四川成都外国语学校等比数列单元测试题含答案doc

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、等比数列选择题

1.已知等比数列{}n a 中,17a =,435a a a =,则7a =( ) A .

19

B .

17

C .

13

D .7

2.在3和81之间插入2个数,使这4个数成等比数列,则公比q 为( ) A .2±

B .2

C .3±

D .3

3.“十二平均律”是通用的音律体系,明代朱载堉最早用数学方法计算出半音比例,为这个理论的发展做出了重要贡献.十二平均律将一个纯八度音程分成十二份,依次得到十三个单音,从第二个单音起,每一个单音的频率与它前一个单音的频率的比都等于122,若第六个单音的频率为f ,则( ) A .第四个单音的频率为1

122f - B .第三个单音的频率为1

42f - C .第五个单音的频率为162f

D .第八个单音的频率为1

122f

4.已知等比数列{}n a 满足12234,12a a a a +=+=,则5S 等于( ) A .40

B .81

C .121

D .242

5.等比数列{}n a 的前n 项积为n T ,且满足11a >,10210310a a ->,

1021031

01

a a -<-,则使得1n T >成立的最大自然数n 的值为( )

A .102

B .203

C .204

D .205

6.设等比数列{}n a 的公比为q ,其前n 项和为n S ,前n 项积为n T ,并且满足条件

11a >,66771

1,

01

a a a a -><-,则下列结论正确的是( ) A .681a a >

B .01q <<

C .n S 的最大值为7S

D .n T 的最大值为7T

7.明代数学家程大位编著的《算法统宗》是中国数学史上的一座丰碑.其中有一段著述“远望巍巍塔七层,红光点点倍加增,共灯三百八十一”.注:“倍加增”意为“从塔顶到塔底,相比于上一层,每一层灯的盏数成倍增加”,则该塔正中间一层的灯的盏数为( )

A .3

B .12

C .24

D .48

8.设数列{}n a 的前n 项和为n S ,且()*

2n n S a n n N =+∈,则3

a

=( )

A .7-

B .3-

C .3

D .7

9.数列{}n a 是等比数列,54a =,916a =,则7a =( ) A .8

B .8±

C .8-

D .1

10.已知数列{}n a 为等比数列,12a =,且53a a =,则10a 的值为( ) A .1或1- B .1

C .2或2

-

D .211.题目文件丢失!

12.设等差数列{}n a 的公差10,4≠=d a d ,若k a 是1a 与2k a 的等比中项,则k =( ) A .3或6 B .3 或-1 C .6

D .3

13.设等比数列{}n a 的前n 项和为n S ,若23S =,415S =,则6S =( ) A .31

B .32

C .63

D .64

14.若数列{}n a 是等比数列,且17138a a a =,则311a a =( ) A .1

B .2

C .4

D .8

15.已知等比数列的公比为2,其前n 项和为n S ,则3

3

S a =( ) A .2

B .4

C .

74 D .

158

16.已知正项等比数列{}n a 满足11

2

a =,2432a a a =+,又n S 为数列{}n a 的前n 项和,则5S =( ) A .

312

或112

B .

31

2 C .15

D .6

17.设b R ∈,数列{}n a 的前n 项和3n

n S b =+,则( ) A .{}n a 是等比数列

B .{}n a 是等差数列

C .当1b ≠-时,{}n a 是等比数列

D .当1b =-时,{}n a 是等比数列

18.已知等比数列{}n a ,7a =8,11a =32,则9a =( ) A .16

B .16-

C .20

D .16或16-19.题

目文件丢失!

20.已知等比数列{}n a 的前n 项和的乘积记为n T ,若29512T T ==,则n T 的最大值为

( ) A .152

B .142

C .132

D .122

二、多选题21.题目文件丢失!

22.在数列{}n a 中,如果对任意*

n N ∈都有

21

1n n n n

a a k a a +++-=-(k 为常数),则称{}n a 为等差比数列,k 称为公差比.下列说法正确的是( ) A .等差数列一定是等差比数列 B .等差比数列的公差比一定不为0

C .若32n

n a =-+,则数列{}n a 是等差比数列

D .若等比数列是等差比数列,则其公比等于公差比

23.设()f x 是定义在R 上恒不为零的函数,对任意实数x 、y ,都有

()()()f x y f x f y +=,若112

a =

,()()*

n a f n n N =∈,数列{}n a 的前n 项和n S 组成数列{}n S ,则有( ) A .数列{}n S 递增,且1n S < B .数列{}n S 递减,最小值为

12

C .数列{}n S 递增,最小值为

12

D .数列{}n S 递减,最大值为1

24.已知数列{}n a 的前n 项和为n S ,1+14,()n n a S a n N *

==∈,数列12(1)n n n n a +⎧⎫+⎨⎬+⎩

⎭的

前n 项和为n T ,n *∈N ,则下列选项正确的是( ) A .24a =

B .2n

n S =

C .38

n T ≥

D .12

n T <

25.设n S 为等比数列{}n a 的前n 项和,满足13a =,且1a ,22a -,34a 成等差数列,则下列结论正确的是( ) A .1

13()2

n n a -=⋅-

B .36n

n S a =+

C .若数列{}n a 中存在两项p a ,s a

3a =,则19p s +的最小值为83

D .若1

n n t S m S ≤-

≤恒成立,则m t -的最小值为116

26.已知数列{}n a 的前n 项和为n S 且满足111

30(2),3

n n n a S S n a -+=≥=,下列命题中正确的是( )

相关文档
最新文档