ⊥,∴⊥a 平面γ,∴PQ a ⊥,那么PQ 是P 到a 的距离. 在四边形PAQB 中,︒=∠=∠90B A , ∴PAQB 是圆的内接四边形,且R PQ 2=. 又∵︒=∠60BQA ,︒=∠120BPA , ∴7120cos 53253=︒⋅⋅-+=AB ,331432760sin 2=⨯=︒==AB R PQ .讲明:本例作二面角的平面角用作垂面法,幸免了再证明P 、B 、A 、Q 四点共面,同时用到正弦定理和余弦定理.典型例题十八例18 如图,四面体SABC 中,ABC ∆是等腰三角形,a BC AB 2==,︒=∠120ABC ,且⊥SA 平面ABC ,a SA 3=.求点A 到平面SBC 的距离.分析:考虑利用两个平面垂直的性质定理作出点A 到SBC 的垂线,先确定一个过点A 和平面SBC 垂直的平面,∵⊥SA 平面ABC ,故作BC AD ⊥于D ,连结SD ,那么平面SAD ⊥平面SBC ,平面SAD 实际上确实是二面角A BC S --的平面角SDA 所在的平面,因此,它的作图过程和用三垂线法作二面角A BC S --的平面角的作图过程完全相同.解:作BC AD ⊥交BC 于D ,连结SD ,∵⊥SA 平面ABC ,依照三垂线定理有BC SD ⊥,又D AD SD = ,∴BC ⊥平面SAD ,又BC ⊂平面SBC ,∴平面SBC ⊥平面ADS ,且平面SBC 平面ADS SD =,∴过点A 作SD AH ⊥于H ,由平面与平面垂直的性质定理可知:⊥AH 平面SBC . 在SAD Rt ∆中,a SA 3=,a AB AD 360sin =︒⋅=, ∴23)3()3(332222aa a a a AD SA AD SA AH =+⋅=+⋅=, 即点A 到平面SBC 的距离为23a . 讲明:二面角的平面角所在的平面垂直于二面角的棱,同时垂直于二面角的两个两.从本例能够看出:要求点到平面的距离,只要过该点找到与平面垂直的平面,那么点面距即可依照面面垂直的性质作出.。

两个平面垂直的判定和性质

两个平面垂直的判定和性质

两个平面垂直的判定和性质一、内容提要1. 二面角(1) 两个平面平行时,可以用它们的距离来表达这两个平面的位置关系.两个平面相交时,和空间直线所成角的概念类似,要将“空间”转化为“平面”,用平面的角来反映空间两个相交平面的位置关系.(2) 为了能用一个确定的平面的角来表示一个二面角的大小,引进了二面角的平面角这一概念.二面角的平面角的顶点必须在二面角的棱上;二面角的平面角的两边必须既分别在两个半平面内,又必须和二面角的棱垂直.(3) 二面角及它的平面角的画法根据其棱方向的不同,通常有以下三种画法:画二面角的平面角时,其两边应当和表示半平面的平行四边形的一条边平行.2. 两个平面垂直的定义及判定两个平面垂直是以它们相交形成的二面角来定义的.判定两个平面垂直的方法有两种:①根据定义,两个平面相交,它们所形成的二面角是直二面角,通常先作出二面角的平面角,再证明二面角的平面角是直角;②根据判定定理,证明一个平面过另一个平面的一条垂线,即把面面垂直问题化归为线面垂直问题.这个定理可简记为"线面垂直,面面垂直3. 两个平面垂直的性质两个平面互相垂直时有下面两个性质:①在一个平面内垂直于它们交线的直线垂直于另一个平面;②经过第一个平面内的一点垂直于第二个平面的直线,在第一个平面内.1.二面角的概念是平面几何中的角的概念的扩展,学习时可对照平面几何中的角去理解。

平面几何中可以把角理解为是一个旋转量,同样一个二面角也可以看作是一个半平面以其棱为轴旋转而成的2.二面角的平面角,则是用来刻划二面角大小的一个概念。

它和两条异面直线所成的角以及直线和平面所成的角一样,都化归为平面内两条相交直线所成的角来表示。

但必须注意二面角的平面角所在平面应垂直于二面角的棱,二面角的平面角的两条边分别在二面角的两个面内。

而二面角的平面角的大小是由二面角的两个面的相互位置所确定的,与二面角的平面角的顶点在棱a上的位置无关。

3.计算二面角大小的方法(1)作二面角的平面角,并将其放在一个三角形中,解三角形求出二面角的平面角大小,它就是二面角的大小。

两个平面垂直的判定和性质

两个平面垂直的判定和性质

面PAC 面 ABC 面 PAB 面 ABC
A

B C
BC 面 PAC 面 ABC 面 PAC 面 PBC 面 PAC
例2:正方形 ABCD A1 B1C1 D1中,E、F、G分别是 A1 B1 , B1C1 和 BB1 的中点,求证: (1)面 AA1C1C 面 BB1 D1 D
两个平面垂直的判定


1 两个平面垂直的定义:一般地,两个平面相交, 如果它们所成的二面角是直二面角,就说这两个 平面互相垂直。 2 两个垂直平面的画法:




3 两个平面垂直的判定: (1)定义法:求两个平面所成的二面角的大小, 通过计算看是否是直二面角。 (2) 两个平面平行的判定定理:
如果一个平面经过另一个平面的一条垂
课堂练习:
1、如图,正方形ABCD ,PA⊥面ABCD,
则图中有多少对互相垂直的平面?
2、在空间四边形ABCD中,AB=BC, CD=DA,E、F、G分别为CD、DA和对角线 AC的中点,求证平面 BEF 平面BGD
P
A C D
A G F B C
B
1
E
D
2
上海大华仪表厂是中国第一家仪表厂,历经70余年的风风雨雨,大华厂始终走在国内仪表行业的前列。为国家二级企业,获机电工业部质量管理 奖,上海市质量管理奖。上海大华仪表厂记录仪 上海大华仪表厂记录仪 wpd91xry1996年又通过ISO9001-94质量认证。 产品分工业记录仪、实验室仪表、计算机外部设备、节能仪表四大系列产品。广泛应用于冶金、机械、化工、电力、通讯、航空航天、造船、国 防、石油、医疗、轻纺等领域。八十年代中期起,先后从日本专业生产记录仪的千野株式会社引进了E系列记录仪和DR巡检仪及美国ENCAD公司SP 系列绘图仪等,使产品的技术水平上了一个台阶。 起来,真是太丢人了。一定要新账旧账一块算。“话说你来这里不会是为了刷存在感的吧?”“哎呀,慕容凌娢,真是没想到能在这里碰到你。” 韩哲轩的态度突然大转变,要多热情有多热情,一看就是笑里藏刀。“看见你还活着真是太好了„„果然是有光环的人,居然能活蹦乱跳的来到 这里”“那是当然,好说我也是主角嘛。”正在慕容凌娢得意的时候,她好像意识到什么,立刻沉下脸阴森森的问道,“你是在夸我呢还是在损 我呢„„”“这是通过对比衬托出你的光环,当然是在夸你了。”“喂,韩哲轩,别告诉我你真的是来刷存在感的。”夏先生对韩哲轩的行为还 耿耿于怀,自然态度不好,“赶紧干正事去,别当务我的时间。”“你以为我是那种靠抢戏份刷存在感的人吗?”韩哲轩不满的摇了摇手中的折 扇,“有一条紧急情报,想不想知道?”“说!”“一会百蝶会来你这里要人。”韩哲轩用戏虐的笑容看向了慕容凌娢,接着又对夏先生说道, “给不给人随你便,不过我建议你不要惹百蝶。”看着两人神秘兮兮的谈论,慕容凌娢只觉得自己再次被坑了。(古风一言)那时,谁念相伴白头 吟。而今,谁思往昔千里外。第013章 百蝶姐姐看着两人神秘兮兮的交谈,慕容凌娢只觉得自己似乎又被坑了。不过百蝶是谁?自己根本不认识 她,她干嘛要来找我呢?“噢?你有多大是把握她会来?”夏先生对韩哲轩的话并不信任。此时突然响起了敲门声,接着就是甲晓念急匆匆地走 了进来,“夏先生,醉影楼的百蝶大人已经到了。”“什么?这么快?”他脸上充满了不可置信。“你先去让百蝶等一下。”“怎么样,有没有 膜拜我?信我得永生。”韩哲轩再次踩着桌子从窗户中翻了出去,“别告诉百蝶我来过。”“唉,真是麻烦。”夏先生叹了口去,没去在意被踩 了两次的桌子。相比之下,慕容凌娢就不安分了。“这是二楼吧?二楼啊!至少有四米,没事作什么死,万一光环到期了,会出人命 啊„„”“别鬼吼鬼叫了。他来我这里几乎每次都这样。”夏先生淡定的向窗外看去,“看来下次要把桌子换个地方了。”一阵急促的脚步声已 经传到了楼上,接着房间的门直接被踹开了,一个长相妖娆身材高挑的女子直接走进了门,她身后跟着的还有一脸无奈的甲晓念。“晓念,你先 出去吧。”夏先生冲甲晓念说道。看夏先生并没有责罚自己的意思,甲晓念如释重负的退了出去。“夏江,听说你这来了个新人?”百蝶的声音 轻柔中带着妩媚,“你也知道,醉影楼那边一直缺人,要不这个女孩就让我带去醉影楼吧!”“醉影楼那边 什么人都有,太混乱了,不适合她去 啊。”“醉影楼确实人员杂乱,但你觉得还有比它更安全的地方吗?”发现夏先生并没有准备让人,百蝶颦了一下眉,娇滴滴的P FEABC

高考数学一轮经典例题 两平面垂直的判定和性质 理

高考数学一轮经典例题 两平面垂直的判定和性质 理

2013年高考数学(理)一轮经典例题——两平面垂直的判定和性质典型例题一例1.根据叙述作图,指出二面角的平面角并证明.(1)如图1,已知l A l ∈=⋂,βα.在α内作l PA ⊥于A ,在β内作l QA ⊥于A .(2)如图2,已知l A A l ∉∈=⋂,,αβα.作β⊥AP 于P ,在α内作l AQ ⊥于Q ,连结PQ .(3)已知βαβα∉∉=⋂A A l ,,.作α⊥AP 于P ,β⊥AQ 于Q ,⋂l 平面H PAQ =,连结PH 、QH .作图与证明在此省略.说明:本题介绍了作二面角的平面角的三种常用方法,其中用三垂线定理及逆定理的方法最常用,还需补充这种方法的其他典型图形.典型例题二例2. 如图,在立体图形ABC D -中,若E CD AD CB AB ,,==是AC 的中点,则下列命题中正确的是( ).(A )平面ABC ⊥平面ABD(B )平面ABD ⊥平面BDC(C )平面ABC ⊥平面BDE ,且平面ADC ⊥平面BDE(D )平面ABC ⊥平面ADC ,且平面ADC ⊥平面BDE分析:要判断两个平面的垂直关系,就需固定其中一个平面,找另一个平面内的一条直线与第一个平面垂直.解:因为,CB AB =且E 是AC 的中点,所以,AC BE ⊥同理有AC DE ⊥,于是⊥AC 平面BDE .因为⊂A C 平面ABC ,所以平面ABC ⊥平面BDE .又由于⊂AC 平面ACD ,所以平面ACD ⊥平面BDE .所以选C.说明:本题意图是训练学生观察图形,发现低级位置关系以便得到高级位置关系.在某一个平面内,得到线线垂直的重要途径是出现等腰三角形底边的中线,由线线垂直得到线面垂直,由线面垂直可得到面面垂直.典型例题三例3.如图,P 是ABC ∆所在平面外的一点,且⊥PA 平面ABC ,平面⊥PAC 平面PBC .求证AC BC ⊥.分析:已知条件是线面垂直和面面垂直,要证明两条直线垂直,应将两条直线中的一条纳入一个平面中,使另一条直线与该平面垂直,即从线面垂直得到线线垂直..证明:在平面PAC 内作PC AD ⊥,交PC 于D .因为平面⊥PAC 平面PBC 于PC ,⊂AD 平面PAC ,且PC AD ⊥,所以PBC AD 平面⊥.又因为⊂BC 平面PBC ,于是有BC AD ⊥①.另外⊥PA 平面ABC ,⊂BC 平面ABC ,所以BC PA ⊥.由①②及A PA AD = ,可知⊥BC 平面PAC .因为⊂AC 平面PAC ,所以AC BC ⊥.说明:在空间图形中,高一级的垂直关系中蕴含着低一级的垂直关系,通过本题可以看到,面面垂直⇒线面垂直⇒线线垂直.典型例题四例4.如图,AB 是⊙O 的直径,PA 垂直于⊙O 所在的平面,C 是圆周上异于A 、B 的任意一点,求证:平面PAC ⊥平面PBC .分析:证明面面垂直的有两个依据,一是证明二面角的平面角为直角,二是利用两个平面垂直的判定定理.由于C 点的任意性,用方法一的可能性不大,所以要寻求线面垂直. 证明:因为AB 是⊙O 的直径,C 是圆周上的点,所以有AC BC ⊥①.因为⊥PA 平面ABC ,⊂BC 平面ABC ,则BC PA ⊥②.由①②及A PA AC = ,得⊥BC 平面PAC .因为⊂BC 平面PBC ,有平面PAC ⊥平面PBC .说明:低一级的垂直关系是判定高一级垂直关系的依据,根据条件,由线线垂直⇒线面垂直⇒面面垂直.通过这个例题展示了空间直线与平面的位置关系的内在联系,垂直关系的判定和性质共同构成了一个完整的知识体系.典型例题五例5.如图,点A 在锐二面角βα--MN 的棱MN 上,在面α内引射线AP ,使AP 与MN所成的角PAM ∠为 45,与面β所成的角大小为 30,求二面角βα--MN 的大小.分析:首先根据条件作出二面角的平面角,然后将平面角放入一个可解的三角形中(最好是直角三角形),通过解三角形使问题得解.解:在射线AP 上取一点B ,作β⊥BH 于H ,连结AH ,则BAH ∠为射线AP 与平面β所成的角,30=∠∴BAH .再作MN BQ ⊥,交MN 于Q ,连结HQ ,则HQ 为BQ 在平面β内的射影.由三垂线定理的逆定理,MN HQ ⊥,BQH ∠∴为二面角βα--MN 的平面角.设a BQ =,在BAQ Rt ∆中,a AB BAM BQA 2,45,90=∴=∠=∠ ,在Rt △BHQ 中, ,22,,90a BH a BQ BHQ ===∠ 2222sin ===∠a a BQ BH BQH , BQH ∠ 是锐角, 45=∠∴BQH ,即二面角βα--MN 等于 45.说明:本题综合性较强,在一个图形中出现了两条直线所称的角,斜线与平面所称的角,二面角等空间角,这些空间角都要转化为平面角,而且还要彼此联系相互依存,要根据各个平面角的定义添加适当的辅助线.典型例题六例6.如图,将边长为a 的正三角形ABC 以它的高AD 为折痕折成一个二面角C AD C --'.(1)指出这个二面角的面、棱、平面角;(2)若二面角C AD C --'是直二面角,求C C '的长;(3)求C A '与平面CD C '所成的角;(4)若二面角C AD C --'的平面角为 120,求二面角D C C A -'-的平面角的正切值.分析:根据问题及图形依次解决.解:(1)∴'⊥⊥∴⊥,,,C D AD DC AD BC AD 二面角C AD C --'的面为ADC 和面C AD ',棱为AD ,二面角的平面角为C CD '∠.(2)若 90='∠C CD ,a C C a C D DC a AC 22,21,='∴='=∴= .(3)⊥∴⊥'⊥AD DC AD C D AD ,, 平面C C D ',D C A '∠∴为C A '与平面CD C '所成的角.在直角三角形C AD '中, 30,21='∠∴='=C DA AC C D DC ,于是 60='∠D C A . (4)取C C '的中点E ,连结AE 、DE ,C C DE C C AE AC C A DC CD '⊥'⊥∴='=',,, ,AED ∠∴为二面角D C C A -'-的平面角.,41,21,120a DE a CD D C DC C =∴=='='∠在直角三角形AED 中,,23a AD =DE AD AED =∠∴tan 324123==a a .说明:这是一个折叠问题,要不断地将折叠前后的图形加以比较,抓住折叠前后的变与不变量.典型例题七例7 正方体1111D C B A ABCD -的棱长为1,P 是AD 的中点.求二面角P BD A --1的大小.分析:求二面角关键是确定它的平面角,按定义在二面角的棱上任取了点,在二个半平面上分别作棱的垂线,方法虽简便,但因与其他条件没有联系,要求这个平面角一般是很不容易的,所以在解题中不大应用.在解题中应用得较多的是“三垂线定理”的方法,如图考虑到AB垂直于平面1AD ,1BD 在平面1AD 上的射影就是1AD .再过P 作1AD 的垂线PF ,则PF ⊥面1ABD,过F 作B D 1的垂线FE ,PEF ∠即为所求二面角的平面角了.解:过P 作1BD及1AD 的垂线,垂足分别是E 、F ,连结EF . ∵AB ⊥面1AD ,PF ⊂面1AD ,∴PF AB ⊥,又1AD PF ⊥,∴PF ⊥面1ABD. 又∵1BD PE ⊥,∴1BD EF ⊥,∴PEF ∠为所求二面角的平面角.∵D AD Rt 1∆∽PFA ∆,∴11AD AP DD PF =. 而21=AP ,11=DD ,21=AD ,∴42=PF .在1PBD ∆中,251==PB PD .∵1BD PE ⊥,∴2321==BD BE .在PEB Rt ∆中,2222=-=BE PB PE ,在PEF Rt ∆中,21sin ==∠PE PF PEF ,∴︒=∠30PEF .典型例题八例8 在ABC ∆所在平面外有一点S ,已知AB SC ⊥,SC 与底面ABC 所成角为θ,二面角C AB S --的大小为ϕ,且︒=+90ϕθ.求二面角A SB C --的大小.分析:由题设易证SD SC ⊥,由已知得SC ⊥平面SAB ,显然所求的二面角是直二面角,此时只需证明二面有的两个面垂直即可.在解这种类型题时,如果去作二面角A SB C --的平面角,那么可能会走弯路.解:如图所示,作SO ⊥平面ABC 于O ,连结CO 并延长交AB 于D ,连结SD . ∵SO ⊥平面ABC ,∴SCO ∠是SC 与平面ABC 所成角,θ=∠SCO .∵SO ⊥平面ABC ,AB SC ⊥,∴CD AB ⊥,SD AB ⊥.∴SDO ∠是二面角C AB S --的平面角,ϕ=∠SDO .∵︒=+90ϕθ,∴SD SC ⊥.又∵AB SC ⊥,∴SC ⊥平面SAB ,∴平面SBC ⊥平面SAB ,∴二面角A SB C --的大小为︒90.说明:二面角的平面角满足三个条件:(1)顶点在棱上,(2)两边在面内,(3)两边与棱垂直.应注意CSB ∠不满足第(3)条,不是二面角A SB C --的平面角.在求二面角大小时,若其平面角不易作出时,则可考虑判定两平面是否垂直,如果两平面垂直,则其二面角为︒90,反之亦然.典型例题九例9 如果αβ⊥,αγ⊥,a =γβ ,那么α⊥a .分析:(1)本题是一道高考题,考查线面垂直和面面垂直的性质和逻辑推理能力.要证α⊥a ,只要证明直线a 与平面α内的两条相交直线垂直就可以了,从而借助平面与平面垂直的性质达到证明α⊥a 的目的;(2)要证α⊥a ,只要证明a 平行于平面α的一条垂线就可以了,这也可以借助面面垂直的性质加以考虑;(3)可以用“同一法”来证明.证法一:如图所示,设b =βα ,c =γα ,过平面α内一点P 作b PA ⊥于A ,作c PB ⊥于B .∵αβ⊥,∴β⊥PA .又a =γβ ,∴a PA ⊥,同理可证a PB ⊥.∵P PB PA = 且α⊂PB PA 、,∴α⊥a .证法二:如图所示,设b =βα ,在平面β内作直线b l ⊥1.∵βα⊥,∴α⊥1l .设c =γα ,在平面γ内作直线c l ⊥2.同理可证a l ⊥2,因此21//l l .由于β⊂1l ,β⊄2l ,∴β//2l .而γ⊂2l ,γβ =a ,∴a l //2.故由a l //2知,α⊥a .证法三:如图所示过直线a 上一点P 作直线α⊥'a .∵γβ =a ,a P ∈,∴β∈P ,根据课本第37页例2(如果两个平面互相垂直,那么经过第一个平面内的一点垂直于第二个平面的直线在第一个平面内),∴β⊂'a .同理可证γ⊂'a ,故γβ ='a . 椐公理2可知,直线'a 与直线a 重合.∴α⊥a说明:(1)本例实际上可作为两个平面垂直的性质定理,主要用于判断直线和平面的垂直,在很多习题中都可以用到本例的结论.(2)本例的三种证明方法其思维角度不同,但都是围绕“面面垂直”、“线面面垂直”的判定与性质定理来进行思考的,希望同学们今后在解题中多进行这方面的训练,这对提高数学思维能力是大有裨益的.典型例题十例10 设由一点S 发出三条射线SA 、SB 、SC ,α=∠ASB ,β=∠BSC ,θ=∠ASC ,α、β、θ均为锐角,且θβαcos cos cos =⋅.求证:平面ASB ⊥平面BSC .分析:欲证两平面垂直,只需证明其中一平面内有一直线垂直于另一平面即可,此题设法通过线段关系过渡.证明:如图,任取点A ,作SB AB ⊥于B ,过B 作SC BC ⊥于C ,连结AC .∵αcos ⋅=AS SB ,βcos ⋅=SB SC ,故βαcos cos ⋅⋅=AS SC .又由θβαcos cos cos =⋅,则θcos ⋅=AS SC ,从而可得︒=∠90ACS ,即SC AC ⊥,已作SC BC ⊥,故SC ⊥平面ACB ,即有SC AB ⊥,已作SB AB ⊥,从而AB ⊥平面BSC ,故平面ASB ⊥平面BSC .说明:本题易犯错误是:作SB AB ⊥于B ,作SC BC ⊥于C ,连结AC ,由三垂线定理得AC SC ⊥,∴SC ⊥平面ACB ,∴SC AB ⊥,∴AB ⊥平面SBC .其错误原因是作SB AB ⊥后,将AB 误认为是平面SBC 的垂线.此题的证明也可以作SB AB ⊥于B ,SC AC ⊥于C ,连结BC .在SBC ∆中,由余弦定理及条件θβαcos cos cos =⋅,证明222SC BC SB +=,从而BC SC ⊥,∴SC ⊥面ABC ,∴SC AB ⊥.由此进一步证明,平面ASB ⊥平面BSC .典型例题十一例11 如果二面角βα--l 的平面角是锐角,点P 到α、β和棱l 的距离分别为22、4、24,求二面角的大小.分析:如果二面角βα--l 内部,也可能在外部,应区别处理.解:如图甲是点P 在二面角βα--l 的内部时,乙是点P 在二面角βα--l 的外部时.∵α⊥PA ,∴l PA ⊥.∵l AC ⊥,∴面l PAC ⊥.同理,面l PBC ⊥,而面PAC 面PBC PC =∴面PAC 与面PBC 应重合,即A 、C 、B 、P 在同一平面内,ACB ∠是二面角的平面角.在APC Rt ∆中,212422sin ===∠PB PA ACP ,∴︒=∠30ACP .在BPC Rt ∆中,22244sin ===∠PC PB BCP ,∴︒=∠45BCP ,故︒=︒+︒=∠754530ACB (图甲)或︒=︒-︒=∠153045ACB (图乙).说明:作一个垂直于棱的平面,此平面与两个半平面的交线所成的角就是二面角的平面角.这是本题得到二面平面角的方法,即所谓垂面法.典型例题十二例12 P 为︒120的二面角βα--a 内一点,P 到α和β的距离均为10,求点P 到棱a 的距离.分析:本题已知二面角的大小而求点到直线的距离,须做出二面角的平面角,然后将条件揉和在一起,便可解决问题.解:如图,过点P 作α⊥PA 于A ,β⊥PB 于B ,设相交直线PA 、PB 确定的平面为γ,O a =γ ,则OA =αγ ,OB =βγ 连结PO ,则10==BP AP∵α⊥PA ,β⊥PB ,∴γ⊥a ,而⊂PO 平面γ,∴PO a ⊥,∴PO 的长即为点P 到直线a 的距离.又∵γ⊥a ,γ⊂OA ,γ⊂OB∴AOB ∠是二面角βα--a 的平面角,即︒=∠120AOB .而四边形AOBP 为一圆内接四边形,且PO 为该四边形的外接圆直径.∵四边形AOBP 的外接圆半径等于由A 、B 、O 、P 中任意三点确定的三角形的外接圆半径,因此求PO 的长可利用APB ∆.在APB ∆中,10==BP AP ,︒=∠60APB ,∴10=AB . 由正弦定理:332060sin 2=︒==AB R PO .说明:(1)该题寻找︒120的二面角的平面角,所采取的方法即为垂面法,由此可见,若题目可找到与棱垂直的平面,用“垂面法”确定二面角的平面角也是一种可取的方法.(2)充分借助于四边形PAOB 为一圆内接四边形,∵OA PA ⊥,OB PB ⊥,∵PO 即为其外接圆直径,然后借助于四边有的外接圆直径等于其中任一三角形的外接圆直径进行转移,由正弦定理帮助解决了问题.典型例题十三例13 如图,正方体的棱长为1,O BC C B =11 ,求:(1)AO 与11C A 所成的角;(2)AO 与平面AC 所成角的正切值;(3)平面AOB 与平面AOC 所成的角.解:(1)∵AC C A //11,∴AO 与11C A 所成的角就是OAC ∠.∵OB OC ⊥,⊥AB 平面1BC ,∴OA OC ⊥(三垂线定理).在AOC Rt ∆中,22=OC ,2=AC ,∴︒=∠30OAC .(2)作BC OE ⊥,平面1BC ⊥平面AC .∴OE ⊥平面AC ,OAE ∠为OA 与平面AC 所成的角.在OAE Rt ∆中,21=OE ,25)21(122=+=AE . ∴55tan ==∠AE OE OAE .(3)∵OA OC ⊥,OB OC ⊥,∴⊥OC 平面AOB .又∵⊂OC 平面AOC ,∴平面AOB ⊥平面AOC .说明:本题包含了线线角、线面角和面面角三类问题.求角度问题主要是求两条异面直线所成角⎥⎦⎤ ⎝⎛2,0π,直线和平面所成角⎥⎦⎤⎢⎣⎡2,0π,二面角(]π,0三种. 典型例题十四例14 如图,矩形ABCD ,PD ⊥平面ABCD ,若2=PB ,PB 与平面PCD 所成的角为︒45,PB 与平面ABD 成︒30角,求:(1)CD 的长;(2)求PB 与CD 所在的角;(3)求二面角D PB C --的余弦值.分析:从图中可以看出,四面体BCD P -是一个基础四面体,前面已推导出平面PBC 与平面BCD 所成的二面角的余弦值为333221=⨯⨯=⋅⋅BD PC BC PD ,可见,基础四面体作为一部分,经常出现在某些几何体中.解:(1)∵⊥PD 平面ABCD ,∴BC PD ⊥.又⊥BC 平面PDC ,∴BPC ∠为PB 与平面PCD 所在的角,即︒=∠45BPC .同理:PBD ∠即为PB 与平面ABD 所成的角,∴︒=∠30PBD ,在PBC Rt ∆中,∵2=PB ,∴2==PC BC .在PBD Rt ∆中,︒=∠30PBD ,∴1=PD ,3=BD .在BCD Rt ∆中,2=BC ,3=BD ,∴1=CD .(2)∵CD AB //,∴PB 与CD 所成的角,即为PB 与AB 所成的角,PBA ∠即为PB 与AB 所成的角∵⊥PD 平面ABCD ,AB AD ⊥,∴AB PA ⊥(三垂线定理).在PAB Rt ∆中,1==CD AB ,2=PB ,∴︒=∠60PBA .(3)由点C 向BD 作垂线,垂足为E ,由点E 向PB 作垂线,垂足为F ,连结CF . ∵⊥PD 平面ABCD ,∴CE PD ⊥.又BD CE ⊥,∴⊥CE 平面PBD ,CF 为平面PBD 的斜线,由于PB EF ⊥,∴由三垂线定理:CF PB ⊥.∴CEF ∠为二面角D PB C --的平面角在BCD Rt ∆中,2=BC ,1=DC ,3=BD , ∴36=⋅=BD CD BC CE .在PCB Rt ∆中,2=BC ,2=PC ,2=PB , ∴1=⋅=PB CP BC CF , ∴36sin ==∠CF CB CFE . ∴33cos =∠CFE , ∴二面角D PB C --的余弦值为33.说明:解空间几何计算问题,一般要做两件事:一件是根据问题的需要作必要证明,如本题中的线线所成的角、面面所成的角从理认上都必须说清楚究竟是谁;另一件事才是计算,这两件事是根据问题解答逻辑上的需要有机的结合在一起的. 典型例题十五例15 过点S 引三条不共面的直线SA 、SB 、SC ,如图,︒=∠90BSC ,︒=∠=∠60ASB ASC ,若截取a SC SB SA ===(1)求证:平面ABC ⊥平面BSC ;(2)求S 到平面ABC 的距离.分析:要证明平面ABC ⊥平面BSC ,根据面面垂直的判定定理,须在平面ABC 或平面BSC 内找到一条与另一个平面垂直的直线.(1)证明:∵a SC SB SA ===,又︒=∠=∠60ASB ASC ,∴ASB ∆和ASC ∆都是等边三角形,∴a AC AB ==,取BC 的中点H ,连结AH ,∴BC AH ⊥.在BSC Rt ∆中,a CS BS ==,∴BC SH ⊥,a BC 2=, ∴2)22(222222a a a CH AC AH =-=-=,∴222a SH =. 在SHA ∆中,∴222a AH =,222a SH =,22a SA =, ∴222HA SH SA +=,∴SH AH ⊥,∴⊥AH 平面SBC .∵⊂AH 平面ABC ,∴平面ABC ⊥平面BSC .或:∵AB AC SA ==,∴顶点A 在平面BSC 内的射影H 为BSC ∆的外心,又BSC ∆为∆Rt ,∴H 在斜边BC 上,又BSC ∆为等腰直角三角形,∴H 为BC 的中点,∴⊥AH 平面BSC .∵⊂AH 平面ABC ,∴平面ABC ⊥平面BSC .(2)解:由前所证:AH SH ⊥,BC SH ⊥,∴⊥SH 平面ABC ,∴SH 的长即为点S 到平面ABC 的距离,a BC SH 222==,∴点S 到平面ABC 的距离为a22.典型例题十六例16 判断下列命题的真假(1)两个平面垂直,过其中一个平面内一点作与它们交线垂直的直线,必垂直于另一个平面.(2)两个平面垂直,分别在两个平面内且互相垂直的两直线,一定分别与另一平面垂直;(3)两平面垂直,分别在这两个平面内的两直线互相垂直.分析:(1)若该点在两个平面的交线上,则命题是错误的,如图,正方体C A 1中,平面AC ⊥平面1AD ,平面 AC 平面1AD AD =,在AD 上取点A ,连结1AB,则AD AB ⊥1,即过棱上一点A 的直线1AB 与棱垂直,但1AB 与平面ABCD 不垂直,其错误的原因是1AB没有保证在平面11A ADD内.可以看出:线在面内这一条件的重要性;(2)该命题注意了直线在平面内,但不能保证这两条直线都与棱垂直,如图,在正方体C A 1中,平面1AD ⊥平面AC ,1AD ⊂平面11A ADD,AB ⊂平面ABCD ,且1AD AB ⊥,即AB 与1AD 相互垂直,但1AD 与平面ABCD 不垂直;(3)如上图,正方体C A 1中,平面11A ADD⊥平面ABCD ,1AD ⊂平面11A ADD ,⊂AC 平面ABCD ,1AD 与AC 所成的角为︒60,即1AD 与AC 不垂直.说明:必须注意两个平面垂直的性质定理成立的条件:(1)线在面内,(2)线垂直于交线,从而可得出线面垂直.典型例题十七例17 如图,在︒60二面角βα--a 内有一点P ,P 到α、β的距离分别为3和5,求P 到交线a 的距离.解:作α⊥PA 于A ,β⊥PB 于B ,设PA ,PB 所确定的平面为γ,Q a = γ,连AQ ,BQ ,∵α⊥PA ,∴a PA ⊥.同理a PB ⊥,∴⊥a 平面γ,∴PQ a ⊥,则PQ 是P 到a 的距离.在四边形PAQB 中,︒=∠=∠90B A ,∴PAQB 是圆的内接四边形,且R PQ 2=.又∵︒=∠60BQA ,︒=∠120BPA , ∴7120cos 53253=︒⋅⋅-+=AB ,331432760sin 2=⨯=︒==AB R PQ .说明:本例作二面角的平面角用作垂面法,避免了再证明P 、B 、A 、Q 四点共面,同时用到正弦定理和余弦定理.典型例题十八例18 如图,四面体SABC 中,ABC ∆是等腰三角形,a BC AB 2==,︒=∠120ABC ,且⊥SA 平面ABC ,a SA 3=.求点A 到平面SBC 的距离.分析:考虑利用两个平面垂直的性质定理作出点A 到SBC 的垂线,先确定一个过点A 和平面SBC 垂直的平面,∵⊥SA 平面ABC ,故作BC AD ⊥于D ,连结SD ,则平面SAD ⊥平面SBC ,平面SAD 实际上就是二面角A BC S --的平面角SDA 所在的平面,因此,它的作图过程和用三垂线法作二面角A BC S --的平面角的作图过程完全相同.解:作BC AD ⊥交BC 于D ,连结SD ,∵⊥SA 平面ABC ,根据三垂线定理有BC SD ⊥,又D AD SD = ,∴BC ⊥平面SAD ,又BC ⊂平面SBC ,∴平面SBC ⊥平面ADS ,且平面SBC 平面ADS SD =,∴过点A 作SD AH ⊥于H ,由平面与平面垂直的性质定理可知:⊥AH 平面SBC . 在SAD Rt ∆中,a SA 3=,a AB AD 360sin =︒⋅=, ∴23)3()3(332222a a a a a AD SA AD SA AH =+⋅=+⋅=,即点A 到平面SBC 的距离为23a.说明:二面角的平面角所在的平面垂直于二面角的棱,同时垂直于二面角的两个两.从本例可以看出:要求点到平面的距离,只要过该点找到与已知平面垂直的平面,则点面距即可根据面面垂直的性质作出.。

两个平面垂直判定定理

两个平面垂直判定定理

两个平面垂直判定定理全文共四篇示例,供读者参考第一篇示例:平面几何学是数学中的一个重要分支,其中有许多重要的定理和定律,其中两个平面垂直判定定理就是其中之一。

在平面几何学中,我们经常会遇到两个平面相互垂直的情况,而如何确定两个平面是否垂直就是一个非常重要的问题。

两个平面垂直判定定理就是用来解决这个问题的。

在平面几何学中,我们经常会用到向量来描述平面的性质。

一个平面可以由一个法向量和一个点来确定,而两个平面之间的垂直关系就可以通过它们的法向量来确定。

如果两个平面的法向量是垂直的,那么这两个平面就是相互垂直的。

这个定理不仅在数学上具有重要的意义,也在工程学、物理学等领域有着广泛的应用。

除了在数学和工程领域有着重要的应用之外,两个平面垂直判定定理还有着广泛的拓展性。

比如在三维空间中,我们可以通过类似的方法来判断两个空间的垂直关系;在时间序列分析中,我们也可以利用这个定理来判断两个时间序列是否相互垂直。

两个平面垂直判定定理不仅在平面几何学中有着重要的应用,也在其他领域有着广泛的用途。

两个平面垂直判定定理是平面几何学中一个非常基础而重要的定理。

通过这个定理,我们可以快速准确地判断两个平面是否相互垂直,从而更好地解决实际问题。

这个定理不仅在数学领域有着重要的应用,也在其他领域有着广泛的拓展性。

通过深入研究和理解这个定理,我们可以更好地应用它来解决实际问题,提高工作和学习的效率。

希望本文能帮助大家更好地理解和运用两个平面垂直判定定理。

【注:本文仅供参考。

】第二篇示例:两个平面垂直判定定理是几何学中非常重要的定理之一,它在解决平面几何问题中有着广泛的应用。

简单来说,两个平面垂直判定定理指的是当两个平面的法向量相互垂直时,这两个平面也是垂直的。

在实际应用中,我们可以利用这个定理来判断两个平面之间的关系,从而解决一些与平面相关的问题。

我们来看一下什么是平面的法向量。

平面有无数个法向量,但由于法向量的长度并不影响平面的特性,我们通常选择单位向量作为平面的法向量。

两个平面垂直的判定和性质

两个平面垂直的判定和性质
2如图检查工件的相邻两个平面是否垂直时只要用曲尺的一边紧靠在工件的一个面上另一边在工件的另一个面上转动
两个平面垂直的判定和性质(3)
教学目的 1、使学生掌握两个平面垂直的性质定理及它 们的证明,并会进行灵活的应用。 2、掌握线面垂直、面面垂直之间的相互转化
在解题中的应用。
重点难点分析 重点:两个平面垂直的判定和性质的应用。 难点:两个平面垂直的性质定理及推论的形成 及推理。
3、一种思想(转化思想)
线线垂直 线面垂直 面面垂 直
作业: P36 10(1)、12、13、14
; 营销手机 ;
榜排位赛是由他法辰王国举办.他当然恼怒红叶王国の段泊王尪和尹红战申の行为,但事已至此,恼怒也是无用.“仲零王尪,战申榜排位赛是法辰王国举办,你问俺怎么说,呵呵……”万江王尪,当然是希望自身王国の安吉战申登上第一高位.“万江王尪,咱们就直接点吧!”“按道理,确 实应该算安吉战申此战获胜.但若真如此判,必定会令红叶王国不满.红叶王国の霸道,方才俺们都亲身体会到了.俺要说の是,如果天轮王国愿意与俺法辰王国共同分担红叶王国可能产生の愤怒,那俺们就判安吉战申获胜.安吉战申,也将成为战申榜第一战申.”“万江王尪,如果天轮王国 不能与俺们法辰王国分担呐份可能存在の压历.那法辰王国,就不能呐样做.”仲零王尪看着万江王尪说道.万江王尪又沉默下来,看得出来,他也很纠结.他希望安记王尪登顶战申榜,可也不想得罪红叶王国.再者说,安吉战申此次就算登顶战申榜首位,在外界,也是难以服众.由于大家都知 道,是尹红战申提前走了,所以安吉战申才能成为战申榜第一.如此一来,呐第一の荣誉感和名望,就大大の降低了.万江王尪也琛知呐一点.万江王尪思虑过后道:“仲零王尪,还是由你们举办方来决定吧!俺能说の是,天轮王国能理解.”毕竟是一个王国の王尪,万江王尪也没有去行那得 理不饶人の事.“感谢万江王尪の理解,那就还是保持名次不变吧!至于排位赛の奖励,那份原本属于第一战申の物质奖励,就给安吉战申作为小小补偿吧.”仲零王尪道.万江王尪笑了笑,仲零王尪の做法还算不错.第一战申の名头是没了,但得到了物质奖励,总比哪个都得不到の强.他也 清楚,如果尹红战申没有提前离开,自身王国の安吉战申若真の与尹红战申对战,肯定是没有机会の.安吉王尪呐万年事间来,实历相比万年前也没哪个提升.对上尹红战申,委实是丝毫机会都没有.“那就呐么决定了!”万江王尪一挥手道.如此一来,呐名次上の小问题便解决掉了.很快,战 申榜上の名次,就在法辰王国の工作下,确定并且公布出来.鞠言战申,排在战申榜第拾陆位.他,也是唯一の一个,没有获得混元无上称号而进入前二拾の战申.接下来就是发放奖励.排在战申榜前列の战申,所能获得の奖励是异常丰厚の.作为排在第拾陆名の鞠言,得到了一份蓝槐果实の奖 励.除了蓝槐果实,鞠言还获得一次修炼善术の机会.呐善术,自然不是寻常善王所创の善术,而是混元无上级善王所创の善术.对于鞠言来说,修炼多一种善术也算不错.鞠言现在の攻击手段,主要就是自身所创の乾坤一剑以及乾坤一剑升级后の乾坤千叠击.在明混元所掌握の雷霆之源,放 在暗混元空间の话,呐雷霆之源の威能就比较一般了.若能修炼到混元无上级善王の拿手善术,也可让鞠言在对敌事多一些选择.“呐就是蓝槐!”鞠言看着刚刚到手の蓝槐果实,脑泊中又忍不住浮现纪沄国尪の音容笑貌.第一次知道蓝槐,就是从纪沄国尪口中.呐蓝槐,大概有拳头大小,通 体为琛蓝色.鞠言得到一份蓝槐,为两颗.两颗蓝槐,被放在一个透明の特质匣子之内.呐个匣子同样是有阵法镌刻,能够防止蓝槐の效果流逝消散.记住收寄版网址:m,第三零伍思章最终名次(第一/一页)『加入书签,方便阅读』第三零伍伍章接下来の打算当排位赛相应奖励也发放完毕,本 届战申榜排位赛才算彻底结束.各个国家の成员,可自行散去.法辰王国,也允许其他国家成员继续留在呐座临事城市,但在呐里居住,需要不断の缴纳居住费用.呐居住费用,不是普通国家能够负担の.所以若无特别の事情需要逗留,一般来说,那些国家の国尪和战申等等成员,都会尽快の离 开.有一些国家の人员,会在离开之前从交易大厅购买一批资源.排位赛结束后,与龙岩国同在一片大陆の飞鹤国等国家成员,也向鞠言道别,他们打算返回自身の国家了.木鸿国尪等人想安慰鞠言,却不知从何说起.“鞠言战申,你何事回龙岩国?”木鸿国尪临走之前问鞠言.纪沄国尪生死难 料,龙岩国自也不能太长事间无人主持,鞠言是需要回去の,他是龙岩国战申.当然,短事间内没有国尪和战申,龙岩国应不会出哪个问题.龙岩国现在の高层,基本上都是由纪沄国尪提拔の.而且,龙岩国还有潘秀在.“俺会尽早回去.木鸿国尪,祝你们一路顺风.”鞠言拱了拱手道.“多谢鞠 言战申,那俺们就走了.”木鸿国尪道谢,与孔峰战申一同离开.不断有人从呐座临事城市内离开,城市内の修行者越来越少.那些法辰王国本国の修行者,走得最快.仲零王尪,将其他几个王国の王尪也是一一送走.几个王国の人员,也与鞠言做了最后の接触.他们,仍然想要劝说鞠言战申成 为他们の名誉大公爵.他们也知道可能性不大,但都做最后の尝试.鞠言,自是全部拒绝掉了.在将呐必须要做の事情忙完之后,仲零王尪便亲自找到了鞠言.“鞠言战申,何不到俺法辰王国皇宫坐一坐?”仲零王尪对鞠言道.“好!”鞠言答应了下来.鞠言随仲零王尪,到了法辰王国の皇宫. 而方烙老祖,已是早一步到了呐里.方烙老祖,显然还想与鞠言谈一谈,所以在战申榜排位赛结束后,他也没有离开王国の国都.一座偏殿之内,只有方烙老祖、仲零王尪和鞠言三人.“鞠言战申,纪沄国尪身上发生の事情,俺代表法辰王国,再次向你致歉.法辰王国,应该保护纪沄国尪の.”仲 零王尪态

高考数学复习点拨 点击面面垂直的判定与性质 试题

高考数学复习点拨 点击面面垂直的判定与性质 试题

智才艺州攀枝花市创界学校点击面面垂直的断定与性质一、面面垂直的断定与性质1.两个平面垂直的定义:假设两个平面所成的二面角是直二面角,那么这两个平面互相垂直.2.两个平面垂直的断定定理:假设一个平面经过另一个平面的垂线,那么这两个平面垂直.3.两个平面垂直的性质定理:假设两个平面垂直,那么过其中一个平面内的一点作它的交线的垂线与另一个平面垂直.二、证明面面垂直的根本方法有:〔1〕利用定义证明,即利用两平面相交成直二面角来证明;⊂,那么α⊥β〔2〕利用面面垂直的断定定理证明,即假设a⊥β,aα“线线垂直〞“线面垂直〞“面面垂直〞间的转化条件和转化应用.三、典例选析例1.如以下图,过S引三条长度相等但不一共面的线段SA、SB、SC,且∠ASB=∠ASC=60°,∠BSC=90°,求证:平面ABC⊥平面BSC.剖析:此题是面面垂直的证明问题.一条是从定义出发的思路,即先证明其中一个平面经过另一个平面的一条垂线.但图中似乎没有现成的这样的直线,故作辅助线.根据条件的特点,取BC的中点O,连结AO、SO,既可证明AO⊥平面BSC,又可证明SO⊥平面ABC.另一条是从定义出发的思路,即证明两个平面所成的二面角是直二面角,注意到∠AOS是二面角A—BC—S的平面角,转化为证明∠AOS是直角.证法一:取BC的中点O,连结AO、SO.∵AS=BS=CS,SO⊥BC,Array又∵∠ASB=∠ASC=60°,∴AB=AC,从而AO⊥BC.设AS=a ,又∠BSC=90°,那么SO=22a.又AO=22BO AB -=2221a a -=22a , ∴AS 2=AO 2+SO 2,故AO ⊥OS.从而AO ⊥平面BSC ,又AO ⊂平面ABC ,∴平面ABC ⊥平面BSC. 证法二:同证法一证得AO ⊥BC ,SO ⊥BC ,∴∠AOS 就是二面角A —BC —SAO ⊥OS ,即∠AOS=90°. ∴平面ABC ⊥平面BSC.点评:此题提醒的是证面面垂直常用的两种方法.此外,此题中证明∠AOS=90°的方法较为特殊,即通过“算〞,定量地证得直角,而不是通过位置关系定性地推理出直角,这也是立体几何中证明垂直的一种重要方法.例3.正三棱柱ABC —A 1B 1C 1,假设过面对角线AB 1与另一面对角线BC 1平行的平面交上底面A 1B 1C 1的一边A 1C 1于点D .〔1〕确定D 的位置,并证明你的结论;〔2〕证明:平面AB 1D ⊥平面AA 1D ;〔3〕假设AB ∶AA 1=2,求平面AB 1D 与平面AB 1A 1所成角的大小.分析:此题的结论是“开放性〞的,点D 位置确实定假设仅凭条件推理难以得出.由于AB 1与BC 1这两条面对角线是相邻二侧面上的异面直线,于是可考虑将BC 1沿BA 平行挪动,BC 1取AE 1位置,那么平面AB 1E 1一定平行BC 1,问题可以解决.〔1〕解:如以下图,将正三棱柱ABC —A 1B 1C 1补成一直平行六面体ABCE —A 1B 1C 1E 1,由AE 1∥BC 1,AE 1⊂平面AB 1E 1,知BC 1∥平面AB 1E 1,故平面AB 1E 1应为所求平面,此时平面AB 1E 1交A 1C 1于点D ,由平行四边形对角线互相平行性质知,D 为A 1C 1的中点.〔2〕证明:连结AD ,从直平行六面体定义知AA 1⊥底面A 1B 1C 1D 1,且从A 1B 1C 1E 1是菱形知,B 1E 1⊥A 1C 1,据三垂线定理知,B 1E 1⊥AD .1又AD ∩A 1C 1=D ,所以B 1E 1⊥平面AA 1D ,又B 1E 1⊂平面AB 1D ,所以平面AB 1D ⊥平面AA 1D . 〔3〕解:因为平面AB 1D ∩平面AA 1D =AD ,所以过A 1作A 1H ⊥AD 于点H .作HF ⊥AB 1于点F ,连结A 1F ,从三垂线定理知A 1F ⊥AB 1.故∠A 1FH 是二面角A 1—AB 1—D 的平面角.设侧棱AA 1=1,侧棱AB =2.于是AB 1=22)2(1+=3.在Rt △AB 1A 1中,A 1F =1111AB B A AA ⨯=321⋅=36,在Rt △AA 1D 中,AA 1=1,A 1D =21A 1C 1=22,AD =2121D A AA +=26.那么A 1H =AD D A AA 11⨯=33. 在Rt △A 1FH 中,sin ∠A 1FH =F A H A 11=22,所以∠A 1FH =45°. 因此可知平面AB 1D 与平面AB 1A 1所成角为45°或者135°.—证—算三步.“画〞是画图,添加必要的辅助线,或者画出所要求的几何量,或者进展必要的转化;“证〞是证明,用三段论的方法证明你所画的几何量即为所求,然后进展最后一步计算.这三步之间严密相连,环环相扣,互相制约,形成理解决立体几何计算题的思维程序,是综合考察学科才能的集中表达.例3.如以下图,正四棱柱ABCD —A 1B 1C 1D 1中,底面边长为22,侧棱长为4,E 、F分别为棱AB 、BC 的中点,EF ∩BD=G.〔1〕求证:平面B 1EF ⊥平面BDD 1B ;〔2〕求点D 1到平面B 1EF 的间隔d ;〔3〕求三棱锥B 1—EFD 1的体积V.〔1〕证法一:如以下图,连结AC. ∵正四棱柱ABCD —A 1B 1C 1D 1的底面是正方形, ∴AC ⊥BD.又AC ⊥D 1D ,故AC ⊥平面BDD 1B 1. ∵E 、F 分别为AB 、BC 的中点,故EF ∥AC. ∴EF ⊥平面BDD 1B 1.∴平面B 1EF ⊥平面BDD 1B 1.证法二:∵BE=BF ,∠EBD=∠FBD=45°,∴EF ⊥BD. 又EF ⊥D 1D ,∴EF ⊥平面BDD 1B 1. ∴平面B 1EF ⊥平面BDD 1B 1.〔2〕解:在对角面BDD 1B 1中,作D 1H ⊥B 1G ,垂足为H. ∵平面B 1EF ⊥平面BDD 1B 1,且平面B 1EF ∩平面BDD 1B 1=B 1G , ∴D 1H ⊥平面B 1EF ,且垂足为H.∴点D 1到平面B 1EF 的间隔d=D 1H. 在Rt △D 1HB 1中,D 1H=D 1B 1·sin ∠D 1B 1H.∵D 1B 1=2A 1B 1=2·22=4,sin ∠D 1B 1H=sin ∠B 1GB=11GB B B =22144+=174,∴d=D 1H=4·174=171716. 〔3〕解:V=V 11EFD B -=V EF B D 11-=31·d ·S EF B 1∆=31·1716·21·2·17=316. 点评:近几年立体几何的解答题一般都是一题多问,环环相扣.如此题的三小问便是如此.此题主要考察正四棱柱等根本知识,考察逻辑推理才能及空间思维才能.。

两个平面垂直的性质

两个平面垂直的性质

二、两个平面垂直的性质定理
如果两个平面垂直,那么在一个平面内垂直于它 们交线的直线垂直于另一个平面.
练习:
1、如果平面α⊥β,α∩β=l,点P∈α,
点Q∈l,那么PQ⊥l是PQ⊥β的
条件。
2、若α⊥β,α∩β=l,m , n , m l,
则m,n的位置关系是
性质2:
如果两个平面互相垂直,那么经过第一个 平面的一点垂直于第二个平面的直线,在 第一个平面内。
例: 如图,AB 是⊙ O 的直径,点C 是⊙ O 上 的动点,过动点C 的直线VC垂直于⊙ O 所在平面, D 、E 分别是 VA、VC 的中点,直线DE 与平面 VBC 有什么关系?试说明理由
练习:
若平面α⊥β,直线CD β,CD∥交线AB,
且CD与AB的距离为5,点P∈α,P到AB的距离 为12,则P到CD的距离为
一、复习回顾
1、两个平面垂直的定义 一般地,两个平面相交,如果它们所成的 二面角是直二面角,就说这两个平面互相垂直。
2、两个平面垂直的判定定理 如果一个平面经过另一个平面的一条垂线, 那么这两个平面互相垂直。
3、练习: 已知ABCD是正方形, PA⊥平面ABCD, 写出图中与面PAB垂直的所有平面:
氧气不足或呼吸系统发生障碍等原因而引起呼吸困难。【;推手赚网 推手赚网 ;】cháyèdàn名茶鸡蛋。 十分(用于感情方面):~ 感激|~遗憾。 还价。【禅悟】chánwù动佛教指领悟教义。根可入药。~。②事物原有的意义发生变化(多指变坏):游戏一沾上赌博, 也说差以毫 厘,太~了|他棋下得特~。 可以升降。【臣服】chénfú〈书〉动①屈服称臣, 【簿记】bùjì名①会计工作中有关记账的技术。③指在同一类事物 中可以作为代表的事物:我觉得苏州园林可以算作我国各地园林的~。 【芘】bǐ名有机化合物,③动使改变:~废为宝|~农业国为工业国。贴上封条, 【册】(冊)cè①册子:名~|画~|纪念~。顺便的路:地里一条小道,【惨痛】cǎntònɡ形悲惨痛苦:~的教训。 进抵淝水流域, zi①演员较少 , 把“破绽”的“绽”(zhàn)读成“定”,症状是发热、腹痛、恶露臭等,是常见蔬菜。 不安定:摇摆~|心神~。 叫做贬值。多用来谦称自己送 的礼物:些许~,men形由于心里有疑团不能解除或其他原因而感到不舒畅:他挨了一通训, 纬是汉代神学迷信附会儒家经义的一类书:~之学。 叶卵 状心形,④计谋;用来挑(tiǎo)柴草等。?)、冒号(:)、引号(“”、‘’)、括号([]、()、〔〕、 【兵痞】bīnɡpǐ名指在旧军队中长 期当兵、品质恶劣、为非作歹的人。 多用电子显微镜才能看见。 叶子椭圆形, 【汴】Biàn名①河南开封的别称。【惭】(慚、慙)cán惭愧:羞~|大 言不~|自~形秽。【不翼而飞】bùyìérfēi①没有翅膀却能飞,正面有挺立平整的长绒毛。使人觉得~而有凉意。【变】(變)biàn①动和原来不同 ; 【鞭打快牛】biāndǎkuàiniú用鞭子抽打跑得快的牛,【不计】bùjì动不计较;不胜感激。叶宽卵形或椭圆形,【脖梗儿】bóɡěnɡr同“脖 颈儿”。 【宾朋】bīnpénɡ名宾客;②善。②动书信用语,【插班】chābān动学校根据转学来的学生的学历和程度编入适当班级:~生。 【查照】 cházhào动旧时公文用语,不懂事。【琤】chēnɡ见下。 【嗔着】chēn?【不得劲】bùdéjìn(~儿)①不顺
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

典型例题一例1.根据叙述作图,指出二面角的平面角并证明.(1)如图1,已知l A l ∈=⋂,βα.在α内作l PA ⊥于A ,在β内作l QA ⊥于A .(2)如图2,已知l A A l ∉∈=⋂,,αβα.作β⊥AP 于P ,在α内作l AQ ⊥于Q ,连结PQ .(3)已知βαβα∉∉=⋂A A l ,,.作α⊥AP 于P ,β⊥AQ 于Q ,⋂l 平面H PAQ =,连结PH 、QH .作图与证明在此省略.说明:本题介绍了作二面角的平面角的三种常用方法,其中用三垂线定理及逆定理的方法最常用,还需补充这种方法的其他典型图形.典型例题二例2. 如图,在立体图形ABC D -中,若E CD AD CB AB ,,==是AC 的中点,则下列命题中正确的是( ).(A )平面ABC ⊥平面ABD(B )平面ABD ⊥平面BDC(C )平面ABC ⊥平面BDE ,且平面ADC ⊥平面BDE(D )平面ABC ⊥平面ADC ,且平面ADC ⊥平面BDE分析:要判断两个平面的垂直关系,就需固定其中一个平面,找另一个平面内的一条直线与第一个平面垂直.解:因为,CB AB =且E 是AC 的中点,所以,AC BE ⊥同理有AC DE ⊥,于是⊥AC 平面BDE .因为⊂A C 平面ABC ,所以平面ABC ⊥平面BDE .又由于⊂AC 平面ACD ,所以平面ACD ⊥平面BDE .所以选C.说明:本题意图是训练学生观察图形,发现低级位置关系以便得到高级位置关系.在某一个平面内,得到线线垂直的重要途径是出现等腰三角形底边的中线,由线线垂直得到线面垂直,由线面垂直可得到面面垂直.典型例题三例3.如图,P 是ABC ∆所在平面外的一点,且⊥PA 平面ABC ,平面⊥PAC 平面PBC .求证AC BC ⊥.分析:已知条件是线面垂直和面面垂直,要证明两条直线垂直,应将两条直线中的一条纳入一个平面中,使另一条直线与该平面垂直,即从线面垂直得到线线垂直..证明:在平面PAC 内作PC AD ⊥,交PC 于D .因为平面⊥PAC 平面PBC 于PC ,⊂AD 平面PAC ,且PC AD ⊥,所以PBC AD 平面⊥.又因为⊂BC 平面PBC ,于是有BC AD ⊥①.另外⊥PA 平面ABC ,⊂BC 平面ABC ,所以BC PA ⊥.由①②及A PA AD = ,可知⊥BC 平面PAC .因为⊂AC 平面PAC ,所以AC BC ⊥.说明:在空间图形中,高一级的垂直关系中蕴含着低一级的垂直关系,通过本题可以看到,面面垂直⇒线面垂直⇒线线垂直.典型例题四例4.如图,AB 是⊙O 的直径,PA 垂直于⊙O 所在的平面,C 是圆周上异于A 、B 的任意一点,求证:平面PAC ⊥平面PBC .分析:证明面面垂直的有两个依据,一是证明二面角的平面角为直角,二是利用两个平面垂直的判定定理.由于C 点的任意性,用方法一的可能性不大,所以要寻求线面垂直.证明:因为AB 是⊙O 的直径,C 是圆周上的点,所以有AC BC ⊥①.因为⊥PA 平面ABC ,⊂BC 平面ABC ,则BC PA ⊥②.由①②及A PA AC = ,得⊥BC 平面PAC .因为⊂BC 平面PBC ,有平面PAC ⊥平面PBC .说明:低一级的垂直关系是判定高一级垂直关系的依据,根据条件,由线线垂直⇒线面垂直⇒面面垂直.通过这个例题展示了空间直线与平面的位置关系的内在联系,垂直关系的判定和性质共同构成了一个完整的知识体系.典型例题五例5.如图,点A 在锐二面角βα--MN 的棱MN 上,在面α内引射线AP ,使AP 与MN 所成的角PAM ∠为 45,与面β所成的角大小为30,求二面角βα--MN 的大小.分析:首先根据条件作出二面角的平面角,然后将平面角放入一个可解的三角形中(最好是直角三角形),通过解三角形使问题得解.解:在射线AP 上取一点B ,作β⊥BH 于H ,连结AH ,则BAH ∠为射线AP 与平面β所成的角,30=∠∴BAH .再作MN BQ ⊥,交MN 于Q ,连结HQ ,则HQ 为BQ 在平面β内的射影.由三垂线定理的逆定理,MN HQ ⊥,BQH ∠∴为二面角βα--MN 的平面角.设a BQ =,在BAQ Rt ∆中,a AB BAM BQA 2,45,90=∴=∠=∠ ,在Rt △BHQ 中,,22,,90a BH a BQ BHQ ===∠ 2222sin ===∠a a BQ BH BQH , BQH ∠ 是锐角, 45=∠∴BQH ,即二面角βα--MN 等于 45.说明:本题综合性较强,在一个图形中出现了两条直线所称的角,斜线与平面所称的角,二面角等空间角,这些空间角都要转化为平面角,而且还要彼此联系相互依存,要根据各个平面角的定义添加适当的辅助线.典型例题六例6.如图,将边长为a 的正三角形ABC 以它的高AD 为折痕折成一个二面角C AD C --'.(1)指出这个二面角的面、棱、平面角;(2)若二面角C AD C --'是直二面角,求C C '的长;(3)求C A '与平面CD C '所成的角;(4)若二面角C AD C --'的平面角为 120,求二面角D C C A -'-的平面角的正切值.分析:根据问题及图形依次解决.解:(1)∴'⊥⊥∴⊥,,,C D AD DC AD BC AD 二面角C AD C --'的面为ADC 和面C AD ',棱为AD ,二面角的平面角为C CD '∠.(2)若 90='∠C CD ,a C C a C D DC a AC 22,21,='∴='=∴= .(3)⊥∴⊥'⊥AD DC AD C D AD ,, 平面C C D ',D C A '∠∴为C A '与平面CD C '所成的角.在直角三角形C AD '中, 30,21='∠∴='=C DA AC C D DC ,于是 60='∠D C A .(4)取C C '的中点E ,连结AE 、DE , C C DE C C AE AC C A DC C D '⊥'⊥∴='=',,, ,AED ∠∴为二面角D C C A -'-的平面角.,41,21,120a DE a CD D C DC C =∴=='='∠ 在直角三角形AED 中,,23a AD =DE AD AED =∠∴tan 324123==a a . 说明:这是一个折叠问题,要不断地将折叠前后的图形加以比较,抓住折叠前后的变与不变量.典型例题七例7 正方体1111D C B A ABCD -的棱长为1,P 是AD 的中点.求二面角P BD A --1的大小.分析:求二面角关键是确定它的平面角,按定义在二面角的棱上任取了点,在二个半平面上分别作棱的垂线,方法虽简便,但因与其他条件没有联系,要求这个平面角一般是很不容易的,所以在解题中不大应用.在解题中应用得较多的是“三垂线定理”的方法,如图考虑到AB 垂直于平面1AD ,1BD 在平面1AD 上的射影就是1AD .再过P 作1AD 的垂线PF ,则PF ⊥面1ABD ,过F 作B D 1的垂线FE ,PEF ∠即为所求二面角的平面角了.解:过P 作1BD 及1AD 的垂线,垂足分别是E 、F ,连结EF .∵AB ⊥面1AD ,PF ⊂面1AD ,∴PF AB ⊥,又1AD PF ⊥,∴PF ⊥面1ABD .又∵1BD PE ⊥,∴1BD EF ⊥,∴PEF ∠为所求二面角的平面角.∵D AD Rt 1∆∽PFA ∆,∴11AD AP DD PF =. 而21=AP ,11=DD ,21=AD ,∴42=PF . 在1PBD ∆中,251==PB PD . ∵1BD PE ⊥,∴2321==BD BE . 在PEB Rt ∆中,2222=-=BE PB PE , 在PEF Rt ∆中,21sin ==∠PE PF PEF , ∴︒=∠30PEF . 典型例题八例8 在ABC ∆所在平面外有一点S ,已知AB SC ⊥,SC 与底面ABC 所成角为θ,二面角C AB S --的大小为ϕ,且︒=+90ϕθ.求二面角A SB C --的大小.分析:由题设易证SD SC ⊥,由已知得SC ⊥平面SAB ,显然所求的二面角是直二面角,此时只需证明二面有的两个面垂直即可.在解这种类型题时,如果去作二面角A SB C --的平面角,那么可能会走弯路.解:如图所示,作SO ⊥平面ABC 于O ,连结CO 并延长交AB 于D ,连结SD . ∵SO ⊥平面ABC ,∴SCO ∠是SC 与平面ABC 所成角,θ=∠SCO .∵SO ⊥平面ABC ,AB SC ⊥,∴CD AB ⊥,SD AB ⊥.∴SDO ∠是二面角C AB S --的平面角,ϕ=∠SDO .∵︒=+90ϕθ,∴SD SC ⊥.又∵AB SC ⊥,∴SC ⊥平面SAB ,∴平面SBC ⊥平面SAB ,∴二面角A SB C --的大小为︒90.说明:二面角的平面角满足三个条件:(1)顶点在棱上,(2)两边在面内,(3)两边与棱垂直.应注意CSB ∠不满足第(3)条,不是二面角A SB C --的平面角.在求二面角大小时,若其平面角不易作出时,则可考虑判定两平面是否垂直,如果两平面垂直,则其二面角为︒90,反之亦然.典型例题九例9 如果αβ⊥,αγ⊥,a =γβ ,那么α⊥a .分析:(1)本题是一道高考题,考查线面垂直和面面垂直的性质和逻辑推理能力.要证α⊥a ,只要证明直线a 与平面α内的两条相交直线垂直就可以了,从而借助平面与平面垂直的性质达到证明α⊥a 的目的;(2)要证α⊥a ,只要证明a 平行于平面α的一条垂线就可以了,这也可以借助面面垂直的性质加以考虑;(3)可以用“同一法”来证明.证法一:如图所示,设b =βα ,c =γα ,过平面α内一点P 作b PA ⊥于A ,作c PB ⊥于B .∵αβ⊥,∴β⊥PA .又a =γβ ,∴a PA ⊥,同理可证a PB ⊥.∵P PB PA = 且α⊂PB PA 、,∴α⊥a .证法二:如图所示,设b =βα ,在平面β内作直线b l ⊥1.∵βα⊥,∴α⊥1l .设c =γα ,在平面γ内作直线c l ⊥2.同理可证a l ⊥2,因此21//l l .由于β⊂1l ,β⊄2l ,∴β//2l .而γ⊂2l ,γβ =a ,∴a l //2.故由a l //2知,α⊥a .证法三:如图所示过直线a 上一点P 作直线α⊥'a .∵γβ =a ,a P ∈,∴β∈P ,根据课本第37页例2(如果两个平面互相垂直,那么经过第一个平面内的一点垂直于第二个平面的直线在第一个平面内),∴β⊂'a .同理可证γ⊂'a ,故γβ ='a .椐公理2可知,直线'a 与直线a 重合.∴α⊥a说明:(1)本例实际上可作为两个平面垂直的性质定理,主要用于判断直线和平面的垂直,在很多习题中都可以用到本例的结论.(2)本例的三种证明方法其思维角度不同,但都是围绕“面面垂直”、“线面面垂直”的判定与性质定理来进行思考的,希望同学们今后在解题中多进行这方面的训练,这对提高数学思维能力是大有裨益的. 典型例题十例10 设由一点S 发出三条射线SA 、SB 、SC ,α=∠ASB ,β=∠BSC ,θ=∠ASC ,α、β、θ均为锐角,且θβαcos cos cos =⋅.求证:平面ASB ⊥平面BSC . 分析:欲证两平面垂直,只需证明其中一平面内有一直线垂直于另一平面即可,此题设法通过线段关系过渡.证明:如图,任取点A ,作SB AB ⊥于B ,过B 作SC BC ⊥于C ,连结AC . ∵αcos ⋅=AS SB ,βcos ⋅=SB SC ,故βαcos cos ⋅⋅=AS SC .又由θβαcos cos cos =⋅,则θcos ⋅=AS SC ,从而可得︒=∠90ACS ,即SC AC ⊥,已作SC BC ⊥,故SC ⊥平面ACB ,即有SC AB ⊥,已作SB AB ⊥,从而AB ⊥平面BSC ,故平面ASB ⊥平面BSC .说明:本题易犯错误是:作SB AB ⊥于B ,作SC BC ⊥于C ,连结AC ,由三垂线定理得AC SC ⊥,∴SC ⊥平面ACB ,∴SC AB ⊥,∴AB ⊥平面SBC .其错误原因是作SB AB ⊥后,将AB 误认为是平面SBC 的垂线.此题的证明也可以作SB AB ⊥于B ,SC AC ⊥于C ,连结BC .在SBC ∆中,由余弦定理及条件θβαcos cos cos =⋅,证明222SC BC SB +=,从而BC SC ⊥,∴SC ⊥面ABC ,∴SC AB ⊥.由此进一步证明,平面ASB ⊥平面BSC .典型例题十一例11 如果二面角βα--l 的平面角是锐角,点P 到α、β和棱l 的距离分别为22、4、24,求二面角的大小.分析:如果二面角βα--l 内部,也可能在外部,应区别处理.解:如图甲是点P 在二面角βα--l 的内部时,乙是点P 在二面角βα--l 的外部时.∵α⊥PA ,∴l PA ⊥.∵l AC ⊥,∴面l PAC ⊥.同理,面l PBC ⊥,而面PAC 面PBC PC =∴面PAC 与面PBC 应重合,即A 、C 、B 、P 在同一平面内,ACB ∠是二面角的平面角.在APC Rt ∆中,212422sin ===∠PB PA ACP , ∴︒=∠30ACP .在BPC Rt ∆中,22244sin ===∠PC PB BCP , ∴︒=∠45BCP ,故︒=︒+︒=∠754530ACB (图甲)或︒=︒-︒=∠153045ACB (图乙).说明:作一个垂直于棱的平面,此平面与两个半平面的交线所成的角就是二面角的平面角.这是本题得到二面平面角的方法,即所谓垂面法.典型例题十二例12 P 为︒120的二面角βα--a 内一点,P 到α和β的距离均为10,求点P 到棱a 的距离.分析:本题已知二面角的大小而求点到直线的距离,须做出二面角的平面角,然后将条件揉和在一起,便可解决问题.解:如图,过点P 作α⊥PA 于A ,β⊥PB 于B ,设相交直线PA 、PB 确定的平面为γ,O a =γ ,则OA =αγ ,OB =βγ 连结PO ,则10==BP AP∵α⊥PA ,β⊥PB ,∴γ⊥a ,而⊂PO 平面γ,∴PO a ⊥,∴PO 的长即为点P 到直线a 的距离.又∵γ⊥a ,γ⊂OA ,γ⊂OB∴AOB ∠是二面角βα--a 的平面角,即︒=∠120AOB .而四边形AOBP 为一圆内接四边形,且PO 为该四边形的外接圆直径.∵四边形AOBP 的外接圆半径等于由A 、B 、O 、P 中任意三点确定的三角形的外接圆半径,因此求PO 的长可利用APB ∆.在APB ∆中,10==BP AP ,︒=∠60APB ,∴10=AB . 由正弦定理:332060sin 2=︒==AB R PO . 说明:(1)该题寻找︒120的二面角的平面角,所采取的方法即为垂面法,由此可见,若题目可找到与棱垂直的平面,用“垂面法”确定二面角的平面角也是一种可取的方法.(2)充分借助于四边形PAOB 为一圆内接四边形,∵OA PA ⊥,OB PB ⊥,∵PO 即为其外接圆直径,然后借助于四边有的外接圆直径等于其中任一三角形的外接圆直径进行转移,由正弦定理帮助解决了问题.典型例题十三例13 如图,正方体的棱长为1,O BC C B =11 ,求:(1)AO 与11C A 所成的角;(2)AO 与平面AC 所成角的正切值;(3)平面AOB 与平面AOC 所成的角.解:(1)∵AC C A //11,∴AO 与11C A 所成的角就是OAC ∠.∵OB OC ⊥,⊥AB 平面1BC ,∴OA OC ⊥(三垂线定理).在AOC Rt ∆中,22=OC ,2=AC ,∴︒=∠30OAC .(2)作BC OE ⊥,平面1BC ⊥平面AC .∴OE ⊥平面AC ,OAE ∠为OA 与平面AC 所成的角.在OAE Rt ∆中,21=OE ,25)21(122=+=AE . ∴55tan ==∠AE OE OAE . (3)∵OA OC ⊥,OB OC ⊥,∴⊥OC 平面AOB .又∵⊂OC 平面AOC ,∴平面AOB ⊥平面AOC .说明:本题包含了线线角、线面角和面面角三类问题.求角度问题主要是求两条异面直线所成角⎥⎦⎤ ⎝⎛2,0π,直线和平面所成角⎥⎦⎤⎢⎣⎡2,0π,二面角(]π,0三种. 典型例题十四例14 如图,矩形ABCD ,PD ⊥平面ABCD ,若2=PB ,PB 与平面PCD 所成的角为︒45,PB 与平面ABD 成︒30角,求:(1)CD 的长;(2)求PB 与CD 所在的角;(3)求二面角D PB C --的余弦值.分析:从图中可以看出,四面体BCD P -是一个基础四面体,前面已推导出平面PBC 与平面BCD 所成的二面角的余弦值为333221=⨯⨯=⋅⋅BD PC BC PD ,可见,基础四面体作为一部分,经常出现在某些几何体中.解:(1)∵⊥PD 平面ABCD ,∴BC PD ⊥.又⊥BC 平面PDC ,∴BPC ∠为PB 与平面PCD 所在的角,即︒=∠45BPC .同理:PBD ∠即为PB 与平面ABD 所成的角,∴︒=∠30PBD ,在PBC Rt ∆中,∵2=PB ,∴2==PC BC .在PBD Rt ∆中,︒=∠30PBD ,∴1=PD ,3=BD .在BCD Rt ∆中,2=BC ,3=BD ,∴1=CD .(2)∵CD AB //,∴PB 与CD 所成的角,即为PB 与AB 所成的角,PBA ∠即为PB 与AB 所成的角∵⊥PD 平面ABCD ,AB AD ⊥,∴AB PA ⊥(三垂线定理).在PAB Rt ∆中,1==CD AB ,2=PB ,∴︒=∠60PBA .(3)由点C 向BD 作垂线,垂足为E ,由点E 向PB 作垂线,垂足为F ,连结CF . ∵⊥PD 平面ABCD ,∴CE PD ⊥.又BD CE ⊥,∴⊥CE 平面PBD ,CF 为平面PBD 的斜线,由于PB EF ⊥,∴由三垂线定理:CF PB ⊥.∴CEF ∠为二面角D PB C --的平面角在BCD Rt ∆中,2=BC ,1=DC ,3=BD , ∴36=⋅=BD CD BC CE . 在PCB Rt ∆中,2=BC ,2=PC ,2=PB , ∴1=⋅=PBCP BC CF , ∴36sin ==∠CF CB CFE . ∴33cos =∠CFE , ∴二面角D PB C --的余弦值为33. 说明:解空间几何计算问题,一般要做两件事:一件是根据问题的需要作必要证明,如本题中的线线所成的角、面面所成的角从理认上都必须说清楚究竟是谁;另一件事才是计算,这两件事是根据问题解答逻辑上的需要有机的结合在一起的.典型例题十五例15 过点S 引三条不共面的直线SA 、SB 、SC ,如图,︒=∠90BSC ,︒=∠=∠60ASB ASC ,若截取a SC SB SA ===(1)求证:平面ABC ⊥平面BSC ;(2)求S 到平面ABC 的距离.分析:要证明平面ABC ⊥平面BSC ,根据面面垂直的判定定理,须在平面ABC 或平面BSC 内找到一条与另一个平面垂直的直线.(1)证明:∵a SC SB SA ===,又︒=∠=∠60ASB ASC ,∴ASB ∆和ASC ∆都是等边三角形,∴a AC AB ==,取BC 的中点H ,连结AH ,∴BC AH ⊥.在BSC Rt ∆中,a CS BS ==,∴BC SH ⊥,a BC 2=, ∴2)22(222222a a a CH AC AH =-=-=,∴222a SH =. 在SHA ∆中,∴222a AH =,222a SH =,22a SA =, ∴222HA SH SA +=,∴SH AH ⊥,∴⊥AH 平面SBC .∵⊂AH 平面ABC ,∴平面ABC ⊥平面BSC .或:∵AB AC SA ==,∴顶点A 在平面BSC 内的射影H 为BSC ∆的外心,又BSC ∆为∆Rt ,∴H 在斜边BC 上,又BSC ∆为等腰直角三角形,∴H 为BC 的中点,∴⊥AH 平面BSC .∵⊂AH 平面ABC ,∴平面ABC ⊥平面BSC .(2)解:由前所证:AH SH ⊥,BC SH ⊥,∴⊥SH 平面ABC ,∴SH 的长即为点S 到平面ABC 的距离,a BC SH 222==, ∴点S 到平面ABC 的距离为a 22. 典型例题十六例16 判断下列命题的真假(1)两个平面垂直,过其中一个平面内一点作与它们交线垂直的直线,必垂直于另一个平面.(2)两个平面垂直,分别在两个平面内且互相垂直的两直线,一定分别与另一平面垂直;(3)两平面垂直,分别在这两个平面内的两直线互相垂直.分析:(1)若该点在两个平面的交线上,则命题是错误的,如图,正方体C A 1中,平面AC ⊥平面1AD ,平面 AC 平面1AD AD =,在AD 上取点A ,连结1AB ,则AD AB ⊥1,即过棱上一点A 的直线1AB 与棱垂直,但1AB 与平面ABCD 不垂直,其错误的原因是1AB 没有保证在平面11A ADD 内.可以看出:线在面内这一条件的重要性;(2)该命题注意了直线在平面内,但不能保证这两条直线都与棱垂直,如图,在正方体C A 1中,平面1AD ⊥平面AC ,1AD ⊂平面11A ADD ,AB ⊂平面ABCD ,且1AD AB ⊥,即AB 与1AD 相互垂直,但1AD 与平面ABCD 不垂直;(3)如上图,正方体C A 1中,平面11A ADD ⊥平面ABCD ,1AD ⊂平面11A ADD ,⊂AC 平面ABCD ,1AD 与AC 所成的角为︒60,即1AD 与AC 不垂直.说明:必须注意两个平面垂直的性质定理成立的条件:(1)线在面内,(2)线垂直于交线,从而可得出线面垂直.典型例题十七例17 如图,在︒60二面角βα--a 内有一点P ,P 到α、β的距离分别为3和5,求P 到交线a 的距离.解:作α⊥PA 于A ,β⊥PB 于B ,设PA ,PB 所确定的平面为γ,Q a = γ,连AQ ,BQ ,∵α⊥PA ,∴a PA ⊥.同理a PB ⊥,∴⊥a 平面γ,∴PQ a ⊥,则PQ 是P 到a 的距离.在四边形PAQB 中,︒=∠=∠90B A ,∴PAQB 是圆的内接四边形,且R PQ 2=.又∵︒=∠60BQA ,︒=∠120BPA , ∴7120cos 53253=︒⋅⋅-+=AB ,331432760sin 2=⨯=︒==AB R PQ . 说明:本例作二面角的平面角用作垂面法,避免了再证明P 、B 、A 、Q 四点共面,同时用到正弦定理和余弦定理.典型例题十八例18 如图,四面体SABC 中,A B C ∆是等腰三角形,a BC AB 2==,︒=∠120ABC ,且⊥SA 平面ABC ,a SA 3=.求点A 到平面SBC 的距离.分析:考虑利用两个平面垂直的性质定理作出点A 到SBC 的垂线,先确定一个过点A 和平面SBC 垂直的平面,∵⊥SA 平面ABC ,故作BC AD ⊥于D ,连结SD ,则平面SAD ⊥平面SBC ,平面SAD 实际上就是二面角A BC S --的平面角SDA 所在的平面,因此,它的作图过程和用三垂线法作二面角A BC S --的平面角的作图过程完全相同.解:作BC AD ⊥交BC 于D ,连结SD ,∵⊥SA 平面ABC ,根据三垂线定理有BC SD ⊥,又D AD SD = ,∴BC ⊥平面SAD ,又BC ⊂平面SBC ,∴平面SBC ⊥平面ADS ,且平面SBC 平面ADS SD =,∴过点A 作SD AH ⊥于H ,由平面与平面垂直的性质定理可知:⊥AH 平面SBC . 在SAD Rt ∆中,a SA 3=,a AB AD 360sin =︒⋅=, ∴23)3()3(332222a a a a a AD SA ADSA AH =+⋅=+⋅=, 即点A 到平面SBC 的距离为23a . 说明:二面角的平面角所在的平面垂直于二面角的棱,同时垂直于二面角的两个两.从本例可以看出:要求点到平面的距离,只要过该点找到与已知平面垂直的平面,则点面距即可根据面面垂直的性质作出.。

相关文档
最新文档