高等数学(大一下学期期末考试)

合集下载

大一下学期高数期末试卷

大一下学期高数期末试卷

命题人: 审核人: 审核日期:《高等数学》 (A 卷) 第 1 页 共 4 页2019至2020学年 第二学期 期末考核题卷高等数学 课程(开卷)(A 卷)项 目一二三总 分12 3 4 5 得 分 评分人一、选择题(本大题共5小题,每小题5分,共25分,在每小题给出的4个选项中,只有一项是符合题目要求的) 1.不定积分dx x x ⎰+-)sin (2= ( ) 。

A.C x x ++--cos 21B. C x x ++--cos 23C.C x x +---cos 1D. C x x +---cos 332.定积分dx x 211⎰-=( )。

A. 0 B.31 C. 32D. 4 3.设二元函数z=x y ,则xz∂∂=( )。

A.x y B.x y lny C.x y lnx D.yx y-1 4.二元函数z=x ²+y ²-3x-2y 的驻点坐标是( )。

A .B.C.D.5.设二元函数z=cos(xy),则。

A.y ²sin(xy)B.y ²cos(xy)C.-y ²sin(xy)D.-y ²cos(xy)《高等数学》 (A 卷) 第 2 页 共 4 页二、填空题(本大题共5小题,每小题5分,共25分). 1.不定积分2.定积分dx x x )12102-+⎰(= ; 3.=⎰]'[2dx x __________.4.设二元函数z=x ³y ²,则5.dx x ⎰∞+-123=_______________.三、解答题(1—5题,每道题10分,共50分,解答应写出推理、演算步骤) 1.计算不定积分⎰-dx x 5)12(。

2. 用定积分表示由曲线y=x ²,直线x=0,x=1及x 轴所围成的平面图形。

3. 求函数32333y x y x z -+=的二阶偏导数。

4. 求复合函数xy v y x u v uv u z =+=++=,,22的一阶混合偏导yz x z ∂∂∂∂和。

大一高等数学期末考试试卷及答案详解

大一高等数学期末考试试卷及答案详解

大一高等数学期末考试试卷及答案详解本页仅作为文档封面,使用时可以删除This document is for reference only-rar21year.March大一高等数学期末考试试卷(一)一、选择题(共12分)1. (3分)若2,0,(),0x e x f x a x x ⎧<=⎨+>⎩为连续函数,则a 的值为( ).(A)1 (B)2 (C)3 (D)-1 2. (3分)已知(3)2,f '=则0(3)(3)lim2h f h f h→--的值为( ).(A)1 (B)3 (C)-1 (D)123. (3分)定积分22ππ-⎰的值为( ).(A)0 (B)-2 (C)1 (D)24. (3分)若()f x 在0x x =处不连续,则()f x 在该点处( ). (A)必不可导 (B)一定可导(C)可能可导 (D)必无极限 二、填空题(共12分)1.(3分) 平面上过点(0,1),且在任意一点(,)x y 处的切线斜率为23x 的曲线方程为 .2. (3分) 1241(sin )x x x dx -+=⎰ .3. (3分) 201lim sinx x x→= . 4. (3分) 3223y x x =-的极大值为 .三、计算题(共42分) 1. (6分)求2ln(15)lim.sin 3x x x x→+ 2. (6分)设2,1y x =+求.y '3. (6分)求不定积分2ln(1).x x dx +⎰4. (6分)求3(1),f x dx -⎰其中,1,()1cos 1, 1.x xx f x xe x ⎧≤⎪=+⎨⎪+>⎩5. (6分)设函数()y f x =由方程0cos 0y xt e dt tdt +=⎰⎰所确定,求.dy6. (6分)设2()sin ,f x dx x C =+⎰求(23).f x dx +⎰7. (6分)求极限3lim 1.2nn n →∞⎛⎫+ ⎪⎝⎭四、解答题(共28分)1. (7分)设(ln )1,f x x '=+且(0)1,f =求().f x2. (7分)求由曲线cos 22y x x ππ⎛⎫=-≤≤ ⎪⎝⎭与x 轴所围成图形绕着x 轴旋转一周所得旋转体的体积.3. (7分)求曲线3232419y x x x =-+-在拐点处的切线方程.4. (7分)求函数y x =+[5,1]-上的最小值和最大值. 五、证明题(6分)设()f x ''在区间[,]a b 上连续,证明1()[()()]()()().22bbaab a f x dx f a f b x a x b f x dx -''=++--⎰⎰(二)一、 填空题(每小题3分,共18分)1.设函数()23122+--=x x x x f ,则1=x 是()x f 的第 类间断点.2.函数()21ln x y +=,则='y. 3. =⎪⎭⎫⎝⎛+∞→xx x x 21lim. 4.曲线x y 1=在点⎪⎭⎫⎝⎛2,21处的切线方程为 . 5.函数2332x x y -=在[]4,1-上的最大值 ,最小值 .6.=+⎰dx xx21arctan .二、 单项选择题(每小题4分,共20分) 1.数列{}n x 有界是它收敛的( ) .() A 必要但非充分条件; () B 充分但非必要条件 ;() C 充分必要条件; () D 无关条件.2.下列各式正确的是( ) .() A C e dx e x x +=--⎰; () B C xxdx +=⎰1ln ; () C ()C x dx x +-=-⎰21ln 21211; () D C x dx xx +=⎰ln ln ln 1. 3. 设()x f 在[]b a ,上,()0>'x f 且()0>''x f ,则曲线()x f y =在[]b a ,上.() A 沿x 轴正向上升且为凹的; () B 沿x 轴正向下降且为凹的;() C 沿x 轴正向上升且为凸的; () D 沿x 轴正向下降且为凸的.4.设()x x x f ln =,则()x f 在0=x 处的导数( ).() A 等于1; () B 等于1-;() C 等于0; () D 不存在.5.已知()2lim 1=+→x f x ,以下结论正确的是( ).() A 函数在1=x 处有定义且()21=f ; () B 函数在1=x 处的某去心邻域内有定义;() C 函数在1=x 处的左侧某邻域内有定义;() D 函数在1=x 处的右侧某邻域内有定义.三、 计算(每小题6分,共36分) 1.求极限:xx x 1sinlim 20→. 2. 已知()21ln x y +=,求y '. 3. 求函数x x y sin =()0>x 的导数.4. ⎰+dx xx 221. 5. ⎰xdx x cos .6.方程yxx y 11=确定函数()x f y =,求y '.四、 (10分)已知2x e 为()x f 的一个原函数,求()⎰dx x f x 2.五、 (6分)求曲线x xe y -=的拐点及凹凸区间. 六、 (10分)设()()C ex dx x f x++='⎰1,求()x f .(三)一、填空题(本题共5小题,每小题4分,共20分).(1) 210)(cos lim x x x → =_____e 1________.(2)曲线x x y ln =上与直线01=+-y x 平行的切线方程为___1-=x y ______.(3)已知xx xe e f -=')(,且0)1(=f , 则=)(x f ______=)(x f 2)(ln 21x _____ .(4)曲线132+=x x y 的斜渐近线方程为 _______.9131-=x y __(5)微分方程522(1)1'-=++y y x x 的通解为_________.)1()1(32227+++=x C x y二、选择题 (本题共5小题,每小题4分,共20分). (1)下列积分结果正确的是( D )(A) 0111=⎰-dx x (B) 21112-=⎰-dx x(C) +∞=⎰∞+141dx x (D) +∞=⎰∞+11dx x(2)函数)(x f 在],[b a 内有定义,其导数)('x f 的图形如图1-1所示,则( D ).(A)21,x x 都是极值点.(B) ()())(,,)(,2211x f x x f x 都是拐点. (C) 1x 是极值点.,())(,22x f x 是拐点. (D) ())(,11x f x 是拐点,2x 是极值点. 图1-1(3)函数212e e e x x xy C C x -=++满足的一个微分方程是( D ).(A )23e .x y y y x '''--= (B )23e .xy y y '''--= (C )23e .x y y y x '''+-=(D )23e .xy y y '''+-=(4)设)(x f 在0x 处可导,则()()000limh f x f x h h →--为( A ).(A) ()0f x '. (B) ()0f x '-. (C) 0. (D)不存在 .(5)下列等式中正确的结果是 ( A ).(A)(())().f x dx f x '=⎰ (B) ()().=⎰df x f x(C) [()]().d f x dx f x =⎰ (D) ()().f x dx f x '=⎰三、计算题(本题共4小题,每小题6分,共24分).1.求极限)ln 11(lim 1x x x x --→. 解 )ln 11(lim 1x x x x --→=x x x x x x ln )1(1ln lim 1-+-→ 1分 =x x x x x ln 1ln lim1+-→ 2分 = x x x xx x ln 1ln lim1+-→ 1分= 211ln 1ln 1lim 1=+++→x x x 2分2.方程⎩⎨⎧+==t t t y t x sin cos sin ln 确定y 为x 的函数,求dx dy 与22dx y d .解 ,sin )()(t t t x t y dx dy =''= (3分).sin tan sin )()sin (22t t t t t x t t dx y d +=''= (6分)3. 4. 计算不定积分. 222(1) =2arctan 2 =2d x C =----------+------+---------⎰⎰分分(分4.计算定积分⎰++3011dxx x.解 ⎰⎰-+-=++3030)11(11dx x x x dx x x ⎰+--=3)11(dx x (3分)35)1(3233023=++-=x (6分)(或令t x =+1)四、解答题(本题共4小题,共29分).1.(本题6分)解微分方程256xy y y xe '''-+=.2.(本题7分)一个横放着的圆柱形水桶(如图4-1),桶内盛有半桶水,设桶的底半径为R ,水的比重为γ,计算桶的一端面上所受的压力.解:建立坐标系如图22022220322203*********RRRP gx R x dx g R x d R x g R x g R ρρρρ=----------=---------=--------=----------------⎰⎰分()分[()]分分3. (本题8分)设()f x 在[,]a b 上有连续的导数,()()0f a f b ==,且2()1b af x dx =⎰,试求()()b axf x f x dx'⎰.222()()()()21 ()221 =[()]()2211=0222b b aab ab b a a xf x f x dx xf x df x xdf x xf x f x dx '=-----=---------=----------⎰⎰⎰⎰解:分分分分4. (本题8分)过坐标原点作曲线x y ln =的切线,该切线与曲线x y ln =及x 轴围成平面图形D.(1) (3) 求D 的面积A; (2) (4) 求D 绕直线e x =旋转一周所得旋转体的体积V.x y 2122312*20101*223212-56012,31.1()111.21(1)121(1).12x x x x x x x r r r r e C e y x b x b e b b y x x e y e C e x x e +=----------==----------+-------=+-----------=-=-=-------------=+-+----解:特征方程分特征解.分 次方程的通解Y =C 分令分代入解得,所以分所以所求通解C 分解:(1) 设切点的横坐标为0x ,则曲线x y ln =在点)ln ,(00x x 处的切线方程是).(1ln 000x x x x y -+= ----1分由该切线过原点知 01ln 0=-x ,从而.0e x =所以该切线的方程为.1x e y =----1分平面图形D 的面积⎰-=-=10.121)(e dy ey e A y ----2分(2) 切线xe y 1=与x 轴及直线e x =所围成的三角形绕直线e x =旋转所得的圆锥体积为 .3121e V π= 2分曲线x y ln =与x 轴及直线e x =所围成的图形绕直线e x =旋转所得的旋转体体积为dye e V y 2102)(⎰-=π, 1分因此所求旋转体的体积为).3125(6)(312102221+-=--=-=⎰e e dy e e e V V V y πππ 1分五、证明题(本题共1小题,共7分).1.证明对于任意的实数x ,1xe x ≥+.解法一:2112xe e x x xξ=++≥+解法二:设() 1.xf x e x =--则(0)0.f = 1分 因为() 1.xf x e '=- 1分 当0x ≥时,()0.f x '≥()f x 单调增加,()(0)0.f x f ≥= 2分 当0x ≤时,()0.f x '≤()f x 单调增加,()(0)0.f x f ≥= 2分所以对于任意的实数x ,()0.f x ≥即1xe x ≥+。

大一下学期高等数学期末试题及答案__数套

大一下学期高等数学期末试题及答案__数套

高等数学(下)试卷一一、 填空题(每空3分,共15分)(1)函数z =的定义域为 (2)已知函数arctanyz x =,则z x ∂=∂(3)交换积分次序,2220(,)y y dy f x y dx⎰⎰=(4)已知L 是连接(0,1),(1,0)两点的直线段,则()L x y ds +=⎰(5)已知微分方程230y y y '''+-=,则其通解为二、选择题(每空3分,共15分)(1)设直线L 为321021030x y z x y z +++=⎧⎨--+=⎩,平面π为4220x y z -+-=,则( )A. L 平行于πB. L 在π上C. L 垂直于πD. L 与π斜交 (2)设是由方程xyz =(1,0,1)-处的dz =( )A.dx dy +B.dxD.dx (3)已知Ω是由曲面222425()z x y =+及平面5z =所围成的闭区域,将22()x y dv Ω+⎰⎰⎰在柱面坐标系下化成三次积分为( ) A.22530d r dr dzπθ⎰⎰⎰ B.24530d r dr dzπθ⎰⎰⎰ C.2253502rd r dr dzπθ⎰⎰⎰ D.2252d r dr dzπθ⎰⎰⎰(4)已知幂级数12nnn n x ∞=∑,则其收敛半径( )A. 2B. 1C. 12D. (5)微分方程3232x y y y x e '''-+=-的特解y *的形式为y *=( )A.B.()x ax b xe +C.()xax b ce ++D.()xax b cxe ++三、计算题(每题8分,共48分)1、 求过直线1L :123101x y z ---==-且平行于直线2L :21211x y z +-==的平面方程 2、 已知22(,)z f xy x y =,求zx ∂∂, z y ∂∂3、 设22{(,)4}D x y x y =+≤,利用极坐标求2Dx dxdy ⎰⎰4、 求函数22(,)(2)x f x y e x y y =++的极值5、计算曲线积分2(23sin )()y L xy x dx x e dy ++-⎰, 其中L 为摆线sin 1cos x t t y t =-⎧⎨=-⎩从点(0,0)O 到(,2)A π的一段弧6、求微分方程 x xy y xe '+=满足 11x y ==的特解四.解答题(共22分)1、利用高斯公式计算22xzdydz yzdzdx z dxdy ∑+-⎰⎰,其中∑由圆锥面z =与上半球面z =所围成的立体表面的外侧 (10)'2、(1)判别级数111(1)3n n n n ∞--=-∑的敛散性,若收敛,判别是绝对收敛还是条件收敛;(6')(2)在(1,1)x ∈-求幂级数1nn nx∞=∑的和函数(6')高等数学(下)试卷二一.填空题(每空3分,共15分)(1)函数z =的定义域为 ; (2)已知函数xyz e =,则在(2,1)处的全微分dz = ;(3)交换积分次序,ln 1(,)e x dx f x y dy⎰⎰= ;(4)已知L 是抛物线2y x =上点(0,0)O 与点(1,1)B 之间的一段弧,则=⎰;(5)已知微分方程20y y y '''-+=,则其通解为 . 二.选择题(每空3分,共15分)(1)设直线L 为300x y z x y z ++=⎧⎨--=⎩,平面π为10x y z --+=,则L 与π的夹角为( );A. 0B. 2πC. 3πD. 4π(2)设(,)z f x y =是由方程333z xyz a -=确定,则z x ∂=∂( ); A. 2yz xy z - B. 2yz z xy - C. 2xz xy z - D. 2xy z xy -(3)微分方程256x y y y xe '''-+=的特解y *的形式为y *=( );A.2()x ax b e +B.2()x ax b xe +C.2()x ax b ce ++D.2()xax b cxe ++ (4)已知Ω是由球面2222x y z a ++=所围成的闭区域, 将dvΩ⎰⎰⎰在球面坐标系下化成三次积分为( ); A222sin ad d r drππθϕϕ⎰⎰⎰ B.220ad d rdrππθϕ⎰⎰⎰C.20ad d rdrππθϕ⎰⎰⎰ D.220sin a d d r drππθϕϕ⎰⎰⎰(5)已知幂级数1212nnn n x ∞=-∑,则其收敛半径( ).2 B.1 C. 12 D.三.计算题(每题8分,共48分)5、 求过(0,2,4)A 且与两平面1:21x z π+=和2:32y z π-=平行的直线方程 .6、 已知(sin cos ,)x yz f x y e +=,求zx ∂∂, z y ∂∂ . 7、 设22{(,)1,0}D x y x y y x =+≤≤≤,利用极坐标计算arctanDydxdy x ⎰⎰ .8、 求函数22(,)56106f x y x y x y =+-++的极值. 9、 利用格林公式计算(sin 2)(cos 2)x x Le y y dx e y dy -+-⎰,其中L 为沿上半圆周222(),0x a y a y -+=≥、从(2,0)A a 到(0,0)O 的弧段. 6、求微分方程 32(1)1y y x x '-=++的通解.四.解答题(共22分)1、(1)(6')判别级数11(1)2sin3n n n n π∞-=-∑的敛散性,若收敛,判别是绝对收敛还是条件收敛;(2)(4')在区间(1,1)-内求幂级数1nn x n ∞=∑的和函数 .2、(12)'利用高斯公式计算2xdydz ydzdx zdxdy∑++⎰⎰,∑为抛物面22z x y =+(01)z ≤≤的下侧高等数学(下)模拟试卷三一. 填空题(每空3分,共15分)1、 函数arcsin(3)y x =-的定义域为 .2、22(2)lim 332n n n n →∞++-= .3、已知2ln(1)y x =+,在1x =处的微分dy = . 4、定积分1200621(sin )x x x dx -+=⎰.5、求由方程57230y y x x +--=所确定的隐函数的导数dydx =.二.选择题(每空3分,共15分)1、2x =是函数22132x y x x -=-+的 间断点 (A )可去 (B )跳跃 (C )无穷 (D )振荡2、积分10⎰= .(A) ∞ (B)-∞(C) 0 (D) 13、函数1xy e x =-+在(,0]-∞内的单调性是 。

广州大学大一公共课高等数学期末考试卷及答案15

广州大学大一公共课高等数学期末考试卷及答案15

广州大学20XX-20XX 学年第二学期考试卷课 程:高等数学(90学时) 考 试 形 式:闭卷 考试一.填空题(本题共5小题,每小题3分,满分15分) 1.设yxxy z +=,则=dz __________________ 2.设),(v u f z =连续,y x u +=2, xy v = , 则=∂∂xz___________________ 3.L 为122=+y x ,则2Lx ds =⎰4.若级数∑∞=1n nu收敛,则=∞→n n u lim5.微分方程02=-ydx xdy 的通解是二.单项选择题(本题共5小题,每小题3分,满分15分)1.函数),(y x f z =在点),(y x 处可微是),(y x f 在该点偏导数x z ∂∂及yz ∂∂存在的【 】 (A )充分非必要条件 (B )必要非充分条件 (C )充分必要条件 (D )无关条件.2.曲线2t x =,12+=t y ,3t z =在点)1,1,1(--处的 法平面方程为【 】(A )3322-=++z y x (B )7322=--z y x(C )312121+=+=-z y x (D )312121+=+=--z y x 3.设),(y x f 是连续函数,改换二次积分的积分次序⎰⎰=ex dy y x f dx 1ln 0),( 【 】(A )⎰⎰ex dx y x f dy 1ln 0),( (B )⎰⎰e ey dx y x f dy 10),((C )⎰⎰x edx y x f dy ln 01),( (D )⎰⎰10),(eey dx y x f dy4. 设∑是球面2222a z y x =++的内侧)0(>a ,Ω为∑所围成闭区域, 由高斯公式,曲面积分333x dy dz y dz dx z dx dy ∑++=⎰⎰【 】(A )dv a ⎰⎰⎰Ω-23(B )dv a ⎰⎰⎰Ω23(C )θϕϕd drd r rsin 322⋅-⎰⎰⎰Ω(D )θϕϕd drd r r sin 322⋅⎰⎰⎰Ω5.设有级数∑∞=--11)1(n p n n ,则【 】(A )当1≥p 时,级数∑∞=--11)1(n pn n 绝对收敛 (B )当1>p 时,级数∑∞=--11)1(n pn n 条件收敛 (C )当10≤<p 时,级数∑∞=--11)1(n pn n 绝对收敛 (D )当10≤<p 时,级数∑∞=--11)1(n pn n 条件收敛三.解答下列各题(本题共3小题,第1、2小题6分,第3小题8分,满分20分)1.求函数2221)ln(y x x y z --+-= 的定义域,并画出其区域图2.函数),(y x z z =是由方程0=+-xy yz e z确定,求x z ∂∂及22x z∂∂3.求表面积为36而体积最大的长方体四.计算下列积分(本题共3小题,第1、2小题6分,第3小题8分,满分20分) 1.计算dxdy y x D⎰⎰,其中D 由直线x y =,1=y 及0=x 围成的闭区域2.计算⎰⎰⎰Ωdz dy dx z ,其中Ω是由平面1=++z y x 及三个坐标面所围成的闭区域3.利用格林公式计算22()()y x LI xy e dy x y e dx =+-+⎰,其中L 为圆周422=+y x ,取逆时针方向五.解答下列级数(本题共3小题,第1小题5分,第2小题10分,满分15分)1.判别级数∑∞=123n n n 的敛散性2.求幂级数∑∞=+1)1(n nxn n 的收敛域及其和函数六.(本题满分7分)设有连结点)0,0(O 和点(1,1)A 的一段向上凸 的曲线弧OA ,对于OA 上任一点),(y x P ,曲线弧OP 与直线段 OP 所围成的图形的面积为2x ,求曲线弧OA 的方程七.(本题满分8分)求微分方程2x y y y xe '''--=的通解广州大学20XX-20XX 学年第二学期考试卷答案与评分标准课 程:高等数学(90学时) 考 试 形 式:闭卷 考试一.填空题(本题共5小题,每小题3分,满分15分) 1.设y xxy z +=,则=dz dy y x x dx y y ⎪⎪⎭⎫ ⎝⎛-+⎪⎪⎭⎫ ⎝⎛+21 2.设),(v u f z =具有一阶连续偏导数,y x u +=2, xy v = , 则=∂∂xzv u f y f +2 3.L 为圆周122=+y x ,则2Lx ds =⎰π4.若级数∑∞=1n nu收敛,则=∞→n n u lim 05.微分方程02=-ydx xdy 的通解是2y c x =二.单项选择题(本题共5小题,每小题3分,满分15分)1.函数),(y x f z =在点),(y x 处可微是),(y x f 在该点偏导数x z ∂∂及yz ∂∂存在的【 A 】 (A )充分非必要条件 (B )必要非充分条件 (C )充分必要条件 (D )无关条件.2.曲线2t x =,12+=t y ,3t z =在点)1,1,1(--处的 法平面方程为【 B 】(A )3322-=++z y x (B )7322=--z y x(C )312121+=+=-z y x (D )312121+=+=--z y x 3.设),(y x f 是连续函数,改换二次积分的积分次序⎰⎰=ex dy y x f dx 1ln 0),( 【 D 】(A )⎰⎰ex dx y x f dy 1ln 0),( (B )⎰⎰e ey dx y x f dy 10),((C )⎰⎰x edx y x f dy ln 01),( (D )⎰⎰10),(eey dx y x f dy4. 设∑是球面2222a z y x =++的内侧)0(>a ,Ω为∑所围成闭区域,由高斯公式,曲面积分333x dydz y dzdx z dxdy ∑++=⎰⎰【 C 】(A )dv a ⎰⎰⎰Ω-23(B )dv a ⎰⎰⎰Ω23 (C )θϕϕd drd r r sin 322⋅-⎰⎰⎰Ω(D )θϕϕd drd r r sin 322⋅⎰⎰⎰Ω5.设有级数∑∞=--11)1(n pn n ,则【 D 】 (A )当1≥p 时,级数∑∞=--11)1(n pn n 绝对收敛 (B )当1>p 时,级数∑∞=--11)1(n pn n 条件收敛 (C )当10≤<p 时,级数∑∞=--11)1(n pn n 绝对收敛 (D )当10≤<p 时,级数∑∞=--11)1(n pn n 条件收敛三.解答下列各题(本题共3小题,第1、2小题6分,第3小题8分,满分20分)1.求函数2221)ln(y x x y z --+-= 的定义域,并画出其区域图解:要使函数有意义,须满足⎪⎩⎪⎨⎧≥-->-010222y x x y 即⎪⎩⎪⎨⎧≤+>1222y x x y 所求定义域为}1|),{(222≤+>=y x x y y x D 且 ┉┉┉┉┉ 3分区域D 的图形如左图阴影部分┉┉┉┉┉┉┉┉┉ 6分2.函数),(y x z z =是由方程0=+-xy yz e z确定,求x z ∂∂及22x z∂∂解:令=),,(z y x F xy yz e z +- 则 y F x =, y e F z z -=zy x ey yF F x z -=-=∂∂ ┉┉┉┉┉┉┉┉┉┉┉┉ 3分 22x z ∂∂2)(z z e y x z e y -⎪⎭⎫ ⎝⎛∂∂--= ┉┉┉┉┉┉┉┉┉┉┉┉┉ 5分32)(z z e y e y -= ┉┉┉┉┉┉┉┉┉┉┉┉┉┉ 6分 3.求表面积为36而体积最大的长方体解:设长方体的三棱长为z y x ,,,则体积xyz V =,且 18=++xz yz xy令)18(),,(-+++=xz yz xy xyz z y x L λ ┉┉┉┉┉┉┉┉┉ 3分由⎪⎪⎩⎪⎪⎨⎧=++=++==++==++=180)(0)(0)(xz yz xy y x xy L z x xz L z y yz L zy x λλλ ┉┉┉┉┉┉┉┉┉┉┉┉┉┉ 5分得6===z y x ┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉ 7分由实际问题可知,当棱长为6的正方体时体积最大 ┉┉┉┉ 8分四.计算下列积分(本题共3小题,第1、2小题6分,第3小题8分,满分20分) 1.计算dxdy y x D⎰⎰,其中D 由直线x y =,1=y 及0=x 围成的闭区域解:dxdy y x D⎰⎰⎰⎰=101xdy xy dx ┉┉┉┉┉┉┉┉┉┉┉┉┉ 3分dx y x x ⎰=1012|21 ┉┉┉┉┉┉┉┉┉┉┉┉┉┉ 4分dx x x ⎰-=103)(21 ┉┉┉┉┉┉┉┉┉┉┉┉┉ 5分81= ┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉ 6分2.计算⎰⎰⎰Ωdz dy dx z ,其中Ω是由平面1=++z y x 及三个坐标面所围成的闭区域 解:⎰⎰⎰Ωdz dy dx z ⎰⎰⎰---=y x x dz z dy dx 101010┉┉┉┉┉┉┉┉ 3分dy y x dx x ⎰⎰---=10102)1(21 ┉┉┉┉┉┉┉ 4分 ⎰--=103)1(61dx x ┉┉┉┉┉┉┉┉┉┉┉ 5分=241┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉ 6分3.利用格林公式计算22()()y x LI xy e dy x y e dx =+-+⎰,其中L 为圆周422=+y x ,取逆时针方向 解:记4:22≤+y x D ,由格林公式 ⎰⎰+=D dy dx y x I )(22 ┉┉┉┉┉┉┉┉┉┉┉ 3分 ⎰⎰⋅=πρρρθ2022d d ┉┉┉┉┉┉┉┉┉┉┉ 6分420|2πρ=┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉ 7分π8= ┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉ 8分五.解答下列级数(本题共3小题,第1小题5分,第2小题10分,满分15分)1.判别级数∑∞=123n n n 的敛散性解:nn n nn n n n u u 33)1(lim lim 2)1(21+∞→+∞→+= ┅┅┅┅┅┅┅┅┅┅ 2分 211lim 31⎪⎭⎫⎝⎛+=∞→n n131<= ┅┅┅┅┅┅┅┅┅┅┅┅┅┅┅┅ 4分 该级数收敛 ┅┅┅┅┅┅┅┅┅┅┅┅┅┅┅ 5分2.求幂级数∑∞=+1)1(n n xn n 的收敛域及其和函数解:n n n a a 1lim+∞→=ρ)1()2)(1(lim +++=∞→n n n n n ⎪⎭⎫ ⎝⎛+=∞→n n 21lim 1= ┅┅ 2分 故11==ρR ┅┅┅┅┅┅┅┅┅┅┅┅┅┅┅┅┅┅┅┅ 3分当1-=x 时,级数∑∞=+-1)1()1(n n n n 发散 ┅┅┅┅┅┅┅┅┅ 4分 当1=x 时,级数∑∞=+1)1(n n n 发散 ┅┅┅┅┅┅┅┅┅┅┅┅ 5分幂级数的收敛域为)1,1(- ┅┅┅┅┅┅┅┅┅┅┅┅┅┅┅ 6分 记=)(x S ∑∞=+1)1(n n xn n 11<<-x =⎰x dx x S 0)(∑∞=+11n n nx 2x =∑∞=-11n n nx又设=)(x g ∑∞=-11n n nx,11<<-x ,=⎰x dx x g 0)(∑∞=1n n x =xx -1 ┅┅ 8分 知2)1(11)(x x x x g -='⎪⎭⎫ ⎝⎛-= ()3222)1(2)1()()(x x x x x g x x S -='⎪⎪⎭⎫ ⎝⎛-='= (11<<-x )┉┉┅┅ 10分六.(本题满分7分)设有连结点(0,0)O 和点(1,1)A 的一段向上凸 的曲线弧OA ,对于OA 上任一点(,)P x y ,曲线弧OP 与直线段 OP 所围成的图形的面积为2x ,求曲线弧OA 的方程解:设曲线弧OA 的方程为()y y x =,依题意 201()2xy t dt xy x -=⎰ ┅┅┅┅┅┅┅┅┅┅┅┅ 2分 两边关于x 求导,得1()()22y x y xy x '-+= 即14y y x '-=- ┅┅┅┅┅┅┅┅┅┅ 3分 该方程为一阶线性微分方程,由常数变易公式得(4)dx dx x x y e e dx C -⎡⎤⎰⎰=-+⎢⎥⎣⎦⎰┅┅┅┅┅┅┅┅┅┅┅ 4分14x dx C x ⎡⎤=-+⎢⎥⎣⎦⎰ (4ln )x x C =-+ ┅┅┅┅┅┅┅┅┅┅┅┅┅ 6分 由1|1x y ==得,1C =所求方程为4ln y x x x =-+┅┅┅┅┅┅┅┅┅┅┅┅ 7分七.(本题满分8分)求微分方程2x y y y xe '''--=的通解解:该方程为二阶常系数非齐次线性微分方程,且()f x 为()x m P x e λ型(其中()m P x x =,1λ=) 与所给方程对应的齐次方程为20y y y '''--=它的特征方程 220r r --=┅┅┅┅┅┅┅┅┅┅┅┅ 2分 特征根11r =-,22r =齐次方程的通解为212x x Y C e C e -=+┅┅┅┅┅┅┅┅┅ 4分 由于1λ=不是特征根,设()x y ax b e *=+ ┅┅┅┅┅┅ 5分 代入原方程得 22ax a b x -+-=由比较系数法得2120a ab -=⎧⎨-=⎩,解得11,24a b =-=-, 1(21)4x y x e *=-+,┅┅┅┅┅┅┅┅┅┅┅┅┅┅┅┅ 7分 所求通解为2121(21)4x x x y C e C e x e -=+-+┅┅┅┅┅┅8分。

大一高等数学期末考试试卷及答案详解

大一高等数学期末考试试卷及答案详解

大一高等数学期末考试试卷一、选择题(共12分)1。

(3分)若2,0,(),0x e x f x a x x ⎧<=⎨+>⎩为连续函数,则a 的值为( )。

(A)1 (B )2 (C )3 (D )-12。

(3分)已知(3)2,f '=则0(3)(3)lim 2h f h f h→--的值为( )。

(A )1 (B )3 (C )—1 (D)123。

(3分)定积分22ππ-⎰的值为( ).(A)0 (B)—2 (C )1 (D )24. (3分)若()f x 在0x x =处不连续,则()f x 在该点处( ).(A)必不可导 (B )一定可导(C )可能可导 (D )必无极限二、填空题(共12分)1.(3分) 平面上过点(0,1),且在任意一点(,)x y 处的切线斜率为23x 的曲线方程为 .2。

(3分) 1241(sin )x x x dx -+=⎰ 。

3. (3分) 201lim sin x x x→= . 4。

(3分) 3223y x x =-的极大值为 。

三、计算题(共42分)1. (6分)求20ln(15)lim .sin 3x x x x →+ 2. (6分)设2,1y x =+求.y ' 3. (6分)求不定积分2ln(1).x x dx +⎰4. (6分)求30(1),f x dx -⎰其中,1,()1cos 1, 1.x x x f x x e x ⎧≤⎪=+⎨⎪+>⎩5. (6分)设函数()y f x =由方程00cos 0y xt e dt tdt +=⎰⎰所确定,求.dy 6. (6分)设2()sin ,f x dx x C =+⎰求(23).f x dx +⎰7. (6分)求极限3lim 1.2nn n →∞⎛⎫+ ⎪⎝⎭四、解答题(共28分)1. (7分)设(ln )1,f x x '=+且(0)1,f =求().f x2. (7分)求由曲线cos 22y x x ππ⎛⎫=-≤≤ ⎪⎝⎭与x 轴所围成图形绕着x 轴旋转一周所得旋转体的体积。

大一高等数学期末模拟试卷五套

大一高等数学期末模拟试卷五套

大一高等数学期末模拟试卷(一)一、填空题(本题共5小题,每小题4分,共20分).(1)210)(cos lim x x x →=_____e 1.(2)曲线x x y ln =上与直线01=+-y x 平行的切线方程为___1-=x y ______.(3)已知xx xe e f -=')(,且0)1(=f ,则=)(x f ______=)(x f 2)(ln 21x _____.(4)曲线132+=x x y 的斜渐近线方程为.9131-=x y (5)微分方程522(1)1'-=++y y x x 的通解为_________.)1()1(32227+++=x C x y 二、选择题(本题共5小题,每小题4分,共20分).(1)下列积分结果正确的是(D )(A)0111=⎰-dx x (B)21112-=⎰-dx x (C)+∞=⎰∞+141dx x (D)+∞=⎰∞+11dx x (2)函数)(x f 在],[b a 内有定义,其导数)('x f 的图形如图1-1所示,则(D).(A)21,x x 都是极值点.(B)()())(,,)(,2211x f x x f x 都是拐点.(C)1x 是极值点.,())(,22x f x 是拐点.(D)())(,11x f x 是拐点,2x 是极值点.图1-1(3)函数212e e e x x xy C C x -=++满足的一个微分方程是(D ).(A)23e .xy y y x '''--=(B)23e .xy y y '''--=(C)23e .x y y y x '''+-=(D)23e .xy y y '''+-=(4)设)(x f 在0x 处可导,则()()000limh f x f x h h→--为(A).(A)()0f x '.(B)()0f x '-.(C)0.(D)不存在(5)下列等式中正确的结果是(A).(A)(())().f x dx f x '=⎰(B)()().=⎰df x f x (C)[()]().d f x dx f x =⎰(D)()().f x dx f x '=⎰三、计算题(本题共4小题,每小题6分,共24分).1.求极限)ln 11(lim 1x x x x --→.解ln 11(lim 1x x x x --→=xx x x x x ln )1(1ln lim1-+-→1分)(x f y '=y O1x 2x ab x=x xx x x ln 1ln lim1+-→2分=x x x x x x ln 1ln lim1+-→1分=211ln 1ln 1lim 1=+++→x x x 2分2.方程⎩⎨⎧+==tt t y t x sin cos sin ln 确定y 为x 的函数,求dx dy 与22dx yd .解,sin )()(t t t x t y dx dy =''=(3分).sin tan sin )()sin (22t t t t t x t t dxy d +=''=(6分)3.计算不定积分.2arctan 22(1) =2arctan arctan 2 =arctan 2d x C =----------+-------+---------⎰⎰分分(分4.计算定积分⎰++3011dxx x.解⎰⎰-+-=++3030)11(11dx x x x dx x x ⎰+--=3011(dx x (3分)35)1(3233023=++-=x (6分)(或令t x =+1)四、解答题(本题共4小题,共29分).1.(本题6分)解微分方程256xy y y xe '''-+=.2122312*20101*223212-56012,31.1()111.21(1)121(1).12x x x x x x x r r r r e C e y x b x b e b b y x x e y e C e x x e +=----------==----------+-------=+-----------=-=-=-------------=+-+----解:特征方程分特征解.分 次方程的通解Y =C 分令分代入解得,所以分所以所求通解C 分2.(本题7分)一个横放着的圆柱形水桶(如图4-1),桶内盛有半桶水,设桶的底半径为R ,水的比重为γ,计算桶的一端面上所受的压力.解:建立坐标系如图220322203*********RR P g R x g R x g R ρρρρ=---------=--------=--------=----------------⎰⎰分)分[()]分分3.(本题8分)设()f x 在[,]a b 上有连续的导数,()()0f a f b ==,且2()1baf x dx =⎰,试求()()baxf x f x dx'⎰.222()()()()21 ()221 =[()]()2211=0222b baabab b aaxf x f x dx xf x df x xdf x xf x f x dx '=-----=---------=----------⎰⎰⎰⎰解:分分分分4.(本题8分)过坐标原点作曲线xy ln =的切线,该切线与曲线x y ln =及x 轴围成平面图形D.(1)(3)求D 的面积A;(2)(4)求D 绕直线e x =旋转一周所得旋转体的体积V.解:(1)设切点的横坐标为x ,则曲线x y ln =在点)ln ,(00x x 处的切线方程是).(1ln 000x x x x y -+=----1分由该切线过原点知01ln 0=-x ,从而.0e x =所以该切线的方程为.1x ey =----1分平面图形D 的面积⎰-=-=1.121)(e dy ey e A y ----2分(2)切线xe y 1=与x 轴及直线e x =所围成的三角形绕直线e x =旋转所得的圆锥体积为.3121e V π=2分曲线x y ln =与x 轴及直线e x =所围成的图形绕直线e x =旋转所得的旋转体体积为dye e V y 212)(⎰-=π,1分xyxyO1e1D因此所求旋转体的体积为).3125(6)(312102221+-=--=-=⎰e e dy e e e V V V y πππ1分五、证明题(本题共1小题,共7分).1.证明对于任意的实数x ,1xe x ≥+.解法一:2112xe e x x xξ=++≥+解法二:设() 1.xf x e x =--则(0)0.f =1分因为() 1.xf x e '=-1分当0x ≥时,()0.f x '≥()f x 单调增加,()(0)0.f x f ≥=2分当0x ≤时,()0.f x '≤()f x 单调增加,()(0)0.f x f ≥=2分所以对于任意的实数x ,()0.f x ≥即1x e x ≥+。

最新大一下学期高等数学期末考试试题及答案

最新大一下学期高等数学期末考试试题及答案

最新大一下学期高等数学期末考试试题及答案院(系)别班级 学号 姓名成绩一、填空题:(本题共5小题,每小题4分,满分20分,把答案直接填在题中横线上)1、已知向量a 、b 满足0a b +=,2a =,2b =,则a b ⋅= .2、设ln()z x xy =,则32zx y ∂=∂∂ .3、曲面229x y z ++=在点(1,2,4)处的切平面方程为 .4、设()f x 是周期为2π的周期函数,它在[,)ππ-上的表达式为()f x x =,则()f x 的傅里叶级数 在3x =处收敛于 ,在x π=处收敛于 .5、设L 为连接(1,0)与(0,1)两点的直线段,则()Lx y ds +=⎰ .※以下各题在答题纸上作答,答题时必须写出详细的解答过程,并在每张答题纸写上:姓名、学号、班级. 二、解下列各题:(本题共5小题,每小题7分,满分35分)1、求曲线2222222393x y z z x y⎧++=⎪⎨=+⎪⎩在点0M (1,1,2)-处的切线及法平面方程. 2、求由曲面2222z x y =+及226z x y =--所围成的立体体积.3、判定级数11(1)lnn n n n∞=+-∑是否收敛?如果是收敛的,是绝对收敛还是条件收敛? 4、设(,)sin x z f xy y y =+,其中f 具有二阶连续偏导数,求2,z zx x y∂∂∂∂∂. 5、计算曲面积分,dSz ∑⎰⎰其中∑是球面2222x y z a ++=被平面(0)z h h a =<<截出的顶部.三、(本题满分9分)抛物面22z x y =+被平面1x y z ++=截成一椭圆,求这椭圆上的点到原点的距离的最大值与最小值.四、 (本题满分10分)计算曲线积分(sin )(cos )x x Le y m dx e y mx dy -+-⎰,其中m 为常数,L 为由点(,0)A a 至原点(0,0)O 的上半圆周22(0)x y ax a +=>.五、(本题满分10分)求幂级数13nn n x n∞=⋅∑的收敛域及和函数.六、(本题满分10分)计算曲面积分332223(1)I x dydz y dzdx zdxdy ∑=++-⎰⎰,其中∑为曲面221(0)z x y z =--≥的上侧.七、(本题满分6分)设()f x 为连续函数,(0)f a =,222()[()]tF t z f x y z dv Ω=+++⎰⎰⎰,其中t Ω是由曲面z =与z =所围成的闭区域,求 30()lim t F t t+→.-------------------------------------备注:①考试时间为2小时;②考试结束时,请每位考生按卷面→答题纸→草稿纸由表及里依序对折上交; 不得带走试卷.高等数学A(下册)期末考试试题【A 卷】参考解答与评分标准一、填空题【每小题4分,共20分】 1、4-; 2、21y-;3、2414x y z ++=; 4、3,0; 5二、试解下列各题【每小题7分,共35分】1、解:方程两边对x 求导,得323dydz y z x dx dx dy dz y z xdxdx ⎧+=-⎪⎪⎨⎪-=-⎪⎩, 从而54dy x dx y =-,74dz x dx z =…………..【4】 该曲线在()1,1,2-处的切向量为571(1,,)(8,10,7).488T == (5)故所求的切线方程为1128107x y z -+-==………………..【6】 法平面方程为()()()81101720x y z -+++-= 即 810712x y z ++= (7)2、解:2222226z x y z x y⎧=+⇒⎨=--⎩222x y +=,该立体Ω在xOy 面上的投影区域为22:2xy D x y +≤.…..【2】 故所求的体积为Vdv Ω=⎰⎰⎰222620202(63)6d d dz d πρρθρπρρπ-==-=⎰⎰ (7)3、解:由11lim lim ln(1)lim ln(1)10nn n n n n u n n n →∞→∞→∞=+=+=>,知级数1n n u ∞=∑发散 (3)又111||ln(1)ln(1)||1nn u u n n +=+>+=+,1lim ||lim ln(1)0n n n u n→∞→∞=+=.故所给级数收敛且条件收敛.【7】4、解:121211()0z f y f yf f x y y∂''''=⋅+⋅+=+∂, …………………………………【3】 2111122212222211[()][()]z x xf y f x f f f x f x y y y y y ∂''''''''''=+⋅+⋅--+⋅+⋅-∂∂111222231.x f xyf f f y y''''''=+--【7】 5、解:∑的方程为z =,∑在xOy 面上的投影区域为2222{(,)|}xy D x y x y a h =+≤-.=…..………【3】故22222200xy D dS adxdy d a d z a x y a πρρθρ∑==---⎰⎰⎰⎰⎰22012ln()2ln 2aa a a hπρπ⎡=--=⎢⎥⎣⎦..【7】三、【9分】解:设(,,)M x y z 为该椭圆上的任一点,则点M到原点的距离为d =【1】令22222(,,)()(1)L x y z x y z z x y x y z λμ=+++--+++-,则由22220220201x y z L x x L y y L z z x yx y z λμλμλμ=-+=⎧⎪=-+=⎪⎪=++=⎨⎪=+⎪++=⎪⎩,解得12x y -±==,23z =.于是得到两个可能极值点121111(,(2222M M --+---+…………………【7】 又由题意知,距离的最大值和最小值一定存在,所以距离的最大值与最小值分别在这两点处取得.故max 2min 1||||d OM d OM ==== (9)四、【10分】 解:记L 与直线段OA 所围成的闭区域为D ,则由格林公式,得22(sin )(cos )8x x DL OAI e y m dx e y mx dy m d ma πσ+=-+-=-=-⎰⎰⎰. (5)而1(sin )(cos )ax xOAI e y m dx e y mx dy m dx ma =-+-=-=-⎰⎰ (8)∴221(sin )(cos ).8x x Le y m dx e y mx dy I I ma ma π-+-=-=-⎰ (10)五、【10分】解:()1131limlim 3133n n n n n na n R a n ρ++→∞→∞===⇒=+,收敛区间为 (3,3)-…………【2】 又当3x =时,级数成为11n n∞=∑,发散;当3x =-时,级数成为()11nn n ∞=-∑,收敛.……【4】 故该幂级数的收敛域为[)3,3- (5)令()13nn n x s x n ∞==∑(33x -≤<),则11111111()()33331/33n n n n n x x s x x x -∞∞-=='====--∑∑, (||3x <) ……【8】 于是()()000()()ln 3ln 3ln 33x xx dxs x s x dx x x x '===--=---⎰⎰,(33x -≤<) (10)六、【10分】解:取1∑为220(1)z x y =+≤的下侧,记∑与1∑所围成的空间闭区域为Ω,则由高斯公式,有()()133222222316I x dydz y dzdx z dxdy x y z dv ∑+∑Ω=++-=++⎰⎰⎰⎰⎰ (5)()2211262d d z dz πρθρρρπ-=+=⎰⎰⎰ (7)而()()221133221122313133x y I x dydz y dzdx z dxdy z dxdy dxdy π∑∑+≤=++-=-==⎰⎰⎰⎰⎰⎰ (9)2123.I I I πππ∴=-=-=- (10)七、【6分】解:()()2224000sin cos tF t d d r f r r dr ππθϕϕϕ⎡⎤=+⎣⎦⎰⎰⎰….… 【2】 ()3224400002sin cos sin t t d r dr d f r r dr πππϕϕϕϕϕ⎡⎤=+⎢⎥⎣⎦⎰⎰⎰⎰(()422028tt r f r dr π⎡⎤=+⎢⎥⎣⎦⎰….… 【4】 故()(3222320002()222limlim lim ().333t t t t t f t F t f t a t t π+++→→→⎡⎤+⎢⎥-⎣⎦=== 【6】。

大一下高等数学期末试卷

大一下高等数学期末试卷

大一下高等数学期末试卷篇一:大一下学期高等数学期末考试试题及答案高等数学A(下册)期末考试试题【A卷】院(系)别班级学号姓名成绩一、填空题:(本题共5小题,每小题4分,满分20分,把答案直接填在题中横线上)1、已知向量a、b满足a?b?0,a?2,b?2,则a?b??3z2、设z?xln(xy),则? 2?x?y3、曲面x2?y2?z?9在点(1,2,4)处的切平面方程为.4、设f(x)是周期为2?的周期函数,它在[??,?)上的表达式为f(x)?x,则f(x)的傅里叶级数在x?3处收敛于,在x??处收敛于.5、设L为连接(1,0)与(0,1)两点的直线段,则?(x?y)ds?.L※以下各题在答题纸上作答,答题时必须写出详细的解答过程,并在每张答题纸写上:姓名、学号、班级.二、解下列各题:(本题共5小题,每小题7分,满分35分)222??2x?3y?z?91、求曲线?2在点M0(1,?1,2)处的切线及法平面方程.22??z?3x?y2、求由曲面z?2x?2y及z?6?x?y所围成的立体体积.3、判定级数2222?(?1)nlnn?1?n?1是否收敛?如果是收敛的,是绝对收敛还是条件收敛?nx?z?2z4、设z?f(xy,)?siny,其中f具有二阶连续偏导数,求.,y?x?x?y5、计算曲面积分dS2222,其中是球面被平面z?h(0?h?a)截出的顶部.x?y?z?a???z?三、(本题满分9分)抛物面z?x2?y2被平面x?y?z?1截成一椭圆,求这椭圆上的点到原点的距离的最大值与最小值.四、(本题满分10分)。

大一高等数学期末考试试卷及复习资料详解

大一高等数学期末考试试卷及复习资料详解

大一高等数学期末考试试卷及复习资料详解大一高等数学期末考试试卷(一)一、选择题(共12分)1.(3分)若/3= 2XXV0,为连续函数,则d的值为().a+ x,x>0(A)I (B) 2 (C)3 (D)-I2.(3分)已知厂⑶=2,则Ii y "7⑶的值为().λ→0 2hOOl (B) 3 (C)-I (D)I23.(3分)定积分∫>Λ∕1-COS23Xdx的值为()•■⑷ 0 (B)-2 (C)I (D) 24.(3分)若/⑴在“勺处不连续,则/3在该点处()・(A)必不可导(B)—定可导(C)可能可导(D)必无极限二、填空题(共12分)1.(3分)平面上过点(0,1),且在任意一点(Λ∙,y)处的切线斜率为3疋的曲线方程为_________________________ .2.( 3 分)∫ ι(x2+x4 Sin XyIX = _______ 1-3.(3 分)IilnX2 Sin丄= ・.r→υX4.(3分)y = 2√ -3√的极大值为________________ —2 (6分)设尸冕,求*JT + 1三、计算题(共42分)1.(6 分)求Iim史S.∙*→υ Sin 3x^3.(6分)求不定积分JXIn(I+十)厶.x .v<ι4.(6 分)求J /(X-1)JΛ∖其中/(x)= < l + cosχ,e' +l,x> 1.5.(6分)设函数y = f(x)由方程JO e,M + [cos∕d∕ = 0所确定,求dy.6.( 6 分)设 f f{x)dx = Sin + C,求j + 3)dx.7.(6 分)求极限IinJI÷-Γn→30k 2/7 7四、解答题(共28分)1.(7 分)设,Γ(lnx) = l+x,且/(0) = 1,求32.(7分)求由曲线y = cosx[-^-<x<^及X轴所围成图形绕着X轴旋I 2 2)转一周所得旋转体的体积.3.(7分)求曲线y = x3-3√÷24x-19在拐点处的切线方程•4.(7分)求函数y = x + √∏7在[-5,1]上的最小值和最大值.五、证明题(6分)设厂(X)在区间[“]上连续,证明i a f^dx = ¥ [/(“) + f(b)]+1 [(X - a)(x - b)fj)dx.(二)一、填空题(每小题3分,共18分)1.设函数/(χ)= 2χ2~1 ,则"1是心)的第_________ 类间断点.X -3x + 23.=∙v→∞V X)4・ 曲线 V 在点(扣)处的切线方程 为 ・5 .函数J = 2X 3-3X 2在[-1,4]上的最大值 _________________ ,最小值 __________ .二、 单项选择题(每小题4分,共20分)1.数列&”}有界是它收敛的( )•(A)必要但非充分条件; (C)充分必要条件; 2.下列各式正确的是((B)充分但非必要条件; (D)无关条件.)・(A) je-χdx=e"x+C i(B) J In X(IX = _ + C ; (C)JI 2∕x=2hl (l 2x)+C ;(D) f —5—JX = Inlllx+ C ・' ,J XInX3-设/(x)在RM 上,广(x)>O 且厂(x)>0,则曲线y = f(x)在[“问上•6.∣∙arctanx J l +x 2(IX(小沿X轴正向上升且为凹(B)沿兀轴正向下降且为凹的;的;(D)沿X轴正向下降且为凸(C)沿兀轴正向上升且为凸的;的.则/(x)在兀=0处的导? :( )•4. 设/(*)=XInX ’⑷等于1;(C)等于O ;(D)不存在•5.已知Ihn/(x)= 2,以下结论正确的是()•G)函数在工=1处有定义且/(1)=2 ; (B)函数在;V = I处的某去心邻域内有定义;(C)函数在2 1处的左侧某邻域内有定义;(D)函数在21处的右侧某邻域内有定义.三、计算(每小题6分,共36分)1.求极限:HlnX2 sinx→0X2.已知y = ln(l + χ2),求几3.求函数J = >0)的导数.5.J X COS XdX ・丄 16.方程y x =X y确定函数y = f(x)f求八四、(H)分)已知/为/(X)的一个原函数,求∫x2∕(x}∕x.五、(6分)求曲线,=壮7的拐点及凹凸区间.六、(10 分)设J广(√∑)/X = X(e、' +1)+C ,求/(X)・(三)填空题(本题共5小题,每小题4分,共20分)・±J_(1)⅛(COSX)r = ________ 石________ .(2)曲线A = Xlnx上及直线X-y + l= °平行的切线方程为y =x-∖(3 )已知f f(e x) = xe~x,且/(D = O ,则大一高等数学期末考试试卷及复习资料详解/(X)= _________ /Cv)= 2(In X)________ .X 211(4)曲线V =3777的斜渐近线方程为 _______ V= 3Λ^9,二、选择题(本题共5小题,每小题4分,共20分)・(1)下列积分结果正确的是(D )(2)函数/W 在[恥]内有定义,其导数广⑴的图形如图1-1所示, 则(D ) •(A)刁宀都是极值点.⑻ g ,/3)),(£,/(£))都是拐点.(C) F 是极值点.,U 是拐点. (D) WJy))是拐点,勺是极值点.(3) 函数y = qe v ÷C 2e-÷A -e'满足的一个微分方程是(D ).(A) /-y-2>∙ = 3xe t . (B) /-y-2y = 3e v . (C) / + y-2y = 3Λ∙e c .(D) / + y~2y = 3e r .lim∕(⅞)-∕(⅞~z0 (4) 设/W 在%处可导,则I h 为(A ) •⑷ 广仇). (B) -f ,M.(C) O. (D)不存在.(5)下列等式中正确的结果是((A) (J* /(x)"∙χ)'Z=/W-(C) 町 /(χ)"χ]=/W -) 微分方程= (V+1)-的通解为三、计算J (本 共4小题,每小题6分,共24分).y =3 _5 "3 O(或令 √Γ+χ = r)四、解答题(本题共4小题,共29分)•1. (本题6分)解微分方程r-5∕÷6j = xe -.解:特征方程r 2-5r + 6 = 0 ------------- 1分 特征解斤=2,r 2 =3. ------------ 1分 3x大一高等数学期末考试试卷及复习资料详解 恤(丄—丄)1∙求极限j X-I In —X 11. xlnx-x+1Iim (—— _ ——)IIm ---------In XIUn I XTl x-1 I---- + In xh ∖x Iim x →,X -1 + xln1.1 + In X 1 IUn -------- =— j 1 + In X +1 2Λ = In Sin t2.方程尸COSWSinf 确定V 为X 的函数,dy y ,(f)-=-一 =∕sm∕, 解 JX 十⑴求dx 及Jx 2 .(3分) (6分)arctan JX3. 4.计算不定积分J石(1+『. arctanA∕√7—— (i + χ)=21 arctan √7t∕ arctan y ∕x ——解 Hatan 仇=2 J √x(l + x)=(arctan2+C ——「一 dx4.计算定积分如+曲.'3χ(l -VTTX) 0解 分)oT7⅛7_ V dx = 一J(:(I-、/i+x)〃X(6分)LL i∖l4/1 «\ ? r V 八2.(本题7分)一个横放着的圆柱形水桶(如图4-1),桶内盛有半桶水,设桶的底半径为R ,水的比重为乙计算桶的一端面上所受的压力.解:建立坐标系如图3.(本题8分)设/B在S】上有连续的导数,f(u) = f(b) = θ9且∫O∕2(X)JΛ =1^试求∫>∕ω∕解:J:Xf(X)f∖x)dx = £ Xf(X)df(x) 2 分= -∫n^^W ------------ 2 分=IV 2(Λ-)⅛-|£72(X)厶一一2 分4.(本题8分)过坐标原点作曲线>, = h^的切线,该切线及曲线y =lnx及X轴围成平面图形D.⑴(3) 求D的面积A;⑵(4) 求D绕直线X = e旋转一周所得旋转体的体积V.解:(1)设切点的横坐标为",则曲线y = In Λ在点(⅞Jn ⅞)处的切线方程y = Inx0 + —(X-X0).氐__I分由该切线过原点知山心-1 = 0,从而心=匕所以该切线的方程为1y = -X.平面图形D的面积1V = -X(2)切线"及X轴及直线Xe所围成的三角形绕直线Xe旋转V I = -7te1所得的圆锥体积为,3 2分曲线尸IZ及X轴及直线所围成的图形绕直线Xe旋转所得的旋转体体积为V2=(oπ(e-e>)2dy9】分因此所求旋转体的体积为V=V l-V2=-^2-e y)2dy = -(5e2-∖2e + 3).五、证明题(本题共1小题,共7分)•1.证明对于任意的实数Y , eJl + x.e x = l + x + —Λ2≥l + x2解法二设fM = e x-x~^则/(0) = 0.因为f f M = e x-∖. 1 分当Xno时,f,M≥o.f(χ)单调增加,/(χ)≥∕(θ)=o.当x≤0时,∕,ω≤0.∕(Λ∙)单调增加,/(X)≥/(0) =0. 所以对于任意的实数X, ∕3≥°∙即e'≥l + I 解法三:由微分中值定理得,R -1 = “ -60 =^(X-O) = ^Xt 其中§位于0 到X 之一1分2分A = V -ey)dy = ~e~^∙解法一:2分2分1分2分间。

大一下高等数学期末试题_(精确答案)

大一下高等数学期末试题_(精确答案)

一、单选题(共15分,每小题3分)1.设函数(,)f x y 在00(,)P x y 的两个偏导00(,)x f x y ,00(,)y f x y 都存在,则 ( )A .(,)f x y 在P 连续B .(,)f x y 在P 可微C . 00lim (,)x x f x y →及 00lim (,)y y f x y →都存在 D .00(,)(,)lim (,)x y x y f x y →存在2.若xyz ln =,则dz 等于( ).ln ln ln ln .x x y y y yA x y+ln ln .x y y B x ln ln ln .ln x xy y C y ydx dy x+ ln ln ln ln .x x y y y x D dx dy x y + 3.设Ω是圆柱面222x y x +=及平面01,z z ==所围成的区域,则(),,(=⎰⎰⎰Ωdxdydz z y x f ). 2120cos .(cos ,sin ,)A d dr f r r z dz πθθθθ⎰⎰⎰ 21200cos .(cos ,sin ,)B d rdr f r r z dz πθθθθ⎰⎰⎰2122cos .(cos ,sin ,)C d rdr f r r z dz πθπθθθ-⎰⎰⎰ 21cos .(cos ,sin ,)xD d rdr f r r z dz πθθθ⎰⎰⎰4. 4.若1(1)nn n a x ∞=-∑在1x =-处收敛,则此级数在2x =处( ).A . 条件收敛B . 绝对收敛C . 发散D . 敛散性不能确定5.曲线222x y z z x y-+=⎧⎨=+⎩在点(1,1,2)处的一个切线方向向量为( ). A. (-1,3,4) B.(3,-1,4) C. (-1,0,3) D. (3,0,-1)二、填空题(共15分,每小题3分)1.设220x y xyz +-=,则'(1,1)x z = .2.交 换ln 1(,)exI dx f x y dy =⎰⎰的积分次序后,I =_____________________.3.设22z xy u -=,则u 在点)1,1,2(-M 处的梯度为 .4. 已知0!n xn x e n ∞==∑,则xxe -= .5. 函数332233z x y x y =+--的极小值点是 . 三、解答题(共54分,每小题6--7分)1.(本小题满分6分)设arctan y z y x=, 求z x ∂∂,zy ∂∂.2.(本小题满分6分)求椭球面222239x y z ++=的平行于平面23210x y z -++=的切平面方程,并求切点处的法线方程.3. (本小题满分7分)求函数22z x y =+在点(1,2)处沿向量132l i j =+方向的方向导数。

大一期末考试题及答案

大一期末考试题及答案

大一期末考试题及答案本次考试涵盖了本学期所学的主要知识点,包括但不限于高等数学、线性代数、大学物理、英语等科目。

以下是部分科目的期末考试题及答案,供同学们参考。

一、高等数学1. 求函数f(x)=x^3-3x^2+2x的导数。

答案:f'(x)=3x^2-6x+22. 计算定积分∫(0,1) (x^2+1)dx。

答案:∫(0,1) (x^2+1)dx = (1/3x^3+x)|_0^1 = 1/3+1 = 4/3二、线性代数1. 求解线性方程组:\begin{cases}x + 2y - z = 1 \\2x - y + z = 0 \\-x + 3y + 2z = 5\end{cases}答案:\begin{cases}x = 2 \\y = 1 \\z = -1\end{cases}2. 证明矩阵A=\begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}是可逆的,并求其逆矩阵。

答案:矩阵A的行列式为-5,因为行列式不为0,所以矩阵A是可逆的。

逆矩阵A^{-1}=\begin{bmatrix} -4/5 & 2/5 \\ 3/5 & -1/5\end{bmatrix}。

三、大学物理1. 一物体以初速度v0=10m/s沿水平方向抛出,忽略空气阻力,求物体落地时的速度大小。

答案:根据机械能守恒,物体落地时的速度大小为v=\sqrt{v0^2+2gh}=\sqrt{10^2+2*9.8*h},其中h为物体抛出的高度。

2. 一质量为m的物体在水平面上受到一恒定的拉力F作用,摩擦力为f,求物体的加速度a。

答案:根据牛顿第二定律,a=(F-f)/m。

四、英语1. Translate the following sentence into English: "随着科技的发展,人们的生活变得越来越方便。

"答案:"With the development of technology, people's lives are becoming more and more convenient."2. Fill in the blanks with the correct prepositions: He isvery interested in ________ music.答案:in以上是部分科目的期末考试题及答案,希望对同学们有所帮助。

大一高等数学期末考试试卷及答案详解

大一高等数学期末考试试卷及答案详解

广告:本教程由购物省钱的送券网( )整理提供领红包:支付宝首页搜索“736486”即可领取支付宝红包哟领下面余额宝红包才是大红包,一般都是5-10元 支付的时候把支付方式转为余额宝就行呢 没钱往里冲点 每天都可以领取哟!下方是正文:大一高等数学期末考试试卷一、选择题(共12分)1. (3分)若2,0,(),0x e x f x a x x ⎧<=⎨+>⎩为连续函数,则a 的值为( ).(A)1 (B)2 (C)3 (D)-12. (3分)已知(3)2,f '=则0(3)(3)lim 2h f h f h→--的值为( ). (A)1 (B)3 (C)-1 (D)123. (3分)定积分22ππ-⎰的值为( ). (A)0 (B)-2 (C)1 (D)24. (3分)若()f x 在0x x =处不连续,则()f x 在该点处( ).(A)必不可导 (B)一定可导(C)可能可导 (D)必无极限二、填空题(共12分)1.(3分) 平面上过点(0,1),且在任意一点(,)x y 处的切线斜率为23x 的曲线方程为 .2. (3分) 1241(sin )x x x dx -+=⎰ . 3. (3分) 201lim sin x x x→= . 4. (3分) 3223y x x =-的极大值为 .三、计算题(共42分)1. (6分)求20ln(15)lim .sin 3x x x x→+2. (6分)设y =求.y ' 3. (6分)求不定积分2ln(1).x x dx +⎰4. (6分)求30(1),f x dx -⎰其中,1,()1cos 1, 1.x x x f x x e x ⎧≤⎪=+⎨⎪+>⎩5. (6分)设函数()y f x =由方程00cos 0yxt e dt tdt +=⎰⎰所确定,求.dy 6. (6分)设2()sin ,f x dx x C =+⎰求(23).f x dx +⎰7. (6分)求极限3lim 1.2nn n →∞⎛⎫+ ⎪⎝⎭四、解答题(共28分)1. (7分)设(ln )1,f x x '=+且(0)1,f =求().f x2. (7分)求由曲线cos 22y x x ππ⎛⎫=-≤≤ ⎪⎝⎭与x 轴所围成图形绕着x 轴旋转一周所得旋转体的体积.3. (7分)求曲线3232419y x x x =-+-在拐点处的切线方程.4. (7分)求函数y x =+[5,1]-上的最小值和最大值.五、证明题(6分)设()f x ''在区间[,]a b 上连续,证明1()[()()]()()().22bb a ab a f x dx f a f b x a x b f x dx -''=++--⎰⎰ 标准答案一、 1 B; 2 C; 3 D; 4 A.二、 1 31;y x =+ 2 2;33 0;4 0. 三、 1 解 原式205lim 3x x x x →⋅= 5分53= 1分 2 解22ln ln ln(1),12x y x x ==-++Q 2分2212[]121x y x x '∴=-++ 4分 3 解 原式221ln(1)(1)2x d x =++⎰ 3分 222212[(1)ln(1)(1)]21x x x x dx x=++-+⋅+⎰ 2分2221[(1)ln(1)]2x x x C =++-+ 1分 4 解 令1,x t -=则 2分3201()()f x dx f t dt -=⎰⎰ 1分1211(1)1cos t t dt e dt t-=+++⎰⎰ 1分 210[]t e t =++ 1分 21e e =-+ 1分5 两边求导得cos 0,y e y x '⋅+= 2分cos y x y e '=-Q 1分 cos sin 1x x =- 1分 cos sin 1x dy dx x ∴=- 2分 6 解 1(23)(23)(22)2f x dx f x d x +=++⎰⎰ 2分21sin(23)2x C =++ 4分 7 解 原式=23323lim 12n n n ⋅→∞⎛⎫+ ⎪⎝⎭4分 =32e 2分四、1 解 令ln ,x t =则,()1,t t x e f t e '==+ 3分()(1)t f t e dt =+⎰=.t t e C ++ 2分(0)1,0,f C =∴=Q 2分().x f x x e ∴=+ 1分2 解 222cos x V xdx πππ-=⎰ 3分 2202cos xdx ππ=⎰ 2分 2.2π=2分 3 解 23624,66,y x x y x '''=-+=- 1分 令0,y ''=得 1.x = 1分当1x -∞<<时,0;y ''< 当1x <<+∞时,0,y ''> 2分 (1,3)∴为拐点, 1分该点处的切线为321(1).y x =+- 2分4 解1y '=-= 2分 令0,y '=得3.4x = 1分35(5)5 2.55,,(1)1,44y y y ⎛⎫-=-+≈-== ⎪⎝⎭ 2分∴ 最小值为(5)5y -=-+最大值为35.44y ⎛⎫= ⎪⎝⎭ 2分 五、证明()()()()()()bba a x a xb f x x a x b df x '''--=--⎰⎰ 1分 [()()()]()[2()b b a a x a x b f x f x x a b dx ''=----+⎰ 1分[2()()b a x a b df x =--+⎰ 1分{}[2()]()2()b b a a x a b f x f x dx =--++⎰ 1分()[()()]2(),b a b a f a f b f x dx =--++⎰ 1分移项即得所证. 1分。

武汉理工大学大一(下)高数期末试题

武汉理工大学大一(下)高数期末试题

武汉理工大学高等数学(下)考试试题一、填空题(每题4分,共16分)1.(4分) 级数1n n u ∞=∑收敛的必要条件是 .2. (4分) 交换二次积分的次序100(,)ydy f x y dx ⎰⎰= .3. (4分) 微分方程2442xy y y x e '''-+=的一个特解形式可以设为 .4. (4分) 在极坐标系下的面积元素d σ= . 二、 选择题(每题4分,共16分)1. (4分) 已知曲面224z x y =--上点P 处的切平面平行于平面2210x y z ++-=,则点P 的坐标是 ( ).A. (1,-1,2);B. (-1,1,2);C. (1,1,2);D. (-1,-1,2).2. (4分) 级数13121(1)n n n ∞-=-∑为( ). A.绝对收敛; B. 条件收敛; C.发散; D. 收敛性不确定.3. (4分) 若∑是锥面222x y z +=被平面0z =与1z =所截下的部分,则曲面积分22()x y dS ∑+=⎰⎰( ).A. 1200d r rdr πθ⋅⎰⎰; B. 21200d r rdr πθ⋅⎰⎰;C.1200d r rdr πθ⋅⎰;D.21200d r rdr πθ⋅⎰.4. (4分)幂级数11(1)n nn n ∞-=-∑( ).A. 2;R =B.1;2R = C.3;R = D.1.3R =三、 解答题(每题7分,共63分)1.(7分) 设sin(),xy z x y e =++求dz .2. (7分) 计算三重积分,I xdxdydz Ω=⎰⎰⎰其中Ω为三个坐标面及平面21x y z ++=所围成的闭区域.3. (7分) 求(1)I y z dS ∑=++⎰⎰,其中∑是平面5y z +=被圆柱面2225x y +=截出的有限部分.4. (7分) 求幂级数1(1)(1)nnn x n ∞=--∑的收敛域.5. (7分) 将21()2f x x x=--展开为麦克劳林级数.6. (7分) 求曲线积分(sin )(cos 1)xxL I e y y dx e y dy =-+-⎰,其中L 为22x y ax +=上从(,0)A a 到(0,0)O 的上半圆周.7. (7分) 求微分方程24y xy x '+=在初始条件03x y ==下的特解. 8. (7分) 求曲面积分(1)(22)(33)I x dydz y dzdx z dxdy ∑=+++++⎰⎰ ,其中∑为曲面2224x y z ++=的内侧.9.(7分) 计算曲线积分()LI x y ds =+⎰,其中L 是以(0,0)O ,(1,0),(0,1)A B 为顶点的三角形折线.四、(5分) 试确定参数t 的值,使得在不含直线0y =上点的区域上,曲线积分222222()()ttCx x y x x y I dx dy yy++=-⎰与路径无关,其中C 是该区域上一条光滑曲线,并求出当C 从(1,1)A 到(0,2)B 时I 的值.评 分 标 准一、 1.lim 0;n n u →∞= 2.110(,);x dx f x y d y ⎰⎰3.*222()x y x Ax Bx C e =++;4..d rdrd σ=θ 二、 1. C; 2. A; 3.D. 4.D.三、 1.解 c o s ()xy x z x y ye =++ 3 分 c o s ()xyy z x y xe =++ 3 分[c o s ()][c o s ()x yx yd z x y y ed x x y xe d y=+++++ 7分 2.解 11122000xx y I dx dy xdz ---=⎰⎰⎰3 分11200(12)xxdx x y dy -=--⎰⎰ 5分12301(2)4x x x dx =-+⎰ 6分148=7分3.解 :5z y ∑=- 1分22:25D x y +≤ 2分(15DI y y =++-⎰⎰ 4分Ddxdy = 6分= 7分4. 解 1R = 2分当2x =时收敛 4分 当0x =时发散 6分 收敛域为(0,2]. 7分5.解 21111231212x x x x ⎡⎤⎢⎥⎢⎥=+---⎛⎫⎢⎥+ ⎪⎢⎥⎝⎭⎣⎦2分 ()11316(1)2x x =+-+ 3分0011(1)362nn n n n x x ∞∞==⎛⎫=+- ⎪⎝⎭∑∑ 5分 10111(1)32nn n n x ∞+=⎛⎫=+- ⎪⎝⎭∑ 6分 1x < 7分6.解sin x P e y y =-, cos 1xQ e y =- 1分1Q P x y∂∂-=∂∂ 3分由格林公式得DI dxdy =⎰⎰ 6分221228a a π⎛⎫==π ⎪⎝⎭ 7分 7.解()224xdxxy e C xe dx ⎰-=+⎰ 3分222[2()]xxe C e d x -=+⎰ 4分22xCe-=+ 5分将03x y ==代入上式得 1C = 6分 所求特解为22xy e -=+ 7分8.解 利用高斯公式得6I dv Ω=⎰⎰⎰ 4分4643=⋅π⋅ 6分32=π 7分9.解 ()()()O AO BB AI x y d s x y d s x y d s=+++++⎰⎰⎰ 101()2OAx y ds xdx +==⎰⎰ 2分101()2OBx y ds ydy +==⎰⎰ 4分10()(1BAx y ds x x +=+-=⎰⎰6分1I ∴=+7分四、 解2212222()(2)t P x x y ty x y y y-∂+=⋅--∂ 1分22122222()()t Q x x yx y tx xy-∂-+=⋅++∂ 2分令P Q yx∂∂=∂∂可得22(21)()0t x y ++=因为0,y ≠所以12t =-3分因曲线积分与路径无关,故取从点(1,1)A 经点(0,1)D 到点(0,2)B 的折线积分10I =+⎰ 4分1=- 5分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高等数学II
填空题
1、()1
3
1sin x x dx -+=⎰ _______________________. 2、设()1
1
x x
f x e dx e C =+⎰, 则()f x =_________________. 3、微分方程2220d y dy y dx dx
-+=的通解为_______________________. 4、函数
(,)ln 1f x y x y =--_______________.
5、椭圆22
1169
x y += 绕x 轴旋转一周所得旋转体的体积为______________________. 计算题
1、计算不定积分
2211sec dx x x ⎰. 2
、计算不定积分
dx , ()0a >.
3、计算定积分
320sin cos x x dx π⎰
4、计算定积分
1
0arcsin x dx ⎰ 解答题 1、设函数()f x 的原函数()F x 恒正, (0)1F =且()()f x F x x =, 且()f x 的表达式. 2、解微分方程()52211dy y x dx x =+++,并求出其满足初始条件01|3
x y ==-的特解. 3、设2ln z u v =,且x u y
=, 32v x y =-, 求z x ∂∂和z y ∂∂, 并写出dz . 4、设02
(), 0() , 0
x tf t dt x F x x A x ⎧⎪≠=⎨⎪=⎩⎰, 其中()f x 具有连续导数且(0)0f =. (1) 如果()F x 在点0x =处连续, 求A 的值;
(2) 在(1)的前提下, 证明()F x 在点0x =处可导, 并求(0)F '的值.
证明题
1、设函数()f x 在[],a b 上连续,且()0f x >, 令 ()()()
1 x
x a b F x f t dt dt f t =+⎰⎰, [],x a b ∈. 证明: 方程()0F x =在[],a b 上有且仅有一个实数根.
2、证明:反常积分01p I dx x
+∞=⎰(0p >)发散. 3、设二元函数()ln x y z e e =+,
证明:222222z z z x y x y ⎛⎫∂∂∂⋅= ⎪∂∂∂∂⎝⎭
.。

相关文档
最新文档