第三章带式输送机的设计计算

合集下载

皮带输送机设计计算分解

皮带输送机设计计算分解

皮带输送机的设计计算1总体方案设计1.1皮带输送机的组成皮带输送机主要由以下部件组成:头架、驱动装置、传动滚筒、尾架、托辊、中间架、尾部改向装置、卸载装置、清扫装置、安全保护装置等。

输送带是皮带输送机的承载构件,带上的物料随输送带一起运行,物料根据需要可以在输送机的端部和中间部位卸下。

输送带用旋转的托棍支撑,运行阻力小。

皮带输送机可沿水平或倾斜线路布置。

由于皮带输送机的结构特点决定了其具有优良性能,主要表现在:运输能力大,且工作阻力小,耗电量低,皮带输送机的单机运距可以很长,转载环节少,节省设备和人员,并且维护比较简单。

由于输送带成本高且易损坏,故与其它设备比较,初期投资高且不适应输送有尖棱的物料。

输送机年工作时间一般取4500-5500小时。

当二班工作和输送剥离物,且输送环节较多,宜取下限;当三班工作和输送环节少的矿石输送,并有储仓时,取上限为宜。

1.2布置方式电动机通过联轴器、减速器带动传动滚筒转动或其他驱动机构,借助于滚筒或其他驱动机构与输送带之间的摩擦力,使输送带运动。

通用固定式输送带输送机多采用单点驱动方式,即驱动装置集中的安装在输送机长度的某一个位置处,一般放在机头处。

单点驱动方式按传动滚筒的数目分,可分为单滚筒和双滚筒驱动。

对每个滚筒的驱动又可分为单电动机驱动和多电动机驱动。

单筒、单电动机驱动方式最简单,在考虑驱动方式时应是首选方式。

皮带输送机常见典型的布置方式如图1-1所示。

此次选择DTⅡ(A)型固定式皮带输送机作为设计机型。

单电机驱动,机长10m,带宽500mm,上托辊槽角35°,下托辊槽角0°。

DTⅡ(A)型固定式皮带输送机是通用型系列产品,可广泛用于冶金、煤炭、交通、电力、建材、化工、轻工、粮食、和机械等行业。

输送堆积密度为500~2500kg/m³的各种散状物料和成件物品,适用环境温度为-20~40℃。

图1-1 皮带输送机典型布置方式1.3皮带输送机的整体结构图1-2为此次设计的皮带输送机的整体结构图1-2设计的皮带输送机的整体结构2标准部件的选择2.1输送带的选择输送带的品种规格符合《GB/T 4490—1994运输带尺寸》、《GB/T 7984—2001输送带具有橡胶或塑料覆盖层的普通用途织物芯输送带》的规定,见表2-1。

带式输送机计算书(标准版)

带式输送机计算书(标准版)

带式输送机计算书(标准版)带式输送机设计计算No:项目:1、已知原始数据及工作条件(1)带式输送机布置形式及尺寸见附图,输送机投影长L=63.2m, 提升高度H=8.255m,输送角度a=7.50度,输送物料:混合料粒度0~30mm,物料容重γ=0.9t/m3, 动堆积角ρ=20度,输送量:Q=100t/h(2)工作环境:干燥有尘的通廊内(3)尾部给料,头部卸料,导料槽长度Ld= 4.5m,(4)设有弹簧清扫器和空段清扫器。

(5)输送带参数:皮带层数:Z=4扯断强度:1002、计算步骤每层质量: 1.22kg/m2(1)输送带宽度计算皮带型号:EP-100B=SQRT(Q/(k*γ*v*c*ξ))上胶厚质量 5.1kg/m2已知:Q=100t/h下胶厚质量 1.7kg/m2端面系数k=360物料容重γ=0.90t/m3皮带速度v= 1.25m/s倾角系数c=0.91速度系数ξ= 1.00将以上各数值代入计算式,得:B=0.521m根据计算和设计经验,选取B=800mm的普通胶带,满足块度要求。

(2)张力的逐点计算设带式输送机各点张力如图所示,则各点张力关系如下:S2=S1+W11弹簧清扫器阻力w1S3=k1*S22S4=S3+W23空载段运行阻力w2S5=k2*S44S6=k3*S55S7=k4*S66S8=S7+W3+W47空载段运行阻力w3空载段清扫器阻力w4S9=k5*S88S10=k6*S99S n=S10+W5+W6+W710导料槽阻力w5物料加速度阻力w6 承载段运行阻力w7弹簧清扫器阻力W1:W1=1000B=800N带入⑴ 得:S2=S1+W1=S1 +800查表,改向滚筒阻力系数k1= 1.02带入⑵ 得:S3=k1*S2= 1.02S1 +816空载段运行阻力W2:W2=(q0+q")*L*w"-q0H工作条件(平行托辊阻力系数w")清洁,干燥0.018少量尘埃,正常湿度0.025大量尘埃,湿度大0.035查表:有Z=4~6,取Z= 4.00层EP-100上下胶层厚 4.5+1.5mm,得qm=9.34kg/mq0=q m*g=92N/m查表,得G"=11.0kg下托辊间距l0= 3.0m因此,得:q"=G"*g/l0=36N/m查表,得w"=0.035L1=41.837m, H1=5.842m头轮至垂直拉紧中心带入上式得:(适用于向上输送)螺旋及车式输入投影W2=-348N带入⑶ 得:S4=S3+W2= 1.02S1 +468查表,改向滚筒阻力系数k2= 1.03螺旋及车式选1.0垂直拉紧选1.03带入⑷ 得:S5=k2*S4= 1.05S1 +482查表,改向滚筒阻力系数k3= 1.04螺旋及车式选1.0垂直拉紧选1.04带入(5)得:S6=k3*S5= 1.09S1 +501查表,改向滚筒阻力系数k4= 1.03螺旋及车式选1.0垂直拉紧选1.03带入(6)得:S7=k4*S6= 1.13S1 +516空载段运行阻力W3:W3=(q0+q")*L*w"-q0H已知 q0=92N/m,q"=36N/m查表,得w"=0.035L=21.363m, H=2.413m拉紧中心至尾轮的投W3=-126N空段清扫器阻力W4:W4=200B=160N带入(7)得:S8=S7+W3+W4= 1.13S1 +550查表,改向滚筒阻力系数k5= 1.02带入(8)得:S9=k5*S8= 1.15S1 +561查表,改向滚筒阻力系数k6= 1.04带入(9)得:S10=k6*S9= 1.19S1 +584导料槽阻力W5:已知导料槽长度l= 4.5mW5=(16*B*B*γ+70)*l=356N物料加速度阻力W6:W6=q*v*v/(2*g)因为:q=Q*g/(3.6*v)=218N/m所以: W6=17N承载段运行阻力W7:W7=(q+q0+q')*L*w'+(q0+q)*Hq0=q m*g=92N/m查表,得G'=11kg上托辊间距l0'= 1.2m 因此,得:q'=G'*g/l0'=90N/m工作条件(槽形托辊阻力系数w')清洁,干燥0.02少量尘埃,正常湿度0.03大量尘埃,湿度大0.04查表,得w'=0.04L2=63.200H2=8.255带入上式得:W7=3563N带入(10)得:S n=S10+W5+W6+W7= 1.19S1 +4521根据式:S n=S1*eμα采用胶面滚筒α=200°μ=0.35,查表得eμα= 3.39带入上式得:S n= 3.39S1联立(10)式,则:3.39S1 = 1.19S1 +4521因此:S1 =2058NS n =6978N各点张力:S2=S1+W1=2858NS3=k1*S2=2916NS4=S3+W2=2567NS5=k2*S4=2644NS6=k3*S52750NS7=k4*S62833NS8=S7+W3+W4=2867NS9=k5*S8=2924NS10=k6*S9=3041N计算凹弧起点张力S11承载段运行阻力W8:W8=(q+q0+q')*L*w'+(q0+q)*H L3=44.4m,H3=0mw8=708.9478NS11=S10+W8=3750NR2≥ 1.5*S11/(qm*g)=61.43127m计算凸弧最小曲率半径R1托辊槽角35度R1≥42*B*sinλ=19.26364m(3)功率计算传动滚筒轴功率为:N0=(S n-S1)*v/1000= 6.1k W电动机功率为:N=K*N0/η采用Y型电动机得K= 1.2传动滚筒η=0.9所以,N=8.2k W根据计算和设计经验,电动机选型为:额定功率为:15k W组合号为:(4)胶带核算求得胶带最大张力为6978N查表当B=800mm,Z=4层时,胶带最大允许张力为26667N所以满足最大张力要求。

皮带输送机的设计计算汇总

皮带输送机的设计计算汇总

皮带输送机的设计计算汇总皮带输送机是一种常见的物料输送设备,广泛应用于矿山、冶金、化工、建材、粮食等行业。

其设计计算一般包括输送能力计算、选型计算、运行阻力计算等方面。

下面将详细介绍皮带输送机设计计算的汇总,其中包含了输送能力的计算、选型参数的计算、运行阻力的计算等。

1.输送能力计算:输送能力是指单位时间输送的物料量,常用单位为吨/小时。

输送能力的计算一般包括输送段长度、带速、带宽等参数的确定。

输送段长度是指输送带运行的水平长度,带速是指输送带的运行速度,带宽是指输送带有效载荷的宽度。

输送能力计算公式为:输送能力=带速×带宽×物料容重×运输系数。

2.选型计算:选型计算主要包括驱动功率的计算、输送带参数的选择等。

驱动功率的计算一般包括推动力的计算和输送带张力的计算。

推动力的计算一般根据输送带长度、输送带胶带张力、输送带角度、物料重力等参数计算得出。

输送带张力的计算一般根据物料重力、输送带张紧装置的张紧力、输送带自重、输送带胶带张力等参数计算得出。

选择合适的输送带参数一般包括输送带材质、强度、带宽、带速等因素。

3.运行阻力计算:运行阻力是指皮带输送机运行过程中所受到的各种阻力的合力。

运行阻力一般包括摩擦阻力、皮带弯曲阻力、物料自身阻力等。

摩擦阻力是指皮带和输送机构件之间的摩擦产生的阻力,一般根据摩擦因数和负荷计算得出。

皮带弯曲阻力是指物料在弯曲部分所受到的阻力,一般根据输送带弯曲半径和物料重力计算得出。

物料自身阻力是指物料本身所产生的阻力,一般根据物料性质和流动状态计算得出。

运行阻力的计算是确定输送机所需驱动功率的重要依据。

综上所述,皮带输送机的设计计算是一个复杂的过程,需要考虑到输送能力、选型参数以及运行阻力等因素。

通过科学的计算和合理的设计,可以确保输送机的安全、高效运行,提高生产效率。

带式输送机的设计计算

带式输送机的设计计算

第3章 带式输送机的设计计算设计胶带输送机时,要知道输送机的工作条件(如使用地点、运距、倾角及被运货载的性质,如散集容重、快度等),以及装载和卸载方式等,根据工作条件的要求合理地确定输送机的传动系统和结构方案。

第3.1节 原始数据(1) 输送机长度:1000m(2) 带速:v=2.5m/s(3) 选择带宽B=1.2m 的GX2000型钢丝绳芯胶带3.2输送机输送量的计算取v 表示胶带运动速度(m/s ),q 表示单位长度胶带内货载的重量(kg/m ),则胶带输送机的输送能力为3.6(/)Q v t h = (3-1)单位长度的载荷q 值决定于被运货载的断面积F (m 2)及其容重γ(t/m 3),对于连续货流的胶带输送机单位长度重量为1000(/)q F kg m γ= (3-2)将式(3-2)代入(3-1)式,则得3600(/Q F v t h γ= (3-3)货载断面积F 的大小主要取决于胶带的宽度。

如图3—1所示为槽形胶带上货载的断面。

图3—1 槽形胶带上货载断面货载断面由梯形断面F 1和圆弧面积F 2组成。

在胶带宽度B 上,货载的总宽度为0.8B ,中间托辊长为0.4B ,货载在带面上的堆积角为ρ,并堆积成一个圆弧面,其半径为r ,中心角为2ρ。

则梯形面积为12(0.40.8)0.2tan 3020.0693B B B F B +⨯== 圆弧面积为222(2sin 2)20.4()(2sin 2)/2sin r F B ρρρρρ⨯-==⨯- 总面积为12220.40.063()(2sin 2)/2sin F F F B B ρρρ=+=+⨯- 即 220.4[0.063()(2sin 2)/2]sin F B ρρρ=+⨯- (3-4) 式中 ρ——货载的堆积角,(弧度);将式(3-4)代入(3-3),化简后,可得胶带输送机的输送能力2(/)Q KB v C t h γ=式中 B ——胶带的宽度(m );Q ——输送量(t/h );v ——带速(m/s );γ——货载散集容重(t/m 3);K ——货载断面系数,K 值与货载的堆积角ρ值有关, C ——输送机倾角系数。

带式输送机计算书

带式输送机计算书

胶带输送机设计计算No:71.06(1)带式输送机布置形式及尺寸见附图Lh=50H=5m倾角а=(2) 输送物料:原煤粒度0~25mmγ= 1.6t/m3动堆积角ρ=(3) 输送量:Q=300t/h(4)工作环境:干燥有尘的通廊内(5)尾部给料导料槽长度l=6m(6)头部卸料弹簧清扫器空段清扫器2、计算步骤(1)输送带宽度计算B=SQRT(Q/(k*γ*v*c*ξ))Q=300t/hk=400γ= 1.60t/m3v= 1.6m/sc= 1.00ξ= 1.0将以上各数值代入计算式,得:B=0.541265877m根据计算和设计经验,选取B=800mm的普通胶带,满足块度要求3.输送带层数计算输送带层数Z=(F1max*n)/(B*σ)稳定工况下输送带最大张力F1max稳定工况下输送带静安全系数n棉帆布输送带:n=8~9;层数少,接头效率低可大于此值尼龙、聚酯帆布带:n=10~12;使用条件恶劣及要求特别安全时应大于124.功率计算简易算法N0=(k1*Lh*v+k2*Lh*Q±0.00273Q*H)*k3*k4+ΣN'N0-传动滚筒轴功率(kW)k1*Lh*v-输送带及托辊传动部分运转功率(kW)k1-空载运行功率系数k1=0.0165Lh-输送机水平投影长度(m)Lh=50v-带速(m/s)v= 1.6k2*Lh*Q-物料水平运输功率(kW)k2-物料水平运行功率系数k2=8.17*0.00001Q-输送量(t/h)Q=3000.00273Q*H-物料垂直提升功率(kW)H-输送机垂直提升高度(m)H=5k3-附加功率系数k3= 1.25k4-卸料车功率系数k4= 1.11无卸料车时k4=1有卸料车时光面滚筒k4=1.16胶面滚筒k=1.11N'-犁式卸料器及导料槽长度超过3米时的附加功率(kW)犁式卸料器附加功率(kW)犁式卸料系数λ1=0.4犁式卸料器个数n=0带宽500 650 800 1000 1200 1400系数λ1=0.3 0.4 0.5 1.0 -- --导料槽附加功率(kW)导料槽系数λ2=0.08导料槽长度L=6-3带宽500 650 800 1000 1200 1400 系数λ2=0.08 0.08 0.08 0.10 0.115 0.18ΣN'=0.24N0=9.45369375kWN=12.604925kW6 25。

带式输送机计算书(带张力计算)

带式输送机计算书(带张力计算)
每米机长下辊子旋转部分质量: q2=
kg, n= 2
10.727
kg/m
10.727 kg/m
⑶ 辊子旋转转速:
n=
30×ν/(3.14×r)
mm, a0--上托辊组间距;au =
3.00
带速v: 辊子半径r
= 359.00 rpm
2.50
0.0665
⒑ 上下胶带模拟阻力系数:
ω=
0.0220
⒒ 胶带与传动滚筒之间的摩擦系数: μ= 0.3500
7.滚筒组:
(1)头部传动滚筒
D≥ Cod
= 0.648
m
式中:
绳芯厚 度d=
0.0072
m
Co=
90
传动滚筒直径D=
1000
mm
(2)尾部及主要改向滚筒直径
=
Φ
8.托辊组:
800 mm
⑴ 重载段:采用35°槽角托辊组,
辊子直径=Φ 133 mm
辊子轴承型号:
4G305 ,
查表单个上辊转动部分质量qr0'= 10.37 qr0= nqr0'/a0=
28.48 10.73 190.00
0.0164
0.35
8.拉紧行程
G= 6414.33
kg
= 62.92 KN
(该值仅供 参考)
帆布带
尼龙带Leabharlann 钢丝绳带LL≥ L(ε+ε1)+ln
= 13.34
m
式中: ε ε1 ln
0.010 0.001 2.000
0.020 0.001 2.000
0.003 0.001 2.000
S= 0.458
m2

关于带式输送机的设计计算

关于带式输送机的设计计算

关于带式输送机的设计一,圆周驱动力:F uFu=CF H+Fs1+Fs2+Fst式中:C—与机长有关的系数,一般C≮1.02.F H=0.2943L〔q′+q″+(2q。

+q)Cosβ〕(下运时为0.11772L)Fs1=Fε+Fgl对于等长前倾上托辊: Fε=0.08988CεL(q。

+q)Cosβ对于等长前倾下托辊: Fε=0.08851Lq。

CosβCε-槽形系数δ=30° Cε=0.40 δ=35°Cε=0.43δ=45° Cε=0.50导料阻力Fgl=6.867Iv²ρl/v²b² ( Iv=Q/3600*ρ) Fs2=n*Fr+Fa (n为清扫器数量,一个空段≈1.5个头部清扫) 清扫阻力Fr=60000A 卸料阻力 Fa=1500BFst=qgH=qgLSinβ二,输送带张力1,不打滑条件:Fmin≥1.5Fu/eμα-12,垂度条件:GB/T17119-1997(ISO5048:1989)承载段:Smin≥147.15(q+q。

)回程段:Smin≥367.975q。

MT/T467-1996承载段:Smin≥91.97(q+q。

)Cosβ回程段:Smin≥183.94q。

Cosβ3, 传动滚筒(单传动)合力:Fn=Fumax+2Fmin三,功率1,传动滚筒轴功率:P A=F U*V/1000 kw2,电动机功率: GB/T17119-1997 ISO5048:1989⑴电动工况:P M=1.23P A(单电机驱动)P M=1.368P A(多电机驱动)⑵发电工况:P M=P A(单电机驱动) P M=1.14P A (多电机驱动) 3,电动机功率: MT/T467-1996⑴电动工况:P M=1.4145P A(单机驱动) P M=1.5732P A(多机驱动)⑵发电工况:P M=1.15P A ( 单机驱动) P M=1.311P A(多机驱动)四,输送带选择 m≥〔m〕m=Sn/Smax 〔m〕=m。

带式输送机设计计算书

带式输送机设计计算书

第1章 绪 论1.1 DT Ⅱ(A)带式输送机的工作原理及适用范围带式输送机的基本组成及工作原理为:主动滚筒在电动机驱动下旋转,通过主动滚筒与胶带之间的摩擦力带动胶带上的货载一同连续运行,当货载运到端部后,由于胶带的换向而卸载。

输送带与传动滚筒间的摩擦传动原理如图1-1所示,设传动滚筒此时输出牵引力,输送带在传动滚筒的分离点处的张力为S 2,在相遇点处的张力为S 1(S 1≥S 2)。

在研究输送带张力沿传动滚筒的分布规律时,假设输送带是理想的挠性体,可以任意弯曲,没有弯曲应力,同时,由于在传动滚筒上那一段输送带的重力和离心力同它所受的张力和摩擦力相比甚小,因此忽略不计。

在输送带上取微元体AB 作为隔离体,它对应的圆心角为d θ,其受力分析如图8-25(c )。

由微元体力的平衡得:d d d sin (d )sin 22d d cos d (d )cos 22N S S S S N S S θθθθμ⎧=++⎪⎪⎨⎪+=+⎪⎩ 式中 ,d S S S +——分别为输送带在A 和B 点的张力,N ;μ——为滚筒与胶带之间的摩擦系数;d N ——为微元体所受的法向反力,N 。

d ¦Θ/2d ¦Θ/2S+dS dN xdS d ¦Θ¦ΑABDCS2S1图1-1 带式输送机摩擦传动原理带式输送机的类型有:通用固定式带式输送机、绳架吊挂式带式输送机、可伸缩带式输送机、多点驱动式带式输送机、钢丝绳芯式带式输送机、双向运输带式输送机、气垫带式输送机、大倾角带式输送机。

本设计采用的DTⅡ(A)型固定式带式输送机是通用型系列产品,是原TD75型和DX两大系列的更新换代产品,分轻、中、重型,较TD75型无论材质、工艺、精度、带是输送能力、可靠性等方面均有较大改进和提高。

可广泛用于冶金、煤炭、交通、电力、建材、化工、轻工、粮食和机械等行业,输送堆积密度为500~2500㎏/m3各种散装物料和成件物品,适用温度为-20°~40°C。

第三章带式输送机的设计计算

第三章带式输送机的设计计算

第三章带式输送机的设计计算第三章带式输送机的设计计算3.1 已知原始数据及⼯作条件带式输送机的设计计算,应具有下列原始数据及⼯作条件资料(1)物料的名称和输送能⼒:(2)物料的性质:1)粒度⼤⼩,最⼤粒度和粗度组成情况;2)堆积密度;3)动堆积⾓、静堆积⾓,温度、湿度、粒度和磨损性等。

(3)⼯作环境、⼲燥、潮湿、灰尘多少等;(4)卸料⽅式和卸料装置形式;(5)给料点数⽬和位置;(6)输送机布置形式和尺⼨,即输送机系统(单机或多机)综合布置形式、地形条件和供电情况。

输送距离、上运或下运、提升⾼度、最⼤倾⾓等;(7)装置布置形式,是否需要设置制动器。

原始参数和⼯作条件如下:1)输送物料:煤2)物料特性: 1)块度:0~300mm2)散装密度:0.90t/3m3)在输送带上堆积⾓:ρ=20°4)物料温度:<50℃3)⼯作环境:井下4)输送系统及相关尺⼨:(1)运距:300m(2)倾斜⾓:β=0°(3)最⼤运量:350t/h初步确定输送机布置形式,如图3-1所⽰:图3-1 传动系统图3.2 计算步骤3.2.1 带宽的确定:按给定的⼯作条件,取原煤的堆积⾓为20°。

原煤的堆积密度按900 kg/3m。

输送机的⼯作倾⾓β=0°。

带式输送机的最⼤运输能⼒计算公式为=(3.2-1)Q sυρ3.6式中:Q——输送量()t;/hv——带速()/sm;ρ——物料堆积密度(3kg m);/s--在运⾏的输送带上物料的最⼤堆积⾯积, 2mK----输送机的倾斜系数带速与带宽、输送能⼒、物料性质、块度和输送机的线路倾⾓有。

当输送机向上运输时,倾⾓⼤,带速应低;下运时,带速更应低;⽔平运输时,可选择⾼带速.带速的确定还应考虑输送机卸料装置类型,当采⽤犁式卸料车时,带速不宜超过3.15m/s。

表3-1倾斜系数k选⽤表输送机的⼯作倾⾓=0°查DTⅡ带式输送机选⽤⼿册(表3-1)k可取1.00按给顶的⼯作条件,取原煤的堆积⾓为20°;m;原煤的堆积密度为900kg/3考虑⼭上的⼯作条件取带速为1.6m/s;将参数值代⼊上式,即可得知截⾯积S:S23503.6 3.69001.610.0675Q mρυκ===图3-2 槽形托辊的带上物料堆积截⾯表3-2槽形托辊物料断⾯⾯积A查表3-2, 输送机的承载托辊槽⾓35°,物料的堆积⾓为20°时,带宽为800 mm的输送带上允许物料堆积的横断⾯积为0.06782 m,此值⼤于计算所需要的堆积横断⾯积,因此选⽤宽度为800mm的输送带能满⾜要求。

机械设计课程设计带式输送

机械设计课程设计带式输送

机械设计课程设计带式输送一、课程目标知识目标:1. 掌握带式输送机的基本结构、工作原理及主要参数的计算方法;2. 理解带式输送机在不同工况下的设计要求,能够运用相关公式进行初步的设计计算;3. 了解带式输送机的安装、调试和维护方法,提高设备的使用寿命。

技能目标:1. 能够运用所学知识,结合实际需求,设计出符合要求的带式输送机;2. 培养学生运用CAD等软件进行机械设计的能力,完成带式输送机的图纸绘制;3. 培养学生团队协作、沟通表达的能力,提高解决实际工程问题的综合能力。

情感态度价值观目标:1. 培养学生对机械设计课程的兴趣,激发学习热情,提高自主学习能力;2. 培养学生严谨的科学态度,注重实践,勇于创新,树立工程意识;3. 增强学生的环保意识,关注带式输送机在节能、减排方面的应用,培养社会责任感。

本课程针对高年级学生,结合机械设计课程的特点,注重理论与实践相结合,提高学生的实际操作能力和工程素养。

通过本课程的学习,使学生能够独立完成带式输送机的设计任务,为今后的职业发展打下坚实基础。

二、教学内容1. 带式输送机概述:介绍带式输送机的发展历程、应用领域及基本结构,使学生对其有一个整体的认识。

教材章节:第一章 引言2. 带式输送机的工作原理与主要参数:讲解带式输送机的工作原理,分析其主要参数的计算方法。

教材章节:第二章 带式输送机的工作原理与参数3. 带式输送机的设计计算:学习带式输送机在不同工况下的设计要求,运用相关公式进行设计计算。

教材章节:第三章 带式输送机的设计计算4. 带式输送机的结构设计:分析带式输送机的各部分结构设计,包括传动系统、支承结构、张紧装置等。

教材章节:第四章 带式输送机的结构设计5. 带式输送机的安装与调试:介绍带式输送机的安装、调试方法及注意事项,提高设备的使用性能。

教材章节:第五章 带式输送机的安装与调试6. 带式输送机的维护与故障排除:讲解带式输送机的日常维护、故障诊断及排除方法,培养学生的实际操作能力。

皮带输送机长度计算

皮带输送机长度计算

皮带输送机长度计算
皮带输送机是一种广泛应用于工矿企业中的物料输送设备,具有输送量大、运行稳定、效率高等优点。

在进行皮带输送机设计和选型时,确定其长度是非常重要的一项参数。

首先,需要了解皮带输送机长度计算的基本原理。

皮带输送机的长度取决于所需输送物料的总量、输送速度、处理周期等多种因素。

具体计算方法可以参考以下公式:
皮带输送机长度=(Q×T)/(π×D×v)
其中,Q表示希望输送的物料总量,T表示处理周期,D为输送机的滚筒直径,v为输送速度,π为圆周率。

这个公式可以帮助我们了解皮带输送机的长度基本计算原理。

其次,要注意不同类型的皮带输送机长度会存在差异。

例如,普通型皮带输送机的长度较短,适用于输送少量物料的场合;而大型皮带输送机的长度则较长,可用于输送大量物料的场合。

根据所需输送物料的特点和输送距离,选择不同类型的皮带输送机有助于提高生产效率。

此外,还需要考虑皮带输送机的输送线路布置和设备安装条件。

输送线路应尽可能短,减少能量损失和漏料情况,同时要考虑物料的存储和转移条件。

设备安装条件包括电力供应、机构固定及支撑等方面的考虑,这将直接影响设备的使用寿命和安全性。

最后,皮带输送机长度计算过程中要充分考虑现场实际情况和经验数据,合理进行估算和调整。

同时,定期对设备进行检修和维护,保证其正常工作和长期使用。

只有在科学合理地计算和应用皮带输送机长度的基础上,才能更好地满足生产需要和经济效益的提升。

带式输送机设计计算方法

带式输送机设计计算方法

带式输送机设计计算方法
带式输送机设计计算方法是一个复杂的过程,涉及到多个参数和公式。

以下是一些基本的步骤和公式:
1.确定原始参数:包括输送机的长度、宽度、高度,输送带的材质、厚
度、抗拉强度,驱动装置的功率、电压等。

2.计算输送能力:根据物料特性、输送带速度和带式输送机的倾斜角度,
计算输送机的输送能力。

输送能力是选择合适的带式输送机的重要参数。

3.确定驱动装置:根据输送机的输送能力和工况要求,选择合适的驱动
装置,包括电机功率、减速器等。

4.计算输送带张力:根据物料在输送带上的受力分析,计算出输送带的
张力,以确定输送带的强度和稳定性。

5.选择托辊和支架:根据输送带的重量和工况要求,选择合适的托辊和
支架,以确保输送带的稳定运行。

6.设计制动器和逆止器:根据输送机的工况要求,设计合适的制动器和
逆止器,以确保输送机在紧急情况下能够安全停机。

7.确定电气控制系统:根据驱动装置的要求和输送机的控制要求,选择
合适的电气元件和控制方式,设计合理的电气控制系统。

8.进行强度校核:对设计的带式输送机进行强度校核,以确保其安全可
靠。

在设计过程中,还需要考虑一些其他因素,如环境条件、安装尺寸等。

最终的带式输送机设计应综合考虑所有因素,并满足所有要求。

带式输送机计算书(标准版)

带式输送机计算书(标准版)

带式输送机设计计算No:项目:1、已知原始数据及工作条件(1)带式输送机布置形式及尺寸见附图,输送机投影长L=63.2m, 提升高度H=8.255m,输送角度a=7.50度,输送物料:混合料粒度0~30mm,物料容重γ=0.9t/m3, 动堆积角ρ=20度,输送量:Q=100t/h(2)工作环境:干燥有尘的通廊内(3)尾部给料,头部卸料,导料槽长度Ld= 4.5m,(4)设有弹簧清扫器和空段清扫器。

(5)输送带参数:皮带层数:Z=4扯断强度:1002、计算步骤每层质量: 1.22kg/m2(1)输送带宽度计算皮带型号:EP-100B=SQRT(Q/(k*γ*v*c*ξ)) 上胶厚质量 5.1kg/m2已知:Q=100t/h下胶厚质量 1.7kg/m2端面系数k=360物料容重γ=0.90t/m3皮带速度v= 1.25m/s倾角系数c=0.91速度系数ξ= 1.00将以上各数值代入计算式,得:B=0.521m根据计算和设计经验,选取B=800mm的普通胶带,满足块度要求。

(2)张力的逐点计算设带式输送机各点张力如图所示,则各点张力关系如下:S2=S1+W11弹簧清扫器阻力w1S3=k1*S22S4=S3+W23空载段运行阻力w2S5=k2*S44S6=k3*S55S7=k4*S66S8=S7+W3+W47空载段运行阻力w3空载段清扫器阻力w4S9=k5*S88S10=k6*S99S n=S10+W5+W6+W710导料槽阻力w5物料加速度阻力w6承载段运行阻力w7弹簧清扫器阻力W1:W1=1000B=800N带入 ⑴ 得:S2=S1+W1=S1 +800查表,改向滚筒阻力系数k1= 1.02带入 ⑵ 得:S3=k1*S2= 1.02S1 +816空载段运行阻力W2:W2=(q0+q")*L*w"-q0H工作条件(平行托辊阻力系数w")清洁,干燥0.018少量尘埃,正常湿度0.025大量尘埃,湿度大0.035查表:有Z=4~6,取Z= 4.00层EP-100上下胶层厚 4.5+1.5mm,得qm=9.34kg/mq0=q m*g=92N/m查表,得G"=11.0kg下托辊间距l0= 3.0m因此,得:q"=G"*g/l0=36N/m查表,得w"=0.035L1=41.837m, H1=5.842m头轮至垂直拉紧中心带入上式得:(适用于向上输送)螺旋及车式输入投影W2=-348N带入 ⑶ 得:S4=S3+W2= 1.02S1 +468查表,改向滚筒阻力系数k2= 1.03螺旋及车式选1.0垂直拉紧选1.03带入 ⑷ 得:S5=k2*S4= 1.05S1 +482查表,改向滚筒阻力系数k3= 1.04螺旋及车式选1.0垂直拉紧选1.04带入(5)得:S6=k3*S5= 1.09S1 +501查表,改向滚筒阻力系数k4= 1.03螺旋及车式选1.0垂直拉紧选1.03带入(6)得:S7=k4*S6= 1.13S1 +516空载段运行阻力W3:W3=(q0+q")*L*w"-q0H已知 q0=92N/m,q"=36N/m查表,得w"=0.035L=21.363m, H=2.413m拉紧中心至尾轮的投W3=-126N空段清扫器阻力W4:W4=200B=160N带入(7)得:S8=S7+W3+W4= 1.13S1 +550查表,改向滚筒阻力系数k5= 1.02带入(8)得:S9=k5*S8= 1.15S1 +561查表,改向滚筒阻力系数k6= 1.04带入(9)得:S10=k6*S9= 1.19S1 +584导料槽阻力W5:已知导料槽长度l= 4.5mW5=(16*B*B*γ+70)*l=356N物料加速度阻力W6:W6=q*v*v/(2*g)因为:q=Q*g/(3.6*v)=218N/m所以: W6=17N承载段运行阻力W7:W7=(q+q0+q')*L*w'+(q0+q)*Hq0=q m*g=92N/m查表,得G'=11kg上托辊间距l0'= 1.2m 因此,得:q'=G'*g/l0'=90N/m工作条件(槽形托辊阻力系数w')清洁,干燥0.02少量尘埃,正常湿度0.03大量尘埃,湿度大0.04查表,得w'=0.04L2=63.200H2=8.255带入上式得:W7=3563N带入(10)得:S n=S10+W5+W6+W7= 1.19S1 +4521根据式:S n=S1*eμα采用胶面滚筒α=200°μ=0.35,查表得eμα= 3.39带入上式得:S n= 3.39S1联立(10)式,则:3.39S1 = 1.19S1 +4521因此:S1 =2058NS n =6978N各点张力:S2=S1+W1=2858NS3=k1*S2=2916NS4=S3+W2=2567NS5=k2*S4=2644NS6=k3*S52750NS7=k4*S62833NS8=S7+W3+W4=2867NS9=k5*S8=2924NS10=k6*S9=3041N计算凹弧起点张力S11承载段运行阻力W8:W8=(q+q0+q')*L*w'+(q0+q)*HL3=44.4m,H3=0mw8=708.9478NS11=S10+W8=3750NR2≥ 1.5*S11/(qm*g)=61.43127m计算凸弧最小曲率半径R1托辊槽角35度R1≥42*B*sinλ=19.26364m(3)功率计算传动滚筒轴功率为:N0=(S n-S1)*v/1000= 6.1k W电动机功率为:N=K*N0/η采用Y型电动机得K= 1.2传动滚筒η=0.9所以,N=8.2k W根据计算和设计经验,电动机选型为:额定功率为:15k W组合号为:(4)胶带核算求得胶带最大张力为6978N查表当B=800mm,Z=4层时,胶带最大允许张力为26667N所以满足最大张力要求。

带式输送机设计计算书

带式输送机设计计算书

输送机用于煤矿井下,工作条件一般,装载点在机尾处(一般 布置方式)。 2 PVG1250/1 220 0.03 dφ 89k275g3m1.5 dφ 89k950m3 λ (°) 45 0.5 12.8 1060000 承载分支单位长度托辊 旋转质量 qRO(kg/m) 回程分支单位长度托辊 旋转质量 qRU(kg/m) 27.78 171.01 0.00 0.00 0.50 8440.82 46600.24 1.20 0.06 0.04 4.82
主传动滚筒包角 γ
模拟摩擦系数 f (根据国标GB/T17119-1999中5.1.3节) 上托辊型号-间距 下托辊型号-间距
槽型托辊组侧辊轴线与水平线夹角 槽型托辊组槽角系数
三 各部分技术参数的计算: 胶带计算: 单位长度胶带质量 qB (kg/m) 纵向拉断力 Sm (N/mm)
单位长度托辊旋转部分 托辊计算: 的质量 qt (kg/m)
7.2033
2.38
物料计算: 单位长度胶带上物料质量 qG (kg/m) H1(m) H2(m) H3(m)
6 7 8 9 1 2 3 4 5
机械传动效率 η 电压降系数 η
2
1
0.85 0.90
3
多驱动不平衡系数η 电机备用功率系数kd 圆周驱动力 FU (N) 轴功率 (kW) 空载功率 (kW) 电机功率 (kW) 电机选择
52175.82 5232.00
七 胶带强度的校核:
八 滚筒直径选择: D400 D320
PVC680/1,PVC800/1,PVC1000/1,PVC1250/1,PVC1400/1
89k230,89k275,89k305,108k375, 89k750,89k950,108k1150,

带式输送机的设计计算

带式输送机的设计计算

带式输送机的设计计算带式输送机是一种广泛应用于工矿企业中的物料传输设备,可用于水泥、煤炭、矿石、化肥等物料的连续输送。

设计带式输送机时,需要考虑物料的输送量、输送距离、输送速度、传动力等参数,以确保输送机的稳定工作和高效性能。

首先,需要确定物料的输送量和输送距离。

输送量是指单位时间内输送的物料质量或容积,通常以吨/小时或立方米/小时来表示。

输送距离是指物料从起点到终点的水平距离或垂直距离。

根据具体的工况和物料特性,确定合理的输送量和输送距离参数。

其次,需要计算带式输送机的输送速度。

输送速度直接影响到输送效率和带式输送机的工作状态。

一般来说,输送速度应根据物料的密度和粒度进行选择,同时考虑到输送机的承载能力,避免过高或过低的输送速度。

然后,需要计算带式输送机的传动力。

传动力是带式输送机正常工作所需的动力,包括主驱动器的动力、滚筒输送器的动力以及辅助设备的动力。

传动力的计算需要考虑到带式输送机的摩擦阻力、物料重力和传动效率等因素,以确保传动系统的可靠性和经济性。

在设计过程中,还需要考虑带式输送机的结构和材料选择。

带式输送机的结构包括机架、滚筒输送器、输送带等部分,需要根据物料特性和工况要求进行合理的设计。

同时,还需选择适当的材料,以保证输送机的耐磨性、耐腐蚀性和抗拉性能。

此外,需要对带式输送机的运行和维护进行全面考虑。

合理设计输送机的布置和系统控制,以方便操作和维护。

同时,还需要考虑到带式输送机的安全性,安装相应的安全保护装置和报警系统,防止意外事故的发生。

最后,需要进行带式输送机的经济性评估。

包括计算设备的成本、运行费用和维护成本,以评估设备的投资回报和效益。

综上所述,带式输送机的设计计算涉及多个方面,包括输送量和输送距离的确定、输送速度的计算、传动力的计算、结构和材料选择、运行和维护的考虑以及经济性评估等。

设计带式输送机时,需要综合考虑各种因素,以确保输送机的稳定工作和高效性能。

带式输送机计算范文

带式输送机计算范文

带式输送机计算范文带式输送机是一种常见的输送设备,主要用于搬运各种散状物料和成件物品。

它具有输送距离长、输送量大、结构简单、维护方便等优点,因此在矿山、港口、粮食、化工等行业广泛应用。

在使用和设计带式输送机时,需要进行一些计算,例如输送能力、运行阻力、主机功率等。

以下将详细介绍这些计算方法。

1.输送能力计算-带式宽度(B):指输送带的有效部分宽度,一般以物料宽度为准。

-带速(V):指输送带的线速度,单位为m/s。

-料层厚度(h):指物料在输送带上的厚度,单位为m。

- 物料密度(ρ):指物料的质量密度,单位为kg/m³。

输送能力(Q)的计算公式为:Q=B×V×h×ρ2.运行阻力计算-有效拉力(Te):指带式输送机所需的拉力,包括推动力和抵抗力,单位为N。

-重力拉力(Tg):指物料在带式输送机上受到的重力拉力,单位为N。

-摩擦系数(μ):指物料与输送带和滚筒之间的摩擦系数。

运行阻力(Tr)的计算公式为:Tr=Te-Tg=μ×(N+P)=(μ×N)+(μ×P)其中,N为带式输送机所需推动力,单位为N;P为物料与输送带之间的附加拉力,单位为N。

3.主机功率计算-有效拉力(Te):同运行阻力计算中的有效拉力。

-带速(V):同输送能力计算中的带速。

主机功率(P)的计算公式为:P=Te×V以上就是带式输送机的主要计算方法。

在实际应用中,还需要考虑一些其他因素,如输送带的类型和规格、输送物料的磨损情况等。

带式输送机的计算方法可以根据具体情况进行调整和改进,以满足实际生产需求。

带式输送机计算公式(自编)

带式输送机计算公式(自编)

带式输送机设计计算No:20~31.5mm项目:1、已知原始数据及工作条件(1)带式输送机布置形式及尺寸见附图,输送机投影长L=61m, 提升高度H=15m,输送角度a=0度,输送物料:混合材粒度30mm,物料容重γ= 1.4t/m3, 动堆积角ρ=20度,输送量:Q=1200t/h(2)工作环境:干燥有尘的通廊内(3)尾部给料,头部卸料,导料槽长度Ld=6m, (4)设有弹簧清扫器和空段清扫器。

(5)输送带参数:皮带层数:Z=4扯断强度:2002、计算步骤每层质量: 1.32kg/m2(1)输送带宽度计算皮带型号:EP-200B=SQRT(Q/(k*γ*v*c*ξ))上胶厚质量 5.1kg/m2已知:Q=1200t/h下胶厚质量 1.7kg/m2端面系数k=380物料容重γ= 1.40t/m3皮带速度v=2m/s倾角系数c=0.90速度系数ξ=0.9将以上各数值代入计算式,得:B= 1.180m根据计算和设计经验,选取B=1200mm的普通胶带,满足块度要求。

(2)张力的逐点计算设带式输送机各点张力如图所示,则各点张力关系如下:S2=S1+W11弹簧清扫器阻力w1S3=k1*S22 S4=S3+W23空载段运行阻力w2S5=k2*S44 S6=k3*S55 S7=k4*S66S8=S7+W3+W47空载段运行阻力w3空载段清扫器阻力w4S9=k5*S88 S10=k6*S99S n=S10+W5+W6+W710导料槽阻力w5物料加速度阻力w6承载段运行阻力w7弹簧清扫器阻力W1:W1=1000B=1200N带入 ⑴得:S2=S1+W1=S1 +1200查表,改向滚筒阻力系数k1= 1.02带入 ⑵得:S3=k1*S2= 1.02S1 +1224空载段运行阻力W2:W2=(q0+q")*L*w"-q0H工作条件(平行托辊阻力系数w")清洁,干燥0.018埃,正常湿度0.025大量尘埃,湿度大0.035查表:有Z=5~8,取Z= 4.00层EP-200上下胶层厚 4.5+1.5mm,得qm=14.50kg/m q0=q m*g=142N/m查表,得G"=15.0kg 下托辊间距l0= 3.0m因此,得:q"=G"*g/l0=49N/m查表,得w"=0.035L1=61.000m, H1=14.5m带入上式得:(适用于向上输送)W2=-1652N带入 ⑶得:S4=S3+W2= 1.02S1 +-428查表,改向滚筒阻力系数k2= 1.03螺旋及车式选1.0带入 ⑷得:S5=k2*S4= 1.05S1 +-441查表,改向滚筒阻力系数k3= 1.04螺旋及车式选1.0带入(5)得:= 1.09S1 +-458查表,改向滚筒阻力系数k4= 1.03螺旋及车式选1.0带入(6)得:S7=k4*S6= 1.13S1 +-472空载段运行阻力W3:W3=(q0+q")*L*w"-q0H已知 q0=142N/m,q"=49N/m查表,得w"=0.035L=0.0m,H=0.5mW3=-71N空段清扫器阻力W4:W4=200B=240N带入(7)得:S8=S7+W3+W4= 1.13S1 +-303查表,改向滚筒阻力系数k5= 1.03带入(8)得:S9=k5*S8= 1.16S1 +-312查表,改向滚筒阻力系数k6= 1.04带入(9)得:S10=k6*S9= 1.21S1 +-325导料槽阻力W5:已知导料槽长度l=6mW5=(16*B*B*γ+70)*l=614N物料加速度阻力W6:W6=q*v*v/(2*g)因为:q=Q*g/(3.6*v)=1633N/m 所以:W6=333N承载段运行阻力W7:W7=(q+q0+q')*L*w'+(q0+q)*Hq0=q m*g=142N/m查表,得G'=17kg 上托辊间距l0'= 1.2m因此,得:q'=G'*g/l0'=139N/m工作条件(槽形托辊阻力系数w')清洁,干燥0.02少量尘埃,正常湿度0.03大量尘埃,湿度大0.04查表,得w'=0.04L2=61.000H2=15带入上式得:W7=31302N带入(10)得:S n=S10+W5+W6+W7= 1.21S1 +31924根据式:S n=S1*eμα采用胶面滚筒α=180°μ=0.35,查表得eμα=3带入上式得:S n=3S1联立(10)式,则:3S1 = 1.21S1 +31924因此:S1 =17790NS n =53370N各点张力:S2=S1+W1=18990NS3=k1*S2=19370NS4=S3+W2=17718NS5=k2*S4=18249NS6=k3*S518979NS7=k4*S619549NS8=S7+W3+W4=19718NS9=k5*S8=20309NS10=k6*S9=21122N计算凹弧起点张力S11承载段运行阻力W8:W8=(q+q0+q')*L*w'+(q0+q)*HL3=50m,H3=5m w8=5232.926NS11=S10+W8=26355NR2≥1.5*S11/(qm*g)=278.2743m计算凸弧最小曲率半径R1托辊槽角35度R1≥42*B*sinλ=28.89547m(3)功率计算传动滚筒轴功率为:N0=(S n-S1)*v/1000=71.2k W 电动机功率为:N=K*N0/η采用Y型电动机得K= 1.2传动滚筒η=0.9所以,N=94.9k W根据计算和设计经验,电动机选型为:额定功率为:132k W组合号为:(4)胶带核算求得胶带最大张力为53370N查表当B=1200mm,Z=4层时,胶带最大允许张力为80000N所以满足最大张力要求。

带式输送机计算书

带式输送机计算书

输送物料:原煤;堆积密度ρ=850kg/m 3;粒度 ≤300mm ;输送能力Q=1200t/h ;机长L=446.865m ;提升高度H=71.034m ;区段号IIIIII区段斜长Li(m)20.8134.1391.955区段提升高Li(m)0.000 2.97268.062区段角度αi(弧度)00.0872664630.174532925区段角度αi(角度)510二、主要参数确定:1.带速:υ选υ= 3.50m/s;2.带宽:B初选带宽:选 B=1200mm;1)按输送量校核:Q max = 3.6Sυkρ =1538.3844t/h ;满足要求!式中:S -- 输送带上物料最大截面积(托辊槽角λ=35°,运行堆积角θ=15°);S=0.1512m 2;υ-- 带速;υ= 3.50m/s;k -- 倾斜输送机面积折减系数;k=0.95ρ-- 堆积密度;ρ=850kg/m 32)按粒度校核: B ≥ 2a + 200 =800mm ;满足要求!式中: a -- 物料最大粒度;a=300mm;3.输送带:初选PVG输送带:PVC1600Sq B =22.2kg/m;S T =1600N/mm;4.托辊:1)托辊直径的确定:初选托辊直径:φ133托辊转速:502.6r/min;式中:υ--带速;υ= 3.50m/s;d--托辊直径;d=0.133mm;2)上托辊选型:(a)静载计算:P o =e×a o ×(I m /υ+q B )×9.8=1104.9N;式中:e--辊子载荷系数(槽形托辊组);e=0.8a o --上托辊间距;a o = 1.2m;υ--带速;υ=3.5m/s;I m --输送能力;I m =Q/3.6=333.333kg/s;q B --输送带每米质量;q B =22.2kg/m;n=60υ/(πD)=带式输送机设计计算书一、已知条件:输送机几何条件:带式输送机各区段几何参数表(b)动载计算:P′=P o×f s×f d×f a=1691.8N;o式中:f s--运行系数;f s= 1.2f d--冲击系数;f d= 1.16f a--工况系数;f a= 1.1选G506托辊(φ133×465):轴承6305/C4,辊子承载能力3.42kN,上托辊组综合旋转质量G1=22.34kg;(c)上托辊组每米长度旋转部分质量 q RO计算:q RO = G1/a O =18.62kg/m ;取q RO=18.62kg/m ;式中:G1 -- 上托辊每组托辊旋转部分质量;G1=22.34kg ;a O -- 上托辊间距 ; a O= 1.2m ;3)下托辊选型:(a)静载计算:P u=e×a u×q B×9.8=652.7N;式中:e--辊子载荷系数(平形下托辊组);e=1a u--下托辊间距;a u=3m;q B--输送带每米质量;q B=22.2kg/m;(b)动载计算:P′=P u×f s×f a=861.5N;u式中:f s--运行系数;f s= 1.2f a--工况系数;f a= 1.1选G521托辊(φ133×1400):轴承6305/C4,辊子承载能力0.85kN(偏小),下托辊组综合旋转质量G2=20.52kg;(c)下托辊组每米长度旋转部分质量 q Ru计算:q Ru = G2/a u = 6.84kg/m ;取q RU= 6.84kg/m ;式中:G2 -- 下托辊每组托辊旋转部分质量;G2=20.52kg ;a u -- 下托辊间距 ; a u=3m ;5.输送带上每米物料质量 q G计算:q G= Q/3.6υ=95.24kg/m ;取q G=95.24kg/m ;式中:Q -- 输送能力;Q=1200t/h ;υ-- 带 速 ; υ= 3.50m/s;6.模拟摩擦系数f:f=0.028其中下分支模拟摩擦系数f2:f2=0.025其中上分支模拟摩擦系数f1:f1=0.037.附加阻力系数C:C= 1.0948.滚筒与胶带间摩擦系数μ:μ=0.39.传动滚筒围包角(实际202°):取α1=α2=200°;10.起动系数:K A= 1.4三、传动滚筒圆周驱动力计算1.分项阻力计算1.1上分支物料主要阻力F HoL F HoL = f1Lq G gcosδ=12366N ;式中:f1 -- 模拟摩擦阻力系数;f1=0.03 L-- 输送机机长 ; L=446.865m ;g -- 重力加速度; g=9.81m/s2 ;H-- 输送机段提升高度 ; H=71.034m ;δ-- 输送机倾斜角度综合值;δ= 9.14658°换算为弧度δ=0.159638弧度 ;q G--计算每米输送物料质量 ;q G=95.24kg/m ;1.2上分支空载主要阻力F hoe FH oe =f1Lg(q Ro+q B cosδ) =5331N ;式中:f1 -- 模拟摩擦阻力系数;f1=0.03 L-- 输送机机长 ; L=446.865m ;g -- 重力加速度; g=9.81m/s2 ;δ-- 输送机倾斜角度综合值;δ=0.159638弧度 ;q RO--上分支托辊组每米长度旋转部分质量;q RO=18.62kg/m ;q B-- 输送带单位长度质量;q B=22.20kg/m ;1.3下分支主要阻力F hu F Hu =f2Lg(q Ru+q B cosδ) =3152N ;式中:f2 -- 模拟摩擦阻力系数;f2=0.025 L-- 输送机机长 ; L=446.865m ;g -- 重力加速度; g=9.81m/s2 ;δ-- 输送机倾斜角度综合值;δ=0.159638弧度 ;q Ru--下分支托辊组每米长度旋转部分质量;q Ru= 6.84kg/m ;q B-- 输送带单位长度质量;q B=22.20kg/m ;1.4上分支物料提升阻力F stoL F stoL = q G Hg =66367N ;式中:q G--计算每米输送物料质量 ;q G=95.24kg/m ;H-- 输送机倾斜高度 ;H=71.034m ;g -- 重力加速度; g=9.81m/s2 ;1.5上分支输送带提升阻力F stoB F stoB = q B Hg =15470N ;式中:q B-- 输送带单位长度质量;q B=22.20kg/m ;H-- 输送机倾斜高度 ;H=71.034m ;g -- 重力加速度; g=9.81m/s2 ;1.6下分支输送带下降阻力F stu F stu = q B H′g =-15470N ;式中:q B-- 输送带单位长度质量;q B=22.20kg/m ;H′-- 输送机下分支倾斜高度 ;H′=-71.034m ;g -- 重力加速度; g=9.81m/s2 ;1.7上分支物料前倾阻力 FεOL F= Cεμ0RLq G gcosδsinε′ =265N ;εOL式中:Cε--槽形系数 ;Cε=0.4335°槽角μ0-- 托辊和输送带间的摩擦系数,一般为0.3~0.4;μ0=0.4R -- 前倾托辊在托辊总数中所占比例;R=0.155q G--计算每米输送物料质量 ;q G=95.24kg/m ;g -- 重力加速度; g=9.81m/s2 ;δ-- 输送机倾斜角度综合值;δ=0.159638弧度 ;ε′-- 上分支前倾托辊前倾角;ε′= 1.383333°换算为弧度ε′=0.024144弧度 ;L-- 输送机机长 ; L=446.865m ;1.8上分支空载前倾阻力 FεOe F= Cεμ0RLq B gcosδsinε′ =62N ;εOe式中:Cε--槽形系数 ;Cε=0.4335°槽角μ0-- 托辊和输送带间的摩擦系数,一般为0.3~0.4;μ0=0.4R -- 前倾托辊布置在托辊总数中所占比例;R=0.155q B--输送带单位长度质量 ;q B=22.20kg/m ;g -- 重力加速度; g=9.81m/s2 ;δ-- 输送机倾斜角度综合值;δ=0.159638弧度 ;ε′-- 上分支前倾托辊前倾角;ε′=0.024144弧度 ;L-- 输送机机长 ; L=446.865m ;1.9下分支前倾阻力 FεU F= μ0RLq B gcosλcosδsinε″ =154N ;εU式中:μ0-- 托辊和输送带间的摩擦系数,一般为0.3~0.4;μ0=0.4 R -- 前倾托辊布置在托辊总数中所占比例;R=0.155L-- 输送机机长 ; L=446.865m ;q B--输送带单位长度质量 ;q B=22.20kg/m ;g -- 重力加速度; g=9.81m/s2 ;λ-- 下分支V形前倾托辊槽角;λ=10°;换算为弧度λ=0.174533弧度 ;δ-- 输送机I区段倾斜角度综合值;δ=0.159638弧度 ;ε″-- 下分支V形前倾托辊前倾角;ε″= 1.5°换算为弧度ε″=0.02618弧度 ;1.10被输送物料与导料槽拦板间的摩擦阻力F glF gl = μ2I V2ρgl/(υ2b12) =μ2q G2gl/(ρb12)=950N ;式中:μ2--物料与导料板间的摩擦系数,一般为0.5~0.7;μ2=0.7I V-- 输送能力; I V = Q/(3.6ρ) =q Gυ/ρ=0.392m3/sρ-- 堆积密度;ρ=850kg/m3g -- 重力加速度; g=9.81m/s2 ;l-- 导料槽拦板长度, l=10.50m ;υ-- 带 速 ; υ= 3.50m/s;b1-- 导料槽两拦板间宽度, b1=0.90m ;1.11清扫器摩擦阻力F r F r = F r1+F r2 =3360N ;1.11.1头部清扫器摩擦阻力F r1F r1 = n1APμ3 =1344N ;式中:n1-- 头部清扫器个数;n1=2 A-- 一个清扫器和输送带的接触面积;A=0.012m2P-- 清扫器与输送带间的压力,一般取为3×104~10×104N/m2;P=80000N/m2μ3 --清扫器与输送带间的摩擦阻力,一般取0.5~0.7;μ3=0.70m/s2 ;1.11.2空段清扫器摩擦阻力F r2F r2 = n2APμ3 =2016N ;式中:n2-- 空段清扫器个数;n2=2 A-- 一个清扫器和输送带的接触面积;A=0.018m2P-- 清扫器与输送带间的压力,一般取为3×104~10×104N/m2;P=80000N/m2μ3 --清扫器与输送带间的摩擦阻力,一般取0.5~0.7;μ3=0.70m/s2 ;2.圆周力2.1全程有载圆周力F U=C*F H+F St+F s1+F s2=96740N ;式中: C -- 系数;C= 1.2272.1.1主要阻力F H=F HoL+F Hoe+F Hu =20849N ;式中:F HoL-- 上分支物料主要阻力;F HoL=12366N ;F Hoe-- 上分支空载主要阻力;F Hoe=5331N ;F Hu-- 下分支主要阻力;F Hu=3152N ;2.1.2提升阻力F st=F stoL =66367N ;式中:F stoL-- 上分支物料提升阻力;F stoL=66367N ;2.1.3特种主要阻力F s1=FεoL+Fεoe+Fεu +F gl=1431N ;式中:FεoL-- 上分支物料前倾阻力;FεoL=265N ;Fεoe-- 上分支空载前倾阻力;Fεoe=62N ;Fεu-- 下分支前倾阻力;Fεu=154N ;F gl--被输送物料与导料槽拦板间的摩擦阻力F gl=950N ;2.1.4特种附加阻力F s2=F r=3360N ;式中:Fr--清扫器摩擦阻力;F r=3360N ;2.2空载工况圆周力F Uk=C*F Hk+F sk1+F s2=13984N ;式中: C -- 系数;C= 1.2272.2.1主要阻力F Hk=F Hoe+F Hu1 =8483N ;式中:F Hoe-- 上分支空载主要阻力;F Hoe=5331N ;F Hu-- 下分支主要阻力;F Hu=3152N ;2.2.2特种主要阻力F s1=Fεoe+Fεu =215N ;式中:Fεoe-- 上分支空载前倾阻力;Fεoe=62N ;Fεu-- 下分支前倾阻力;Fεu=154N ;2.2.3特种附加阻力F s2=F r=3360N ;式中:Fr--清扫器摩擦阻力;F r=3360N ;四、传动功率计算1.满载运行传动滚筒轴功率P=F uυ×10-3 =338.6kW ;AF U -- 满载总阻力;F U=96740υ-- 带 速 ; υ= 3.50m/s;2.满载运行电动机功率P=P A/(η1η2η′η″ )=422.6kW ;M式中:P A -- 满载运行传动滚筒轴功率;P A=338.6kW ;η1-- 高低速联轴器总效率 ; η1=0.96η2-- 减速器传动效率 ; η2=0.955η′-- 电压降系数 ; η′=0.92式中:η″-- 多机驱动功率不平衡系数 ; η″=0.95P M=500kW ;满足要求!电机数n3=2电动机型号YB355M2-4660V转 速 1484r/min;频 率50HZ ;选单台电机P M1=250kW ;3.空载运行传动滚筒功率P=F uk*υ×10-3 =48.9kW ;AkF Uk -- 满载总阻力;F Uk=13984υ-- 带 速 ; υ= 3.50m/s;4.空载运行电动机功率P=P Ak/(η1η2η′ )=58.0kW ;Mk式中:P A -- 满载运行传动滚筒轴功率;P Ak=48.9kW ;η1-- 高低速联轴器总效率 ; η1=0.96η2-- 减速器传动效率 ; η2=0.955η′-- 电压降系数 ; η′=0.92选单台电机P M1=250kW ;单台电机空载起动满足要求!。

主斜井带式输送机设计计算

主斜井带式输送机设计计算

主斜井带式输送机设计计算首先,需要确定主斜井带式输送机的工作能力。

工作能力即输送机单位时间内输送物料的数量。

可以通过以下公式计算工作能力:Q=S×V×ρ×G其中,Q为输送机的工作能力,单位是吨/小时;S为输送机的带宽,单位是米;V为输送机的线速度,单位是米/秒;ρ为物料的密度,单位是吨/立方米;G为物料的质量流量,单位是吨/小时。

其次,需要确定输送机的运输长度。

运输长度是指物料输送的距离。

根据运输长度的不同,可以选择不同长度的输送机。

在计算运输长度时,需要考虑输送机的水平段长度和倾斜段的垂直高度。

再次,需要确定输送机的安装角度。

输送机的安装角度影响输送能力和功耗。

一般情况下,输送机的安装角度通常在0°~20°之间。

通过调整输送机的安装角度,可以使物料在输送过程中得到合适的加速度和速度,从而达到最佳的输送效果。

接下来,需要确定输送机的传动系统。

传动系统是输送机的重要组成部分,主要包括电动机、减速器和皮带。

在选择传动系统时,需要考虑输送机的工作条件和负载要求,确保传动系统能够稳定可靠地工作。

最后,需要进行输送机的选型和结构设计。

根据前面的计算结果和工作要求,选择合适的输送机型号,并进行结构设计。

结构设计包括输送机的骨架结构、输送带的选用和支撑方式等。

设计过程中需要考虑输送机的强度、刚度和稳定性等因素,确保输送机可以在恶劣的工作条件下安全稳定地工作。

在进行主斜井带式输送机设计计算时,需要综合考虑以上各个方面的因素,并根据实际情况进行调整。

通过合理的设计和计算,可以确保主斜井带式输送机在工作过程中能够满足物料输送的要求,提高生产效率和运输效益。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第三章带式输送机的设计计算3.1 已知原始数据及工作条件带式输送机的设计计算,应具有下列原始数据及工作条件资料(1)物料的名称和输送能力:(2)物料的性质:1)粒度大小,最大粒度和粗度组成情况;2)堆积密度;3)动堆积角、静堆积角,温度、湿度、粒度和磨损性等。

(3)工作环境、干燥、潮湿、灰尘多少等;(4)卸料方式和卸料装置形式;(5)给料点数目和位置;(6)输送机布置形式和尺寸,即输送机系统(单机或多机)综合布置形式、地形条件和供电情况。

输送距离、上运或下运、提升高度、最大倾角等;(7)装置布置形式,是否需要设置制动器。

原始参数和工作条件如下:1)输送物料:煤2)物料特性: 1)块度:0~300mm2)散装密度:0.90t/3m3)在输送带上堆积角:ρ=20°4)物料温度:<50℃3)工作环境:井下4)输送系统及相关尺寸:(1)运距:300m (2)倾斜角:β=0°(3)最大运量:350t/h初步确定输送机布置形式,如图3-1所示:图3-1 传动系统图3.2 计算步骤3.2.1 带宽的确定:按给定的工作条件,取原煤的堆积角为20°。

原煤的堆积密度按900 kg/3m。

输送机的工作倾角β=0°。

带式输送机的最大运输能力计算公式为Q sυρ=(3.2-1)3.6式中:Q——输送量()t;/hv——带速()m;/sρ——物料堆积密度(3kg m);/s--在运行的输送带上物料的最大堆积面积, 2mK----输送机的倾斜系数带速与带宽、输送能力、物料性质、块度和输送机的线路倾角有。

当输送机向上运输时,倾角大,带速应低;下运时,带速更应低;水平运输时,可选择高带速.带速的确定还应考虑输送机卸料装置类型,当采用犁式卸料车时,带速不宜超过3.15m/s。

表3-1倾斜系数k选用表输送机的工作倾角=0°查DTⅡ带式输送机选用手册(表3-1)k可取1.00按给顶的工作条件,取原煤的堆积角为20°;m;原煤的堆积密度为900kg/3考虑山上的工作条件取带速为1.6m/s;将参数值代入上式,即可得知截面积S:S2 3503.6 3.69001.610.0675Q mρυκ⨯⨯⨯===图3-2 槽形托辊的带上物料堆积截面表3-2槽形托辊物料断面面积A槽角(λ)带宽B=500mm 带宽 B=650mm 带宽 B=800mm 带宽B=1000mm动堆积角ρ20°动堆积角ρ30°动堆积角ρ20°动堆积角ρ30°动堆积角ρ20°动堆积角ρ30°动堆积角ρ20°动堆积角ρ30°30°0.0222 0.0266 0.0406 0.0484 0.0638 0.0763 0.1040 0.1240 35°0.0236 0.0278 0.0433 0.0507 0.0678 0.0798 0.1110 0.1290 40°0.0247 0.0287 0.0453 0.0523 0.0710 0.0822 0.1160 0.1340 45°0.0256 0.0293 0.0469 0.0534 0.0736 0.0840 0.1200 0.1360 查表3-2, 输送机的承载托辊槽角35°,物料的堆积角为20°时,带宽为800 mm的输送带上允许物料堆积的横断面积为0.06782m,此值大于计算所需要的堆积横断面积,因此选用宽度为800mm的输送带能满足要求。

经过计算,故确定带宽B=800mm,680S型煤矿用阻燃输送带。

680S型煤矿用阻燃输送带的技术规格:纵向拉伸强度750N/mm;带厚8.5mm;输送带质量9.2Kg/m。

3.2.2输送带宽度的核算输送大块散状物料的输送机,需要按(3.2-2)式核算,再查表2-3≥+Bα2200原煤的堆积密度按900 kg/3m。

输送机的工作倾角β=0°。

带式输送机的最大运输能力计算公式为=(3.2-1)Q sυρ3.6式中:Q——输送量()/ht;v——带速()m;/sρ——物料堆积密度(3kg m);/s--在运行的输送带上物料的最大堆积面积, 2mK----输送机的倾斜系数带速选择原则:(1)输送量大、输送带较宽时,应选择较高的带速。

(2)较长的水平输送机,应选择较高的带速;输送机倾角愈大,输送距离愈短,则带速应愈低。

(3)物料易滚动、粒度大、磨琢性强的,或容易扬尘的以环境卫生条件要求较高的,宜选用较低带速。

(4)一般用于给了或输送粉尘量大时,带速可取0.8m/s~1m/s;或根据物料特性和工艺要求决定。

(5)人工配料称重时,带速不应大于1.25m/s。

(6)采用犁式卸料器时,带速不宜超过2.0m/s。

(7)采用卸料车时,带速一般不宜超过 2.5m/s;当输送细碎物料或小块料时,允许带速为3.15m/s。

(8)有计量秤时,带速应按自动计量秤的要求决定。

(9)输送成品物件时,带速一般小于1.25m/s。

带速与带宽、输送能力、物料性质、块度和输送机的线路倾角有关.当输送机向上运输时,倾角大,带速应低;下运时,带速更应低;水平运输时,可选择高带速.带速的确定还应考虑输送机卸料装置类型,当采用犁式卸料车时,带速不宜超过3.15m/s。

表3-1倾斜系数k选用表输送机的工作倾角=0°;查DTⅡ带式输送机选用手册(表3-1)(此后凡未注明均为该书)得k=1按给顶的工作条件,取原煤的堆积角为20°;m;原煤的堆积密度为900kg/3考虑山上的工作条件取带速为1.6m/s;将个参数值代入上式, 可得到为保证给顶的运输能力,带上必须具有的的截面积S:S23503.6 3.69001.610.0675Q mρυκ⨯⨯⨯===图3-2 槽形托辊的带上物料堆积截面表3-2槽形托辊物料断面面积A槽角λ带宽B=500mm 带宽 B=650mm 带宽 B=800mm 带宽B=1000mm 动堆积角ρ20°动堆积角ρ30°动堆积角ρ20°动堆积角ρ30°动堆积角ρ20°动堆积角ρ30°动堆积角ρ20°动堆积角ρ30°30°0.0222 0.0266 0.0406 0.0484 0.0638 0.0763 0.1040 0.124035°0.0236 0.0278 0.0433 0.0507 0.0678 0.0798 0.1110 0.129040°0.0247 0.0287 0.0453 0.0523 0.0710 0.0822 0.1160 0.134045°0.0256 0.0293 0.0469 0.0534 0.0736 0.0840 0.1200 0.1360 查表3-2, 输送机的承载托辊槽角35°,物料的堆积角为20°m,时,带宽为800 mm的输送带上允许物料堆积的横断面积为0.06782此值大于计算所需要的堆积横断面积,据此选用宽度为800mm的输送带能满足要求。

经过计算,确定选用带宽B=800mm,680S型煤矿用阻燃输送带。

680S型煤矿用阻燃输送带的技术规格:纵向拉伸强度750N/mm;带厚8.5mm;输送带质量9.2Kg/m.3.2.2输送带宽度的核算输送大块散状物料的输送机,需要按(3.2-2)式核算,再查表2-3Bα≥+(2.2-2)2200式中α——最大粒度,mm。

表2-3不同带宽推荐的输送物料的最大粒度mmB==⨯+=计算:8002300200800故,输送带宽满足输送要求。

3.3 圆周驱动力 3.3.1 计算公式1)所有长度(包括L 〈80m 〉)传动滚筒上所需圆周驱动力U F 为输送机所有阻力之和,可用式(3.3-1)计算:12U H N S S St F F F F F F =++++ (3.3-1)式中H F ——主要阻力,N ;N F ——附加阻力,N ; 1S F ——特种主要阻力,N ;2S F ——特种附加阻力,N ; St F ——倾斜阻力,N 。

五种阻力中,H F 、N F 是所有输送机都有的,其他三类阻力,根据输送机侧型及附件装置情况定。

2)80L m ≥对机长大于80m 的带式输送机,附加阻力N F 明显的小于主要阻力,为此引入系数C 作简化计算,则公式变为下面的形式:12U H S S St F CF F F F =+++ (3.3-2)式中C ——与输送机长度有关的系数,在机长大于80m 时,可按式(2.3-3)计算L L C L+=(3.3-3) 式中0L ——附加长度,一般在70m 到100m 之间;C ——系数,不小于1.02。

C 查〈〈DT Ⅱ(A )型带式输送机设计手册〉〉表3-4 表3-4系数C3.3.2 主要阻力计算输送机的主要阻力H F 是物料及输送带移动和承载分支及回程分支托辊旋转所产生阻力的总和。

可用式(2.4-4)计算:[(2)cos ]H RO RU B G F fLg q q q q δ=+++ (3.4-4)式中f ——模拟摩擦系数,根据工作条件及制造安装水平决定,一般可按表查取;L ——输送机长度(头尾滚筒中心距),m ; g ——重力加速度;初步选定托辊为DT Ⅱ6204/C4,查表得,上托辊间距0a =1.2m ,下托辊间距u a =3m ,上托辊槽角35°,下托辊槽角0°。

RO q ——承载分支托辊组每米长度旋转部分重量,kg/m ,用式(3.4-5)计算1RO G q a =(3.4-5) 其中1G ——承载分支每组托辊旋转部分重量,kg ;0a ——承载分支托辊间距,m ;托辊参数,知 124.3G kg = 计算:10RO G q a ==24.31.2=20.25 kg/m RU q ——回程分支托辊组每米长度旋转部分质量,kg/m ,用式(3.3-6)计算:2RU UG q a =(3.3-6) 其中2G ——回程分支每组托辊旋转部分质量;U a ——回程分支托辊间距,m ;215.8G =kg计算:2RU U G q a ==15.83=5.267 kg/m G q ——每米长度输送物料质量3.6mG I Qq υυ===35060.7343.6 1.6=⨯kg/m B q ——每米长度输送带质量,kg/m ,B q =9.2kg/m [(2)cos ]H RO RU B G F fLg q q q q δ=+++=0.045×300×9.8×[20.25+5.267+(2×9.2+60.734)×cos35°]=11379Nf 运行阻力系数f 值应根据表3-5选取。

相关文档
最新文档