最新spss聚类分析结果解释

合集下载

【SPSS数据分析】SPSS聚类分析的软件操作与结果解读

【SPSS数据分析】SPSS聚类分析的软件操作与结果解读

【SPSS数据分析】SPSS聚类分析的软件操作与结果解读
在对数据进行统计分析时,我们会遇到将一些数据进行分类处理的情况,但是又没有明确分类标准,这时候就需要用到SPSS聚类分析。

SPSS聚类分析分为两种:一种为R型聚类,是针对变量进行的聚类分析;另一种为Q型聚类,是针对样本的聚类分析。

下面我们就通过实际案例先来给大家讲解Q型聚类分析。

我们搜集了31个样本的5种指标的数据,我们想根据5种指标的数据来将31个样本进行聚类分类。

(图1)
图1
操作步骤:
①点击“分析”--“分类”--“系统聚类”(图2)
图2
③将“样本”选入个案标注依据,将γ1-5选入变量,并勾选下方“个案”标签(图3)
图3
④点击右侧“统计”按钮,将解的范围设置为2-4,意思为分聚为2,3,4类,这里可根据自己分类需求设置(图4)
图4
⑤点击右侧“图”,勾选“谱系图”(图5),点击右侧“方法”,将聚类方法设置为“组间联接”,将区间设置为“平方欧氏距离”(图6)
图5
图6
⑥点击“保存”,将解的范围设置为2-4(图7)
图7
⑦分析结果
图8
由上图(图8)可以看出,第一列为31个样本聚为4类的结果,第二列为31个样本聚为3类的结果,第三列为31个样本聚为2类的结果。

至于冰柱图和谱系图都是用图形化来进一步表达这个些结果,这里就不再赘述,想学习的朋友可以关注我们公众号进行深入学习。

以上就是今天所讲解的SPSS聚类分析的软件操作与分析结果详解,回顾一下重点,Q型聚类是根据变量数据针对样本进行的聚类。

然而还有R型聚类我们将在下一期中进行详细的讲解和分析。

敬请大家的关注!。

SPSS软件聚类分析过程的图文解释及结果的全面分析

SPSS软件聚类分析过程的图文解释及结果的全面分析

SPSS软件聚类分析过程的图文解释及结果的全面分析SPSS聚类分析过程聚类的主要过程一般可分为如下四个步骤:1.数据预处理(标准化)2.构造关系矩阵(亲疏关系的描述)3.聚类(根据不同方法进行分类)4.确定最佳分类(类别数)SPSS软件聚类步骤1. 数据预处理(标准化)→Analyze →Classify →Hierachical Cluster Analysis →Method 然后从对话框中进行如下选择从Transform Values框中点击向下箭头,此为标准化方法,将出现如下可选项,从中选一即可:标准化方法解释:None:不进行标准化,这是系统默认值;Z Scores:标准化变换;Range –1 to 1:极差标准化变换(作用:变换后的数据均值为0,极差为1,且|x ij*|<1,消去了量纲的影响;在以后的分析计算中可以减少误差的产生。

);Range 0 to 1(极差正规化变换 / 规格化变换);2. 构造关系矩阵在SPSS中如何选择测度(相似性统计量):→Analyze →Classify →Hierachical Cluster Analysis →Method 然后从对话框中进行如下选择常用测度(选项说明):Euclidean distance:欧氏距离(二阶Minkowski距离),用途:聚类分析中用得最广泛的距离;Squared Eucidean distance:平方欧氏距离;Cosine:夹角余弦(相似性测度;Pearson correlation:皮尔逊相关系数;3. 选择聚类方法SPSS中如何选择系统聚类法常用系统聚类方法a)Between-groups linkage 组间平均距离连接法方法简述:合并两类的结果使所有的两两项对之间的平均距离最小。

(项对的两成员分属不同类)特点:非最大距离,也非最小距离b)Within-groups linkage 组内平均连接法方法简述:两类合并为一类后,合并后的类中所有项之间的平均距离最小C)Nearest neighbor 最近邻法(最短距离法)方法简述:用两类之间最远点的距离代表两类之间的距离,也称之为完全连接法d)Furthest neighbor 最远邻法(最长距离法)方法简述:用两类之间最远点的距离代表两类之间的距离,也称之为完全连接法e)Centroid clustering 重心聚类法方法简述:两类间的距离定义为两类重心之间的距离,对样品分类而言,每一类中心就是属于该类样品的均值特点:该距离随聚类地进行不断缩小。

spss聚类分析结果解释-聚类表怎么解读

spss聚类分析结果解释-聚类表怎么解读

14.3 分层聚类(Hierarchical Cluster)
分层聚类方法:
分解法:先视为一大类,再分成几类 凝聚法:先视每个为一类,再合并为几大类
可用于观测量(样本)聚类(Q型)和变量聚类(R型) 一般分为两步(自动,可从Paste的语句知道,P359): Proximities:先对数据进行的预处理(标准化和计算距离等) Cluster:然后进行聚类分析 两种统计图:树形图(Dendrogram)和冰柱图(Icicle) 各类型数据的标准化、距离和相似性计算P348-354
14.1.2 判别分析
判别分析是根据表明事物特点的变量值和它们 所属的类,求出判别函数。根据判别函数对未 知所属类别的事物进行分类的一种分析方法。
在自然科学和社会科学的各个领域经常遇到需 要对某个个体属于哪一类进行判断。如动物学 家对动物如何分类的研究和某个动物属于哪一 类、目、纲的判断。
不同:判别分析和聚类分析不同的在于判别分 析要求已知一系列反映事物特征的数值变量的 值,并且已知各个体的分类(训练样本)。
Agglomeration Schedule 凝聚状态表 Proximity matrix:距离矩阵 Cluster membership:Single solution:4 显示分为4类时,各观测
量所属的类
Method: Cluster (Furthest Neighbor), Measure-Interval (Squared Euclidean distance), Transform Value (Range 01/By variable (值-最小值)/极差)
14.1.3 聚类分析与判别分析的SPSS过程
在AnalyzeClassify下:
1. K-Means Cluster: 观测量快速聚类分 析过程

spss聚类分析

spss聚类分析

spss聚类分析SPSS是一款广泛使用的统计分析软件,其中包含了聚类分析的功能。

聚类分析是通过对数据进行归类,将数据划分为不同的样本组,并通过比较不同样本组之间的差别,来发现样本之间的联系和规律。

因此,在社会科学研究、医学研究、市场调研等领域都有广泛的应用。

聚类分析的主要目的是通过样本之间的相似性,将样本划分为不同的组别。

这些组别应当具有高度的内聚性和低度的外在性。

通常情况下,聚类分析主要分为两类:基于距离的聚类和基于密度的聚类。

在基于距离的聚类中,样本之间的相似性是通过计算它们之间距离的度量来确定的,而在基于密度的聚类中,相似性是通过样本之间的密度来定义的。

SPSS中的聚类分析可以按照样本之间的相似性和可分性来进行分析。

在分析之前需要确定聚类的样本数量和采用的距离度量。

距离度量可以是欧氏距离、曼哈顿距离、皮尔森相关系数等。

样本数量的确定可以采用层次聚类或K均值聚类等方法。

层次聚类分析将样本逐步合并成越来越大的组别,直到形成一个大的聚类。

这种方法是基于距离的聚类方法,通常使用最短距离法、最长距离法、中间距离法、重心距离法等来确定样本之间的距离。

聚类的结果可以用树状图或热图来进行展示。

另一种方法是K均值聚类,它将样本分成K个组别,使得组内样本之间的距离最小,而组间的距离最大。

该方法采用欧氏距离来衡量样本之间的距离。

在进行K均值聚类分析时,需要确定聚类的数量,可采用手动设置和基于统计指标的自动调整方法等进行确定。

聚类分析的结果可以用样本聚类图、热图和Dendrogram 等方式进行展示。

聚类分析的结果可用来确定样本之间的相似性,进而探究变量之间的关系。

同时,聚类分析也可用于分类问题的解决,对于预测和分类都有重要的应用。

总之,SPSS聚类分析是现代研究中经常采用的一种分析技术,它能够发现数据背后的内在结构,帮助我们更好地理解和处理研究问题。

SPSS聚类分析实验报告

SPSS聚类分析实验报告

SPSS聚类分析实验报告一、实验目的本实验旨在通过SPSS软件对样本数据进行聚类分析,找出样本数据中的相似性,并将样本划分为不同的群体。

二、实验步骤1.数据准备:在SPSS软件中导入样本数据,并对数据进行处理,包括数据清洗、异常值处理等。

2.聚类分析设置:在SPSS软件中选择聚类分析方法,并设置分析参数,如距离度量方法、聚类方法、群体数量等。

3.聚类分析结果:根据分析结果,对样本数据进行聚类,并生成聚类结果。

4.结果解释:分析聚类结果,确定每个群体的特征,观察不同群体之间的差异性。

三、实验数据本实验使用了一个包含1000个样本的数据集,每个样本包含了5个变量,分别为年龄、性别、收入、教育水平和消费偏好。

下表展示了部分样本数据:样本编号,年龄,性别,收入,教育水平,消费偏好---------,------,------,------,---------,---------1,30,男,5000,大专,电子产品2,25,女,3000,本科,服装鞋包3,35,男,7000,硕士,食品饮料...,...,...,...,...,...四、实验结果1. 聚类分析设置:在SPSS软件中,我们选择了K-means聚类方法,并设置群体数量为3,距离度量方法为欧氏距离。

2.聚类结果:经过聚类分析后,我们将样本分为了3个群体,分别为群体1、群体2和群体3、每个群体的特征如下:-群体1:年龄偏年轻,女性居多,收入较低,教育水平集中在本科,消费偏好为服装鞋包。

-群体2:年龄跨度较大,男女比例均衡,收入中等,教育水平较高,消费偏好为电子产品。

-群体3:年龄偏高,男性居多,收入较高,教育水平较高,消费偏好为食品饮料。

3.结果解释:根据聚类结果,我们可以看到不同群体之间的差异性较大,每个群体都有明显的特征。

这些结果可以帮助企业更好地了解不同群体的消费习惯,为市场营销活动提供参考。

五、实验结论通过本次实验,我们成功地对样本数据进行了聚类分析,并得出了3个不同的群体。

SPSS聚类分析实验报告

SPSS聚类分析实验报告

SPSS聚类分析实验报告摘要:本实验旨在利用SPSS软件进行聚类分析,并通过实验结果分析数据的分布情况,揭示数据中的隐含规律。

通过聚类分析,我们将数据样本划分为不同的类别,以便更好地理解数据的特征、相似性以及群组之间的差异。

实验结果表明,SPSS软件在聚类分析方面具有较高的可靠性和准确性,能够有效地提取数据的特征和隐含信息,为数据分析提供有力支持。

1.引言2.实验方法2.1数据收集与准备本实验使用到的数据集是从公开渠道获取的一份包含各个地区收入、消费、教育等特征的数据集。

为了保护数据安全和隐私,将被分析的数据进行了匿名化处理。

2.2SPSS操作步骤(1)导入数据集:将数据集导入SPSS软件,并进行数据检查和处理,确保数据的完整性和准确性。

(2)选择合适的聚类算法:根据实验目的和数据特点选择适合的聚类算法,这里选择了k-means算法作为聚类算法。

(3)设置聚类参数:设置聚类的类别数、迭代次数等参数,以得到最优的聚类结果。

(4)进行聚类分析:运行聚类分析模块,观察聚类结果和聚类中心的分布情况。

(5)结果解释与分析:根据聚类结果,对不同类别的数据进行特征分析和差异比较,以更好地理解数据的特点和分布规律。

3.实验结果与分析通过SPSS软件进行聚类分析,得到了数据样本的聚类结果。

根据平均轮廓系数和间隔分析等指标,确定了最优的聚类类别数,并得到了每个类别的聚类中心和分布情况。

3.1聚类类别数的确定为了确定合适的聚类类别数,使用平均轮廓系数方法和间隔分析方法进行评估。

通过计算不同聚类类别数下的平均轮廓系数和间隔分析值,选择具有最大平均轮廓系数和最小间隔分析值的类别数作为最优的聚类类别数。

经过计算分析,确定了聚类类别数为33.2聚类结果与分析根据聚类类别数为3的聚类结果,将数据样本分为了三组。

分别对每组数据进行了特征分析和差异比较。

3.2.1类别1:高收入、高教育水平、低消费该类别的个体具有较高的收入水平和教育水平,但消费水平较低。

聚类分析结果解读_SPSS数据处理与分析_[共7页]

聚类分析结果解读_SPSS数据处理与分析_[共7页]

第十一章数据的聚类分析化处理。

五、聚类分析的应用聚类分析在企业经营管理中的应用主要表现在以下几方面。

(1)细分市场。

可以根据顾客购买产品时追求的利益对顾客进行细分,使每个类别的顾客都是由追求利益相似的人组成,从而了解各个细分市场的特点,实施目标市场营销。

(2)研究顾客行为。

通过聚类分析确定同质的顾客群体,分别研究不同顾客群体的购买行为差异,并有针对性地实施不同的营销策略。

(3)研究市场竞争。

通过对产品和品牌的聚类,可以识别市场中相互竞争的产品和品牌。

往往同类型品牌之间比不同类型品牌之间的竞争更加激烈,企业通过自身产品与竞争产品的分析比较,以便有效地捕捉市场机会。

(4)选择试销市场。

通过将城市分为同质的组,选择可比的城市对不同营销策略进行市场测试的反应。

(5)压缩数据。

聚类分析是一种通用的数据压缩技术,可用来生成比单个观测值更容易识别的数据类别。

例如,为了描述顾客对产品使用方面的差异,可以先用聚类分析将顾客进行分组,然后用判别分析研究不同组别之间的差异。

调研实例11-1产品的类同感[4]449不同国家的消费者对不同品类中的品牌是如何认知的?出人意料的是,产品认知的类同率相当高。

产品类同指的是消费者觉得同一品类中的不同品牌彼此相似。

BBDO的最新研究显示,在28个国家调查的消费者中有2/3的人认为13个产品类别中的品牌是美国的。

调查的产品类别涵盖从航空公司到信用卡,再到咖啡。

所有国家全部品类总感知类同率为63%;日本最高,达99%;哥伦比亚最低,仅28%。

从品类来看,信用卡的感知类同率最高,为76%;香烟最低,为52%。

BBDO根据感知类同率对国家进行了聚类,得到了类同感水平和模式相似的群组。

最高的类同感数字来自法国和亚洲(83%),后者包括澳大利亚、日本、马来西亚和韩国。

法国属于这一组并不奇怪,因为法国的多数产品采用感觉导向的视觉性广告。

另一群是受美国影响的市场(65%),包括奥地利、比利时、丹麦、意大利、荷兰、南非、西班牙、英国和德国。

spss聚类分析报告

spss聚类分析报告

Spss聚类分析报告1. 简介聚类分析是一种无监督学习的数据分析方法,它通过将相似的对象归到同一组中,不断优化组内的相似性,来探索数据中的潜在关系。

Spss是一种流行的统计软件,可以方便地进行聚类分析。

2. 数据准备在进行聚类分析之前,需要准备好待分析的数据。

这些数据可以是数值型、分类型或混合型的。

在Spss中,可以通过导入Excel、CSV等格式的数据文件来载入数据。

3. 数据预处理在进行聚类分析之前,需要对数据进行预处理。

这包括缺失值处理、异常值处理、数据标准化等。

在Spss中,可以使用缺失值分析、异常值分析和数据转换等功能来进行数据预处理。

4. 聚类分析步骤Spss提供了一种简单易用的聚类分析方法,下面是聚类分析的步骤:步骤1:选择变量在进行聚类分析之前,首先需要选择待分析的变量。

这些变量可以是数值型或分类型的。

步骤2:选择聚类方法Spss提供了多种聚类方法,如K-means聚类、层次聚类等。

根据数据的特点和研究目标,选择合适的聚类方法。

步骤3:设置聚类参数聚类分析需要设置一些参数,如聚类数目、距离度量方法等。

根据研究目标和数据的特点,设置合适的参数。

步骤4:执行聚类分析在设置好参数后,可以执行聚类分析。

Spss会根据选择的聚类方法和参数,自动将样本分为不同的簇。

步骤5:解释聚类结果聚类分析的结果通常以聚类簇的特征向量、聚类中心和样本所属簇等形式呈现。

可以对聚类结果进行解释和分析,以便进一步理解数据。

5. 结果解释与应用通过对聚类分析结果的解释和分析,可以得到一些有意义的结论。

这些结论可以用于业务决策、市场营销、客户分类等方面。

聚类分析结果还可以与其他分析方法相结合,进一步挖掘数据中的潜在关系。

6. 结论本文介绍了Spss聚类分析的步骤和应用。

通过聚类分析,可以对数据进行无监督的分类和分组,发现数据中的潜在关系。

聚类分析结果对于业务决策和市场营销等方面具有重要意义。

希望本文对读者能够有所启发,促进对聚类分析的理解和应用。

spss聚类分析结果解释-聚类表怎么解读

spss聚类分析结果解释-聚类表怎么解读

14.1.2 判别分析
判别分析是根据表明事物特点的变量值和它们 所属的类,求出判别函数。根据判别函数对未 知所属类别的事物进行分类的一种分析方法。
在自然科学和社会科学的各个领域经常遇到需 要对某个个体属于哪一类进行判断。如动物学 家对动物如何分类的研究和某个动物属于哪一 类、目、纲的判断。
不同:判别分析和聚类分析不同的在于判别分 析要求已知一系列反映事物特征的数值变量的 值,并且已知各个体的分类(训练样本)。
Variables: x1,x2,x3 Label Case By: no Number of Cluster: 4 比较有用的结果:聚类结果形成的最后四类中心点(Final
Cluster Centers) 和每类的观测量数目(Number of Cases in each Cluster) 但不知每个运动员究竟属于哪一类?这就要用到Save选项
第14章 聚类分析与判别分析
介绍: 1、聚类分析 2、判别分析
分类学是人类认识世界的基础科学。聚类分析 和判别分析是研究事物分类的基本方法,广泛地应 用于自然科学、社会科学、工农业生产的各个领域。
14.1.1 聚类分析
根据事物本身的特性研究个体分类的方法,原 则是同一类中的个体有较大的相似性,不同类 中的个体差异很大。
根据分类对象的不同,分为样品(观测量)聚 类和变量聚类两种:
样品聚类:对观测量(Case)进行聚类(不同的目的 选用不同的指标作为分类的依据,如选拔运动员与 分课外活动小组)
变量聚类:找出彼此独立且有代表性的自变量,而 又不丢失大部分信息。在生产活动中不乏有变量聚 类的实例,如:衣服号码(身长、胸围、裤长、腰 围)、鞋的号码。变量聚类使批量生产成为可能。
14.2 快速样本聚类过程(Quick Cluster) 中的选项

SPSS软件聚类分析过程的图文解释及结果的全面分析

SPSS软件聚类分析过程的图文解释及结果的全面分析

SPSS聚类分析过程聚类的主要过程一般可分为如下四个步骤:1.数据预处理(标准化)2.构造关系矩阵(亲疏关系的描述)3.聚类(根据不同方法进行分类)4.确定最佳分类(类别数)SPSS软件聚类步骤1. 数据预处理(标准化)→Analyze →Classify →Hierachical Cluster Analysis →Method 然后从对话框中进行如下选择从Transform Values框中点击向下箭头,此为标准化方法,将出现如下可选项,从中选一即可:标准化方法解释:None:不进行标准化,这是系统默认值;Z Scores:标准化变换;Range –1 to 1:极差标准化变换(作用:变换后的数据均值为0,极差为1,且|x ij*|<1,消去了量纲的影响;在以后的分析计算中可以减少误差的产生。

);Range 0 to 1(极差正规化变换/ 规格化变换);2. 构造关系矩阵在SPSS中如何选择测度(相似性统计量):→Analyze →Classify →Hierachical Cluster Analysis →Method 然后从对话框中进行如下选择常用测度(选项说明):Euclidean distance:欧氏距离(二阶Minkowski距离),用途:聚类分析中用得最广泛的距离;Squared Eucidean distance:平方欧氏距离;Cosine:夹角余弦(相似性测度;Pearson correlation:皮尔逊相关系数;3. 选择聚类方法SPSS中如何选择系统聚类法常用系统聚类方法a)Between-groups linkage 组间平均距离连接法方法简述:合并两类的结果使所有的两两项对之间的平均距离最小。

(项对的两成员分属不同类)特点:非最大距离,也非最小距离b)Within-groups linkage 组内平均连接法方法简述:两类合并为一类后,合并后的类中所有项之间的平均距离最小C)Nearest neighbor 最近邻法(最短距离法)方法简述:用两类之间最远点的距离代表两类之间的距离,也称之为完全连接法d)Furthest neighbor 最远邻法(最长距离法)方法简述:用两类之间最远点的距离代表两类之间的距离,也称之为完全连接法e)Centroid clustering 重心聚类法方法简述:两类间的距离定义为两类重心之间的距离,对样品分类而言,每一类中心就是属于该类样品的均值特点:该距离随聚类地进行不断缩小。

01_SPSS软件聚类分析过程的图文解释与结果的全面分析

01_SPSS软件聚类分析过程的图文解释与结果的全面分析

SPSS聚类分析过程聚类的主要过程一般可分为如下四个步骤:1.数据预处理(标准化)2.构造关系矩阵(亲疏关系的描述)3.聚类(根据不同方法进行分类)4.确定最佳分类(类别数)SPSS软件聚类步骤1.数据预处理(标准化)T Analyze (分析)宀Classify (分类,归类)宀Hierachical Cluster Analysis (层序聚类分析)T Method (方法,条理,)然后从对话框中进行如下选择从Transform Values 框中点击向下箭头,此为标准化方法,将出现如下可选项,从中选即可:R宜nge 0 io 1Maximum magnitude of 1Mean of 1St找ndnrd dmuiartioi】cd 1标准化方法解释:None:不进行标准化,这是系统默认值;Z Scores (Z- Scores,英文名又叫Standardized Population Data, 是以标准差单位来表现的一组观察值):标准化变换;Range-1 to 1 :极差标准化变换(作用:变换后的数据均值为0,极差为1,且| X j *|<1,消去了量纲的影响;在以后的分析计算中可以减少误差的产生。

);Range 0 to 1 (极差正规化变换/ 规格化变换);2.构造关系矩阵在SPSS中如何选择测度(相似性统计量):T Analyze 宀Classify 宀Hierachical Cluster Analysis Method 然后从对话框中进行如下选择Hiurarchigl CI uster Ana 1 ys is : MethodCluster Method: Be twe en-g r on p s linkage庁Interval:「Counts: 广Binary; Squared Euclidean distance uared Euclidean distanee Pearson correlation ChebychevBlockMin kowskiCustomizedTransform Valuesstandardize: Z scores ▼a By variable r By case Tr^nsform Measures r Absolute valuesr Change signr Rescale to 0-1 range常用测度(选项说明):Euclidean distanee :欧氏距离(二阶Minkowski距离),用途:聚类分析中用得最广泛的距离;Squared Eucidean distanee :平方欧氏距离;Cosine :夹角余弦(相似性测度;Pearson correlation :皮尔逊相关系数;3.选择聚类方法SPSS中如何选择系统聚类法常用系统聚类方法a)Between-groups linkage 组间平均距离连接法方法简述:合并两类的结果使所有的两两项对之间的平均距离最小。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数据同上(data14-01a):以四个四类成绩突出者的数据为初始 聚类中心(种子)进行聚类。类中心数据文件data14-01b(但缺一 列Cluster_,不能直接使用,要修改)。对运动员的分类(还是分 为4类) AnalyzeClassifyK-Means Cluster Variables: x1,x2,x3 Label Case By: no Number of Cluster: 4
Agglomeration Schedule 凝聚状态表 Proximity matrix:距离矩阵 Cluster membership:Single solution:4 显示分为4类时,各观测
量所属的类
Method: Cluster (Furthest Neighbor), Measure-Interval (Squared Euclidean distance), Transform Value (Range 01/By variable (值-最小值)/极差)
14.2 快速样本聚类过程(Quick Cluster) 中的选项
使用快速聚类的选择项:
类中心数据的输入与输出:Centers选项 输出数据选择项:Save选项 聚类方法选择项:Method选项 聚类何时停止选择项:Iterate选项 输出统计量选择项:Option选项
14.2 指定初始类中心的聚类方法例题P343
定距变量、分类变量、二值变量 标准化方法p353:Z Scores、Range -1 to 1、 Range 0 to 1等
14.3.4 用分层聚类法进行观测量聚类实例P358
对20种啤酒进行分类(data14-02),变量包括:Beername(啤酒名
称)、calo(酒精含量)、 cost(价格)
Analyze→Classify →Hierarchical Cluster:
Variables: calorie,sodium,alcohol, cost 成分和价格 Label Case By: Beername Cluster:Case, Q聚类 Display: 选中Statistics,单击Statistics
14.3.5 用分层聚类法进行变量聚类
变量聚类,是一种降维的方法,用于在 变量众多时寻找有代表性的变量,以便 在用少量、有代表性的变量代替大变量 集时,损失信息很少。 与进行观测量聚类雷同,不同点在于:
选择Variable而非Case Save选项失效,不建立的新变量
3. Discriminant:进行判别分析的过程
14.2 快速样本聚类过程(Quick Cluster)
使用 k 均值分类法对观测量进行聚类 可使用系统的默认选项或自己设置选项,如分为几类、 指定初始类中心、是否将聚类结果或中间数据数据存 入数据文件等。 快速聚类实例(P342,data14-01a):使用系统的默认 值进行:对运动员的分类(分为4类) AnalyzeClassifyK-Means Cluster
spss聚类分析结果解释
14.1.2 判别分析
判别分析是根据表明事物特点的变量值和它们 所属的类,求出判别函数。根据判别函数对未 知所属类别的事物进行分类的一种分析方法。
在自然科学和社会科学的各个领域经常遇到需 要对某个个体属于哪一类进行判断。如动物学 家对动物如何分类的研究和某个动物属于哪一 类、目、纲的判断。
不同:判别分析和聚类分析不同的在于判别分 析要求已知一系列反映事物特征的数值变量的 值,并且已知各个体的分类(训练样本)。
14.1.3 聚类分析与判别分析的SPSS过程
在AnalyzeClassify下:
1. K-Means Cluster: 观测量快速聚类分 析过程
2. Hierarchical Cluster:分层聚类(进行 观测量聚类和变量聚类的过程
Variables: x1,x2,x3 Label Case By: no Number of Cluster: 4 比较有用的结果:聚类结果形成的最后四类中心点(Final
Cluster Centers) 和每类的观测量数目(Number of Cases in each Cluster) 但不知每个运动员究竟属于哪一类?这就要用到Save选项
Plots: (Dendrogram) Icicle(Specified range of cluster, Start-1,Stop-4, by-1), Orientation (Vertical纵向作图)
Save: Cluster Membership(Single solution [4]) 比较有用的结果:根据需要进行分类,在数据文件中的分类新变量clu4_1等
14.3 分层聚类(Hierarchical Cluster)
分层聚类方法:
分解法:先视为一大类,再分成几类 凝聚法:先视每个为一类,再合并为几大类
可用于观测量(样本)聚类(Q型)和变量聚类(R型) 一般分为两步(自动,可从Paste的语句知道,P359): Proximities:先对数据进行的预处理(标准化和计算距离等) Cluster:然后进行聚类分析 两种统计图:树形图(Dendrogram)和冰柱图(Icicle) 各类型数据的标准化、距离和相似性计算P348-354
Center: Read initial from: data14-01b Save: Cluster membership和Distance from Cluster Center
比较有用的结果(可将结果与前面没有初始类中心比较): 聚类结果形成的最后四类中心点(Final Cluster Centers) 每类的观测量数目(Number of Cases in each Cluster) 在数据文件中的两个新变量qc1_1(每个观测量最终被分配 到哪一类)和 qc1_2(观测量与所属类中心点的距离)
相关文档
最新文档