文科立体几何解答题类型总结及其答案
全国通用2020_2022三年高考数学真题分项汇编专题06立体几何解答题文(含答案)

高考数学真题分项汇编专题:06 立体几何(解答题)(文科专用)1.【2022年全国甲卷】小明同学参加综合实践活动,设计了一个封闭的包装盒,包装盒如图所示:底面ABCD是边长为8(单位:cm)的正方形,△EAB,△FBC,△GCD,△HDA均为正三角形,且它们所在的平面都与平面ABCD垂直.(1)证明:EF//平面ABCD;(2)求该包装盒的容积(不计包装盒材料的厚度).【答案】(1)证明见解析;√3.(2)6403【解析】【分析】(1)分别取AB,BC的中点M,N,连接MN,由平面知识可知EM⊥AB,FN⊥BC,EM=FN,依题从而可证EM⊥平面ABCD,FN⊥平面ABCD,根据线面垂直的性质定理可知EM//FN,即可知四边形EMNF为平行四边形,于是EF//MN,最后根据线面平行的判定定理即可证出;(2)再分别取AD,DC中点K,L,由(1)知,该几何体的体积等于长方体KMNL−EFGH的体积加上四棱锥B−MNFE体积的4倍,即可解出.(1)如图所示:,分别取AB,BC 的中点M,N ,连接MN ,因为△EAB,△FBC 为全等的正三角形,所以EM ⊥AB,FN ⊥BC ,EM =FN ,又平面EAB ⊥平面ABCD ,平面EAB ∩平面ABCD =AB ,EM ⊂平面EAB ,所以EM ⊥平面ABCD ,同理可得FN ⊥平面ABCD ,根据线面垂直的性质定理可知EM//FN ,而EM =FN ,所以四边形EMNF 为平行四边形,所以EF//MN ,又EF ⊄平面ABCD ,MN ⊂平面ABCD ,所以EF//平面ABCD . (2)如图所示:,分别取AD,DC 中点K,L ,由(1)知,EF//MN 且EF =MN ,同理有,HE//KM,HE =KM ,HG//KL,HG =KL ,GF//LN,GF =LN ,由平面知识可知,BD ⊥MN ,MN ⊥MK ,KM =MN =NL =LK ,所以该几何体的体积等于长方体KMNL −EFGH 的体积加上四棱锥B −MNFE 体积的4倍.因为MN =NL =LK =KM =4√2,EM =8sin60∘=4√3,点B 到平面MNFE 的距离即为点B 到直线MN 的距离d ,d =2√2,所以该几何体的体积V =(4√2)2×4√3+4×13×4√2×4√3×2√2=128√3+2563√3=6403√3.2.【2022年全国乙卷】如图,四面体ABCD 中,AD ⊥CD,AD =CD,∠ADB =∠BDC ,E 为AC的中点.(1)证明:平面BED⊥平面ACD;(2)设AB=BD=2,∠ACB=60°,点F在BD上,当△AFC的面积最小时,求三棱锥F−ABC 的体积.【答案】(1)证明详见解析(2)√34【解析】【分析】(1)通过证明AC⊥平面BED来证得平面BED⊥平面ACD.(2)首先判断出三角形AFC的面积最小时F点的位置,然后求得F到平面ABC的距离,从而求得三棱锥F−ABC的体积.(1)由于AD=CD,E是AC的中点,所以AC⊥DE.由于{AD=CD BD=BD∠ADB=∠CDB,所以△ADB≅△CDB,所以AB=CB,故AC⊥BD,由于DE∩BD=D,DE,BD⊂平面BED,所以AC⊥平面BED,由于AC⊂平面ACD,所以平面BED⊥平面ACD.(2)依题意AB=BD=BC=2,∠ACB=60°,三角形ABC是等边三角形,所以AC=2,AE=CE=1,BE=√3,由于AD=CD,AD⊥CD,所以三角形ACD是等腰直角三角形,所以DE=1. DE2+BE2=BD2,所以DE⊥BE,由于AC∩BE=E,AC,BE⊂平面ABC,所以DE⊥平面ABC.由于△ADB≅△CDB,所以∠FBA=∠FBC,由于{BF =BF∠FBA =∠FBC AB =CB ,所以△FBA ≅△FBC ,所以AF =CF ,所以EF ⊥AC ,由于S △AFC =12⋅AC ⋅EF ,所以当EF 最短时,三角形AFC 的面积最小值. 过E 作EF ⊥BD ,垂足为F ,在Rt △BED 中,12⋅BE ⋅DE =12⋅BD ⋅EF ,解得EF =√32,所以DF =√12−(√32)2=12,BF =2−DF =32,所以BF BD =34.过F 作FH ⊥BE ,垂足为H ,则FH//DE ,所以FH ⊥平面ABC ,且FHDE =BFBD =34, 所以FH =34,所以V F−ABC =13⋅S △ABC ⋅FH =13×12×2×√3×34=√34.3.【2021年甲卷文科】已知直三棱柱111ABC A B C -中,侧面11AA B B 为正方形,2AB BC ==,E ,F 分别为AC 和1CC 的中点,11BF A B ⊥.(1)求三棱锥F EBC -的体积;(2)已知D 为棱11A B 上的点,证明:BF DE ⊥. 【答案】(1)13;(2)证明见解析.【解析】 【分析】(1)先证明ABC 为等腰直角三角形,然后利用体积公式可得三棱锥的体积;(2)将所给的几何体进行补形,从而把线线垂直的问题转化为证明线面垂直,然后再由线面垂直可得题中的结论. 【详解】(1)由于11BF A B ⊥,11//AB A B ,所以AB BF ⊥, 又AB ⊥BB 1,1BB BF B ⋂=,故AB ⊥平面11BCC B , 则AB BC ⊥,ABC 为等腰直角三角形, 111221222BCE ABC S S ⎛⎫==⨯⨯⨯= ⎪⎝⎭△△,11111333F EBC BCE V S CF -=⨯⨯=⨯⨯=△. (2)由(1)的结论可将几何体补形为一个棱长为2的正方体1111ABCM A B C M -,如图所示,取棱,AM BC 的中点,H G ,连结11,,A H HG GB ,正方形11BCC B 中,,G F 为中点,则1BF B G ⊥, 又111111,BF A B A B B G B ⊥=,故BF ⊥平面11A B GH ,而DE ⊂平面11A B GH , 从而BF ⊥DE . 【点睛】求三棱锥的体积时要注意三棱锥的每个面都可以作为底面,例如三棱锥的三条侧棱两两垂直,我们就选择其中的一个侧面作为底面,另一条侧棱作为高来求体积.对于空间中垂直关系(线线、线面、面面)的证明经常进行等价转化.4.【2021年乙卷文科】如图,四棱锥P ABCD -的底面是矩形,PD ⊥底面ABCD ,M 为BC 的中点,且PB AM ⊥.(1)证明:平面PAM ⊥平面PBD ;(2)若1PD DC ==,求四棱锥P ABCD -的体积.【答案】(1)证明见解析;(2 【解析】 【分析】(1)由PD ⊥底面ABCD 可得PD AM ⊥,又PB AM ⊥,由线面垂直的判定定理可得AM ⊥平面PBD ,再根据面面垂直的判定定理即可证出平面PAM ⊥平面PBD ;(2)由(1)可知,AM BD ⊥,由平面知识可知,~DAB ABM ,由相似比可求出AD ,再根据四棱锥P ABCD -的体积公式即可求出. 【详解】(1)因为PD ⊥底面ABCD ,AM ⊂平面ABCD , 所以PD AM ⊥, 又PB AM ⊥,PBPD P =,所以AM ⊥平面PBD , 而AM ⊂平面PAM , 所以平面PAM ⊥平面PBD . (2)[方法一]:相似三角形法 由(1)可知AM BD ⊥. 于是∽ABD BMA ,故=AD ABAB BM.因为1,,12===BM BC AD BC AB ,所以2112BC =,即BC =故四棱锥P ABCD -的体积13=⋅⋅=V AB BC PD . [方法二]:平面直角坐标系垂直垂直法由(2)知⊥AM DB ,所以1⋅=-AM BD k k . 建立如图所示的平面直角坐标系,设2(0)BC a a =>.因为1DC =,所以(0,0)A ,(1,0)B ,(0,2)D a ,()1,M a . 从而2020(2)211001--⋅=⨯=⨯-=-=---AM BD a a k k a a a .所以2a =,即DA =. [方法三]【最优解】:空间直角坐标系法 建立如图所示的空间直角坐标系D xyz -,设||=DA t ,所以(0,0,0)D ,(0,1,0)C ,(0,0,1)P ,(,0,0)A t ,(,1,0)B t . 所以,1,02t M ⎛⎫ ⎪⎝⎭,(,1,1)PB t =-,,1,02t AM ⎛⎫=- ⎪⎝⎭.所以2110(1)1022t t PB AM t ⎛⎫⋅=⋅-+⨯+⨯-=-+= ⎪⎝⎭.所以t ,即||=DA . [方法四]:空间向量法由PB AM ⊥,得0PB AM ⋅=. 所以()0++⋅=PD DA AB AM . 即0⋅+⋅+⋅=PD AM DA AM AB AM .又PD ⊥底面ABCD ,AM 在平面ABCD 内, 因此PD AM ⊥,所以0⋅=PD AM . 所以0⋅+⋅=DA AM AB AM ,由于四边形ABCD 是矩形,根据数量积的几何意义,得221||||02-+=DA AB ,即21||102-+=BC .所以||2BC =,即BC =. 【整体点评】(2)方法一利用相似三角形求出求出矩形的另一个边长,从而求得该四棱锥的体积; 方法二构建平面直角坐标系,利用直线垂直的条件得到矩形的另一个边长,从而求得该四棱锥的体积;方法三直接利用空间直角坐标系和空间向量的垂直的坐标运算求得矩形的另一个边长,为最常用的通性通法,为最优解;方法四利用空间向量转化求得矩形的另一边长.5.【2020年新课标1卷文科】如图,D 为圆锥的顶点,O 是圆锥底面的圆心,ABC 是底面的内接正三角形,P 为DO 上一点,∠APC =90°.(1)证明:平面PAB ⊥平面PAC ;(2)设DO ,求三棱锥P −ABC 的体积.【答案】(1)证明见解析;(2【解析】 【分析】(1)根据已知可得PA PB PC ==,进而有PAC △≌PBC ,可得90APC BPC ∠=∠=,即PB PC ⊥,从而证得PC ⊥平面PAB ,即可证得结论;(2)将已知条件转化为母线l 和底面半径r 的关系,进而求出底面半径,由正弦定理,求出正三角形ABC 边长,在等腰直角三角形APC 中求出AP ,在Rt APO 中,求出PO ,即可求出结论.【详解】(1)连接,,OA OB OC ,D 为圆锥顶点,O 为底面圆心,OD ∴⊥平面ABC ,P 在DO 上,,OA OB OC PA PB PC ==∴==,ABC 是圆内接正三角形,AC BC ∴=,PAC △≌PBC ,90APC BPC ∴∠=∠=︒,即,PB PC PA PC ⊥⊥,,PA PB P PC =∴⊥平面,PAB PC ⊂平面PAC ,∴平面PAB ⊥平面PAC ;(2)设圆锥的母线为l ,底面半径为r ,圆锥的侧面积为,rl rl π==2222OD l r =-=,解得1,r l ==2sin 603AC r ==在等腰直角三角形APC 中,AP ==在Rt PAO 中,PO ===∴三棱锥P ABC -的体积为11333P ABC ABC V PO S -=⋅==△【点睛】本题考查空间线、面位置关系,证明平面与平面垂直,求锥体的体积,注意空间垂直间的相互转化,考查逻辑推理、直观想象、数学计算能力,属于中档题.6.【2020年新课标2卷文科】如图,已知三棱柱ABC –A 1B 1C 1的底面是正三角形,侧面BB 1C 1C 是矩形,M ,N 分别为BC ,B 1C 1的中点,P 为AM 上一点.过B 1C 1和P 的平面交AB 于E ,交AC 于F .(1)证明:AA 1//MN ,且平面A 1AMN ⊥平面EB 1C 1F ;(2)设O 为△A 1B 1C 1的中心,若AO =AB =6,AO //平面EB 1C 1F ,且∠MPN =π3,求四棱锥B –EB 1C 1F 的体积.【答案】(1)证明见解析;(2)24. 【解析】 【分析】(1)由,M N 分别为BC ,11B C 的中点,1//MN CC ,根据条件可得11//AA BB ,可证1MN AA //,要证平面11EB C F ⊥平面1A AMN ,只需证明EF ⊥平面1A AMN 即可;(2)根据已知条件求得11EB C F S 四边形和M 到PN 的距离,根据椎体体积公式,即可求得11B EB C F V -. 【详解】 (1),M N 分别为BC ,11B C 的中点,1//MN BB ∴又11//AA BB 1//MN AA ∴在等边ABC 中,M 为BC 中点,则BC AM ⊥ 又侧面11BB C C 为矩形, 1BC BB ∴⊥1//MN BBMN BC ⊥由MN AM M ⋂=,,MN AM ⊂平面1A AMN ∴BC ⊥平面1A AMN又11//B C BC ,且11B C ⊄平面ABC ,BC ⊂平面ABC ,11//B C ∴平面ABC又11B C ⊂平面11EB C F ,且平面11EB C F ⋂平面ABC EF =11//B C EF ∴//EF BC ∴又BC ⊥平面1A AMN∴EF ⊥平面1A AMNEF ⊂平面11EB C F∴平面11EB C F ⊥平面1A AMN(2)过M 作PN 垂线,交点为H ,画出图形,如图//AO 平面11EB C FAO ⊂平面1A AMN ,平面1A AMN ⋂平面11EB C F NP =//AO NP ∴ 又//NO AP∴6AO NP ==O 为111A B C △的中心.∴1111sin 606sin 6033ON AC =︒=⨯⨯︒=故:ON AP ==3AM AP ==平面11EB C F ⊥平面1A AMN ,平面11EB C F ⋂平面1A AMN NP =,MH ⊂平面1A AMN∴MH ⊥平面11EB C F 又在等边ABC 中EFAPBC AM =即2AP BCEF AM ⋅===由(1)知,四边形11EB C F 为梯形∴四边形11EB C F 的面积为:111126=62422EB C F EF B C S NP ++=⋅⨯=四边形 111113B EBC F EB C F V S h -∴=⋅四边形,h 为M 到PN 的距离sin 603MH =︒=, ∴1243243V =⨯⨯=. 【点睛】本题主要考查了证明线线平行和面面垂直,及其求四棱锥的体积,解题关键是掌握面面垂直转为求证线面垂直的证法和棱锥的体积公式,考查了分析能力和空间想象能力,属于中档题.7.【2020年新课标3卷文科】如图,在长方体1111ABCD A B C D -中,点E ,F 分别在棱1DD ,1BB 上,且12DE ED =,12BF FB =.证明:(1)当AB BC =时,EF AC ⊥;(2)点1C 在平面AEF 内.【答案】(1)证明见解析;(2)证明见解析.【解析】【分析】(1)根据正方形性质得AC BD ⊥,根据长方体性质得1AC BB ⊥,进而可证AC ⊥平面11BB D D ,即得结果;(2)只需证明1//EC AF 即可,在1CC 上取点M 使得12CM MC =,再通过平行四边形性质进行证明即可.【详解】(1)因为长方体1111ABCD A B C D -,所以1BB ⊥平面ABCD ∴1AC BB ⊥,因为长方体1111,ABCD A B C D AB BC -=,所以四边形ABCD 为正方形AC BD ∴⊥ 因为11,BB BD B BB BD =⊂、平面11BB D D ,因此AC ⊥平面11BB D D ,因为EF ⊂平面11BB D D ,所以AC EF ⊥;(2)在1CC 上取点M 使得12CM MC =,连,DM MF ,因为111112,//,=D E ED DD CC DD CC =,所以11,//,ED MC ED MC =所以四边形1DMC E 为平行四边形,1//DM EC ∴因为//,=,MF DA MF DA 所以M F A D 、、、四点共面,所以四边形MFAD 为平行四边形, 1//,//DM AF EC AF ∴∴,所以1E C A F 、、、四点共面,因此1C 在平面AEF 内【点睛】本题考查线面垂直判定定理、线线平行判定,考查基本分析论证能力,属中档题.。
2020年高考文科数学《立体几何》题型归纳与训练

2020年高考文科数学《立体几何》题型归纳与训练【题型归纳】题型一立体几何证明例1如图五面体中,四边形ABCD是矩形,AD⊥面ABEF,AB//EF,AD=1,AB=1EF=22,2AF=BE=2,P、Q、M分别为AE、BD、EF的中点.(1)求证:PQ//面BCE;(2)求证:AM⊥面ADF.【答案】见解析【解析】(1)连结AC.因为四边形ABCD是矩形,且Q为BD的中点,所以Q为AC的中点.又因为P为AE的中点,所以PQ//EC,又因为PQ⊄面BCE,EC⊆面BCE,所以PQ//面BCE.(2)取EF的中点M,连结AM.因为AB//EM,且QB=EM=22,所以四边形ABEM为平行四边形,所以AM//BE,且AM=BE=2.在∆AMF中,A M=AF=2,MF=22.所以AM2+AF2=MF2,故AM⊥AF.由AD⊥面ABEF,得AD⊥AM,因为AD I AF=A,所以AM⊥面ADF.【易错点】定理证明所用知识点不清楚【思维点拨】证明几何体中的线面平行与垂直关系时,要注意灵活利用空间几何体的结构特征,抓住其中的平行与垂直关系.如该题中的(1)问需要利用五面体中的面ABCD是矩形,根据对角线的性质确定线段BD与AC的中点.(2)问中利用勾股定理验证线线垂直关系,这些都是证明空间平行与垂直关系的基础.例2在平行六面体ABCD-A B C D中,AA=AB,AB⊥B C.11111111A 1D1B1C1A DBC求证:(1)AB∥平面A B C;11(2)平面ABB A⊥平面A BC.111【答案】见解析【解析】(1)在平行六面体ABCD-A B C D中,AB∥A B.111111因为AB⊄平面A B C,A B⊂平面A B C,所以AB∥平面A B C.11111111A 1D1B1C1A DBC(2)在平行六面体ABCD-A B C D中,四边形ABB A为平行四边形.111111又因为AA=AB,所以四边形ABB A为菱形,因此AB⊥A B.11111又因为AB⊥B C,BC∥B C,所以AB⊥BC.111111又因为A B I BC=B,A B⊂平面A BC,BC⊂平面A BC,所以AB⊥平面A BC.111111因为AB⊂平面ABB A,所以平面ABB A⊥平面A BC.111111【易错点】定理证明所用知识点不清楚【思维点拨】证明几何体中的线面平行与垂直关系时,要注意灵活利用空间几何体的结构特征,抓住其中的平行与垂直关系.2(题型二 立体几何体积求解例 1 如图所示,在三棱锥V - ABC 中,平面VAB ⊥ 平面 ABC ,三角形VAB 为等边三角形, AC ⊥ BC ,且 AC = BC = 2 , O , M 分别为 AB ,V A 的中点.(1)求证:VB // 平面 MOC .V(2)求证:平面 MOC ⊥ 平面 VAB .M(3)求三棱锥V - ABC 的体积.AO BC【答案】 见解析【解析】(1)依题意, O , M 分别为 AB ,V A 的中点,则 O M 是 △VAB 的中位线,所以 OM //VB , OM ⊂ 平面 MOC ,VB ⊄ 平面 MOC ,故VB // 平面 MOC .(2)因为在 △ABC 中, AC = BC ,且 O 为 AB 的中点,所以 O C ⊥ AB ,又平面VAB ⊥ 平面 ABC ,平面VAB I 平面 ABC = AB , OC ⊂ 平面 ABC ,所以 OC ⊥ 平面VAB ,又 OC ⊂ 平面 MOC ,故平面 MOC ⊥ 平面VAB .(3)由(2)知, O C ⊥ 平面VAB ,所以V V - ABC= V C -VAB 1 1 3 3= ⋅ OC = ⨯ ⨯ 22 ⨯1 =3 △SVAB 3 4 3【易错点】定理证明所用知识点不清楚【思维点拨】证明几何体中的线面平行与垂直关系时,要注意灵活利用空间几何体的结构特征,抓住其中的平行与垂直关系.例 2 如图所示,在三棱锥 P – ABC 中, P A ⊥ AB , P A ⊥ BC , AB ⊥ BC , P A = AB = BC = 2 , D 为线段 AC 的中点, E 为线段 PC 上一点.(1)求证: P A ⊥ BD ;P(2)求证:平面 BDE ⊥ 平面 PAC ;ED C(3)当 P A // 平面 BDE 时,求三棱锥 E – BCD 的体积.AB【答案】 见解析 【解析】1)因为 P A ⊥ AB ,P A ⊥ BC ,AB I BC = B ,所以 P A ⊥ 平面 ABC .又因为 BD ⊂ 平面 ABC ,所以 PA ⊥ BD .(2)因为 AB ⊥ BC , AB = BC , D 为线段 AC 的中点,所以在等腰 △RtABC 中, BD ⊥ AC .又由(1)可知,P A ⊥ BD ,P A I AC = A ,所以 BD ⊥ 平面 PAC .由 E 为线段 PC 上一点,则 DE ⊂ 平面 PAC ,所以BD⊥ED.又因为BD⊂平面BDE,所以平面BDE⊥平面PAC.(3)当P A//平面BDE时,P A⊂平面PAC,且平面PAC I平面BDE=DE,可得P A//DE.由D是AC边的中点知,E为PC边的中点.故而ED=面BDC.12P A=1,ED∥P A,因为PA⊥平面ABC,所以ED⊥平由AB=BC=2,AB⊥BC,D为AC边中点知,BD=CD= 2.又BD⊥AC,有BD⊥DC,即∠BDC=90︒.因此,VE-BCD1111 =⋅ED=⨯⨯2⨯2⨯1=.3△SBCD323【易错点】注意体积几何证明题条件的严谨性【思维点拨】证明几何体中的线面平行与垂直关系时,要注意灵活利用空间几何体的结构特征,抓住其中的平行与垂直关系.掌握线面平行的性质定理的应用及其体积的求解方法.题型三几何体的外接球问题例1(1)已知各顶点都在同一球面上的正四棱柱的高为4,体积为16,则这个球的表面积是()A.16πB.20πC.24πD.32π(2)若三棱锥的三个侧面两垂直,且侧棱长均为3,则其外接球的表面积是.【答案】C;9π【解析】(1)V=a2h=16,a=2,4R2=a2+a2+h2=4+4+16=24,S=24π,选C;(2)4R2=3+3+3=9,S=4πR2=9π【易错点】外接球球心位置不好找【思维点拨】应用补形法找外接球球心的位置题型四立体几何的计算例1如图,已知三棱锥的底面是直角三角形,直角边边长分别为3和4,过直角顶点的侧棱长为4,且垂直于底面,该三棱锥的主视图是()【答案】B4, 【解析】显然由空间直角坐标系可知,该几何体在 xoy 面内的点保持不动,在 y 轴上的点在 xoy 面内的射影为坐标原点,所以该几何体的主视图就是其在面 xoy 面的表面图形,即主视图应为高为 4 ,底面边长为 3 的直角三角形.故选 B .【易错点】 该题易出现的问题是误以为 y 轴上的点在 xoy 面的射影落在 x 轴的正半轴上而误选 D , 【思维点拨】判断几何体的三视图应注意以下几个方面:(1)明确几何体的放置位置和角度,注意投影线和投影面;(2)准确把握几何体的结构特征,特别是几何体中的线面垂直关系等;(3)注意实线和虚线的区别.【巩固训练】题型一 立体几何的证明1.如图,在四棱锥 P - ABCD 中,底面 ABCD 为菱形, ∠BAD = 60° P A = PD = AD = 2 ,点 M 在线段PC 上,且 PM = 2MC , N 为 AD 的中点.(1)求证: AD ⊥ 平面 PNB ;(2)若平面 P AD ⊥ 平面 ABCD ,求三棱锥 P - NBM 的体积.【答案】(1)见解析;(2)23.【解析】(1)∵ P A = PD, N 为 AD 的中点,∴ PN ⊥ AD ,∵底面 ABCD 为菱形, ∠BAD = 60︒ ,∴ BN ⊥ AD ,∵ PN I BN = N ,∴ AD ⊥ 平面 PNB .(2)∵ PN = PD = AD = 2 ,∴ PN = NB = 3 ,∵平面 P AD ⊥ 平面 ABCD ,平面 P AD I 平面 ABCD = AD , PN ⊥ AD ,∴ PN ⊥ 平面 ABCD ,∴ PN ⊥ NB ,∴S3⨯3⨯3=. 22∵AD⊥平面PNB,AD//BC,∴BC⊥平面PNB.∵PM=2MC,∴VP-NRM =VM-PNB22132=V=⨯⨯⨯2=.3C-PNB33232.如图,在直三棱柱ABC-A B C中,D是AB的中点.111(1)证明:BC//平面A CD;11(2)若AC=CB,求证:A D⊥CD.1【答案】见解析.【解析】证明:(1)如图,连接AC,交A C于点O,连结OD.11据直三棱柱性质知四边形ACC A为平行四边形,所以O为AC的中点.111又因为D是AB的中点,所以BC//OD.1又因为BC⊄平面A CD,OD⊂平面A CD,111所以BC//平面A CD.11(2)因为AC=BC,D为AB的中点,所以CD⊥AB.据直三棱柱ABC-A B C性质知AA⊥平面ABC,又因为C D⊂平面1111所以AA⊥CD.1又因为AA I AB=A,AA,AB⊂平面ABB A,1111所以CD⊥平面ABB A,11又因为A D⊂平面ABB A,所以C D⊥A D,即A D⊥CD.11111ABC,题型二立体几何体积求解1.如图所示,四棱锥P-ABCD中,P A⊥底面ABCD,AD//BC,AB=AD=AC=3,P A=BC=4,M为线段AD上一点,AM=2MD,N为PC的中点.(1)证明MN//平面PAB;P6NA MB DC【答案】(1)(2) N -BCM 2 3 63 .AD = BC = 所以V △S ABC = ⨯ 4 ⨯ 2 5 = 2 3 6 3 . 1 2 ⨯ (2 + 4)(2)求四面体 N - BCM 的体积.1 1 14 5V = ⨯ P A ⋅= ⨯ 4 ⨯ 2 5 =△S ABC【解析】(1)取 PB 中点 Q ,连接 AQ 、 NQ ,因为 N 是 PC 中点, NQ //BC ,且 NQ = 1BC ,又2AM = 2 2 ⨯ 3 1 BC ,且 AM // BC ,所以 QN // AM ,且3 34 2QN = AM ,所以四边形 AQNM 是平行四边形.所以 MN // AQ .又 MN ⊄ 平面PAB , AQ ⊂ 平面 PAB ,所以 MN // 平面 PAB .PQ NAMD(2)由(1) QN // 平面 ABCD .BC所以VN -BCM= VQ -BCM1 = V2 P -BCM 1= V 2 P -BCA.N -BCM1 1 14 5 = ⨯ P A ⋅2.如图所示,四棱锥 P - ABCD 中,侧面 P AD 为等边三角形且垂直于底面 ABCD , PAB = BC = 1AD , ∠BAD = ∠ABC = 90o .2(1)证明:直线 BC // 平面 P AD ;(2)若 △PCD 面积为 2 7 ,求四棱锥 P - ABCD 的体积.【答案】(1)(2) V = ⨯⨯ 2 3 = 4 3 .32BACD【解析】(1)在平面 ABCD 内,因为 ∠BAD = ∠ABC = 90o ,所以 BC //AD .又 BC ⊄ 平面 P AD , AD ⊂ 平面 P AD ,故 BC // 平面 P AD .(2)取 AD 的中点 M ,联结 PM , CM .由 AB = BC = 1AD ,及 BC //AD , ∠ABC = 90o ,得四边形 ABCM 为正方形,则 CM ⊥ AD .2因为侧面 P AD 是等边三角形且垂直于底面 ABCD ,平面 P AD I 平面 ABCD = AD ,所以 PM ⊥ AD ,因为PM ⊂ 平面 P AD ,所以 PM ⊥ 平面 ABCD .因为 CM ⊂ 平面 ABCD ,所以 PM ⊥ CM .因为 △PCD 的面积为 2 7 ,所以 ⨯ 2x ⨯ 1 2 ⨯ (2 + 4)设 BC = x ,则 CM = x , CD = 2 x , PM = 3x , PC = PD = 2x .取 CD 的中点 N ,联结 PN ,则 PN ⊥ CD ,所以 PN =14 x .21 142 2x = 2 7 ,解得 x = -2 (舍去), x = 2 ,于是 AB = BC = 2 ,AD = 4 , PM = 2 3 .所以四棱锥 P - ABCD 的体积V = ⨯3 2⨯ 2 3 = 4 3 .题型三 几何体的外接球问题1. 在正三棱锥 S - ABC 中, M 、N 分别是棱 SC 、BC 的中点,且 AM ⊥ MN ,若侧棱 SA = 2 3 ,则正三棱锥 S - ABC 外接球的表面积是.【答案】 36π【解析】正三棱锥的对棱互垂直。
高中数学文科立体几何大题复习

高中数学文科立体几何大题复习文科立体几何大题复习一.解答题(共12小题)1.如图1,在正方形ABCD中,点,E,F分别是AB,BC的中点,BD与EF交于点H,点G,R分别在线段DH,HB上,且.将△AED,△CFD,△BEF分别沿DE,DF,EF折起,使点A,B,C重合于点P,如图2所示.(1)求证:GR⊥平面PEF;(2)若正方形ABCD的边长为4,求三棱锥P﹣DEF的内切球的半径.2.如图,在四棱锥P﹣ABCD中,PD⊥平面ABCD,底面ABCD 是菱形,∠BAD=60°,AB=2,PD=,O为AC与BD的交点,E为棱PB上一点.(Ⅰ)证明:平面EAC⊥平面PBD;(Ⅱ)若PD∥平面EAC,求三棱锥P﹣EAD的体积.3.如图,在四棱锥中P﹣ABCD,AB=BC=CD=DA,∠BAD=60°,AQ=QD,△PAD是正三角形.(1)求证:AD⊥PB;(2)已知点M是线段PC上,MC=λPM,且PA∥平面MQB,求实数λ的值.4.如图,四棱锥S﹣ABCD的底面是正方形,每条侧棱的长都是底面边长的倍,P为侧棱SD上的点.(Ⅰ)求证:AC⊥SD;(Ⅱ)若SD⊥平面PAC,则侧棱SC上是否存在一点E,使得BE∥平面PAC.若存在,求SE:EC的值;若不存在,试说明理由.5.如图所示,△ABC所在的平面与菱形BCDE所在的平面垂直,且AB⊥BC,AB=BC=2,∠BCD=60°,点M为BE的中点,点N在线段AC上.(Ⅰ)若=λ,且DN⊥AC,求λ的值;(Ⅱ)在(Ⅰ)的条件下,求三棱锥B﹣DMN的体积.6.如图,在三棱柱ABC﹣A1B1C1中,AB=AC,且侧面BB1C1C是菱形,∠B1BC=60°.(Ⅰ)求证:AB1⊥BC;(Ⅱ)若AB⊥AC,AB1=BB1,且该三棱柱的体积为2,求AB的长.7.如图1,在矩形ABCD中,AB=4,AD=2,E是CD的中点,将△ADE沿AE折起,得到如图2所示的四棱锥D1﹣ABCE,其中平面D1AE⊥平面ABCE.(1)证明:BE⊥平面D1AE;(2)设F为CD1的中点,在线段AB上是否存在一点M,使得MF∥平面D1AE,若存在,求出的值;若不存在,请说明理由.8.如图,已知多面体ABCDEF中,△ABD、△ADE均为正三角形,平面ADE⊥平面ABCD,AB∥CD∥EF,AD:EF:CD=2:3:4.(Ⅰ)求证:BD⊥平面BFC;(Ⅱ)若AD=2,求该多面体的体积.9.如图,在四棱锥中P﹣ABCD,底面ABCD为边长为的正方形,PA⊥BD.(Ⅰ)求证:PB=PD;(Ⅱ)若E,F分别为PC,AB的中点,EF⊥平面PCD,求三棱锥的D﹣ACE体积.10.如图,四边形ABCD为菱形,G为AC与BD的交点,BE⊥平面ABCD.(Ⅰ)证明:平面AEC⊥平面BED;(Ⅱ)若∠ABC=120°,AE⊥EC,三棱锥E﹣ACD的体积为,求该三棱锥的侧面积.11.如图,四边形ABCD是正方形,DE⊥平面ABCD,AF∥DE,AF=ED=1.(Ⅰ)求二面角E﹣AC﹣D的正切值;(Ⅱ)设点M是线段BD上一个动点,试确定点M的位置,使得AM∥平面BEF,并证明你的结论.12.如图,在四棱锥P﹣ABCD中,AB⊥平面BCP,CD∥AB,AB=BC=CP=BP=2,CD=1.(1)求点B到平面DCP的距离;(2)点M为线段AB上一点(含端点),设直线MP与平面DCP 所成角为α,求sinα的取值范围.文科立体几何大题复习参考答案与试题解析一.解答题(共12小题)1.如图1,在正方形ABCD 中,点,E ,F 分别是AB ,BC 的中点,BD 与EF 交于点H ,点G ,R 分别在线段DH ,HB 上,且.将△AED ,△CFD ,△BEF 分别沿DE ,DF ,EF 折起,使点A ,B ,C 重合于点P ,如图2所示.(1)求证:GR ⊥平面PEF ;(2)若正方形ABCD 的边长为4,求三棱锥P ﹣DEF 的内切球的半径.【解答】证明:(Ⅰ)在正方形ABCD 中,∠A 、∠B 、∠C 均为直角,∴在三棱锥P ﹣DEF 中,PE ,PF ,PD 三条线段两两垂直,∴PD ⊥平面PEF ,∵=,即,∴在△PDH 中,RG ∥PD ,∴GR ⊥平面PEF .解:(Ⅱ)正方形ABCD 边长为4,由题意PE=PF=2,PD=4,EF=2,DF=2,∴S △PEF =2,S △PFD =S △DPE =4,=6,设三棱锥P ﹣DEF 的内切球半径为r ,则三棱锥的体积:=,解得r=,∴三棱锥P﹣DEF的内切球的半径为.2.如图,在四棱锥P﹣ABCD中,PD⊥平面ABCD,底面ABCD 是菱形,∠BAD=60°,AB=2,PD=,O为AC与BD的交点,E为棱PB上一点.(Ⅰ)证明:平面EAC⊥平面PBD;(Ⅱ)若PD∥平面EAC,求三棱锥P﹣EAD的体积.【解答】(Ⅰ)证明:∵PD⊥平面ABCD,AC?平面ABCD,∴AC⊥PD.∵四边形ABCD是菱形,∴AC⊥BD,又∵PD∩BD=D,AC⊥平面PBD.而AC?平面EAC,∴平面EAC⊥平面PBD.(Ⅱ)解:∵PD∥平面EAC,平面EA C∩平面PBD=OE,∴PD∥OE,∵O是BD中点,∴E是PB中点.取AD中点H,连结BH,∵四边形ABCD是菱形,∠BAD=60°,∴BH⊥AD,又BH⊥PD,AD∩PD=D,∴BH⊥平面PAD,.∴==.3.如图,在四棱锥中P﹣ABCD,AB=BC=CD=DA,∠BAD=60°,AQ=QD,△PAD是正三角形.(1)求证:AD⊥PB;(2)已知点M是线段PC上,MC=λPM,且PA∥平面MQB,求实数λ的值.【解答】证明:(1)如图,连结BD,由题意知四边形ABCD为菱形,∠BAD=60°,∴△ABD为正三角形,又∵AQ=QD,∴Q为AD的中点,∴AD⊥BQ,∵△PAD是正三角形,Q为AD中点,∴AD⊥PQ,又BQ∩PQ=Q,∴AD⊥平面PQB,又∵PB?平面PQB,∴AD⊥PB.解:(2)连结AC,交BQ于N,连结MN,∵AQ∥BC,∴,∵PN∥平面MQB,PA?平面PAC,平面MQB∩平面PAC=MN,∴根据线面平行的性质定理得MN∥PA,∴,综上,得,∴MC=2PM,∵MC=λPM,∴实数λ的值为2.4.如图,四棱锥S﹣ABCD的底面是正方形,每条侧棱的长都是底面边长的倍,P为侧棱SD上的点.(Ⅰ)求证:AC⊥SD;(Ⅱ)若SD⊥平面PAC,则侧棱SC上是否存在一点E,使得BE∥平面PAC.若存在,求SE:EC的值;若不存在,试说明理由.【解答】解:(Ⅰ)连BD,设AC交BD于O,由题意SO⊥AC,在正方形ABCD中,AC⊥BD,所以AC⊥面SBD,所以AC⊥SD.(Ⅱ)若SD⊥平面PAC,则SD⊥OP,设正方形ABCD的边长为a,则SD=,OD=,则OD2=PD?SD,可得PD==,故可在SP上取一点N,使PN=PD,过N作PC的平行线与SC的交点即为E,连BN.在△BDN中知BN∥PO,又由于NE∥PC,故平面BEN∥面PAC,得BE∥面PAC,由于SN:NP=2:1,故SE:EC=2:1.5.如图所示,△ABC所在的平面与菱形BCDE所在的平面垂直,且AB⊥BC,AB=BC=2,∠BCD=60°,点M为BE的中点,点N在线段AC上.(Ⅰ)若=λ,且DN⊥AC,求λ的值;(Ⅱ)在(Ⅰ)的条件下,求三棱锥B﹣DMN的体积.【解答】解:(Ⅰ)取BC的中点O,连接ON,OD,∵四边形BCDE为菱形,∠BCD=60°,∴DO⊥BC,∵△ABC所在的平面与菱形BCDE所在平面垂直,∴DO⊥平面ABC,∵AC?平面ABC,∴DO⊥AC,又DN⊥AC,且DN∩DO=D,∴AC⊥平面DON,∵ON?平面DON,∴ON⊥AC,由O为BC的中点,AB=BC,可得,∴,即λ=3;(Ⅱ)由平面ABC⊥平面BCDE,AB⊥BC,可得AB⊥平面BCDE,由,可得点N到平面BCDE的距离为,由菱形BCDE中,∠BCD=60°,点M为BE的中点,可得DM⊥BE,且,∴△BDM的面积,∴三棱锥N﹣BDM的体积.=V B﹣DMN,又V N﹣BDM∴三棱锥B﹣DMN的体积为.6.如图,在三棱柱ABC﹣A1B1C1中,AB=AC,且侧面BB1C1C是菱形,∠B1BC=60°.(Ⅰ)求证:AB1⊥BC;(Ⅱ)若AB⊥AC,AB1=BB1,且该三棱柱的体积为2,求AB的长.【解答】解:(I)取BC中点M,连结AM,B1M,∵AB=AC,M是BC的中点,∴AM⊥BC,∵侧面BB1C1C是菱形,∠B1BC=60°,∴B1M⊥BC,又AM?平面AB1M,B1M?平面AB1M,AM∩B1M=M,∴BC⊥平面AB1M,∵AB1?平面AB1M,∴BC⊥AB1.(II)设AB=x,则AC=x,BC=x,∵M是BC的中点,∴AM=,BB1=,B1M=,又∵AB1=BB1,∴AB1=,∴AB12=B1M2+AM2,∴B1M⊥AM.由(I)知B1M⊥BC,AM?平面ABC,BC?平面ABC,AM∩BC=M,∴B1M⊥平面ABC,∴V==,∴x=2,即AB=2.7.如图1,在矩形ABCD中,AB=4,AD=2,E是CD的中点,将△ADE沿AE折起,得到如图2所示的四棱锥D1﹣ABCE,其中平面D1AE⊥平面ABCE.(1)证明:BE⊥平面D1AE;(2)设F为CD1的中点,在线段AB上是否存在一点M,使得MF∥平面D1AE,若存在,求出的值;若不存在,请说明理由.【解答】(1)证明:连接BE,∵ABCD为矩形且AD=DE=EC=2,∴AE=BE=2,AB=4,∴AE2+BE2=AB2,∴BE⊥AE,又D1AE⊥平面ABCE,平面D1AE∩平面ABCE=AE,∴BE⊥平面D1AE.(2)=.取D1E中点N,连接AN,FN,∵FN∥EC,EC∥AB,∴FN∥AB,且FN==AB,∴M,F,N,A共面,若MF∥平面AD1E,则MF∥AN.∴AMFN为平行四边形,∴AM=FN=.∴=.8.如图,已知多面体ABCDEF中,△ABD、△ADE均为正三角形,平面ADE⊥平面ABCD,AB∥CD∥EF,AD:EF:CD=2:3:4.(Ⅰ)求证:BD⊥平面BFC;(Ⅱ)若AD=2,求该多面体的体积.【解答】解:(Ⅰ)因为AB∥CD,所以∠ADC=120°,△ABD为正三角形,所以∠BDC=60°.设AD=a,因为AD:CD=2:4=1:2,所以CD=2a,在△BDC中,由余弦定理,得,所以BD2+BC2=CD2,所以BD⊥BC.取AD的中点O,连接EO,因为△ADE为正三角形,所以EO⊥AD,因为平面ADE⊥平面ABCD,所以EO⊥平面ABCD.取BC的中点G,连接FG,OG,则,且EF∥OG,所以四边形OEFG为平行四边形,所以FG∥EO,所以FG⊥平面ABCD,所以FG⊥BD.因为FG∩BC=G,所以BD⊥平面BFC.(Ⅱ)过G作直线MN∥AD,延长AB与MN交于点M,MN与CD交于点N,连接FM,FN.因为G为BC的中点,所以MG=OA且MG∥OA,所以四边形AOGM为平行四边形,所以AM=OG.同理DN=OG,所以AM=OG=DN=EF=3.又AB∥CD,所以AM∥DN,所以AM∥DN∥EF,所以多面体MNF﹣ADE为三棱柱.过M作MH⊥AD于H点,因为平面ADE⊥平面ABCD,所以MH⊥平面ADE,所以线段MH的长即三棱柱MNF﹣ADE的高,在△AMH中,,所以三棱柱MNF﹣ADE的体积为.因为三棱锥F﹣BMG与F﹣CNG的体积相等,所以所求多面体的体积为.9.如图,在四棱锥中P﹣ABCD,底面ABCD为边长为的正方形,PA⊥BD.(Ⅰ)求证:PB=PD;(Ⅱ)若E,F分别为PC,AB的中点,EF⊥平面PCD,求三棱锥的D﹣ACE体积.【解答】解:(Ⅰ)连接AC交BD于点O,∵底面ABCD是正方形,∴AC⊥BD且O为BD的中点.又PA⊥BD,PA∩AC=A,∴BD⊥平面PAC,又PO?平面PAC,∴BD⊥PO.又BO=DO,∴Rt△PBO∽Rt△PDO,∴PB=PD.(Ⅱ)取PD的中点Q,连接AQ,EQ,则EQ CD,又AF,∴AFEQ为平行四边形,EF∥AQ,∵EF⊥平面PCD,∴AQ⊥平面PCD,∵PD?平面PCD,∴AQ⊥PD,∵Q是PD的中点,∴AP=AD=.∵AQ⊥平面PCD,CD?平面PCD,∴AQ⊥CD,又AD⊥CD,又AQ∩AD=A,∴CD⊥平面PAD∴CD⊥PA,又BD⊥PA,CD∩BD=D,∴PA⊥平面ABCD.故三棱锥D﹣ACE的体积为.10.如图,四边形ABCD为菱形,G为AC与BD的交点,BE⊥平面ABCD.(Ⅰ)证明:平面AEC⊥平面BED;(Ⅱ)若∠ABC=120°,AE⊥EC,三棱锥E﹣ACD的体积为,求该三棱锥的侧面积.【解答】证明:(Ⅰ)∵四边形ABCD为菱形,∴AC⊥BD,∵BE⊥平面ABCD,∴AC⊥BE,则AC⊥平面BED,∵AC?平面AEC,∴平面AEC⊥平面BED;解:(Ⅱ)设AB=x,在菱形ABCD中,由∠ABC=120°,得AG=GC=x,GB=GD=,∵BE⊥平面ABCD,∴BE⊥BG,则△EBG为直角三角形,∴EG=AC=AG=x,则BE==x,∵三棱锥E﹣ACD的体积V===,解得x=2,即AB=2,∵∠ABC=120°,∴AC2=AB2+BC2﹣2AB?BCcosABC=4+4﹣2×=12,即AC=,在三个直角三角形EBA,EBG,EBC中,斜边AE=EC=ED,∵AE⊥EC,∴△EAC为等腰三角形,则AE2+EC2=AC2=12,即2AE2=12,∴AE2=6,则AE=,∴从而得AE=EC=ED=,∴△EAC的面积S==3,在等腰三角形EAD中,过E作EF⊥AD于F,则AE=,AF==,则EF=,∴△EAD的面积和△ECD的面积均为S==,故该三棱锥的侧面积为3+2.11.如图,四边形ABCD是正方形,DE⊥平面ABCD,AF∥DE,AF=ED=1.(Ⅰ)求二面角E﹣AC﹣D的正切值;(Ⅱ)设点M是线段BD上一个动点,试确定点M的位置,使得AM∥平面BEF,并证明你的结论.【解答】(本小题满分12分)解:(Ⅰ)设AC∩BD=O,连结OE,由AC⊥OD,AC⊥DE,OD∩DE=D,得AC⊥OE,∴二面角E﹣AC﹣D的平面角为∠EOD,∵AF=ED=1,∴tan∠EOD=,∴二面角E﹣AC﹣D的正切值为.(Ⅱ)时,AM∥平面BEF,理由如下:作MN∥E D,则,∵AF∥DE,DE=3AF,∴,∴AMNF是平行四边形,∴AM∥FN,∵AM?平面BEF,FN?平面BEF,∴AM∥平面BEF.。
立体几何题型汇总及详细答案

(2)若 , , ,试求该几何体的体积V.
9.在长方体 中, ,
(1) 求证: ∥面 ;
(2)证明: ;
(3)一只蜜蜂在长方体 中飞行,求它飞入三棱锥 内的概率.
10. 如图甲,在平面四边形ABCD中,已知
, ,现将四边形ABCD沿BD折起,
使平面ABD 平面BDC(如图乙),设点E、F分别为棱
10.(2008江苏模拟)一个多面体的直观图和三视图如图所示,其中M、N分别是AB、AC的中点,G是DF上的一动点.
(1)求证:
(2)当FG=GD时,在棱AD上确定一点P,使得GP//平面FMC,并给出证明.
立体几何中的动点问题
1.(2011五校联考)已知四边形 为矩形, 、 分别是线段 、
的中点, 平面
17.如图6,已知正三棱柱ABC—A1B1C1中,D是BC的中点。
(1)求证:平面AB1D⊥平面B1BCC1;
(2)求证:A1C//平面AB1D。
18.如图,已知 平面 , 平面 ,△ 为等边三角形,
, 为 的中点.
(1)求证: 平面 ;
(2)求证:平面 平面 ;
19.如图:直三棱柱ABC-A1B1C1中,AC=BC=AA1=2,∠ACB=90.E为BB1的中点,D点在AB上且DE= .
39.(2008中山市)如图,四棱锥P—ABCD中, PA 平面ABCD,底面ABCD是直角梯形,AB⊥AD,CD⊥AD,CD=2AB,E为PC中点.
(I) 求证:平面PDC 平面PAD;
(II) 求证:BE//平面PAD.
40.(2008华南师大附中) 如图,已知棱柱ABCD—A1B1C1D1的底面是菱形,且AA1⊥面ABCD,∠DAB=60°,AD=AA1,F为棱AA1的中点,M为线段BD1的中点。
专题4:立体几何(文科)

专题四:立体几何 【一、基础知识归类:】1、三视图画法规则:高平齐:主视图与左视图的高要保持平齐 长对正:主视图与俯视图的长应对正 宽相等:俯视图与左视图的宽度应相等2、空间几何体三视图:正视图(从前向后的正投影);侧视图(从左向右的正投影); 俯视图(从上向下正投影). 3、空间几何体的直观图——斜二测画法特点:①斜二测坐标系的y 轴与x 轴正方向成 45角; ②原来与x 轴平行的线段仍然与x 平行,长度不变; ③原来与y 轴平行的线段仍然与y 平行,长度为原来的一半. 常用结论:平面图形面积与其斜二侧直观图面积之比为22:1. 4、特殊几何体表面积公式(c 为底面周长,h 为高,'h 为斜高,l 为母线):ch S =直棱柱侧面积 rh S π2=圆柱侧 '21ch S =正棱锥侧面积 rl S π=圆锥侧面积 ')(2121h c c S +=正棱台侧面积 l R r S π)(+=圆台侧面积 ()l r r S +=π2圆柱表 ()l r r S +=π圆锥表()22R Rl rl r S +++=π圆台表 S 球面=24R π5、柱体、锥体、台体和球的体积公式:V Sh =柱 2V Sh r h π==圆柱 13V S h =锥 h r V 231π=圆锥'1()3V S S h =台'2211()()33V S S h r rR R h π=++=++圆台V 球=343R π 6、空间线面的位置关系①直线与直线:相交、平行、异面(不同在任何一个平面内的两条直线); ②直线与平面:属于a ⊂α、相交a∩α=A 、平行a ∥α;③ 平面与平面:平行—没有公共点:α∥β、相交—有一条公共直线:α∩β=b . 7、垂直和平行证明问题的解决方法须熟练掌握两类相互转化关系: ① 平行转化 ② 垂直转化同时注意结合运用中位线定理、勾股定理、等腰(等边)三角形“三线合一”; 平行四边形两组对边分别平行且相等,对角线互相平分;菱形对边平行且四边相等,对角线互相垂直平分并平分对角; 矩形对边平行且相等,四个角为直角,以及对角线互相平分且相等;正方形对边平行且四边相等,四个角为直角,对角线互相垂直平分且相等并平分对角; 梯形上底和下底平行; 圆直径对应圆周角为直角、垂径定理、过切点的半径垂直于切线等. 8、立体几何中体积的求法:直接法、割补法、等积转化等方法. 等积转化在三棱锥求体积或求点到面的距离问题中经常运用.【二、专题练习:】一、选择题(本大题共12小题,每小题5分,总分60分)1.(2009天津重点学校二模) 如图,直三棱柱的主视图面积为2a 2,则左视图的面积为( )A .2a 2B .a 2C .23a D .243a2.(2009枣庄市二模)一个几何体的三视图如图所示, 则这个几何体的体积等于( ) A .361a B .321a C .332a D .365a 3.(2009青岛二模)下图为长方体木块堆成的几何体三视图,则组成此几何体的长方体木块块数共有( )A .3块B .4块C .5块D .6块4.(2009广东省恩城中学)半径为2cm 的半圆纸片做成圆锥放在桌面上,一阵风吹倒它,它的最高处距桌面( )A .4cmB .2cmC .cm 32D .cm 3aaa5.(2005全国卷Ⅰ)如图,在多面体ABCDEF 中,已知ABCD 是边长为1的正方形,且BCF ADE ∆∆、均为正三角形,EF ∥AB ,EF=2,则该多面体的体积为 ( ) A.32B .33 C .34 D .23 6.一个棱锥的三视图如图,则该棱锥的全面积(单位:2cm )为( ) A.48+ B.48+C.36+ D.36+7.(2009汕头一模)在空间中,有如下命题:①互相平行的两条直线在同一个平面内的射影必然是互相平行的两条直线; ②若平面α∥平面β,则平面α内任意一条直线m ∥平面β;③若平面α与平面β的交线为m ,平面α内的直线n ⊥直线m ,则直线n ⊥平面β; ④若平面α内的三点A, B, C 到平面β的距离相等,则α∥β. 其中正确命题的个数为( )个.A .0B .1C .2D .38.(2007宁夏理)已知某个几何体的三视图如下,根据图中标出的尺寸(单位:cm ),可得这个几何体的体积是( ) A .34000cm 3 B .38000cm 3C .32000cmD .34000cm 9.(2009泰安一模)一个几何体的三视图如图所示,则这个几何体的 体积等于( )A .4B .6C .8D .12正视图侧视图俯视图66663334410.设b a ,是两条直线,βα,是两个平面,则b a ⊥的一个充分条件是( ) A .βαβα⊥⊥,//,b a B .βαβα//,,⊥⊥b a C .βαβα//,,⊥⊂b a D .βαβα⊥⊂,//,b a11.(2009玉溪市民族中学第四次月考)若球O 的半径为1,点A 、B 、C 在球面上,它们任意两点的球面距离都等于,2π则过A 、B 、C 的小圆面积与球表面积之比为 ( ) A .121 B .81 C .61 D .4112.正六棱锥P -ABCDEF 中,G 为PB 的中点,则三棱锥D -GAC 与三棱锥P -GAC 体积之比为( )A .1:1B .1:2C .2:1D .3:2二、填空题(本大题共4小题,每小题4分,总分16分)13.如果一个水平放置的图形的斜二测直观图是一个底面为045,腰和上底均为1的等腰梯形,那么原平面图形的面积是 .14.在半径为13的球面上有A , B , C 三点,AB=6,BC=8,CA=10,则球心到平面ABC 的距离为 . 15.图2中实线围成的部分是长方体(图1)的平面展开图,其中四边形ABCD 是边长为1的正方形.若向虚线围成的矩形内任意抛掷一质点,它落在长方体的平面展开图内的概率是14,则此长方体的体积是 .16.如图,在长方形ABCD 中,2AB =,1BC =,E 为DC 的中点,F 为线段EC (端点除外)上一动点.现将AFD ∆沿AF 折起,使平面ABD ⊥平面ABC .在平面ABD 内过点D ,作DK AB ⊥,K 为垂足.设AK t =,则t 的取值范围是 .三、解答题(本大题共6小题,总分74分)17.右图为一简单组合体,其底面ABCD 为正方形,PD ⊥平面ABCD ,//EC PD ,且2P D A D E C ===2.(1)答题卡指定的方框内已给出了该几何体的俯视图,请在方框内画出该几何体的正(主)视图和侧(左)视图;(2)求四棱锥B -CEPD 的体积; (3)求证://BE 平面PDA .18.如图,在三棱锥P ABC -中,⊿PAB 是等边三角形,∠P AC =∠PBC =90 º. (Ⅰ)证明:AB ⊥PC ;(Ⅱ)若4PC =,且平面PAC ⊥平面PBC ,求三棱锥P ABC -体积.PABCDEDABC俯视图19.如图,平面ABEF ⊥平面ABCD ,四边形ABEF 与ABCD 都是直角梯形,∠BAD =∠F AB =90°,BC =12AD ,BE =12F A ,G 、H 分别为F A 、FD 的中点.(1)证明:四边形BCHG 是平行四边形; (2)C 、D 、F 、E 四点是否共面?为什么? (3)设AB =BE ,证明:平面ADE ⊥平面CDE .20.如图,已知三棱柱ABC -A 1B 1C 1的所有棱长都相等,且侧棱垂直于底面,由B 沿棱柱侧面经过棱CC 1到点A 1的最短路线长为CC 1的交点为D . (1)求三棱柱ABC -A 1B 1C 1的体积;(2)在平面A 1BD 内是否存在过点D 的直线与平面ABC 平行?证明你的判断;(3)证明:平面A 1BD ⊥平面A 1ABB 1.DC 1B 1A 1CBA21.(2009届广东省重点中学高三模拟)如图:已知四棱柱ABCD—A1B1C1D1的底面是正方形,O1.O分别是上.下底面的中心,A1O⊥平面ABCD.(1)求证:平面O1DC⊥平面ABCD;(2)若点E在棱AA1上,且AE=2EA1,问在棱BC上是否存在点F,使得EF⊥BC?若存在,求出其位置;若不存在,说明理由.22.(2007-2008汕头市金山中学)已知等腰梯形PDCB 中(如图1),PB=3,DC=1,PD=BC =2,A 为PB 边上一点,且P A=1,将△P AD 沿AD 折起,使面P AD ⊥面ABCD (如图2). (Ⅰ)证明:平面P AD ⊥PCD ;(Ⅱ)试在棱PB 上确定一点M ,使截面AMC 把几何体分成的两部分1:2: MACB PD CMA V V ; (Ⅲ)在M 满足(Ⅱ)的情况下,判断直线PD 是否平行面AMC .正视图侧视图俯视图【参考答案】一、选择题1—5:C D B D A6.答案:A 解析:棱锥的直观图如右,则有PO =4,OD =3,由勾股定理,得PD =5,AB =62,全面积为:21×6×6+2×21×6×5+21×62×4=48+122,故选A . 7—9:B B A10.答案:C 解析:由b β⊥,α∥β得b α⊥,又a α⊂,可知b a ⊥,故a b ⊥的一个充分条件是C . 11.答案 C12.【解析】选C .由于G 是PB 的中点,故P -GAC 的体积等于B -GAC 的体积 在底面正六边形ABCDER 中,BH =ABtan30°AB 而BD故DH =2BH 于是V D -GAC =2V B -GAC =2V P -GAC . 二、填空题13.恢复后的原图形为一直角梯形1(11)222S =+⨯=+ 14.答案:12解析:由ABC ∆的三边大小易知此三角形是直角三角形,所以过,,A B C 三点小圆的直径即为10,也即半径是5,设球心到小圆的距离是d ,则由222513d +=,可得12d =.15.【解析】向虚线围成的矩形内任意抛掷一质点,它落在长方体的平面展开图内的概率是14,设长方体的高为x ,则()()42122214x x x +=++,所以3x =,所以长方体的体积为3.16.【解析】此题的破解可采用二个极端位置法,即对于F 位于DC 的中点时,1t =,随着F 点到C 点时,因,,CB AB CB DK CB ⊥⊥∴⊥平面A D B ,即有CB BD ⊥,对于2,1,CD BC BD ==∴,又1,2AD AB ==,因此有AD BD ⊥,则有12t =,因此t 的取值范围是1,12⎛⎫⎪⎝⎭. 三、解答题17.解:(1)该组合体的主视图和侧视图如右图示:-----3分 (2)∵PD ⊥平面ABCD ,PD ⊂平面PDCE ∴平面PDCE ⊥平面ABCD∵BC CD ⊥ ∴BC ⊥平面PDCE ----------5分 ∵11()32322S PD EC DC =+⋅=⨯⨯=梯形PDCE --6分∴四棱锥B -CEPD 的体积1132233B CEPD PDCE V S BC -=⋅=⨯⨯=梯形.----8分 (3)证明:∵//EC PD ,PD ⊂平面PDA ,EC ⊄平面PDA∴EC//平面PDA ,------------------------------------10分 同理可得BC//平面PDA ----------------------------11分∵EC ⊂平面EBC,BC ⊂平面EBC 且ECBC C =∴平面BEC //平面PDA -----------------------------13分又∵BE ⊂平面EBC ∴BE//平面PDA------------------------------------------14分 18.解析:(Ⅰ)因为PAB ∆是等边三角形,90PAC PBC ∠=∠=︒, 所以Rt PBC Rt PAC ∆≅∆,可得AC BC =. 如图,取AB 中点D ,连结PD ,CD ,则PD AB ⊥,CD AB ⊥, 所以AB ⊥平面PDC , 所以AB PC ⊥.(Ⅱ)作BE PC ⊥,垂足为E ,连结AE . 因为Rt PBC Rt PAC ∆≅∆,所以AE PC ⊥,AE BE =.由已知,平面PAC ⊥平面PBC ,故90AEB ∠=︒.因为Rt AEB Rt PEB ∆≅∆,所以,,AEB PEB CEB ∆∆∆都是等腰直角三角形. 由已知4PC =,得2AE BE ==, AEB ∆的面积2S =. 因为PC ⊥平面AEB , 所以三角锥P ABC -的体积1833V S PC =⨯⨯=.19.证明:(1)由题设知,FG =GA ,FH =HD ,所以GH =12AD .又BC =12AD ,故GH =BC ,所以四边形BCHG 是平行四边形. (2)C 、D 、F 、E 四点共面.理由如下:由BE =12AF ,G 是F A 的中点知,BE =GF ,所以EF ∥BG ,由(1)知BG ∥CH ,所以EF ∥CH ,故EC 、FH 共面. 又点D 直线FH 上,所以C 、D 、F 、E 四点共面.(3)连结EG ,由AB =BE ,BE =AG ,及∠BAG =90°知ABEG 是正方形,O B 2DC 1B 1A 1CBA故BG ⊥EA .由题设知,F A 、AD 、AB 两两垂直,故AD ⊥平面F ABE , 因此EA 是ED 在平面F ABE 内的射影,∴BG ⊥ED . 又EC ∩EA =E ,所以BG ⊥平面ADE . 又BG ∥CH ,所以CH ⊥平面ADE故由CH ⊂平面CDFE ,得平面ADE ⊥平面CDE .20.解:(1)如图,将侧面BB 1C 1C 绕棱CC 1旋转120°使其与侧面AA 1C 1C 在同一平面上,点B 运动到点B 2的位置,连接A 1B 2,则A 1B 2就是由点B 沿棱柱侧面经过棱CC 1到点A 1的最短路线。
北京文科高考立体几何大题题型总结

立体几何复习一、点、直线、平面之间的关系 (一)、立体几何网络图:1.线线平行的判断:(1)、平行于同一直线的两直线平行。
(3)、如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行。
(6)、如果两个平行平面同时和第三个平面相交,那么它们的交线平行。
(12)、垂直于同一平面的两直线平行。
【例题】(2016丰台一模17)已知在ABC ∆中,90=∠B ,D ,E 分别为边BC ,AC 的中点,将CDE ∆沿DE 翻折后,使之成为四棱锥ABDE C -'(如图) (Ⅱ)设l ABC DE C =''平面平面 ,求证:l AB //ABED C C'DEFBA(7)、在平面内的一条直线,如果和这个平面的一条斜线的射影垂直,那么它也和这条斜线垂直。
(8)、在平面内的一条直线,如果和这个平面的一条斜线垂直,那么它和这条斜线的射影垂直。
(10)、若一直线垂直于一平面,这条直线垂直于平面内所有直线。
补充:一条直线和两条平行直线中的一条垂直,也必垂直平行线中的另一条。
【例题】(2016西城一模17)如图,在四棱柱1111D C B A ABCD -中,BC AD ABCD BB //,1底面⊥, BD AC BAD ⊥=∠,90(Ⅱ)求证:D B AC 1⊥;【例题】(2016延庆一模17)如图,已知四棱锥ABCD S -,底面ABCD 是边长为2的菱形,60=∠ABC ,侧面SAD 为正三角形,侧面ABCD SAD 底面⊥,M 为侧棱SB 的中点,E 为线段AD 的中点 (Ⅱ)求证:AC SE ⊥(2)、如果平面外的一条直线和平面内的一条直线平行,那么这条直线和这个平面平行。
(5)、两个平面平行,其中一个平面内的直线必平行于另一个平面。
判定定理:性质定理:★判断或证明线面平行的方法⑴ 利用定义(反证法):=αl α=∅,则l ∥α (用于判断); ⑵ 利用判定定理:线线平行线面平行 (用于证明); ⑶ 利用平面的平行:面面平行线面平行 (用于证明);⑷ 利用垂直于同一条直线的直线和平面平行(用于判断)。
立体几何(7大题型)(解析版)2024年高考数学立体几何大题突破

立体几何立体几何是高考数学的必考内容,在大题中一般分两问,第一问考查空间直线与平面的位置关系证明;第二问考查空间角、空间距离等的求解。
考题难度中等,常结合空间向量知识进行考查。
2024年高考有很大可能延续往年的出题方式。
题型一:空间异面直线夹角的求解1(2023·上海长宁·统考一模)如图,在三棱锥A-BCD中,平面ABD⊥平面BCD,AB=AD,O为BD的中点.(1)求证:AO⊥CD;(2)若BD⊥DC,BD=DC,AO=BO,求异面直线BC与AD所成的角的大小.【思路分析】(1)利用面面垂直的性质、线面垂直的性质推理即得.(2)分别取AB,AC的中点M,N,利用几何法求出异面直线BC与AD所成的角.【规范解答】(1)在三棱锥A-BCD中,由AB=AD,O为BD的中点,得AO⊥BD,而平面ABD⊥平面BCD,平面ABD∩平面BCD=BD,AO⊂平面ABD,因此AO⊥平面BCD,又CD⊂平面BCD,所以AO⊥CD.(2)分别取AB,AC的中点M,N,连接OM,ON,MN,于是MN⎳BC,OM⎳AD,则∠OMN是异面直线BC与AD所成的角或其补角,由(1)知,AO ⊥BD ,又AO =BO ,AB =AD ,则∠ADB =∠ABD =π4,于是∠BAD =π2,令AB =AD =2,则DC =BD =22,又BD ⊥DC ,则有BC =BD 2+DC 2=4,OC =DC 2+OD 2=10,又AO ⊥平面BCD ,OC ⊂平面BCD ,则AO ⊥OC ,AO =2,AC =AO 2+OC 2=23,由M ,N 分别为AB ,AC 的中点,得MN =12BC =2,OM =12AD =1,ON =12AC =3,显然MN 2=4=OM 2+ON 2,即有∠MON =π2,cos ∠OMN =OM MN =12,则∠OMN =π3,所以异面直线BC 与AD 所成的角的大小π3.1、求异面直线所成角一般步骤:(1)平移:选择适当的点,线段的中点或端点,平移异面直线中的一条或两条成为相交直线.(2)证明:证明所作的角是异面直线所成的角.(3)寻找:在立体图形中,寻找或作出含有此角的三角形,并解之.(4)取舍:因为异面直线所成角θ的取值范围是0,π2,所以所作的角为钝角时,应取它的补角作为异面直线所成的角.2、可通过多种方法平移产生,主要有三种方法:(1)直接平移法(可利用图中已有的平行线);(2)中位线平移法;(3)补形平移法(在已知图形中,补作一个相同的几何体,以便找到平行线).3、异面直线所成角:若n 1 ,n 2分别为直线l 1,l 2的方向向量,θ为直线l 1,l 2的夹角,则cos θ=cos <n 1 ,n 2 > =n 1 ⋅n 2n 1 n 2.1(2023·江西萍乡·高三统考期中)如图,在正四棱台ABCD -A 1B 1C 1D 1中,E ,F 分别是BB 1,CD 的中点.(1)证明:EF ⎳平面AB1C 1D ;(2)若AB =2A 1B 1,且正四棱台的侧面积为9,其内切球半径为22,O 为ABCD 的中心,求异面直线OB 1与CC 1所成角的余弦值.【答案】(1)证明见解析;(2)45【分析】(1)根据中位线定理,结合线面平行判定定理以及面面平行判定定理,利用面面平行的性质,可得答案;(2)根据题意,结合正四棱台的几何性质,求得各棱长,利用线线角的定义,可得答案.【解析】(1)取CC 1中点G ,连接GE ,GF ,如下图:在梯形BB 1C 1C 中,E ,G 分别为BB 1,CC 1的中点,则EG ⎳B 1C 1,同理可得FG ⎳C 1D ,因为EG ⊄平面AB 1C 1D ,B 1C 1⊂平面AB 1C 1D ,所以EG ⎳平面AB 1C 1D ,同理可得GF ⎳平面AB 1C 1D ,因为EG ∩FG =G ,EG ,FG ⊆平面EFG ,所以平面EFG ⎳平面AB 1C 1D ,又因为EF ⊆平面EFG ,所以EF ⎳平面AB 1C 1D ;(2)连接AC ,BD ,则AC ∩BD =O ,连接A 1O ,A 1C 1,B 1O ,在平面BB 1C 1C 中,作B 1N ⊥BC 交BC 于N ,在平面BB 1D 1D 中,作B 1M ⊥BD 交BD 于M ,连接MN ,如下图:因为AB =2A 1B 1,则OC =A 1C 1,且OC ⎳A 1C 1,所以A 1C 1CO 为平行四边形,则A 1O ⎳CC 1,且A 1O =CC 1,所以∠A 1OB 1为异面直线OB 1与CC 1所成角或其补角,同理可得:B 1D 1DO 为平行四边形,则B 1O =D 1D ,在正四棱台ABCD -A 1B 1C 1D 1中,易知对角面BB 1D 1D ⊥底面ABCD ,因为平面ABCD ∩平面BB 1D 1D =BD ,且B 1M ⊥BD ,B 1M ⊂平面BB 1D 1D ,所以B 1M ⊥平面ABCD ,由内切球的半径为22,则B 1M =2,在等腰梯形BB 1C 1C 中,BC =2B 1C 1且B 1N ⊥BC ,易知BN =14BC ,同理可得BM =14BD ,在△BCD 中,BN BC=BM BD =14,则MN =14CD ,设正方形ABCD 的边长为4x x >0 ,则正方形A 1B 1C 1D 1的边长为2x ,MN =x ,由正四棱台的侧面积为9,则等腰梯形BB 1C 1C 的面积S =94,因为B 1M ⊥平面ABCD ,MN ⊂平面ABCD ,所以B 1M ⊥MN ,在Rt △B 1MN ,B 1N =B 1M 2+MN 2=2+x 2,可得S =12⋅B 1N ⋅B 1C 1+BC ,则94=12×2+x 2×4x +2x ,解得x =12,所以BC =2,B 1C 1=1,BN =14BC =12,B 1N =32,则A 1B 1=1,在Rt △BB 1N 中,BB 1=B 1N 2+BN 2=102,则CC 1=DD 1=102,所以在△A 1OB 1中,则cos ∠A 1OB 1=A 1O 2+B 1O 2-A 1B 212⋅A 1O ⋅B 1O=1022+102 2-12×102×102=45,所以异面直线OB 1与CC 1所成角的余弦值为45.2(2023·辽宁丹东·统考二模)如图,平行六面体ABCD -A 1B 1C 1D 1的所有棱长都相等,平面CDD 1C 1⊥平面ABCD ,AD ⊥DC ,二面角D 1-AD -C 的大小为120°,E 为棱C 1D 1的中点.(1)证明:CD ⊥AE ;(2)点F 在棱CC 1上,AE ⎳平面BDF ,求直线AE 与DF 所成角的余弦值.【答案】(1)证明见解析;(2)37【分析】(1)根据面面垂直可得线面垂直进而得线线垂直,由二面角定义可得∠D 1DC =120°,进而根据中点得线线垂直即可求;(2)由线面平行的性质可得线线平行,由线线角的几何法可利用三角形的边角关系求解,或者建立空间直角坐标系,利用向量的夹角即可求解.【解析】(1)因为平面CDD 1C 1⊥平面ABCD ,且两平面交线为DC ,AD ⊥DC ,AD ⊂平面ABCD , 所以AD ⊥平面CDD 1C 1,所以AD ⊥D 1D ,AD ⊥DC ,∠D 1DC 是二面角D 1-AD -C 的平面角,故∠D 1DC =120°.连接DE ,E 为棱C 1D 1的中点,则DE ⊥C 1D 1,C 1D 1⎳CD ,从而DE ⊥CD .又AD ⊥CD ,DE ∩AD =D ,DE ,AD ⊂平面AED ,所以CD ⊥平面AED ,ED ⊂平面AED ,因此CD ⊥AE .(2)解法1:设AB =2,则DE =D 1D 2-12D 1C 1 2=3,所以CE =AE =AD 2+DE 2=7.连AC 交BD 于点O ,连接CE 交DF 于点G ,连OG .因为AE ⎳平面BDF ,AE ⊂平面AEC ,平面AEC ∩平面BDF =OG ,所以AE ∥OG ,因为O 为AC 中点,所以G 为CE 中点,故OG =12AE =72.且直线OG 与DF 所成角等于直线AE 与DF 所成角.在Rt △EDC 中,DG =12CE =72,因为OD =2,所以cos ∠OGD =722+72 2-(2)22×72×72=37.因此直线AE 与DF 所成角的余弦值为37.解法2;设AB =2,则DE =D 1D 2-12D 1C 1 2=3,所以CE =AE =AD 2+DE 2=7.取DC 中点为G ,连接EG 交DF 于点H ,则EG =DD 1=2.连接AG 交BD 于点I ,连HI ,因为AE ⎳平面BDF ,AE ⊂平面AGE ,平面AGE ∩平面BDF =IH ,所以AE ∥IH .HI 与DH 所成角等于直线AE 与DF 所成角.正方形ABCD 中,GI =13AG ,DI =13DB =223,所以GH =13EG ,故HI =13AE =73.在△DHG 中,GH =13EG =23,GD =1,∠EGD =60°,由余弦定理DH =1+49-1×23=73.在△DHI 中,cos ∠DHI =732+73 2-223 22×73×73=37.因此直线AE 与DF 所成角的余弦值为37.解法3:由(1)知DE ⊥平面ABCD ,以D 为坐标原点,DA为x 轴正方向,DA为2个单位长,建立如图所示的空间直角坐标系D -xyz .由(1)知DE =3,得A 2,0,0 ,B 2,2,0 ,C 0,2,0 ,E (0,0,3),C 1(0,1,3).则CC 1=(0,-1,3),DC =(0,2,0),AE =(-2,0,3),DB =(2,2,0).由CF =tCC 1 0≤t ≤1 ,得DF =DC +CF =(0,2-t ,3t ).因为AE ⎳平面BDF ,所以存在唯一的λ,μ∈R ,使得AE =λDB +μDF=λ2,2,0 +μ(0,2-t ,3t )=2λ,2λ+2μ-tμ,3μt ,故2λ=-2,2λ+2μ-tμ=0,3μt =3,解得t =23,从而DF =0,43,233 .所以直线AE 与DF 所成角的余弦值为cos AE ,DF =AE ⋅DF|AE ||DF |=37.题型二:空间直线与平面夹角的求解2(2024·安徽合肥·统考一模)如图,三棱柱ABC -A 1B 1C 1中,四边形ACC 1A 1,BCC 1B 1均为正方形,D ,E 分别是棱AB ,A 1B 1的中点,N 为C 1E 上一点.(1)证明:BN ⎳平面A 1DC ;(2)若AB =AC ,C 1E =3C 1N,求直线DN 与平面A 1DC 所成角的正弦值.【思路分析】(1)连接BE ,BC 1,DE ,则有平面BEC 1⎳平面A 1DC ,可得BN ⎳平面A 1DC ;(2)建立空间直角坐标系,利用空间向量进行计算即可.【规范解答】(1)连接BE ,BC 1,DE .因为AB ⎳A 1B 1,且AB =A 1B 1,又D ,E 分别是棱AB ,A 1B 1的中点,所以BD ⎳A 1E ,且BD =A 1E ,所以四边形BDA 1E 为平行四边形,所以A 1D ⎳EB ,又A 1D ⊂平面A 1DC ,EB ⊄平面A 1DC ,所以EB ⎳平面A 1DC ,因为DE ⎳BB 1⎳CC 1,且DE =BB 1=CC 1,所以四边形DCC 1E 为平行四边形,所以C 1E ⎳CD ,又CD ⊂平面A 1DC ,C 1E ⊄平面A 1DC ,所以C 1E ⎳平面A 1DC ,因为C 1E ∩EB =E ,C 1E ,EB ⊂平面BEC 1,所以平面BEC 1⎳平面A 1DC ,因为BN ⊂平面BEC 1,所以BN ⎳平面A 1DC .(2)四边形ACC 1A 1,BCC 1B 1均为正方形,所以CC 1⊥AC ,CC 1⊥BC ,所以CC 1⊥平面ABC .因为DE ⎳CC 1,所以DE ⊥平面ABC ,从而DE ⊥DB ,DE ⊥DC .又AB =AC ,所以△ABC 为等边三角形.因为D 是棱AB 的中点,所以CD ⊥DB ,即DB ,DC ,DE 两两垂直.以D 为原点,DB ,DC ,DE 所在直线为x ,y ,z 轴,建立如图所示的空间直角坐标系D -xyz .设AB =23,则D 0,0,0 ,E 0,0,23 ,C 0,3,0 ,C 10,3,23 ,A 1-3,0,23 ,所以DC =0,3,0 ,DA 1=-3,0,23 .设n=x ,y ,z 为平面A 1DC 的法向量,则n ⋅DC=0n ⋅DA 1 =0,即3y =0-3x +23z =0 ,可取n=2,0,1 .因为C 1E =3C 1N ,所以N 0,2,23 ,DN =0,2,23 .设直线DN 与平面A 1DC 所成角为θ,则sin θ=|cos ‹n ,DN ›|=|n ⋅DN ||n |⋅|DN |=235×4=1510,即直线DN 与平面A 1DC 所成角正弦值为1510.1、垂线法求线面角(也称直接法):(1)先确定斜线与平面,找到线面的交点B 为斜足;找线在面外的一点A ,过点A 向平面α做垂线,确定垂足O ;(2)连结斜足与垂足为斜线AB 在面α上的投影;投影BO 与斜线AB 之间的夹角为线面角;(3)把投影BO 与斜线AB 归到一个三角形中进行求解(可能利用余弦定理或者直角三角形)。
立体几何解答题汇总及答案

立体几何 1.如图,四边形ABCD 为正方形,PD⊥平面ABCD ,PD∥QA,QA=AB=12PD.(I )证明:平面PQC⊥平面DCQ (II )求二面角Q-BP-C 的余弦值.2.如图,在三棱柱111ABC A B C -中,H 是正方形11AA B B的中心,122AA =,1C H ⊥平面11AA B B ,且1 5.C H =(Ⅰ)求异面直线AC 与A 1B 1所成角的余弦值;(Ⅱ)求二面角111A AC B --的正弦值;(Ⅲ)设N 为棱11B C 的中点,点M 在平面11AA B B 内,且MN ⊥平面11A B C ,求线段BM 的长.3.在如图所示的几何体中,四边形ABCD 为平行四边形,∠ ACB=90︒,EA⊥平面ABCD,EF∥AB,FG∥BC,EG∥AC.AB=2EF.(Ⅰ)若M是线段AD的中点,求证:GM∥平面ABFE;(Ⅱ)若AC=BC=2AE,求二面角A-BF-C的大小.4.如图5,在椎体P ABCD -中,ABCD 是边长为1的棱形060DAB ∠=,2PA PD ==,2,PB =,E F 分别是,BC PC的中点,(1) 证明:AD DEF ⊥平面(2)求二面角P AD B--的余弦值。
5.如图,ABCDEFG 为多面体,平面ABED 与平面AGFD垂直,点O 在线段AD 上,1,2,OA OD ==OAB ,△OAC ,△ODE ,△ODF 都是正三角形。
(Ⅰ)证明直线BC ∥EF ;(II )求棱锥F-OBED 的体积。
6. 已知三棱柱,底面三角形ABC 为正三角形,侧棱1AA ⊥底面ABC , 4,21==AA AB ,E 为1AA 的中点,F 为BC 中111C B A ABC -点.(Ⅰ) 求证:直线//AF 平面1BEC ;(Ⅱ)求平面1BEC 和平面ABC 所成的锐二面角的余弦值.7. 如图,在矩形ABCD 中,AB =5,BC =3,沿对角线BD 把△ABD折起,使A 移到A 1点,过点A 1作A 1O ⊥平面BCD ,垂足O恰好落在CD 上.(1)求证:BC ⊥A 1D ;(2)求直线A 1B 与平面BCD 所成角的正弦值.8. 如图,PA ⊥平面ABCD ,ABCD 是矩形,PA=AB=1,PD 与平面ABCD 所成角是30°,点F 是PB 的中点,点E 在边BC 上移动.(Ⅰ)点E 为BC的中点时,试判断EF 与平面PAC 的位置关系,并说明理由;(Ⅱ)证明:无论点E 在边BC 的何处,都有PE ⊥AF ; (Ⅲ)当BE 等于何值时,二面角P-DE-A 的大小为45°.9. 如图,在四棱锥S ABCD -中,底面ABCD 为平行四边形,SA ⊥平面ABCD ,2,1,AB AD ==7SB =,120,BAD E ∠=在棱SD上.(I )当3SE ED =时,求证SD ⊥平面;AEC (II )当二面角S AC E --的大小为30时,求直线AE 与平面CDE 所成角的大小.10. 如图,在三棱柱111ABC A B C -中,AB AC ⊥,顶点1A 在底面上的 射影恰为点B ,且12AB AC A B ===.(Ⅰ)证明:平面1A AC ⊥平面1AB B ;(Ⅱ)求棱1AA 与BC 所成的角的大小;(Ⅲ)若点P 为11B C 的中点,并求出二面角1P AB A --的平面角的余弦值. 11. 已知平行四边形ABCD 中,AB =6,AD =10,BD =8,E 是线段AD 的中点.沿直线BD 将△BCD 翻折成△BC D ',使得平面BC D '⊥平面ABD .(Ⅰ)求证:C D '⊥平面ABD ;(Ⅱ)求直线BD 与平面BEC '所成角的正弦值;(Ⅲ)求二面角D BE C '--的余弦值. 12. 如图,四棱锥P ABCD -的底面是直角梯形,//AB CD ,AB AD ⊥,PAB ∆和PAD ∆是两个边长为2的正三角形,4DC =,O 为BD 的中点,E 为PA 的中点.(Ⅰ)求证:PO ⊥平面ABCD ;(Ⅱ)求证://OE 平面PDC ;(Ⅲ)求直线CB 与平面PDC 所成角的正弦值. 13. 如图,已知菱形ABCD 的边长为6,60BAD ∠=,AC BD O =.将菱形ABCD 沿对角线AC 折起,使32BD =,得到三棱锥B ACD -.(Ⅰ)若点M 是棱BC 的中点,求证://OM 平面ABD ;(Ⅱ)求二面角A BD O --的余弦值;(Ⅲ)设点N 是线段BD 上一个动点,试确定N 点的位置,使得42CN =,并证明你的结论.CB A 1C 1B 1A A BD E C 'C ADO C P BE MAB C DEA 1B 1C 1 (第11题图) 14. 如图,在多面体ABCDEF 中,四边形ABCD 是矩形,AB ∥EF ,∠EAB=90º,AB=2,AD=AE=EF=1,平面ABFE ⊥平面ABCD 。
立体几何解答题最全归纳总结(解析版)

立体几何解答题最全归纳总结【题型归纳目录】题型一:非常规空间几何体为载体题型二:立体几何存在性问题题型三:立体几何折叠问题题型四:立体几何作图问题题型五:立体几何建系繁琐问题题型六:两角相等(构造全等)的立体几何问题题型七:利用传统方法找几何关系建系题型八:空间中的点不好求题型九:创新定义【典例例题】题型一:非常规空间几何体为载体例1.如图,P 为圆锥的顶点,O 为圆锥底面的圆心,圆锥的底面直径AB =4,母线PH =22,M 是PB 的中点,四边形OBCH 为正方形.(1)设平面POH ∩平面PBC =l ,证明:l ∥BC ;(2)设D 为OH 的中点,N 是线段CD 上的一个点,当MN 与平面PAB所成角最大时,求MN 的长.【解析】(1)因为四边形OBCH 为正方形,∴BC ∥OH ,∵BC ⊄平面POH ,OH ⊂平面POH ,∴BC ∥平面POH .∵BC ⊂平面PBC ,平面POH ∩平面PBC =l ,∴l ∥BC .(2)∵圆锥的母线长为22,AB =4,∴OB =2,OP =2,以O 为原点,OP 所在的直线为z 轴,建立如图所示的空间直角坐标系,则P 0,0,2 ,B 0,2,0 ,D 1,0,0 C 2,2,0 ,M 0,1,1 ,设DN =λDC =λ,2λ,0 0≤λ≤1 ,ON =OD +DN =1+λ,2λ,0 ,MN =ON -OM =1+λ,2λ-1,-1 ,OD =1,0,0 为平面PAB 的一个法向量,设MN 与平面PAB 所成的角为θ,则sin θ=1+λ,2λ-1,-1 ⋅1,0,0 1+λ 2+2λ-1 2+1 =1+λ5λ2-2λ+3,令1+λ=t ∈1,2 ,则sin θ=t 5t 2-12t +10=15-12t +101t 2=1101t -35 2+75所以当1t =35时,即λ=23时,sin θ最大,亦θ最大,此时MN =53,13,-1 ,所以MN =MN =53 2+13 2+-1 2=353.例2.如图所示,圆锥的底面半径为4,侧面积为162π,线段AB 为圆锥底面⊙O 的直径,C 在线段AB 上,且BC =3CA ,点D 是以BC 为直径的圆上一动点;(1)当CD =CO 时,证明:平面PAD ⊥平面POD(2)当三棱锥P -BCD 的体积最大时,求二面角B -PD -A 的余弦值.【解析】(1)∵PO 垂直于圆锥的底面,∴PO ⊥AD ,当CD =CO 时,CD =OC =AC ,∴AD ⊥OD ,又OD ∩PO =O ,∴AD ⊥平面POD ,又AD ⊂平面PAD ,∴平面PAD ⊥平面POD ;(2)由题可知OA =OB =4,4π⋅PB =162π,∴PB =42,∴PO =4,当三棱锥P -BCD 的体积最大时,△DBC 的面积最大,此时D 为BC的中点,如图,建立空间直角坐标系O -xyz ,则A (0,-4,0),B (0,4,0),P (0,0,4),D 3,1,0 ,∴BP =0,-4,4 ,PD =3,1,-4 ,AP =(0,4,4),设平面PAD 的法向量为n 1 =(a ,b ,c ),则n 1 ⋅AP =0n 1 ⋅PD =0 ,即4b +4c =03a +b -4c =0,令a =5,则b =-3,c =3,∴n 1 =(5,-3,3),设平面PBD 的法向量n 2 =x ,y ,z ,则n 2 ⋅BP =0n 2 ⋅PD =0 ,即-4y +4z =03x +y -4z =0,令x =1,则y =1,z =1,∴n 2 =1,1,1 ,则cos n 1 ,n 2 =n 1 ⋅n 2 n 1 n 2 =5-3+33×52+-3 2+32=5129129,∴二面角B -PD -A 的余弦值为-5129129.例3.如图,圆锥PO 的母线长为6,△ABC 是⊙O 的内接三角形,平面PAC ⊥平面PBC .BC =23,∠ABC =60°.(1)证明:PA ⊥PC ;(2)设点Q 满足OQ =λOP ,其中λ∈0,1 ,且二面角O -QB -C 的大小为60°,求λ的值.【解析】(1)∵PA =PB =PC =6,BC =23,PB 2+PC 2=BC 2,∴PB ⊥PC∵平面PAC ⊥平面PBC 且平面PAC ∩平面PBC =PC ,PB ⊂平面PBC ,PB ⊥PC ,∴PB ⊥平面PAC ,又PA ⊂平面PAC ,∴PB ⊥PA ,∴AB =PA 2+PB 2=23,∴∠ABC =60°,∴△ABC 是正三角形,AC =23,∵PA 2+PC 2=AC 2∴PA ⊥PC ;(2)在平面ABC 内作OM ⊥OB 交BC 于M ,以O 为坐标原点,OM ,OB ,OP 所在直线分别为x 轴,y 轴,z 轴,建立空间直角坐标系O -xyz 如图所示:易知OB =OC =2,OP =PB 2-OB 2=2,所以B 2,0,0 ,P 0,0,2 ,C -1,3,0 ,Q 0,0,2λ ,QB =2,0,-2λ ,BC =-3,3,0 ,设平面OBC 的法向量n 1 =x ,y ,z ,依题意n 1 ⋅QB =0n 1 ⋅CB =0 ,即2x -2λz =0-3x +3y =0 ,不妨令y =3λ,得n 1 =λ,3λ,2 ,易知平面OQB 的法向量n 2 =0,1,0 ,由λ∈0,1 可知cos n 1 ,n 2 =n 1 ⋅n 2 n 1 ⋅n 2=cos60°,即3λλ2+(3λ)2+2 2=12,解得λ=12例4.如图,D 为圆锥的顶点,O 为圆锥底面的圆心,AB 为底面直径,C 为底面圆周上一点,DA =AC =BC =2,四边形DOAE 为矩形,点F 在BC 上,且DF ⎳平面EAC .(1)请判断点F 的位置并说明理由;(2)平面DFO 将多面体DBCAE 分成两部分,求体积较大部分几何体的体积.【解析】(1)点F 是BC 的中点,取BC 的中点F ,连接OF ,DF ,因为O 为AB 的中点,所以OF ⎳AC ,又AC ⊂平面AEC ,OF ⊄平面AEC ,所以OF ⎳平面AEC ,由四边形DOAE 为矩形,所以DO ⎳AE ,又AE ⊂平面AEC ,OD ⊄平面AEC ,所以OD ⎳平面AEC ,因为DO ∩OF =O ,DO ,OF ⊂平面DOF ,所以平面DOF ⎳平面AEC ,因为DF ⊂平面DOF ,所以DF ⎳平面AEC ,(2)由(1)知点F 是BC 的中点,因为DA =AC =BC =2,所以AB =AC 2+BC 2=22,所以OA =OC =OB =2,且OC ⊥AB ,所以OD =AD 2-OA 2=2,所以三棱锥D -BOF 的体积V D -BOF =13S △BOF ⋅DO =13×12×2×22×2=26;又三棱锥D -BOC 的体积V D -BOC =13S △BOC ⋅DO =13×12×2×2×2=23,所以四棱锥C -DOAE 的体积V C -DOAE =13S DOAE ×2=13×2 2×2=223,所以几何体DBCAE 的体积V DBCAE =V D -BCO +V C -DOAE =2,所以体积较大部分几何体的体积为V DBCAE -V D -BOF =2-26=526;例5.如图,在直角△POA 中,PO ⊥OA ,PO =2OA ,将△POA 绕边PO 旋转到△POB 的位置,使∠AOB =90°,得到圆锥的一部分,点C 为AB 的中点.(1)求证:PC ⊥AB ;(2)设直线PC 与平面PAB 所成的角为φ,求sin φ.【解析】(1)证明:由题意知:PO ⊥OA ,PO ⊥OB ,OA ∩OC =0∴PO ⊥平面AOB ,又∵AB ⊂平面AOB ,所以PO ⊥AB .又点C 为AB 的中点,所以OC ⊥AB ,PO ∩OC =0,所以AB ⊥平面POC ,又∵PC ⊂平面POC ,所以PC ⊥AB .(2)以O 为原点,OA ,OB ,OP 的方向分别作为x ,y ,z 轴的正方向建立如图所示的空间直角坐标系,设OA =2,则A 2,0,0 ,B 0,2,0 ,P 0,0,4 ,C 2,2,0 ,所以AB =-2,2,0 ,AP =-2,0,4 ,PC =2,2,-4 .设平面PAB 的法向量为n =a ,b ,c ,则n ⋅AB =-2a +2b =0,n ⋅AP =-2a +4c =0, 取c =1,则a =b =2可得平面PAB 的一个法向量为n =2,2,1 ,所以sin φ=cos n ,PC =n ⋅PC n PC =42-465=210-5 15.例6.如图,四边形ABCD 为圆柱O 1O 2的轴截面,EF 是该圆柱的一条母线,EF =2EA ,G 是AD 的中点.(1)证明:AF ⊥平面EBG ;(2)若BE =3EA ,求二面角E -BG -A 的正弦值.【解析】(1)由已知EF ⊥平面ABE ,BE ⊂平面ABE ,所以EF ⊥BE ,因为AB 是圆O 1的直径,所以AE ⊥BE ,因为AE ∩FE =E ,所以BE ⊥平面AFE ,AF ⊂平面AFE ,故BE ⊥AF ,因为EF =2EA =2AG ,所以EA =2AG ,易知:Rt △AEG ∼Rt △EFA ,所以∠GEA +∠EAF =90°,从而AF ⊥EG ,又BE ∩EG =E ,所以AF ⊥平面EBG .(2)以E 为坐标原点,EA 为x 轴正方向,EA 为单位向量,建立如图所示的空间直角坐标系E -xyz ,则AB =2,BE =3,EF =2,从而A 1,0,0 ,B 0,3,0 ,D 1,0,2 ,F 0,0,2 ,AB =-1,3,0 ,AD =0,0,2 ,设n =x ,y ,z 位平面BGA 的法向量,则{n ⋅AB =0n ⋅AD =0⇒{-x +3y =02z =0⇒{x =3y =1z =0,所以n =3,1,0 ,由(1)知:平面BEG 的法向量为AF =-1,0,2 ,因为cos n ,AF =n ⋅AF n ⋅AF=-12,所以二面角E -BG -A 的正弦值为32.例7.例7.如图,几何体是圆柱的一部分,它是由矩形ABCD (及其内部)以AB 边所在直线为旋转轴旋转120°得到的,G 是DF的中点.(1)设P 是CE 上的一点,且AP ⊥BE ,求证BP ⊥BE ;(2)当AB =3,AD =2时,求二面角E -AG -C 的大小.【解析】(1)因为AP ⊥BE ,AB ⊥BE ,AB ,AP ⊂平面ABP ,AB ∩AP =A ,所以BE ⊥平面ABP ,又BP ⊂平面ABP ,所以BP ⊥BE .(2)以B 为坐标原点,分别以BE ,BP ,BA 所在的直线为x ,y ,z 轴,建立如图所示的空间直角坐标系.由题意得A (0,0,3),E (2,0,0),G (1,3,3),C (-1,3,0),故AE =(2,0,-3),AG =(1,3,0),CG =(2,0,3).设m =x 1,y 1,z 1 是平面AEG 的一个法向量,由m ·AE =0m ·AG =0 可得2x 1-3z 1=0,x 1+3y 1=0.取z 1=2,可得平面AEG 的一个法向量m =(3,-3,2).设n =x 2,y 2,z 2 是平面ACG 的一个法向量,由n ·AG =0n ·CG =0,可得x 2+3y 2=0,2x 2+3z 2=0. 取z 2=-2,可得平面ACG 的一个法向量n =(3,-3,-2).所以cos ‹m ,n ›=m ⋅n |m |⋅|n |=12, 因为<m ,n >∈[0,π],故所求的角为60°.例8.如图,四边形ABCD 是一个半圆柱的轴截面,E ,F 分别是弧DC ,AB 上的一点,EF ∥AD ,点H 为线段AD 的中点,且AB =AD =4,∠FAB =30°,点G 为线段CE 上一动点.(1)试确定点G 的位置,使DG ⎳平面CFH ,并给予证明;(2)求二面角C -HF -E 的大小.【解析】(1)当点G 为CE 的中点时,DG ∥平面CFH .证明:取CF 得中点M ,连接HM ,MG .∵G ,M 分别为CE 与CF 的中点,∴GM ∥EF ,且GM =12EF =12AD ,又H 为AD 的中点,且AD ∥EF ,AD =EF ,∴GM ∥DH ,GM =DH .四边形GMHD 是平行四边形,∴HM ∥DG又HM ⊂平面CFH ,DG ⊄平面CFH∴DG ∥平面CFH(2)由题意知,AB 是半圆柱底面圆的一条直径,∴AF ⊥BF .∴AF =AB cos30°=23,BF =AB sin30°=2.由EF ∥AD ,AD ⊥底面ABF ,得EF ⊥底面ABF .∴EF ⊥AF ,EF ⊥BF .以点F 为原点建立如图所示的空间直角坐标系,则F (0,0,0),B (0,2,0),C (0,2,4),H (23,0,2)FH =(23,0,2),FC =(0,2,4)设平面CFH 的一个法向量为n =(x ,y ,z )所以n ⋅FH =23x +2z =0n ⋅FC =2y +4z =0则令z =1则y =-2,x =-33即n =-33,-2,1由BF ⊥AF ,BF ⊥FE ,AF ∩FE =F .得BF ⊥平面EFH ∴平面EFH 的一个法向量为FB =(0,2,0)设二面角C -HF -E 所成的角为θ∈0,π2则cos θ=∣cos ‹n ,FB ›=|n ⋅FB ||n ||FB |=0×-33 +(-2)×2+1×02×13+4+1=32 ∴二面角C -HF -E 所成的角为π6.例9.坐落于武汉市江汉区的汉口东正教堂是中国南方唯一的拜占庭式建筑,象征着中西文化的有机融合.拜占庭建筑创造了将穹顶支承于独立方柱上的结构方法和与之相呼应的集中式建筑形制,其主体部分由一圆柱与其上方一半球所构成,如图所示.其中O 是下底面圆心,A ,B ,C 是⊙O 上三点,A 1,B 1,C 1是上底面对应的三点.且A ,O ,C 共线,AC ⊥OB ,C 1E =EC ,B 1F =13FB ,AE 与OF 所成角的余弦值为36565.(1)若E 到平面A 1BC 的距离为233,求⊙O 的半径.(2)在(1)的条件下,已知P 为半球面上的动点,且AP =210,求P 点轨迹在球面上围成的面积.【解析】(1)如图,取BB 1,CE 上的点N ,M .连接OM ,OF ,FM .过N 作NH ⊥A 1B 于H ,则OM ∥AE ,由题意知cos ∠FOM =36565,设⊙O 的半径为r ,AA 1=h ,由勾股定理知OF =r 2+916h 2,OM =r 2+116h 2,FM =2r 2+14h 2,由余弦定理知cos ∠FOM =OF 2+OM 2-FM 22×OF ×OM.代入解得h =2r ,因为EN ∥BC ,EN ⊄面A 1BC ,所以EN ∥面A 1BC ,故N 到面A 1BC 的距离是233,因为BC ⊥AB ,BC ⊥AA 1,AA 1∩AB =A ,所以BC ⊥面A 1AB ,BC ⊥NH ,因为NH ⊥BC ,NH ⊥A 1B ,A 1B ∩BC =B ,所以NH ⊥面A 1BC ,NH =233,而sin ∠A 1BB 1=NH BN =A 1B 1A 1B ,即233×h 2=2r 2r 2+h 2,解得r =2,h =4,即⊙O 的半径为2.(2)设上底面圆心为O 1,则O 1P =2,O 1O 2与O 1P 的夹角为θ,所以|AP |=|AO 1 +O 1P |=20+4+85cos θ=210,解得cos θ=255,过P 作PO 2⊥AO 1于O 2,则O 2P =O 1P ⋅sin θ=255,所以点P 的轨迹是以O 2为圆心,以255为半径的圆,因此可作出几何体被面AOA 1所截得到的截面,如图所示.设弧A 1C 1旋转一周所得到的曲面面积为S 1,弧PP 得到的为S 2,则S 2S 1=1-cos θS 1=12×4πr2 ,因此S 2=2πr 2(1-cos θ)=8π1-255 .因此P 点轨迹在球面上围成的面积为8π1-255.例10.如图,ABCD 为圆柱OO 的轴截面,EF 是圆柱上异于AD ,BC 的母线.(1)证明:BE ⊥平面DEF ;(2)若AB =BC =6,当三棱锥B -DEF 的体积最大时,求二面角B -DF -E 的正弦值.【解析】(1)证明:如图,连接AE ,由题意知AB 为⊙O 的直径,所以AE ⊥BE .因为AD ,EF 是圆柱的母线,所以AD ∥EF 且AD =EF ,所以四边形AEFD 是平行四边形.所以AE ⎳DF ,所以BE ⊥DF .因为EF 是圆柱的母线,所以EF ⊥平面ABE ,又因为BE ⊂平面ABE ,所以EF ⊥BE .又因为DF ∩EF =F ,DF 、EF ⊂平面DEF ,所以BE ⊥平面DEF .(2)由(1)知BE 是三棱锥B -DEF 底面DEF 上的高,由(1)知EF ⊥AE ,AE ∥DF ,所以EF ⊥DF ,即底面三角形DEF 是直角三角形.设DF =AE =x ,BE =y ,则在Rt △ABE 中有:x 2+y 2=6,所以V B -DEF =13S △DEF ⋅BE =13⋅12x ⋅6⋅y =66xy ≤66⋅x 2+y 22=62,当且仅当x =y =3时等号成立,即点E ,F 分别是AB ,CD的中点时,三棱锥B -DEF 的体积最大,(另等积转化法:V B -DEF =V D -BEF =V D -BCF =V B -CDF =13S △CDF⋅BC 易得当F 与CD 距离最远时取到最大值,此时E 、F 分别为AB 、CD 中点)下面求二面角B -DF -E 的正弦值:法一:由(1)得BE ⊥平面DEF ,因为DF ⊂平面DEF ,所以BE ⊥DF .又因为EF ⊥DF ,EF ∩BE =E ,所以DF ⊥平面BEF .因为BF ⊂平面BEF ,所以BF ⊥DF ,所以∠BFE 是二面角B -DF -E 的平面角,由(1)知△BEF 为直角三角形,则BF =(3)2+(6)2=3.故sin ∠BFE =BE BF=33,所以二面角B -DF -E 的正弦值为33.法二:由(1)知EA ,EB ,EF 两两相互垂直,如图,以点E 为原点,EA ,EB ,EF 所在直线为x ,y ,z 轴建立空间直角坐标系E -xyz ,则B (0,3,0),D (3,0,6),E (0,0,0),F (0,0,6).由(1)知BE ⊥平面DEF ,故平面DEF 的法向量可取为EB =(0,3,0).设平面BDF 的法向量为n =(x ,y ,z ),由DF =(-3,0,0),BF =(0,-3,6),得n ⋅DF =0n ⋅BF =0 ,即-3x =0-3y +6z =0,即x =0y =2z ,取z =1,得n =(0,2,1).设二面角B -DF -E 的平面角为θ,|cos θ|=∣cos n ,EB =|n ⋅EB ||n |⋅|EB |=2×33×3=63,所以二面角B -DF -E 的正弦值为33例11.如图,O 1,O 分别是圆台上、下底的圆心,AB 为圆O 的直径,以OB 为直径在底面内作圆E ,C 为圆O 的直径AB 所对弧的中点,连接BC 交圆E 于点D ,AA 1,BB 1,CC 1为圆台的母线,AB =2A 1B 1=8.(1)证明;C 1D ⎳平面OBB 1O 1;(2)若二面角C 1-BC -O 为π3,求O 1D 与平面AC 1D 所成角的正弦值.【解析】(1)连接DE ,O1E ,C 为圆O 的直径AB 所对弧的中点,所以△BOC 为等腰直角三角形,即∠OBD =45°,又D 在圆E 上,故△BED 为等腰直角三角形,所以DE ⎳OC 且DE =12OC ,又CC 1是母线且O 1C 1=12OC ,则O 1C 1⎳OC ,故DE ⎳O 1C 1且DE =O 1C 1,则DEO 1C 1为平行四边形,所以EO 1⎳DC 1,而EO 1⊂面OBB 1O 1,DC 1⊄面OBB 1O 1,故C 1D ⎳平面OBB 1O 1.(2)由题设及(1)知:O 1O 、OB 、OC 两两垂直,构建如下图示的空间直角坐标系,过C 1作C 1F ⎳O 1O ,则F 为OC 的中点,再过F 作FG ⎳OD ,连接C 1G ,由O 1O ⊥圆O ,即C 1F ⊥圆O ,BC ⊂圆O ,则C 1F ⊥BC ,又OD⊥BC ,则FG ⊥BC ,故二面角C 1-BC -O 的平面角为∠FGC 1=π3,而FG =12OD =24OB =2,所以O 1O =C 1F =FG tan π3=6.则A (0,-4,0),D (2,2,0),C 1(2,0,6),O 1(0,0,6),所以AD =(2,6,0),C 1D =(0,2,-6),O 1D =(2,2,-6),若m =(x ,y ,z )为面AC 1D 的一个法向量,则m ⋅AD =2x +6y =0m ⋅C 1D =2y -6z =0,令y =6,则m =(-36,6,2),|cos <m ,O 1D >|=6614×8=32128,故O 1D 与平面AC 1D 所成角的正弦值32128.例12.某市在滨海文化中心有滨海科技馆,其建筑有鲜明的后工业风格,如图所示,截取其中一部分抽象出长方体和圆台组合,如图所示,长方体ABCD -A 1B 1C 1D 1中,AB =4,AD =AA 1=2,圆台下底圆心O 为AB 的中点,直径为2,圆与直线AB 交于E ,F ,圆台上底的圆心O 1在A 1B 1上,直径为1.(1)求A 1C 与平面A 1ED 所成角的正弦值;(2)圆台上底圆周上是否存在一点P 使得FP ⊥AC 1,若存在,求点P 到直线A 1B 1的距离,若不存在则说明理由.【解析】(1)(1)由长方体ABCD -A 1B 1C 1D 1可知,以D 为原点,DA 为x 轴,DC 为y 轴,DD 1为z 轴,建立空间直角坐标系如图所示,则A 12,0,2 ,C 0,4,0 ,E 2,1,0 ,D 0,0,0 .所以A 1C =(-2,4,-2),DA 1 =(2,0,2),DE =(2,1,0).设平面A 1ED 的一个法向量为n=(x ,y ,z ),则有n .DA=0n .DE =0 ,即2x +2z =02x +y =0 ,令x =1,则y =-2,z =-1,故n=(1,-2,-1),所以|cos <A 1C ,n >|=|AC ⋅n||AC ||n |=|-2-8+2|4+16+4⋅1+4+1=23,故A 1C 与平面A 1ED 所成角的正弦值为23;(2)由(1)可知,A 2,0,0 ,C 10,4,2 ,所以AC 1=(-2,4,2),假设存在这样的点P ,设P x ,y ,2 ,由题意可知(x -2)2+(y -2)2=14,所以FP =(x -2,y -3,2),因为FP ⊥AC 1,则有FP ⋅AC 1 =-2(x -2)+4(y-3)+4=0,所以x =2y -2,又(x -2)2+(y -2)2=14,所以5y 2-20y +794=0,解得x =2-55y =2-510(舍),x =2+55y =2+510,所以当P 2+55,2+510,2 时,FP ⊥AC 1,此时点P 到直线A 1B 1的距离为55.题型二:立体几何存在性问题例13.如图,三棱锥P -ABC 中,PA ⊥平面ABC ,PA =1,AB =1,AC =2,∠BAC =60°.(1)求三棱锥A -PBC 的体积;(2)在线段PC 上是否存在一点M ,使得BM ⊥AC ?若存在,求MCPM的值,若不存在,请说明理由.【解析】(1)因为AB =1,AC =2,∠BAC =60°,所以S △ABC =12⋅AB ⋅AC ⋅sin60°=32.由PA ⊥平面ABC 知:PA 是三棱锥P -ABC 的高,又PA =1,所以三棱锥A -PBC 的体积V A -PBC =V P -ABC =13⋅S △ABC ⋅PA =36.(2)在线段PC 上存在一点M ,使得BM ⊥AC ,此时MCPM =3.如图,在平面PAC 内,过M 作MN ⎳PA 交AC 于N,连接BN ,BM .由PA ⊥平面ABC ,AC ⊂平面ABC ,故PA ⊥AC ,所以MN ⊥AC .由MN ⎳PA 知:AN NC =PM MC=13,则AN =12,在△ABN 中,BN 2=AB 2+AN 2-2AB ⋅AN cos ∠BAC =12+12 2-2×1×12×12=34,所以AN 2+BN 2=AB 2,即AC ⊥BN .由于BN ∩MN =N 且BN ,MN ⊂面MB N ,故AC ⊥平面MB N .又BM ⊂平面MB N ,所以AC ⊥BM .例14.已知四棱锥P -ABCD 中,底面ABCD 是矩形,且AD =2AB ,△PAD 是正三角形,CD ⊥平面PAD ,E 、F 、G 、O 分别是PC 、PD 、BC 、AD 的中点.(1)求平面EFG 与平面ABCD 所成的锐二面角的大小;(2)线段PA 上是否存在点M ,使得直线GM 与平面EFG 所成角的大小为π6,若存在,求出PMPA的值;若不存在,说明理由.【解析】(1)因为△PAD 是正三角形,O 为AD 的中点,所以,PO ⊥AD ,因为CD ⊥平面PAD ,PO ⊂平面PAD ,∴PO ⊥CD ,∵AD ∩CD =D ,∴PO ⊥平面ABCD ,因为AD ⎳BC 且AD =BC ,O 、G 分别为AD 、BC 的中点,所以,AO ⎳BG 且AO =BG ,所以,四边形ABGO 为平行四边形,所以,OG ⎳AB ,∵AB ⊥AD ,则OG ⊥AD ,以点O 为坐标原点,OA 、OG 、OP 所在直线分别为x 、y 、z 轴建立如下图所示的空间直角坐标系,设AB =2,则AD =4,A 2,0,0 、G 0,2,0 、D -2,0,0 、C -2,2,0 、P 0,0,23 、E -1,1,3 、F -1,0,3 ,EF=0,-1,0 ,EG =1,1,-3 ,设平面EFG 的法向量为n=x ,y ,z ,则n ⋅EF=-y =0n ⋅EG=x +y -3z =0 ,取x =3,可得n =3,0,1 ,易知平面ABCD 的一个法向量为m=0,0,1 ,所以,cos <m ,n >=m ⋅nm ⋅n=12,因此,平面EFG 与平面ABCD 所成的锐二面角为π3.(2)假设线段PA 上是否存在点M ,使得直线GM 与平面EFG 所成角的大小为π6,设PM=λPA =λ2,0,-23 =2λ,0,-23λ ,其中0≤λ≤1,GM =GP +PM=0,-2,23 +2λ,0,-23λ =2λ,-2,23-23λ ,由题意可得cos <n ,GM > =n ⋅GM n ⋅GM =2324λ2+4+121-λ 2=12,整理可得4λ2-6λ+1=0,因为0≤λ≤1,解得λ=3-54.因此,在线段PA 上是否存在点M ,使得直线GM 与平面EFG 所成角的大小为π6,且PM PA=3-54.例15.已知三棱柱ABC -A 1B 1C 1中,∠ACB =90°,A 1B ⊥AC 1,AC =AA 1=4,BC =2.(1)求证:平面A 1ACC 1⊥平面ABC ;(2)若∠A 1AC =60°,在线段AC 上是否存在一点P ,使二面角B -A 1P -C 的平面角的余弦值为34若存在,确定点P 的位置;若不存在,说明理由.【解析】(1)由AC =AA 1知:四边形AA 1C 1C 为菱形.连接A 1C ,则A 1C ⊥AC 1,又A 1B ⊥AC 1且A 1C ∩A 1B =A 1,∴AC 1⊥平面A 1CB ,BC ⊂平面A 1CB ,则AC 1⊥BC ;又∠ACB =90°,即BC ⊥AC ,而AC ∩AC 1=A ,∴BC ⊥平面A 1ACC 1,而BC ⊂平面ABC ,∴平面A 1ACC 1⊥平面ABC .(2)以C 为坐标原点,射线CA 、CB 为x 、y 轴的正向,平面A 1ACC 1上过C 且垂直于AC 的直线为z 轴,建立如图所示的空间直角坐标系.∵AC =AA 1=4,BC =2,∠A 1AC =60°,∴C 0,0,0 ,B 0,2,0 ,A 4,0,0 ,A 12,0,23 .设在线段AC 上存在一点P ,满足AP =λAC0≤λ≤1 ,使二面角B -A 1P -C 的余弦值为34,则AP =-4λ,0,0 ,所以BP =BA +AP=4,-2,0 +-4λ,0,0 =4-4λ,-2,0 ,A 1P =A 1A +AP=2-4λ,0,-23 .设平面BA 1P 的一个法向量为m=x 1,y 1,z 1 ,由m ⋅BP=4-4λ x 1-2y 1=0m ⋅A 1P =2-4λ x 1-23z 1=0,取x 1=1,得m=1,2-2λ,1-2λ3;平面A 1PC 的一个法向量为n=0,1,0 .由cos m ,n =m ⋅n m ⋅n =2-2λ 1+2-2λ 2+1-2λ23×1=34,解得λ=43或λ=34.因为0≤λ≤1,则λ=34.故在线段AC 上存在一点P ,满足AP =34AC ,使二面角B -A 1P -C 的平面角的余弦值为34.例16.如图,在四棱锥P -ABCD 中,PA ⊥平面ABCD ,AD ⎳BC ,AD ⊥CD ,且AD =CD ,BC =2CD ,PA =2AD .(1)证明:AB ⊥PC ;(2)在线段PD 上是否存在一点M ,使得二面角M -AC -D 的余弦值为1717,若存在,求BM 与PC 所成角的余弦值;若不存在,请说明理由.【解析】(1)证明:连接AC ,设AD =CD =1,因为AD ⊥CD ,则AC =AD 2+CD 2=2,且△ACD 为等腰直角三角形,因为AD ⎳BC ,则∠ACB =∠CAD =45∘,因为BC =2CD =2,由余弦定理可得AB 2=AC 2+BC 2-2AC ⋅BC cos45∘=2,所以,AC 2+AB 2=BC 2,则AB ⊥AC ,∵PA ⊥平面ABCD ,AB ⊂平面ABCD ,∴AB ⊥PA ,∵PA ∩AC =A ,∴AB ⊥平面PAC ,∵PC ⊂平面PAC ,∴AB ⊥PC .(2)因为PA ⊥平面ABCD ,AB ⊥AC ,以点A 为坐标原点,AB 、AC 、AP 所在直线分别为x 、y 、z 轴建立如下图所示的空间直角坐标系,设AD =CD =1,则A 0,0,0 、B 2,0,0 、C 0,2,0 、D -22,22,0 、P 0,0,2 ,设PM =λPD =-22λ,22λ,-2λ ,其中0≤λ≤1,则AM =AP +PM=-22λ,22λ,2-2λ ,AC =0,2,0 ,设平面ACM 的法向量为m=x ,y ,z ,则m ⋅AC=2y =0m ⋅AM =-22λx +22y +2-2λ z =0,取x =2-2λ,可得m =2-2λ,0,λ ,易知平面ACD 的一个法向量为n=0,0,1 ,由题意可得cos <m ,n > =m ⋅n m ⋅n =λ41-λ 2+λ2=1717,因为0≤λ≤1,解得λ=13,此时,AM =-26,26,223 ,BM =BA +AM =-726,26,223 ,PC =0,2,-2 ,所以,cos <BM ,PC >=BM ⋅PCBM ⋅PC =-1333×2=-3322,因此,在线段PD 上是否存在一点M ,使得二面角M -AC -D 的余弦值为1717,且BM 与PC 所成角的余弦值为3322.例17.如图,△ABC 是边长为6的正三角形,点E ,F ,N 分别在边AB ,AC ,BC 上,且AE =AF =BN =4,M 为BC 边的中点,AM 交EF 于点O ,沿EF 将三角形AEF 折到DEF 的位置,使DM =15.(1)证明:平面DEF ⊥平面BEFC ;(2)试探究在线段DM 上是否存在点P ,使二面角P -EN -B 的大小为60°?若存在,求出DPPM的值;若不存在,请说明理由.【解析】(1)在△DOM 中,易得DO =23,OM =3,DM =15,由DM 2=DO 2+OM 2,得DO ⊥OM ,又∵AE =AF =4,AB =AC =6,∴EF ⎳BC ,又M 为BC 中点,∴AM ⊥BC ,∴DO ⊥EF ,因为EF ∩OM =O ,EF ,OM ⊂平面EBCF ,∴DO ⊥平面EBCF ,又DO ⊂平面DEF ,所以平面DEF ⊥平面BEFC ;(2)由(1)DO ⊥平面EBCF ,以O 为原点,以OE ,OM ,OD为x ,y ,z 的正方向建立空间直角坐标系O -xyz ,D (0,0,23),M (0,3,0),E (2,0,0),N (-1,3,0)∴DM =(0,3,-23),ED =(-2,0,23),由(1)得平面ENB 的法向量为n=(0,0,1),设平面ENP 的法向量为m=(x ,y ,z ),DP =λDM (0≤λ≤1),所以DP =(0,3λ,-23λ),所以EP =ED +DP =(-2,3λ,23-23λ).由题得,所以EN =(-3,3,0),所以m ⋅EN=-3x +3y =0m ⋅EP =-2x +3λy +(23-23λ)z =0,所以m =1,3,2-3λ23-23λ,因为二面角P -EN -B 的大小为60°,所以12=2-3λ23-23λ1+3+2-3λ23-23λ2,解之得λ=2(舍去)或λ=67.此时DP =67DM ,所以DP PM=6.例18.图1是直角梯形ABCD ,AB ⎳CD ,∠D =90∘,AB =2,DC =3,AD =3,CE =2ED,以BE 为折痕将△BCE 折起,使点C 到达C 1的位置,且AC 1=6,如图2.(1)求证:平面BC 1E ⊥平面ABED ;(2)在棱DC 1上是否存在点P ,使得C 1到平面PBE 的距离为62?若存在,求出二面角P -BE -A 的大小;若不存在,说明理由.【解析】(1)在图1中取CE 中点F ,连接BF ,AE ,∵CE =2ED ,CD =3,AB =2,∴CF =1,EF =1,∵DF =AB =2,DF ⎳AB ,∠D =90∘,∴四边形ABFD 为矩形,∴BF ⊥CD ,∴BE =BC =3+1=2,又CE =2,∴△BCE 为等边三角形;又AE =3+1=2,∴△ABE 为等边三角形;在图2中,取BE 中点G ,连接AG ,C 1G ,∵△C 1BE ,△ABE 为等边三角形,∴C 1G ⊥BE ,AG ⊥BE ,∴C 1G =AG =3,又AC 1=6,∴AG 2+C 1G 2=AC 21,∴C 1G ⊥AG ,又AG ∩BE =G ,AG ,BE ⊂平面ABED ,∴C 1G ⊥平面ABED ,∵C 1G ⊂平面BC 1E ,∴平面BC 1E ⊥平面ABED .(2)以G 为坐标原点,GA ,GB ,GC 1正方向为x ,y ,z 轴,可建立如图所示空间直角坐标系,则B 0,1,0 ,E 0,-1,0 ,A 3,0,0 ,C 10,0,3 ,D 32,-32,0,∴DC 1 =-32,32,3 ,EB =0,2,0 ,EC 1 =0,1,3 ,设棱DC 1上存在点P x ,y ,z 且DP=λDC 1 0≤λ≤1 满足题意,即x -32=-32λy +32=32λz =3λ,解得:x =32-32λy =32λ-32z =3λ,即P 32-32λ,32λ-32,3λ,则EP =32-32λ,32λ+12,3λ ,设平面PBE 的法向量n=a ,b ,c ,则EP ⋅n =32-32λ a +32λ+12 b +3λc =0EB ⋅n =2b =0,令a =2,则b =0c =1-λλ,∴n =2,0,1-λλ,∴C 1到平面PBE 的距离为d =EC 1 ⋅nn=3-3λλ4+1-λλ2=62,解得:λ=13,∴n=2,0,2 ,又平面ABE 的一个法向量m=0,0,1 ,∴cos <m ,n >=m ⋅nm ⋅n=222=22,又二面角P -BE -A 为锐二面角,∴二面角P -BE -A 的大小为π4.例19.如图所示,在四棱柱ABCD -A 1B 1C 1D 1中,侧棱A 1A ⊥底面ABCD ,AB ⊥AC ,AB =1,AC =AA 1=2,AD =CD =5,E 为棱AA 1上的点,且AE =12.(1)求证:BE ⊥平面ACB 1;(2)求二面角D 1-AC -B 1的余弦值;(3)在棱A 1B 1上是否存在点F ,使得直线DF ∥平面ACB 1?若存在,求A 1F 的长;若不存在,请说明理由.【解析】(1)∵A 1A ⊥底面ABCD ,AC ⊂平面ABCD ∴A 1A ⊥AC又AB ⊥AC ,A 1A ∩AB =A ,AA 1,AB ⊂平面ABB 1A 1,∴AC ⊥平面ABB 1A 1∵BE ⊂平面ABB 1A 1,∴AC ⊥BE ∵AE AB =12=ABBB 1,∠EAB =∠ABB 1=90∘,∴∠ABE =∠AB 1B∵∠BAB 1+∠AB 1B =90∘,∴∠BAB 1+∠ABE =90∘,∴BE ⊥AB 1,又AC ∩AB 1=A ,AC ,AB 1⊂平面ACB 1,∴BE ⊥平面ACB 1(2)如图,以A 为原点建立空间直角坐标系A -xyz ,依题意可得A (0,0,0),B (0,1,0),C (2,0,0),D (1,-2,0),D1(1,-2,2),E 0,0,12,由(1)知,EB =0,1,-12为平面ACB 1的一个法向量.设n=x ,y ,z 为平面ACD 1的一个法向量.因为AD 1 =(1,-2,2),AC =(2,0,0),所以n ⋅AD 1=0n ⋅AC =0 ,即:x -2y +2z =02x =0 ,不妨设z =1,可得n=(0,1,1).因此cos n ,EB =n ⋅EB n ⋅EB =1010由图可知二面角D 1-AC -B 1为锐角,所以二面角D 1-AC -B 1的余弦值为1010.(3)假设存在满足题意的点F ,设A 1F =a (a >0),则由(2)得F (0,a ,2),DF=(-1,a +2,2).由题意可知DF ⋅EB=a +2-1=0,解得a =-1(舍去),即直线DF 的方向向量与平面ACB 1的法向量不可能垂直.所以,在棱A 1B 1上不存在点F ,使得直线DF ∥平面ACB 1.例20.如图,在五面体ABCDE 中,已知AC ⊥BD ,AC ⊥BC ,ED ⎳AC ,且AC =BC =2ED =2,DC =DB =3.(1)求证:平面ABE ⊥与平面ABC ;(2)线段BC 上是否存在一点F ,使得平面AEF 与平面ABE 夹角余弦值的绝对值等于54343,若存在,求BFBC的值;若不存在,说明理由.【解析】(1)证明:∵AC ⊥BD ,AC ⊥BC ,BC ∩BD =B ,∴AC ⊥平面BCD ,∵AC ⊂平面ABC ,∴平面ABC ⊥平面BCD ,取BC 的中点O ,AB 的中点H ,连接OD 、OH 、EH ,∵BD =CD ,∴DO ⊥BC ,又DO ⊂平面BCD ,平面ABC ⊥平面BCD ,平面BCD ∩平面ABC =BC ,∴DO ⊥平面ABC ,又OH ⎳AC ,OH =12AC ,DE ⎳AC ,DE =12AC ,所以,OH ⎳DE 且OH =DE ,∴四边形OHED 为平行四边形,∴EH ⎳OD ,∵DO ⊥面ABC ,则EH ⊥平面ABC ,又∵EH ⊂面ABE ,所以,平面ABE ⊥平面ABC .(2)因为AC ⊥BC ,OH ⎳AC ,则OH ⊥BC ,因为OD ⊥平面ABC ,以点O 为坐标原点,OH 、OB 、OD 所在直线分别为x 、y 、z 轴建立如下图所示的空间直角坐标系,则A 2,-1,0 、B 0,1,0 、C 0,-1,0 、E 1,0,2 、H 1,0,0 ,HE=0,0,2 ,AB =-2,2,0 ,设平面ABE 的法向量为m=x 1,y 1,z 1 ,则m ⋅HE=2z 1=0m ⋅AB=-2x 1+2y 1=0 ,取x 1=1,可得m=1,1,0 ,设在线段BC 上存在点F 0,t ,0 -1≤t ≤1 ,使得平面AEF 与平面ABE 夹角的余弦值等于54343,设平面AEF 的法向量为n=x 2,y 2,z 2 ,AF =-2,t +1,0 ,AE =-1,1,2 ,由n ⋅AF=-2x 2+t +1 y 2=0n ⋅AE =-x 2+y 2+2z 2=0 ,取x 2=2t +1 ,可得n =2t +1 ,22,t -1 ,由题意可得cos <m ,n> =m ⋅n m ⋅n =2t +32⋅3t 2+2t +11=54343,整理可得2t 2-13t -7=0,解得:t =-12或t =7(舍),∴F 0,-12,0 ,则BF =32,∴BF BC =34,综上所述:在线段BC 上存在点F ,满足BF BC=34,使得平面AEF 与平面ABE 夹角的余弦值等于54343.题型三:立体几何折叠问题例21.如图1,在边上为4的菱形ABCD 中,∠DAB =60°,点M ,N 分别是边BC ,CD 的中点,AC ∩BD =O 1,AC ∩MN =G .沿MN 将△CMN 翻折到△PMN 的位置,连接PA ,PB ,PD ,得到如图2所示的五棱锥P -ABMND .(1)在翻折过程中是否总有平面PBD ⊥平面PAG ?证明你的结论;(2)当四棱锥P -MNDB 体积最大时,求直线PB 和平面MNDB 所成角的正弦值;(3)在(2)的条件下,在线段PA 上是否存在一点Q ,使得二面角Q -MN -P 余弦值的绝对值为1010若存在,试确定点Q 的位置;若不存在,请说明理由.【解析】(1)在翻折过程中总有平面PBD ⊥平面PAG ,证明如下:∵点M ,N 分别是边CD ,CB 的中点,又∠DAB =60°,∴BD ∥MN ,且△PMN 是等边三角形,∵G 是MN 的中点,∴MN ⊥PG ,∵菱形ABCD 的对角线互相垂直,∴BD ⊥AC ,∴MN ⊥AC ,∵AC ∩PG =G ,AC ⊂平面PAG ,PG ⊂平面PAG ,∴MN ⊥平面PAG ,∴BD ⊥平面PAG ,∵BD ⊂平面PBD ,∴平面PBD ⊥平面PAG .(2)由题意知,四边形MNDB 为等腰梯形,且DB =4,MN =2,O 1G =3,所以等腰梯形MNDB 的面积S =2+4 ×32=33,要使得四棱锥P -MNDB 体积最大,只要点P 到平面MNDB 的距离最大即可,∴当PG ⊥平面MNDB 时,点P 到平面MNDB 的距离的最大值为3,此时四棱锥P -MNDB 体积的最大值为V =13×33×3=3,直线PB 和平面MNDB 所成角的为∠PBG ,连接BG ,在直角三角形△PBG 中,PG =3,BG =7,由勾股定理得:PB =PG 2+BG 2=10.sin ∠PBG =PGPB=310=3010.(3)假设符合题意的点Q 存在.以G 为坐标原点,GA ,GM ,GP 所在直线分别为x 轴、y 轴、z 轴,建立如图所示空间直角坐标系,则A 33,0,0 ,M 0,1,0 ,N 0,-1,0 ,P 0,0,3 ,由(2)知,AG ⊥PG ,又AG ⊥MN ,且MN ∩PG =G ,MN ⊂平面PMN ,PG ⊂平面PMN ,AG ⊥平面PMN ,故平面PMN 的一个法向量为n 1=1,0,0 ,设AQ =λAP(0≤λ≤1),∵AP=-33,0,3 ,AQ=-33λ,0,3λ ,故331-λ ,0,3λ ,∴NM=0,2,0 ,QM =33λ-1 ,1,-3λ ,平面QMN 的一个法向量为n 2=x 2,y 2,z 2 ,则n 2 ⋅NM =0,n 2 ⋅QM=0,即2y 2=0,33λ-1 x 2+y 2-3λz 2=0,令z 2=1,所以y 2=0,x 2=λ3λ-1n 2 =13λ-1 ,0,1=13λ-1λ,0,3λ-1 ,则平面QMN 的一个法向量n=λ,0,3λ-1 ,设二面角Q -MN -P 的平面角为θ,则cos θ =n ⋅n 1 n n 1 =λλ2+9λ-1 2=1010,解得:λ=12,故符合题意的点Q 存在且Q 为线段PA 的中点.例22.如图,在等腰直角三角形PAD 中,∠A =90°,AD =8,AB =3,B 、C 分别是PA 、PD 上的点,且AD ⎳BC ,M 、N 分别为BP 、CD 的中点,现将△BCP 沿BC 折起,得到四棱锥P -ABCD ,连接MN .(1)证明:MN ⎳平面PAD ;(2)在翻折的过程中,当PA =4时,求二面角B -PC -D 的余弦值.【解析】(1)在四棱锥P -ABCD 中,取AB 的中点E ,连接EM ,EN .因为M ,N 分别为BP ,CD 的中点,AD ⎳BC ,所以ME ⎳PA ,EN ⎳AD ,又PA ⊂平面PAD ,ME ⊄平面PAD ,所以ME ⎳平面PAD ,同理可得,EN ⎳平面PAD ,又ME ∩EN =E ,ME ,EN ⊂平面MNE ,所以平面MNE ⎳平面PAD ,因为MN ⊂MNC 平面MNE ,所以MN ⎳平面PAD .(2)因为在等腰直角三角形PAD 中,∠A =90°,AD ⎳BC ,所以BC ⊥PA ,在四棱锥P -ABCD 中,BC ⊥PB ,BC ⊥AB ,因为AD ⎳BC ,则AD ⊥PB ,AD ⊥AB ,又PB ∩AB =B ,PB ,AB ⊂平面PAB ,所以AD ⊥平面PAB ,又PA ⊂平面PAB ,所以PA ⊥AD ,因为AD =8,AB =3,PA =4,AD ⎳BC ,则PB =5,BC =5,所以AB 2+PA 2=PB 2,故PA ⊥AB ,所以以点A 为坐标原点,分别以AB ,AD ,AP 所在方向为x 轴,y 轴,z 轴建立如图所示的空间直角坐标系A -xyz ,如图所示,A (0,0,0),B (3,0,0),C (3,5,0),P 0,0,4 ,D 0,8,0 ,所以PB =(3,0,-4),PC =(3,5,-4),PD =(0,8,-4),设m =(x 1,y 1,z 1)为平面PBC 的一个法向量,则m ⋅PB =0m ⋅PC =0,即3x 1-4z 1=03x 1+5y 1-4z 1=0 ,令x 1=4,则y 1=0,z 1=2,m =(4,0,3),设n =(x 2,y 2,z 2)为平面PCD 的一个法向量,则m ⋅PD =0m ⋅PC =0 ,即8y 2-4z 2=03x 2+5y 2-4z 2=0,令y 2=1,则x 2=1,z 2=2,n =(1,1,2),设二面角B -PC -D 所成角为α,则cos α=-cos m ,n =-m ⋅n m ⋅n =-4×1+0×1+2×3 42+02+32×12+12+22=-105×6=-63.因为二面角B -PC -D 的余弦值为-63.例23.如图1,在平面四边形PDCB 中,PD ∥BC ,BA ⊥PD ,PA =AB =BC =2,AD =1.将△PAB 沿BA 翻折到△SAB 的位置,使得平面SAB ⊥平面ABCD ,如图2所示.(1)设平面SDC 与平面SAB 的交线为l ,求证:BC ⊥l ;(2)点Q 在线段SC 上(点Q 不与端点重合),平面QBD 与平面BCD 夹角的余弦值为66,求线段BQ 的长.【解析】(1)依题意,AD ⊥AB ,因为PD ∥BC ,所以BC ⊥AB ,由于平面SAB ⊥平面ABCD ,且交线为AB ,BC ⊂平面ABCD ,所以BC ⊥平面SAB ,因为l 是平面SDC 与平面SAB 的交线,所以l ⊂平面SAB ,故BC ⊥l .(2)由上可知,AD ⊥平面SAB ,所以AD ⊥SA ,由题意可知SA ⊥AB ,AD ⊥AB ,以点A 为坐标原点,分别以AD ,AB ,AS 所在直线为x ,y ,z 轴建立空间直角坐标系,则A 0,0,0 ,B 0,2,0 ,C 2,2,0 ,D 1,0,0 ,S 0,0,2 ,BD =1,-2,0 ,SC =2,2,-2 ,设SQ =λSC 0<λ<1 ,则Q 2λ,2λ,2-2λ ,BQ =2λ,2λ-2,2-2λ ,设n =x ,y ,z 是平面QBD 的一个法向量,则n ⋅BD =x -2y =0n ⋅BQ =2λx +2λ-1 y +21-λ z =0,令x =2,可得n =2,1,1-3λ1-λ由于m =0,0,1 是平面CBD 的一个法向量,依题意,二面角Q -BD -C 的余弦值为66,所以cos m ,n =m ⋅n m ⋅n =1-3λ1-λ 1×4+1+1-3λ1-λ2=66,解得λ=12∈0,1 ,此时BQ =1,-1,1 ,BQ =3,即线段BQ 的长为3.例24.如图,在平面五边形PABCD 中,△PAD 为正三角形,AD ∥BC ,∠DAB =90°且AD =AB =2BC =2.将△PAD 沿AD 翻折成如图所示的四棱锥P -ABCD ,使得PC =7.F ,Q 分别为AB ,CE 的中点.(1)求证:FQ ∥平面PAD ;(2)若DE PE=12,求平面EFC 与平面PAD 夹角的余弦值.【解析】(1)(1)证明:取DC 的中点M ,连接MF ,MQ .则MQPD ,MFDA .因为MQ ⊄面PAD ,ME ⊄面PAD ,所以,MQ ∥面PAD ,MF ∥面PAD ,因为MQ ∩ME =M ,所以,面MQF 面PAD ,因为FQ ⊂面MQF ,所以FQ ∥面PAD .(2)(2)取AD 的中点O ,连接OP ,OC ,因为△PAD 为正三角形,AD =2,所以OP ⊥AD 且OP =3,在直角梯形ABCD 中,AD ∥BC ,∠DAB =90°,AB =2BC =2,所以,OC ⊥AD 且OC =2,又因为PC =7,所以在△POC 中,OP 2+OC 2=PC 2,即OP ⊥OC ,所以,以O 为坐标原点,分别以OD ,OC ,OP 的方向为x ,y ,z 轴的正向,建立如图所示的空间直角坐标系,则D 1,0,0,C 0,2,0 ,F -1,1,0 ,P 0,0,3 ,DP =-1,0,3 .因为DE PE=12,即DE =13DP =-13,0,33 ,λ>0,所以,E 23,0,33,所以EC =-23,2,-33 ,EF =-53,1,-33.设n =x 1,y 1,z 1 为平面EFC 的一个法向量,则n ⋅EC =0n ⋅EF =0 ,即-23x 1+2y 1-33z 1=0-53x 1+y 1-33z 1=0,取n =3,-3,-83 .又平面PAD 的一个法向量m =0,1,0 ,设平面EFC 与平面PAD 夹角为α,cos α=n ⋅m n ⋅m =39+9+192=21070.例25.如图,在平行四边形ABCD 中,AB =3,AD =2,∠A =60°,E ,F 分别为线段AB ,CD 上的点,且BE =2AE ,DF =FC ,现将△ADE 沿DE 翻折至△A 1DE 的位置,连接A 1B ,A 1C .(1)若点G 为线段A 1B 上一点,且A 1G =3GB ,求证:FG ⎳平面A 1DE ;(2)当三棱锥C -A 1DE 的体积达到最大时,求二面角B -A 1C -D 的正弦值.【解析】(1)在A 1E 上取一点M ,使A 1M =3ME ,连接DM ,MG ,因为A 1G =3GB ,EB =2AE ,所以MG ∥EB ,MG =34EB =34×23AB =12AB ,因为平行四边形ABCD 中,AB =CD ,AB ∥CD ,F 为CD 的中点,所以DF =12CD =12AB ,所以DF =MG ,DF ∥MG ,所以四边形DMGF 为平行四边形,所以FG ∥DM ,因为FG ⊄平面A 1DE ,DM ⊂平面A 1DE ,所以FG ∥平面A 1DE ,(2)当平面A 1DE ⊥平面DEC 时,三棱锥C -A 1DE 的体积最大,△ADE 中,∠A =60°,AD =2,AE =1,则DE 2=AD 2+AE 2-2AD ⋅AE cos A =4+1-2×2×1×12=3,所以DE 2+AE 2=AD 2,所以∠AED =90°,所以A 1E ⊥DE ,因为平面A 1DE ⊥平面DEC ,平面A 1DE ∩平面DEC =DE ,所以A 1E ⊥平面DEC ,因为BE ⊂平面DEC ,所以A 1E ⊥BE ,所以A 1E ,BE ,DE 两两垂直,所以以E 为原点,EB ,ED ,EA 1所在的直线分别为x ,y ,z 轴建立空间直角坐标系,如图所示,则D (0,3,0),A 1(0,0,1),B (2,0,0),C (3,3,0),所以DC =(3,0,0),DA 1 =(0,-3,1),BC =(1,3,0),CA 1 =(-3,-3,1),设平面A 1CD 的法向量为n =(x ,y ,z ),则n ⋅DA 1 =-3y +z =0n ⋅CA 1 =-3x -3y +z =0,令y =1,则n =(0,1,3),设平面A 1BC 的法向量为m =(a ,b ,c ),则m ⋅BC =a +3b =0m ⋅CA 1 =-3a -3b +c =0,令b =1,则m =(-3,1,-23),所以cos m ,n =m ⋅n m n=1-62×4=-58,所以二面角B -A 1C -D 的正弦值为1--58 2=398例26.如图1,四边形ABCD 是边长为2的正方形,四边形ABEF 是等腰梯形,AB =BE =12EF ,现将正方形ABCD 沿AB 翻折,使CD 与C D 重合,得到如图2所示的几何体,其中D E =4.(1)证明:AF ⊥平面AD E ;(2)求二面角D -AE -C 的余弦值.【解析】(1)证明:易得AD =AF =2,EF =D E =4,所以AE =23,则AD 2+AE 2=D E 2=EF 2,∴AD ⊥AE ,AE ⊥AF .又AD ⊥AB ,且AB ∩AE =A ,AB ,AE ⊂平面ABEF ,∴AD ⊥平面ABEF .∵AF ⊂平面ABEF ,∴AF ⊥AD .∵AE ∩AD =A ,AE ⊂平面AD E ,AD ⊂平面AD E ,∴AF ⊥平面AD E .(2)由(1)知AD ⊥平面ABEF ,则以A 为坐标原点,AB ,AD 所在直线分别为y ,z 轴,平面ABEF 内过点A 且垂直于AB 的直线为x 轴,建立如图所示的空间直角坐标系,则A 0,0,0 ,E 3,3,0 ,F 3,-1,0 ,C 0,2,2 ,∴AF =3,-1,0 ,AE =3,3,0 ,AC =00,2,2 .设平面AEC 的一个法向量为m =x ,y ,z ,则m ⋅AE =0m ⋅AC =0 ,得3x +3y =0,2y +2z =0,令x =3,则m =3,-1,1 .由(1)知,平面AED 的一个法向量为AF =3,-1,0 .∴cos AF ,m =AF ⋅m AF m=255.易知二面角D -AE -C 为锐二面角,∴二面角D -AE -C 的余弦值为255.例27.如图,在梯形ABCD 中,AD ∥BC ,AB =BC =2,AD =4,现将△ABC 所在平面沿对角线AC 翻折,使点B 翻折至点E ,且成直二面角E -AC -D .(1)证明:平面EDC ⊥平面EAC ;(2)若直线DE 与平面EAC 所成角的余弦值为12,求二面角D -EA -C 的余弦值.【解析】(1)证明:取AD 中点M ,连接CM ,由题意可得AM =2,AM 平行且等于BC ,∴四边形ABCM 为平行四边形,∵AM =MD =CM =2,∴△ACD 为直角三角形,即AC ⊥CD ,∵直二面角E -AC -D ,CD ⊂平面ACD ,∴平面EAC ⊥平面ACD ,平面EAC ∩平面ACD =AC ,∴CD ⊥平面EAC ,CD ⊂平面ECD ,∴平面ECD ⊥平面EAC .(2)由(1)可得DC ⊥平面EAC ,∴∠DEC 为直线DE 与平面EAC 所成角,∴cos ∠DEC =12,∴∠DEC =60°.在Rt △ECD 中,∵CE =2,∴CD =23,ED =4,在Rt △ACD 中,AC =2,∴△ABC 、△AEC 为等边三角形,以AC 中点O 为坐标原点,以OC ,OM ,OE 所在直线分别为x ,y ,z 轴建立如图所示的空间直角坐标系,A (-1,0,0),C (1,0,0),E (0,0,3),D (1,23,0),平面EAC 为xOz 平面,则其法向量为v =(0,1,0),在平面AED 内,设其法向量为u =(x ,y ,z ),AD =(2,23,0),AE =(1,0,3),则AD ⋅u =0AE ⋅u =0 ,即2x +23y =0x +3z =0,令x =3,则y =-1,z =-1,∴u =(3,-1,-1),设二面角D -EA -C 的平面角为θ,∴cos ‹u ,v ›=u ⋅v |u ||v |=-55,由图可知二面角D -EA -C 为锐角,∴cos θ=55.例28.如图1,在△ABC 中,∠ACB =90°,DE 是△ABC 的中位线,沿DE 将△ADE 进行翻折,使得△ACE 是等边三角形(如图2),记AB 的中点为F .(1)证明:DF ⊥平面ABC .(2)若AE =2,二面角D -AC -E 为π6,求直线AB 与平面ACD 所成角的正弦值.【解析】(1)如图,取AC 中点G ,连接FG 和EG ,由已知得DE ∥BC ,且DE =12BC .因为F ,G 分别为AB ,AC 的中点,所以FG ∥BC ,且FG =12BC 所以DE ∥FG ,且DE =FG .所以四边形DEGF 是平行四边形.所以EG ∥DF .因为翻折的BC ⊥AC ,易知DE ⊥AC .所以翻折后DE ⊥EA ,DE ⊥EC .又因为EA ∩EC =E ,EA ,EC ⊂平面AEC ,所以DE ⊥平面AEC .因为DE ∥BC ,所以BC ⊥平面AEC .因为EG ⊂平面AEC ,所以EG ⊥BC .因为△ACE 是等边三角形,点G 是AC 中点,所以EG ⊥AC又因为AC ∩BC =C ,AC ,BC ⊂平面ABC .所以EG ⊥平面ABC .。
专题6 立体几何(文科)解答题30题 教师版--高考数学专题训练

专题6立体几何(文科)解答题30题1.(贵州省贵阳市2023届高三上学期8月摸底考试数学(文)试题)如图,在直三棱柱111ABC A B C -中,1CA CB ==,90BCA ∠=︒,12AA =,M ,N 分别是11A B ,1A A 的中点.(1)求证:1BN C M ⊥;(2)求三棱锥1B BCN -的体积.2.(广西普通高中2023届高三摸底考试数学(文)试题)如图,多面体ABCDEF中,∠=︒,FA⊥平面ABCD,//ED FA,且22 ABCD是菱形,60ABC===.AB FA ED(1)求证:平面BDE⊥平面FAC;(2)求多面体ABCDEF的体积.))如图所示,取中点G ,连接3.(江西省五市九校协作体2023届高三第一次联考数学(文)试题)如图多面体ABCDEF 中,四边形ABCD 是菱形,60ABC ∠=︒,EA ⊥平面ABCD ,//EA BF ,22AB AE BF ===.(1)证明:平面EAC ⊥平面EFC ;(2)求点B 到平面CEF 的距离.(2)设B 到平面CEF 的距离为因为EA ⊥平面ABCD ,AC 因为//EA BF ,EA ⊥平面ABCD 且BC ⊂平面ABCD ,所以BF 因为60ABC ∠=︒,2AB =4.(新疆乌鲁木齐地区2023届高三第一次质量监测数学(文)试题)如图,在四棱锥P ABCD -中,PA ⊥平面ABCD ,AD CD ⊥,AD BC ∥,且2PA AD CD ===,3BC =,E 是PD 的中点,点F 在PC 上,且2PF FC =.(1)证明:DF ∥平面PAB ;(2)求三棱锥P AEF -的体积.(2)作FG PD ⊥交PD 于点G 因为PA ⊥面ABCD ,所以PA 又AD CD ⊥,PA 与AD 交于点所以CD ⊥面PAD ,CD PD ⊥又FG PD ⊥,所以//FG CD ,所以所以PF FG PC CD =,得43FG =,因为E 为PD 中点,所以P AEF D AEF F ADE V V V ---===5.(新疆阿克苏地区柯坪湖州国庆中学2021-2022学年高二上学期期末数学试题)如图所示,已知AB ⊥平面BCD ,M ,N 分别是AC ,AD 的中点,BC CD ⊥.(1)求证://MN 平面BCD ;(2)求证:CD BM ⊥;【答案】(1)证明见解析;(2)证明见解析.【分析】1)根据中位线定理,可得//MN CD ,即可由线面平行的判定定理证明//MN 平面BCD ;(2)由已知推导出AB CD ⊥,再由CD BC ⊥,得CD ⊥平面ABC ,由此能证明CD BM ⊥;【详解】(1)M ,N 分别是AC ,AD 的中点,//MN CD ∴,MN ⊂/ 平面BCD ,且CD ⊂平面BCD ,//MN ∴平面BCD ;(2)AB ⊥Q 平面BCD ,M ,N 分别是AC ,AD 的中点,AB CD ∴⊥,BC CD ⊥ ,,AB BC B AB BC =⊂ ,平面ABC ,CD \^平面ABC ,BM ⊂ 平面ABC ,CD BM ∴⊥.6.(内蒙古乌兰浩特第一中学2022届高三全真模拟文科数学试题)如图在梯形中,//BC AD ,22AB AD BC ===,23ABC π∠=,E 为AD 中点,以BE 为折痕将ABE 折起,使点A 到达点P 的位置,连接,PD PC ,(1)证明:平面PED ⊥平面BCDE ;(2)当2PC =时,求点D 到平面PEB 的距离.因为PE PD =,F 为ED 因为平面PED ⊥平面BCDE 因为21122PF ⎛⎫=-= ⎪⎝⎭设D 到平面PEB 的距离为7.(山西省运城市2022届高三5月考前适应性测试数学(文)试题(A 卷))如图,四棱柱1111ABCD A B C D -中,底面ABCD 为平行四边形,侧面11ADD A 为矩形,22AB AD ==,160D DB ∠=︒,1BD AA =(1)证明:平面ABCD ⊥平面11BDD B ;(2)求三棱锥11D BCB -的体积.8.(黑龙江省八校2021-2022学年高三上学期期末联合考试数学(文)试题)已知直三棱柱111ABC A B C -中,AC BC =,点D 是AB 的中点.(1)求证:1BC ∥平面1C AD ;(2)若底面ABC 边长为2的正三角形,1BB =11B A DC -的体积.【答案】(1)证明见解析(2)1【分析】(1)连接1AC 交1AC 于点E ,连接DE ,由三角形中位线定理,得1DE BC ∥,进而由线面平行的判定定理即可证得结论;(2)利用等体积转化1111B A DC C A B D V V --=,依题意,高为CD ,再求底面11A B D 的面积,进而求三棱锥的体积.【详解】(1)连接1AC 交1AC 于点E ,连接DE∵四边形11AAC C 是矩形,∴E 为1AC 的中点,又∵D 是AB 的中点,∴1DE BC ∥,又∵DE ⊂平面1C AD ,1BC ⊄平面1C AD ,∴1BC ∥面1C AD .(2)∵AC BC =,D 是AB 的中点,∴AB CD ⊥,9.(青海省西宁市2022届高三二模数学(文)试题)如图,V是圆锥的顶点,O是底面圆心,AB是底面圆的一条直径,且点C是弧AB的中点,点D是AC的中点,2AB=,VA=.2(1)求圆锥的表面积;又D 是AC 的中点,所以OD AC ⊥,又VO OD O ⋂=,VO ⊂平面VOD ,OD ⊂平面VOD所以AC ⊥平面VOD ,又AC ⊂平面VAC ,所以平面VAC ⊥平面VOD .10.(河南省郑州市2023届高三第一次质量预测文科数学试题)如图,在四棱锥P ABCD -中,PA ⊥底面ABCD ,AD ⊥AB ,AB DC ,2AD DC AP ===,1AB =,点E 为棱PC 的中点.(1)证明:平面PBC ⊥平面PCD ;(2)求四棱锥E ABCD -的体积;又点E 为棱PC 的中点,BE 由勾股定理得2AC AD =+∵△PAC 为直角三角形,E 111.(江西省部分学校2023届高三上学期1月联考数学(文)试题)如图,在正三棱柱111ABC A B C -中,12AA AB ==,D ,E 分别是棱BC ,1BB 的中点.(1)证明:平面1AC D ⊥平面1ACE .(2)求点1C 到平面1ACE 的距离.(2)连接1EC .因为1AA 由正三棱柱的性质可知因为ABC 是边长为2的等边三角形,所以故三棱锥11A CC E -的体积以15A E CE ==,1A E 则1ACE △的面积212S =12.(广西玉林、贵港、贺州市2023届高三联合调研考试(一模)数学(文)试题)在三棱锥-P ABC 中,底面ABC 是边长为2的等边三角形,点P 在底面ABC 上的射影为棱BC 的中点O ,且PB 与底面ABC 所成角为π3,点M 为线段PO 上一动点.(1)证明:BC AM ⊥;(2)若12PM MO =,求点M 到平面PAB 的距离.AO BC ∴⊥,点P 在底面ABC 上的投影为点PO ∴⊥平面ABC , PO BC ∴⊥,13.(广西南宁市第二中学2023届高三上学期第一次综合质检数学(文)试题)如图,D ,O 是圆柱底面的圆心,ABC 是底面圆的内接正三角形,AE 为圆柱的一条母线,P 为DO 的中点,Q 为AE 的中点,(1)若90APC ∠=︒,证明:DQ ⊥平面PBC ;(2)设2DO =,圆柱的侧面积为8π,求点B 到平面PAC 的距离.∴//,AQ PD AQ PD =,∴四边形AQDP 为平行四边形,∴//DQ PA .又∵P 在DO 上,而OD ∴O 为P 在ABC 内的投影,且ABC 是圆内接正三角形∴三棱锥-P ABC 为正三棱锥∴PAB PAC PBC △≌△≌△∴APB APC BPC ∠=∠=∠即,PA PC PA PB ⊥⊥.∵PC PB P = ,,PB PC14.(江西省吉安市2023届高三上学期1月期末质量检测数学(文)试题)如图,在四棱锥P -ABCD 中,AB CD ,12AD CD BC PA PC AB =====,BC PA ⊥.(1)证明:平面PBC ⊥平面PAC ;(2)若PB =D 到平面PBC 的距离.又BC PA ⊥,PA AC A = 所以BC ⊥平面PAC ,又BC (2)因为BC ⊥平面PAC ,由22PB =,BC PC =,得15.(江西省部分学校2023届高三下学期一轮复习验收考试(2月联考)数学(文)试题)如图,在长方体1111ABCD A B C D -中,1AB AD ==,1AA =E 在棱1DD 上,且1AE A D ⊥.(1)证明:1AE A C ⊥;(2)求三棱锥1E ACD -的体积.【答案】(1)证明见解析;)在平面11ADD A 中,由AE ⊥1AD DE AA AD =,所以12112A DE S DE AD =⋅= 16.(新疆兵团地州学校2023届高三一轮期中调研考试数学(文)试题)如图1,在等腰梯形ABCD 中,M ,N ,F 分别是AD ,AE ,BE 的中点,4AE BE BC CD ====,将ADE V 沿着DE 折起,使得点A 与点P 重合,平面PDE ⊥平面BCDE ,如图2.(1)证明:PC∥平面MNF.(2)求点C到平面MNF的距离.17.(宁夏银川市第一中学2023届高三上学期第四次月考数学(文)试题)如图1,在直角梯形ABCD 中,,90,5,2,3AB DC BAD AB AD DC ∠==== ∥,点E 在CD 上,且2DE =,将ADE V 沿AE 折起,使得平面ADE ⊥平面ABCE (如图2).(1)求点B 到平面ADE 的距离;(2)在线段BD 上是否存在点P ,使得CP 平面ADE ?若存在,求三棱锥-P ABC 的体积;若不存在,请说明理由..18.(陕西省汉中市2023届高三上学期教学质量第一次检测文科数学试题)如图,多面体ABCDEF 中,四边形ABCD 为菱形,60,ABC FA ∠=⊥ 平面,ABCD FA ED ∥,且22AB FA ED ===.(1)求证:BD FC ⊥;(2)求点A 到平面FBD 的距离.19.(内蒙古赤峰市2022届高三下学期5月模拟考试数学(文科)试题)如图,在四棱锥P ABCD -中,底面ABCD 是菱形,60PAB PAD BAD ∠=∠=∠= .(1)证明:BD ⊥平面PAC ;(2)若23AB PA ==,,求四棱锥P ABCD -的体积.解:如图,记AC 与BD 的交点为因为底面ABCD 为菱形,故又60PAB PAD BAD ∠=∠=∠=又PO AC O = ,故BD ⊥平面(2)解:因为2,3,AB PA ==∠20.(内蒙古2023届高三仿真模拟考试文科数学试题)如图,在四棱锥P ABCD -中,四边形ABCD 是直角梯形,AD AB ⊥,//AB CD ,22PB CD AB AD ===,PD =,PC DE ⊥,E 是棱PB 的中点.(1)证明:PD ⊥平面ABCD ;(2)若F 是棱AB 的中点,2AB =,求点C 到平面DEF 的距离.,AB AD=AB AD⊥,2BD∴=为棱PB中点,DE PBE∴⊥,又∴⊥平面PBC,又BC⊂平面DE在直角梯形ABCD中,取CD中点 ,DM AB=2CD AB∴=,又DM ∴四边形ABMD为正方形,BM∴∴===,又BC BM AD AB222BD DE⊂平面PBD ,,=BD DE D21.(山西省晋中市2022届高三下学期5月模拟数学(文)试题)如图,在三棱锥-P ABC中,PAB 为等腰直角三角形,112PA PB AC ===,PC ,平面PAB ⊥平面ABC .(1)求证:PA BC ⊥;(2)求三棱锥-P ABC 的体积.∴OP AB ⊥,22OP =,AB =又∵平面PAB ⊥平面ABC ,平面∴OP ⊥平面ABC .22.(山西省太原市2022届高三下学期三模文科数学试题)已知三角形PAD 是边长为2的正三角形,现将菱形ABCD 沿AD 折叠,所成二面角P AD B --的大小为120°,此时恰有PC AD ⊥.(1)求BD 的长;(2)求三棱锥-P ABC 的体积.∵PAD 是正三角形,∴PM AD ⊥,又∴,PC AD PC PM P⊥=I ∴AD ⊥平面PMC ,∴AD MC ⊥,故ACD 为等腰三角形23.(陕西省联盟学校2023届高三下学期第一次大联考文科数学试题)如图,在四棱锥P ABCD -中,底面ABCD 是长方形,22AD CD PD ===,PA 二面角P AD C--为120︒,点E 为线段PC 的中点,点F 在线段AB 上,且12AF =.(1)平面PCD ⊥平面ABCD ;(2)求棱锥C DEF -的高.824.(陕西省榆林市2023届高三上学期一模文科数学试题)如图,在四棱锥P ABCD -中,平面PAD ⊥底面,,60,ABCD AB CD DAB PA PD ∠=⊥ ∥,且2,22PA PD AB CD ====.(1)证明:AD PB ⊥;(2)求点A 到平面PBC 的距离.(2)因为AB CD ,所以∠2222BC BD CD BD CD =+-⋅由222BD BC CD =+,得BC 25.(陕西省宝鸡教育联盟2022-2023学年高三下学期教学质量检测(五)文科数学试题)如图,在三棱柱111ABC A B C -中,平面11ABB A ⊥平面ABC ,四边形11ABB A 是边长为2的菱形,ABC 为等边三角形,160A AB ∠=︒,E 为BC 的中点,D 为1CC 的中点,P为线段AC上的动点.AB平面PDE,请确定点P在线段AC上的位置;(1)若1//-的体积.(2)若点P为AC的中点,求三棱锥C PDE(2)解:如图,取AB 的中点∵四边形11ABB A 为边长为2∴12A B =,1AA B 为等边三角形,26.(山西省运城市2022届高三上学期期末数学(文)试题)如图,在四棱锥P -ABCD中,底面ABCD 是平行四边形,2APB π∠=,3ABC π∠=,PB =,24PA AD PC ===,点M 是AB 的中点,点N 是线段BC 上的动点.(1)证明:CM⊥平面PAB;(2)若点N到平面PCM BNBC的值.27.(2020届河南省许昌济源平顶山高三第二次质量检测文科数学试题)如图,四棱锥P ABCD -中,//AB CD ,33AB CD ==,2PA PD BC ===,90ABC ∠=︒,且PB PC =.(1)求证:平面PAD ⊥平面ABCD ;(2)求点D 到平面PBC 的距离.因为//AB CD ,33AB CD ==,所以四边形ABCD 为梯形,又M 、E 为AD 、BC 的中点,所以ME 为梯形的中位线,28.(青海省海东市2022-2023学年高三上学期12月第一次模拟数学(文)试题)如图,在直三棱柱111ABC A B C -中,ABC 是等边三角形,14AB AA ==,D 是棱AB 的中点.(1)证明:平面1ACD ⊥平面11ABB A .(2)求点1B 到平面1A CD 的距离.由题意可得11A B D △的面积因为ABC 是边长为4的等边三角形,且29.(河南省十所名校2022-2023学年高三阶段性测试(四)文科数学试题)如图,在四棱锥P —ABCD 中,PC BC ⊥,PA PB =,APC BPC ∠=∠.(1)证明:PC AD ⊥;(2)若AB CD,PD AD ⊥,PC =,且点C 到平面PAB AD 的长.∵PA PB =,APC BPC ∠=∠∴90PCA PCB ∠=∠=︒,即∵PC BC ⊥,AC BC = ∴PC ⊥平面ABCD ,又∵PA PB =,E 为AB 中点∴PE AB ⊥,由(1)知AC BC =,E 为∵PE CE E = ,,PE CE 30.(河南省部分重点中学2022-2023学年高三下学期2月开学联考文科数学试题)如图,在直三棱柱111ABC A B C -中,5AB AC ==,16BB BC ==,D ,E 分别是1AA 和1B C 的中点.(1)求证:平面BED ⊥平面11BCC B ;(2)求三棱锥E BCD -的体积.。
立体几何(文科专用)(解析版)

专题09 立体几何1.【2019年高考全国Ⅱ卷文数】设α,β为两个平面,则α∥β的充要条件是 A .α内有无数条直线与β平行 B .α内有两条相交直线与β平行 C .α,β平行于同一条直线 D .α,β垂直于同一平面 【答案】B【解析】由面面平行的判定定理知:α内两条相交直线都与β平行是αβ∥的充分条件,由面面平行性质定理知,若αβ∥,则α内任意一条直线都与β平行,所以α内两条相交直线都与β平行是αβ∥的必要条件,故选B .【名师点睛】本题考查了空间两个平面的判定与性质及充要条件,渗透直观想象、逻辑推理素养,利用面面平行的判定定理与性质定理即可作出判断.面面平行的判定问题要紧扣面面平行判定定理,最容易犯的错误为定理记不住,凭主观臆断,如:“若,,a b a b αβ⊂⊂∥,则αβ∥”此类的错误.2.【2019年高考全国Ⅲ卷文数】如图,点N 为正方形ABCD 的中心,△ECD 为正三角形,平面ECD ⊥平面ABCD ,M 是线段ED 的中点,则()A .BM =EN ,且直线BM ,EN 是相交直线B .BM ≠EN ,且直线BM ,EN 是相交直线C .BM =EN ,且直线BM ,EN 是异面直线D .BM ≠EN ,且直线BM ,EN 是异面直线【答案】B【解析】如图所示,作EO CD ⊥于O ,连接ON ,BD ,易得直线BM ,EN 是三角形EBD 的中线,是相交直线.过M 作MF OD ⊥于F ,连接BF ,平面CDE ⊥平面ABCD ,,EO CD EO ⊥⊂平面CDE ,EO ∴⊥平面ABCD ,MF ⊥平面ABCD ,MFB ∴△与EON △均为直角三角形.设正方形边长为2,易知3,12EO ON EN ===,,35,,722MF BF BM ==∴=,BM EN ∴≠,故选B .【名师点睛】本题考查空间想象能力和计算能力,解答本题的关键是构造直角三角形.解答本题时,先利用垂直关系,再结合勾股定理进而解决问题.3.【2019年高考江苏卷】如图,长方体1111ABCD A B C D -的体积是120,E 为1CC 的中点,则三棱锥E −BCD的体积是 ▲ .【答案】10【解析】因为长方体1111ABCD A B C D -的体积为120,所以1120AB BC CC ⋅⋅=,因为E 为1CC 的中点,所以112CE CC =,由长方体的性质知1CC ⊥底面ABCD ,所以CE 是三棱锥E BCD -的底面BCD 上的高,所以三棱锥E BCD -的体积1132V AB BC CE =⨯⋅⋅=111111201032212AB BC CC =⨯⋅⋅=⨯=. 【名师点睛】本题蕴含“整体和局部”的对立统一规律.在几何体面积或体积的计算问题中,往往需要注意理清整体和局部的关系,灵活利用“割”与“补”的方法解题.由题意结合几何体的特征和所给几何体的性质可得三棱锥的体积.4.【2019年高考全国Ⅱ卷文数】如图,长方体ABCD –A 1B 1C 1D 1的底面ABCD 是正方形,点E 在棱AA 1上,BE ⊥EC 1.(1)证明:BE ⊥平面EB 1C 1;(2)若AE =A 1E ,AB =3,求四棱锥11E BB C C -的体积. 【答案】(1)见详解;(2)18.【解析】(1)由已知得B 1C 1⊥平面ABB 1A 1,BE ⊂平面ABB 1A 1,故11B C BE ⊥.又1BE EC ⊥,所以BE ⊥平面11EB C . (2)由(1)知∠BEB 1=90°.由题设知Rt △ABE ≌Rt △A 1B 1E , 所以1145AEB A EB ︒∠=∠=,故AE =AB =3,126AA AE ==.作1EF BB ⊥,垂足为F ,则EF ⊥平面11BB C C ,且3EF AB ==. 所以,四棱锥11E BB C C -的体积1363183V =⨯⨯⨯=. 【名师点睛】本题主要考查线面垂直的判定,以及四棱锥的体积的求解,熟记线面垂直的判定定理,以及四棱锥的体积公式即可,属于基础题型.一、考向分析:二、考向讲解考查内容解 题 技 巧 几何 体表 面积 与体 积1、空间几何体表面积的求法(1)以三视图为载体的几何体的表面积问题,关键是分析三视图确定几何体中各元素之间的位置关系及数量。
文科高考数学重难点03 立体几何(解析版)

重难点03 立体几何【命题趋势】立体几何一直在高中数学中占有很大的分值,未来的高考中立体几何也会持续成为高考的一个热点,文科高考中立体几何主要考查三视图的相关性质利用,简单几何体的体积,表面积以及外接圆问题.另外选择部分主要考查在点线面位置关系,简单几何体三视图.选择题主要还是以几何体的基本性质为主,解答题部分主要考查平行,垂直关系以及简单几何体的变面积以及体积.本专题针对高考高频知识点以及题型进行总结,希望通过本专题的学习,能够掌握高考数学中的立体几何的题型,将高考有关的立体几何所有分数拿到.【满分技巧】基础知识点考查:一般来说遵循三短一长选最长.要学会抽象问题具体会,将题目中的直线转化成显示中的具体事务,例如立体坐标系可以看做是一个教室的墙角有关外接圆问题:一般图形可以采用补形法,将几何体补成正方体或者是长方体,再利用不在同一个平面的四点确定一个立体平面原理,从而去求.内切圆问题:转化成正方体的内切圆去求.求点到平面的距离问题:采用等体积法.求几何体的表面积体积问题:应注意巧妙选取底面积与高.(1)证明直线和平面垂直的常用方法:①线面垂直的定义;②判定定理;③垂直于平面的传递性(a ∥b ,a ⊥α⇒b ⊥α);④面面平行的性质(a ⊥α,α∥β⇒a ⊥β);⑤面面垂直的性质.(2)证明线面垂直的核心是证线线垂直,而证明线线垂直则需借助线面垂直的性质.因此,判定定理与性质定理的合理转化是证明线面垂直的基本思想.【考查题型】选择,填空,解答题【限时检测】(建议用时:45分钟)一、单选题1.(2020·上海松江区·高三一模)在正方体中,下列四个结论中错误1111ABCD A B C D 的是( )A .直线与直线所成的角为B .直线与平面所成的角为1B C AC 60︒1B C 1AD C 60︒C .直线与直线所成的角为D .直线与直线所成的角为1B C 1AD 90︒1B C AB 90︒【答案】B【分析】连接∵为等边三角形,∴,即直线与所成的1AB 1AB C V 160ACB ∠=︒1B C AC 角为60°,故选项A正确;连接,∵,∴四面体是正四面体,11B D 1111AB B C CD AD ===11AB CD ∴点在平面上的投影为的中心,设为点O ,连接,,则1B 1AD C 1AD C A 1B O OC,OC BC =设直线与平面所成的角为θ,1B C 1AD C 则,故选项B 错误;11cos 2OC B C θ===≠连接,∵,且,∴直线与所成的角为90°,故选项C 1BC 11AD BC A 11B C BC ⊥1B C 1AD 正确;∵平面,∴,即直线与所成的角为90°,故选项D 正AB ⊥11BCC B 1AB B C ⊥1B C AB 确.故选:B .2.(2020·全国高三专题练习(文))一个棱柱是正四棱柱的条件是()A .底面是正方形,有两个面是矩形的四棱柱B .底面是正方形,两个侧面垂直于底面的四棱柱C .底面是菱形,且有个顶点处的两条棱互相垂直的四棱柱D .底面是正方形,每个侧面都是全等的矩形的四棱柱【答案】D【分析】选项A 、B 中,两个面为相对侧面时,四棱柱不一定是直四棱柱,C 中底面不是正方形,故排除选项A 、B 、C ,故选:D.3.(2020·浙江台州市·高三期中)设为空间一点,、为空间中两条不同的直线,、P l m αβ是空间中两个不同的平面,则下列说法正确的是()A .若,,,则P l ∈P β∈l α⊂lαβ= B .若,,,则与必有公共点P α∈P l ∈//l m m αC .若,,,则l α⊥m β⊥//αβ//l mD .若与异面,,,则l m l α⊂m β⊂//αβ【答案】C【分析】对于A 选项,如下图所示:设,,,则,满足,但,A 选项错m αβ= l m P = l α⊂P l ∈P β∈l αβ≠ 误;对于B 选项,若,,则满足条件,若,则或,B 选l α⊂P l ∈P α∈//l m m α⊂//m α项错误;对于C 选项,,,可知,又,,C 选项正确;l α⊥ //αβl β⊥m β⊥//l m ∴对于D 选项,如下图所示,与异面,,,但与相交,D 选项错误.l m l α⊂m β⊂αβ故选:C.4.(2020·宜宾市南溪区第二中学校高三期中(文))如图,正方体的1111ABCD A B C D -棱长为1,动点在线上,,分别是,的中点,则下列结论中错误的E 11A CF M AD CD 是( )A .B .平面11//FM A C BM ⊥1CC F C .三棱锥的体积为定值D .存在点,使得平面平面B CEF -E //BEF 11CC D D【答案】D【分析】在A 中,因为分别是的中点,所以,故A 正确;,F M ,AD CD 11////FM AC A C 在B 中,因为,,故,tan 2BC BMC CM ∠==tan 2CD CFD FD ∠==BMC CFD ∠=∠故.故,又有,2BMC DCF CFD DCF π∠+∠=∠+∠=BM CF ⊥1BM C C ⊥所以平面,故B 正确;BM ⊥1CC F 在C 中,三棱锥以面为底,则高是定值,所以三棱锥的体积为定值,B CEF -BCF B CEF -故C 正确.在D 中,与平面有交点,所以不存在点,使得平面平面,故BF 11CC D D E //BEF 11CC D D D 错误.故选:D.5.(2020·河南开封市·高三一模(文))如图,将正四棱锥置于水平反射镜面P ABCD -上,得一“倒影四棱锥”.下列关于该“倒影四棱锥”的说法中,所有正确结论P ABCD Q --的编号是( )①平面;//PA BCQ ②平面;PQ ⊥ABCD ③若在同一球面上,则也在该球面上;,,,,P A B C D Q ④若该“倒影四棱锥”存在外接球,则AB PA =A .①③B .②④C .①②③D .①②④【答案】D 【分析】由题意四棱锥与四棱锥是两个相同的正四棱锥P ABCD -Q ABCD -连接相交于点,连接,AC BD O ,OP OQ 由四棱锥为正四棱锥,则平面.P ABCD -PO ⊥ABCD 根据题意四棱锥为正四棱锥,所以平面.Q ABCD -QO ⊥ABCD均垂直于平面,所以三点共线.,PO OQ ABCD P O Q ,,所以平面,故②正确.PQ ⊥ABCD 由,根据题意AC PQ O ⋂=,,AP QC AO OC PO OQ ===所以与全等,所以APO △CQO A PAO OCQ ∠=∠所以,平面,平面,//AP QC AP ⊄QCB QC ⊂QCB 所以平面,故①正确.//PA BCQ 当在同一球面上,若正方形的外接圆不是球的大圆时,,,,,P A B C D ABCD 根据对称性,则点不在此球面上,故③不正确.Q 若该“倒影四棱锥”存在外接球,根据对称性则正方形的外接圆是该球的大圆.ABCD 所以此时球的球心为正方形的对角线的交点,即点,设ABCD O 2AB a =则,OA =OA OP R ==所以,所以④正确.2AP a AB ===故选:D6.(2020·全国高三专题练习(文))如图所示,正方体的棱长为,ABCD A B C D ''''-1、分别是棱、的中点,过直线、的平面分别与棱、交于、E F AA 'CC 'E F BB 'DD 'M N,设,,则下列命题中错误的是( )BM x =]1[0x ∈,A .平面平面MENF ⊥BDDB ''B .当且仅当时,四边形的面积最小12x =MENF C .四边形周长是单调函数MENF ()L f x =D .四棱锥的体积为常函数C MENF '-()V h x =【答案】C【分析】A 选项,∵,,,∴,∴//EF AC AC BD ⊥'⊥AC BB AC BDD B ⊥''EF ⊥平面,BDD B ''又∵平面,∴平面平面,A 对,EF ⊂MENF MENF ⊥BDD B ''B 选项,由面面,又面平面,面平//ABB A ''CDD C ''ABB A ''⋂ENFM EM =CDD C ''⋂面,ENFM FN =所以,同理,所以四边形为平行四边形.//EM FN //EN FM MENF 由平面,平面,所以EF ⊥BDD B ''MN ⊂BDD B ''EF MN⊥所以四边形为菱形,∴,MENF 12MENF S EF MN =⋅又的面积最小,只需最小,EF =MENF MN 则当且仅当时,四边形的面积最小,B 对,12x =MENF C选项,∵,,MF=()f x =∴在上不是单调函数,C 错,()f x [0]1,D 选项,,C MENF F MC E F C NE V V V -''-'-=+,点到平面的距离为,,11124C ME S C E '∆'=⋅=F C ME '11113412F C ME V -'=⋅=又,点到平面的距离为,,11124C NE S C E '∆'=⋅=F C NE '11113412F C NE V -'=⋅=∴为常函数,D 对,1()6h x =故选:C .7.(2020·安徽高三月考(文))某几何体三视图如图,则该几何体的最长棱与最短棱长度之和为( )A .B .5C .D .2+2+【答案】D 【分析】解:该三视图还原后的几何体刚好是正方体的一部分将几何体嵌入棱长为2的正方体中即四面体,ABCD则最长棱,最短棱,BC =2CD =故最长棱与最短棱长度之和为.2+故选:D.二、填空题8.(2020·湖南常德市一中高三月考)在平行四边形中,,,ABCD AB =3BC =且为折痕,将折起,使点到达点处,且满足,cos A =BD BDC ∆C E AE AD =则三棱锥的外接球的半径为_________.E ABD -【分析】在中,由,,且ABD △AB =3BC =cos A =,BC AD =由余弦定理可得,2222cos BD AB AD AB AD A =+-⋅即,解得,(2223BD =+-239=3BD =折起后,,可得,,且,AE AD =3AE BD ==3AD BE ==AB ED ==所以三棱锥的三组对棱长相等,可将四面体放在长方体中,如图所示,ABED 设长方体的相邻三棱长分别为,外接球半径为,,,x y z R 则,则,即222222998x y y z z x ⎧+=⎪+=⎨⎪+=⎩22213x y z ++=2R =R =所以四面体.E ABD-9.(2020·全国高三其他模拟(文))已知四棱锥中,底面是梯形,且P ABCD -ABCD ,,,,且,//AD BC AD DC ⊥224===AD DC CB AP PD⊥AP PD =外接球的表面积为________.=PC P BCD -【答案】283π【分析】取的中点,连接,因为,可得,AD E ,PE BE AP PD =AD PE ⊥又由底面是梯形,且,,,可得ABCD //AD BC AD DC ⊥22AD DC CB ==AD BE ⊥,所以平面,又由平面,所以所以平面,AD ⊥PBE AD ⊂ABCD PBE ⊥ABCD 在直角中,,PBC A 2PB ==在直角中,,且,所以等边三角形,PAD △AP PD ⊥AP PD ⊥4=AD PBE △取的中点,可得且BE F PF BE ⊥PF =设三棱锥外接球的球心为,半径为,球心到的距离为,P BCD -O r ABCDh 在直角中,可得,BOM A 22222r OM BM h =+=+在直角中,可得,PON △22222)1r PN OM h =+=+解得,273=r 所以球的表面积为.27284433S r πππ==⨯=故答案为:.283π10.(2020·湖南长沙市·长沙一中高三月考(文))以棱长为为O 球心,以为半径的球面与正四面体的表面相交得到若干个圆(或圆弧)的总(13)R R <<长度的取值范围是____________.【答案】]【分析】将棱长为补为正方体,则正方体边长为A BCD -所以该正四面体外接球半径为3,即,3OB =设中点为,底面的中心为,连接,,CD E BCD A O 'BE OE 如图:则,,,BE=BO '=EO '=∴,1OO '==OE==当1R <…为圆心的圆,设半径为.(0r r <…所以总长度为;42r π⨯…时,球在四面方体每个面上截得的轨迹都是三段圆弧,其长度显然小于3R <<,当或时,球在正四面体每个面上截得的轨迹都是点,长度为0,1R →3R →故答案为:.]11.(2020·江西高三其他模拟(文))在四面体ABCD 中,AC =BC ,AD =BD ,∠ABC =∠ABD =,CD =8,若四面体ABCD 的外接球的表面积为100π.则该四面体ABCD 的体积4π为_____________.【答案】40【分析】AC =BC ,AD =BD ,∠ABC =∠ABD =,4π和是等腰直角三角形,ADB ∴A ACB △取中点,则可得,AB O OA OB OC OD ===为四面体ABCD 的外接球的球心,O ∴设球半径为,则,解得,即,R 24100R ππ=5R =5OA OB OC OD ====,,,AB OC ABOD OC OD O ⊥⊥⋂= 平面,又,AB ∴⊥OCD 18122OCD S =⨯=A .1112104033ABCD A OCD B OCD OCD V V V S AB --∴=+=⋅=⨯⨯=A故答案为:40.三、解答题12.(2020·全国高三专题练习(文))如图,已知直三棱柱ABC -A 1B 1C 1中,AC =BC =AA 1=1,AC ⊥BC ,E 在AB 上,且BA =3BE ,G 在AA 1上,且AA 1=3GA 1.(1)求三棱锥A 1-ABC 1的体积;(2)求证:AC 1⊥EG .【答案】(1);(2)证明见解析.16【分析】(1)在直三棱柱ABC -A 1B 1C 1中,BC ⊥AC ,所以BC ⊥平面ACC 1A 1,所以B 到平面ACC 1A 1的距离为1,所以=.1111A ABC B AA C V V --=111111326⨯⨯⨯⨯=(2)如图所示:,在AC 上取点D ,使CD =CA ,连接ED ,DG ,13因为BE =BA ,13所以DE BC ,//又BC ⊥平面ACC 1A 1,所以DE ⊥平面ACC 1A 1.又AC 1⊂平面ACC 1A 1,所以DE ⊥AC 1.在正方形ACC 1A 1中,由CD =CA ,A 1G =A 1A ,1313得DG ⊥AC 1.又DE ∩DG =D ,所以AC 1⊥平面DEG .所以AC 1⊥EG .13.(2020·四川成都市·成都七中高三期中(文))如图甲,平面四边形中,已知ABCD ,,,,现将四边形沿折起,45A ︒∠=90︒∠=C 105ADC ︒∠=2AB BD ==ABCD BD 使得平面平面 (如图乙),设点,分别是棱,的中点.ABD ⊥BDC E F AC AD(1)求证:平面;DC ⊥ABC (2)求三棱锥的体积.A BEF -【答案】(1)证明见解析;(2.【分析】(1)图甲中,∵且,,AB BD =45A ︒∠=45ADB ︒∴∠=,即,()()180180454590ABD ADB A ︒︒︒︒︒∴∠=-∠+∠=-+=AB BD ⊥图乙中,∵平面ABD 平面BDC ,且平面ABD 平面,⊥ BDC BD =∴平面BDC ,又平面BDC ,∴,AB ⊥CD ⊂AB CD ⊥又,∴,且,90DCB ︒∠=DC BC ⊥AB BC B ⋂=又,平面AB C ,∴DC 平面AB C ;AB BC ⊂⊥(2)因为点,分别是棱,的中点,E F AC AD 所以,且,所以平面,//EF DC 12EF DC =EF ⊥ABC 由(1)知,平面BDC ,又平面BDC ,所以,AB ⊥BC ⊂AB BC ⊥,,,105ADC ︒∠= 45ADB ︒∠=1054560CDB ADC ADB ︒︒︒∴∠=∠-∠=-=,90906030CBD CDB ︒︒︒︒∴∠=-∠=-=,cos302BC BD ︒∴=⋅==1sin 30212DC BD ︒=⋅=⨯=所以,,12ABC S AB BC =⨯⨯=△12ABEABC S S ==△△1122EF DC ==所以111332A BEF F ABE ABE V V EF S --==⋅⋅=⋅=△14.(2020·江西高三其他模拟(文))在如图所示的几何体中,底面四边形ABEF 为等腰梯形,AB ∥EF ,侧面四边形ABCD 是矩形,且平面ABCD ⊥平面ABEF ,2EF AB ==1BC BE ==(1)求证:AF ⊥平面BCE ;(2)求三棱锥A -CEF 的体积.【答案】(1)证明见解析;(2).13【分析】(1)证明:取的中点为,连接EF M BM //,//,AB MF AF BM ∴ 1,BE AF BM EM ==== 222,,BE BM EM BM BE ∴+=∴⊥因为平面 平面ABCD⊥,,ABEF BCAB ⊥平面,BC BM BM ∴⊥∴⊥,BEC 平面AF ∴⊥BEC(2)1111.323A CEF C AEF V V --==⨯⨯=15.(2020·河南新乡市·高三一模(文))如图,在四棱柱中,底面1111ABCD A B C D -是以,为底边的等腰梯形,且,,ABCD AB CD 24AB AD ==60DAB ∠=︒.1AD D D ⊥(1)证明:.1AD BD ⊥(2)若,求四棱柱的体积.112D D D B ==1111ABCD A B C D -【答案】(1)证明见解析;(2)【分析】:(1)证明:在中,,,,ABD △4AB =2AD =60DAB ∠=︒由余弦定理得BD ==则,即,222AD BD AB +=AD BD ⊥而,,1AD D D ⊥1BD D D D ⋂=故平面,AD ⊥11D DBB 又平面,1BD ⊂11D DBB .1AD BD ∴⊥(2)解:如图所示:取的中点,连接,BD O 1D O 由(1)可知:平面,AD ⊥11D DBB 平面,AD ⊂ABCD 平面平面,∴11D DBB ⊥ABCD 由于,11D D D B =,1D O BD ∴⊥故平面,1D O ⊥ABCD 即为四棱柱的高,1D O 1111ABCD A B C D -又,,12DD = DO =,11D O ===由知:梯形的高,AD BD ⊥h ==梯形的面积为,∴ABCD 1(24)2⨯+=故11111ABCD A C D B V -==。
立体几何文科解答题

立体几何文科解答题01、已知三棱柱ABC AB1C1 中,CC, 底面ABC , AB=AC =AA i 2 , BAC 90°, D,E,F 分别为BAC1C, BC的中点.(I )求证:DE//平面ABC ;(II)求证:平面AEF 平面BCC1B,;(III) 求三棱锥A-BCB的体积.B 02、如图4,在底面是矩形的四棱锥P-ABCD中,PA丄底面ABCD , E、F分别是PC、PD的中点,求证:(I) EF //平面PAB; (H)平面PAD丄平面PDC .03、如图,三棱柱ABC —A1B1C1中,侧棱AA1 底面ABC , 在A1B上,且AB CP。
(1)证明:P为A1B中点;(2)若A1B AC1,求三棱锥P—A1AC的体积。
04.已知正六棱柱ABCDEF ABQ1D1E1F1的所有棱长均为2, G为AF的中点。
F,(1) 求证:F,G //平面BB.E.E ;(2) 求证:平面F-| AE丄平面DEE1D1;(3) 求四面体EGFF1的体积。
05、如图,(1) 已知求证:06、如图,已知ABCD为矩形,DQ 平面ABCD , AD DD1 1 , AB=2,点E是AB的中点.08、如图,矩形ABCD中,AD 平面ABE , AE BF 平面ACE . (I)求证:AE 平面BCE ;(H)求证;AE //平面BFD ;(川)求三棱锥C BGF的体积.EB BC 2,F为CE上的点,且E C B10、如图所示,在棱长为2的正方体ABCD ABGD i中,E、F分别为DD i、DB的中点.(1)求证:EF //平面ABC i D i ;(2)求证:EF BC ; (3)求三棱锥V B’EFC的体积. C i C11、在直四棱柱ABCD A i B i C i D i 中,AA i 2,底面是边长为1的正方形,E、F分别是棱B i B、DA 的中点.(I )直线BF //平面AD1E ;( n )求证:D1E 面AEC .JLE13、如图,在长方体 ABCD AB i C i D i 中,点E 在棱CC i 的延长线上,且 CC iC i EBC -AB 1 .2(I)求证:D 1E //平面 ACB 1 ; (n)求证:平面 D 1B 1E 平面DCB 1 ;(川)求四面体 D 1B1AC 的体积.丄AP ,垂足为 丘,将厶ADP沿AP 折起•使点D 位于D '位置,连D 'B 、D 'C 得四棱锥D '— ABCP .(I )求证D ' F 丄AP ;(II )若 PD=1并且平面 D ' AP 丄平面ABCP ,求四棱锥 D —ABCP 的体积12、如图6,正方形ABCD 所在平面与三角形 CDE 所在平面 相交于CD , AE 平面CDE ,且AE 3, AB 6 •(1) 求证:AB 平面ADE ; (2) 求凸多面体 ABCDE 的体积.14、已知P 在矩形 ABCD 边DC 上,AB=2 , BC=1 , F 在AB 上且 DFAEAF FBi6、如图,在底面是正方形的四棱锥G为AC上一点.(I)求证:BD丄FG;平面PBD,并说明理由.(II)确定点17 已知直P—ABCD 中,PA丄面ABCD , BD 交AC于点E, F是PC中点, 棱柱ABC A i B i C iACB 90 , AC BC 2, AA i 4。
高考数学最新真题专题解析—立体几何(文科)

高考数学最新真题专题解析—立体几何(文科)考向一 线面夹角【母题来源】2022年高考全国甲卷(文科)【母题题文】 在长方体1111ABCD A B C D -中,已知1B D 与平面ABCD 和平面11AA B B 所成的角均为30,则( ) A. 2AB AD =B. AB 与平面11AB C D 所成的角为30C. 1AC CB =D. 1B D 与平面11BB C C 所成的角为45︒ 【答案】D【试题解析】【详解】如图所示:不妨设1,,AB a AD b AA c ===,依题以及长方体的结构特征可知,1B D 与平面ABCD 所成角为1B DB ∠,1B D 与平面11AA B B 所成角为1DB A ∠,所以11sin 30c b B D B D==,即b c =,22212B D c a b c ==++2a c =. 对于A ,AB a ,AD b ,2AB AD =,A 错误;对于B ,过B 作1BE AB ⊥于E ,易知BE ⊥平面11AB C D ,所以AB 与平面11AB C D 所成角为BAE ∠,因为2tan c BAE a ∠==30BAE ∠≠,B 错误; 对于C ,223AC a b c =+=,2212CB b c c =+=,1AC CB ≠,C 错误; 对于D ,1B D 与平面11BB C C 所成角为1DB C ∠,112sin 22CD a DB C B D c ∠===,而1090DB C <∠<,所以145DB C ∠=.D 正确. 故选:D .【命题意图】本题主要考查直线与平面夹角,是一道容易题.【命题方向】这类试题在考查题型上选择题、填空题、解答题形式出现,试题难度不大,多为中低档题,重点考查线面夹角的求法问题. 【得分要点】(1)找斜线在平面中的射影; (2)求斜线与其射影的夹角; 考向二 线面平行、垂直的证明【母题来源】2022年高考全国乙卷(文科)【母题题文】 如图,四面体ABCD 中,,,AD CD AD CD ADB BDC ⊥=∠=∠,E 为AC 的中点.(1)证明:平面BED ⊥平面ACD ;(2)设2,60AB BD ACB ==∠=︒,点F 在BD 上,当AFC △的面积最小时,求三棱锥F ABC -的体积. 【试题解析】【小问1详解】由于AD CD =,E 是AC 的中点,所以AC DE ⊥.由于AD CD BD BD ADB CDB =⎧⎪=⎨⎪∠=∠⎩,所以ADB CDB ≅△△,所以AB CB =,故AC BD ⊥,由于DE BD D ⋂=,,DE BD平面BED ,所以AC ⊥平面BED ,由于AC ⊂平面ACD ,所以平面BED ⊥平面ACD . 【小问2详解】依题意2AB BD BC ===,60ACB ∠=︒,三角形ABC 是等边三角形, 所以2,1,3AC AE CE BE ====由于,AD CD AD CD =⊥,所以三角形ACD 是等腰直角三角形,所以1DE =.222DE BE BD +=,所以DE BE ⊥,由于AC BE E ⋂=,,AC BE ⊂平面ABC ,所以DE ⊥平面ABC . 由于ADB CDB ≅△△,所以FBA FBC ∠=∠,由于BF BF FBA FBC AB CB =⎧⎪∠=∠⎨⎪=⎩,所以FBA FBC ≅,所以AF CF =,所以EF AC ⊥,由于12AFCS AC EF =⋅⋅,所以当EF 最短时,三角形AFC 的面积最小值.过E 作EF BD ⊥,垂足为F ,在Rt BED △中,1122BE DE BD EF ⋅⋅=⋅⋅,解得32EF =,所以223131,2222DF BF DF ⎛⎫=-==-= ⎪ ⎪⎝⎭,所以34BF BD =. 过F 作FH BE ⊥,垂足为H ,则//FH DE ,所以FH ⊥平面ABC ,且34FH BF DE BD ==, 所以34FH =,所以11133233324F ABC ABCV SFH -=⋅⋅=⨯⨯=【命题意图】本题考查线面平行、垂直的证明.【命题方向】这类试题在考查题型多以解答题形式出现,多为中档题,是历年高考的必考题型. 常见的命题角度有:(1)线面平行的证明;(2)线面垂直的证明;(3)面面平行的证明;(4)面面垂直的证明. 【得分要点】(1)利用线面、面面平行的判定定理与性质定理; (2)利用线面、面面垂直的判定定理与性质定理. 真题汇总及解析 一、单选题1.(2022·内蒙古·乌兰浩特一中模拟预测(文))已知,αβ为空间的两个平面,直线,l ααβ⊄⊥,那么“l ∥α”是“l β⊥”的( )条件 A .必要不充分 B .充分不必要C .充分且必要D .不充分也不必要【答案】A 【解析】 【分析】根据空间线面位置关系,结合必要不充分条件的概念判断即可. 【详解】当直线,l ααβ⊄⊥,l ∥α,则l β//,l 与β相交,故充分性不成立; 当直线l α⊄,且αβ⊥,l β⊥时,l ∥α,故必要性成立, ⸫“l ∥α”是“l β⊥”的的必要不充分条件. 故选:A.2.(2022·贵州·贵阳一中模拟预测(文))在正方体1111ABCD A B C D -中,M 为1A D 的中点,则直线CM 与11A C 所成的角为( ) A .π2B .π3C .π4D .π6【答案】D 【解析】 【分析】11AC AC ∥,所求角为ACM∠,利用几何体性质,解CMA 即可【详解】设正方体棱长为1,连接11,,AC AC AC CM ∴与11A C 所成角即是CM 与AC 所成角,22222221162,,1,2222AC AM CM AM CM AC ⎛⎫⎛⎫===++=∴+= ⎪ ⎪⎝⎭⎝⎭,CMA ∴为Rt △,1πsin ,26AM ACM ACM AC ∠∠==∴= 故选:D3.(2022·青海·模拟预测)已知四面体ABCD 的所有棱长都相等,其外接球的6π,则下列结论错误的是( ) A .四面体ABCD 的棱长均为2 B .异面直线AC 与BD 2 C .异面直线AC 与BD 所成角为60︒D .四面体ABCD 的内切球的体积等于6π27【答案】C 【解析】 【分析】对于A, 设该四面体的棱长为a ,表示出高,根据其外接球的体积等于6π,求得外接球半径,即可求得a ,判断A;对于B, 分别取BD,AC 的中点为E,F ,连接EF ,求得EF 的长,即可判断;对于C ,证明线面垂直即可证明异面直线AC 与BD 互相垂直,即可判断;对于D ,利用等体积法求得内切球半径,即可求得内切球体积,即可判断. 【详解】如图示,设该四面体的棱长为a ,底面三角形BCD 的重心为G ,该四面体的外接球球心为O ,半径为R ,连接AG ,GB,OB ,AG 为四面体的高,O 在高AG 上,在Rt AGB △中,2223336,()33BG AG a a ===-, 在Rt OGB △中,22263()()R R =-+,解得6R = , 6π,即34π6π3R ,故336R =故38,2a a == ,故A 正确; 分别取BD,AC 的中点为E,F ,连接EF ,正四面体ABCD 中,AE=EC ,故EF AC ⊥ ,同理EF BD ⊥, 即EF 为AC,BD 的公垂线,而3232CE =⨯= , 则2222(3)12EF CE CF =-=-= ,故B 正确;由于,AE BD CE BD ⊥⊥ , AE CE ⊂,平面ACE ,故BD ⊥平面ACE , 又AC ⊂平面ACE ,所以BD AC ⊥,即异面直线AC 与BD 所成角为90︒ ,故C 错误; 设四面体内切球的半径为r ,而263AG =,故11433BCDBCDSr SAG ⨯⨯⨯=⨯⨯,故646AG r a ==, 所以四面体ABCD 的内切球的体积等于3344666ππ()π3327r a ==,故D 正确, 故选:C4.(2022·湖北·华中师大一附中模拟预测)如图,正方体1111ABCD A B C D -中,P 是1A D 的中点,则下列说法正确的是( )A .直线PB 与直线1A D 垂直,直线PB ∥平面11B DC B .直线PB 与直线1D C 平行,直线PB ⊥平面11AC D C .直线PB 与直线AC 异面,直线PB ⊥平面11ADC B D .直线PB 与直线11B D 相交,直线PB ⊂平面1ABC【答案】A 【解析】 【分析】根据空间的平行和垂直关系进行判定. 【详解】连接11111,,,,DB A B D B D C B C ;由正方体的性质可知1BA BD =,P 是1A D 的中点,所以直线PB 与直线1A D 垂直;由正方体的性质可知1111//,//DB D B A B D C ,所以平面1//BDA 平面11B D C , 又PB ⊂平面1BDA ,所以直线PB ∥平面11B D C ,故A 正确;以D 为原点,建立如图坐标系,设正方体棱长为1,()111,1,,0,1,122PB D C ⎛⎫==- ⎪⎝⎭显然直线PB 与直线1D C 不平行,故B 不正确;直线PB 与直线AC 异面正确,()1,0,0DA =,102PB DA ⋅=≠,所以直线PB 与平面11ADC B 不垂直,故C 不正确;直线PB与直线B D异面,不相交,故D不正确;11故选:A.5.(2022·安徽·合肥市第八中学模拟预测)下列四个命题,真命题的个数为()(1)如果一条直线垂直于一个平面内的无数条直线,则这条直线垂直于该平面;(2)过空间一定点有且只有一条直线和已知平面垂直;(3)平行于同一个平面的两条直线平行;(4)a与b为空间中的两条异面直线,点A不在直线a,b上,则过点A有且仅有一个平面与直线a,b都平行.A.0 B.1 C.2 D.3【答案】B【解析】【分析】根据线面垂直的定义即可判断命题(1);根据线面垂直的性质定理即可判断命题(2);根据空间中线面的位置关系即可判断命题(3);结合图形即可判断命题(4). 【详解】命题(1):由直线垂直平面的定义可知,若直线垂直于一个平面的任意直线,则该直线垂直于该平面,故命题(1)错误;命题(2):由直线与平面垂直的性质定理可知,过空间一定点有且只有一条直线与已知平面垂直,故命题(2)正确;命题(3):平行于同一个平面的两条直线,可能平行,可能相交,也可能异面,故命题(3)错误;命题(4):如图,当点A在如图上底面时,不存在平面同时平行于直线a、b;点A不在异面直线a、b上,若点A在直线a、b之间,则可以确定一个平面同时平行于直线a、b;若点A在直线a、b的外侧,也可以确定一个平面同时平行于直线a、b,故命题(4)错误.故选:B.6.(2022·河南安阳·模拟预测(文))如图,在四面体ABCD中,90BCD AB∠=︒⊥,平面BCD,AB BC CD==,P为AC的中点,则直线BP与AD所成的角为()A.π6B.π4C.π3D.π2【答案】D【解析】【分析】根据给定条件,证明BP⊥平面ACD即可推理计算作答.【详解】在四面体ABCD中,AB⊥平面BCD,CD⊂平面BCD,则AB CD⊥,而90BCD∠=︒,即BC CD⊥,又AB BC B⋂=,,AB BC⊂平面ABC,则有CD⊥平面ABC,而BP⊂平面ABC,于是得CD BP ⊥,因P 为AC 的中点,即AC BP ⊥,而AC CD C =,,AC CD ⊂平面ACD ,则BP ⊥平面ACD ,又AD ⊂平面ACD ,从而得BP AD ⊥, 所以直线BP 与AD 所成的角为π2. 故选:D7.(2022·四川成都·模拟预测)如图,网格纸上小正方形的边长为1,粗实线画出的是某三棱锥的三视图,A ,B ,C ,D 是该三棱锥表面上四个点,则直线AC 和直线BD 所成角的余弦为( )A .0B .13C .13-D 22【答案】A 【解析】 【分析】由三视图还原几何体,根据线面垂直的判定有BG ⊥面AGD ,线面垂直的性质可得BG AC ⊥,再由线面垂直的判定和性质得AC BD ⊥,即可得结果. 【详解】由三视图可得如下几何体:BG AG ⊥,BG DG ⊥,AG DG G =,则BG ⊥面AGD ,又AC ⊂面AGD ,则BG AC ⊥,而AC GD ⊥, 由BG GD G ⋂=,则AC ⊥面BGD ,又BD ⊂面BGD , 所以AC BD ⊥,故直线AC 和直线BD 所成角的余弦为0. 故选:A8.(2022·山东潍坊·三模)我国古代数学名著《九章算术》中给出了很多立体几何的结论,其中提到的多面体“鳖臑”是四个面都是直角三角形的三棱锥.若一个“鳖臑”的所有顶点都在球O 的球面上,且该“鳖臑”的高为2,底面是腰长为2的等腰直角三角形.则球O 的表面积为( ) A .12π B .43π C .6π D .26π【答案】A 【解析】 【分析】作出图形,设在三棱锥A BCD -中,AB ⊥平面BCD ,BC CD ⊥且2BC CD ==,2AB =,证明出该三棱锥的四个面均为直角三角形,求出该三棱锥的外接球半径,结合球体表面积公式可得结果. 【详解】 如下图所示:在三棱锥A BCD -中,AB ⊥平面BCD ,BC CD ⊥且2BC CD ==,2AB =, 因为AB ⊥平面BCD ,BC 、BD 、CD ⊂平面BCD ,则AB BC ⊥,AB BD ⊥,CD AB ⊥,CD BC ⊥,AB BC B ⋂=,CD平面ABC ,AC ⊂平面ABC ,AC CD ∴⊥,所以,三棱锥A BCD -的四个面都是直角三角形,且2222BD BC CD =+=,2223AD AB BD =+=,设线段AD 的中点为O ,则12OB OC AD OA OD ====, 所以,点O 为三棱锥A BCD -的外接球球心,设球O 的半径为R ,则132R AD ==,因此,球O 的表面积为2412R ππ=. 故选:A. 二、填空题9.(2022·四川成都·模拟预测(理))如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则此几何体的表面积为________.【答案】816283++ 【解析】 【分析】根据三视图可知这是一个四面体,根据长度即可根据三角形面积公式求每一个面的面积,进而可得表面积. 【详解】该几何体的直观图是正方体中的四面体ABCD ,4,42,43AB AD BD BC CD AC ======,()21113448,44282,44282,42832224ABD ABC ADC DBCS S SS =⨯⨯==⨯⨯==⨯⨯==⨯= 故答案为: 816283++.10.(2022·上海普陀·二模)已知一个圆锥的侧面积为2π,若其左视图为正三角形,则该圆锥的体积为________. 3π3 【解析】 【分析】由圆锥侧面积公式求得底面半径12r =3.【详解】由题设,令圆锥底面半径为r ,则体高为3r ,母线为2r , 所以12222r r ππ⨯⨯=,则12r =,故圆锥的体积为2133324r r ππ⨯⨯=. 故答案为:324π 11.(2022·黑龙江·佳木斯一中模拟预测(理))如图,在正方体1111ABCD A B C D -中,点F 是棱1AA 上的一个动点,平面1BFD 交棱1CC 于点E ,则下列正确说法的序号是___________.①存在点F 使得11A C ∥平面1BED F ; ②存在点F 使得1B D ∥平面1BED F ; ③对于任意的点F ,都有EF BD ⊥;④对于任意的点F 三棱锥1E FDD -的体积均不变. 【答案】①③④ 【解析】 【分析】①,找到点F 为1AA 的中点时,满足11A C ∥平面1BED F ;②,证明出11,BD B D 相交,得到不存在点F 使得1B D ∥平面1BED F ;③,作出辅助线,证明线面垂直,进而得到线线垂直; ④,得到三棱锥1E FDD -的体积等于正方体体积的16,为定值. 【详解】当点F 为1AA 的中点,此时点E 为1CC 的中点,此时连接EF ,可得:11A C EF , 因为11A C ⊄平面1BED F ,EF ⊂1BED F ,所以11A C ∥平面1BED F ,①正确;连接11,BD B D ,因为11//BB DD ,且11BB DD =,所以四边形11BB D D 为平行四边形, 所以11,BD B D 相交, 因为1BD ⊂平面1BED F ,所以不存在点F 使得1B D ∥平面1BED F ,②错误连接AC ,BD ,则AC ⊥BD ,又1AA ⊥平面ABCD ,BD ⊂平面ABCD , 所以1AA ⊥BD , 因为1AA AC A =, 所以BD ⊥平面11AAC C ,因为EF ⊂平面11AAC C , 所以BD ⊥EF ,③正确;连接DF ,EF ,ED ,则无论点F 在1A A 的何处,都有1112DFD SDD AD =⋅,是定值,为正方形11ADD A 面积的一半,又高等于CD ,故体积也为定值,为正方体体积的16,④正确.故选:①③④12.(2022·甘肃·武威第六中学模拟预测(文))如图,在长方体1111ABCD A B C D -中,E ,F 是棱CD 上的两个动点,点E 在点F 的左边,且满足122EF DC BC ==,给出下列结论:①11B D ⊥平面1B EF ;②三棱锥11D B EF -的体积为定值; ③1A A //平面1B EF ; ④平面11A ADD ⊥平面1B EF . 其中所有正确结论的序号是______. 【答案】②④ 【解析】 【分析】根据线面位置关系、面面位置关系判断命题①③④,由棱锥体积公式判断②. 【详解】11B D 与11D C 显然不垂直,而11//EF C D ,因此11B D 与EF 显然不垂直,从而11B D ⊥平面1B EF 是错误的,①错;1111D B EF B D EF V V --=,三棱锥11B D EF -中,平面1D EF 即平面11CDD C ,1B 到平面11CDD C 的距离为11B C 是定值,1D EF 中,EF 的长不变,1D 到EF 的距离不变,面积为定值,因此三棱锥体积是定值,②正确;平面1B EF 就是平面11B A DC ,而1AA 与平面11B A DC 相交,③错;长方体中CD ⊥平面11A D DA ,CD ⊂平面11B A DC ,所以平面11A D DA ⊥平面11B A DC ,即平面11A ADD ⊥平面1B EF ,④正确. 故答案为:②④.三、解答题13.(2022·四川成都·模拟预测(文))如图,四棱锥P ABCD -中,四边形ABCD 为直角梯形,,PB PD 在底面ABCD 内的射影分别为,AB AD ,222PA AB AD CD .(1)求证:PC BC ⊥; (2)求D 到平面PBC 的距离. 【答案】(1)证明见解析 3【解析】 【分析】(1)由题意可证AD PA ⊥、AB PA ⊥,则可得PA ⊥面ABCD ,即可知PA BC ⊥,又AC BC ⊥则可得BC ⊥面PAC ,即可证PC BC ⊥.(2)分别计算出BCD S 与PBC S ,再利用等体积法D PBC P BCD V V --=即可求出答案. (1)因为PB 在底面ABCD 内的射影为AB ,所以面PAB ⊥面ABCD , 又因为AD AB ⊥,面PAB ⋂面ABCD AB =,AD ⊂面ABCD 所以AD ⊥面PAB ,又因PA ⊂面PAB 因此AD PA ⊥, 同理AB PA ⊥,又AB AD A ⋂=,AD ⊂面ABCD ,AB 面ABCD 所以PA ⊥面ABCD ,又BC ⊂面ABCD ,所以PA BC ⊥,连接AC ,易得2AC =45BAC ∠=,又2AB =, 故AC BC ⊥,又PA AC A =,PA ⊂面PAC ,PA ⊂面PAC 因此BC ⊥面PAC , 又PC ⊂面PAC 即PC BC ⊥;(2)在RT PAC 中426PC =+=在RT ACB 中422BC =-把D 到平面PBC 的距离看作三棱锥D PBC -的高h , 由等体积法得,D PBC P BCD V V --=,故1133PBC BCD S h S PA ,即123213622BCD PBCS PA h S ,故D 到平面PBC 的距离为33. 14.(2022·青海·海东市第一中学模拟预测(文))如图,在四棱锥P ABCD -中,平面PCD ⊥平面ABCD ,PCD 为等边三角形,22CD AB ==,2AD =,90BAD ADC ∠=∠=︒,M 是棱PC 上一点.(1)若2MC MP =,求证://AP 平面MBD .(2)若MC MP =,求点P 到平面BDM 的距离.【答案】(1)证明见解析22 【解析】【分析】(1)连接AC ,记AC 与BD 的交点为H ,连接MH ,先证明//AP MH ,再由线面平行的判定定理即可证明.(2)由等体积法B DMP P BMD V V --=,即可求出点P 到平面BDM 的距离.(1)连接AC ,记AC 与BD 的交点为H ,连接MH .由90BAD ADC ∠=∠=︒,得//AB CD ,12AB AH CD HC ==,又12PM MC =,则AH PM HC MC =, ∴//AP MH ,又MH ⊂平面MBD ,PA ⊄平面MBD ,∴//AP 平面MBD .(2) 由已知易得3BD DM ==,3BM =,所以在等边BMD 中,BM 边上的高为32h =,所以BMD 的面积为13333224BMD S =⨯⨯=△, 易知三棱锥B PDM -的体积为116132326B DMP V -=⨯⨯⨯⨯=, 又因为B DMP P BMD V V --=,所以点P 到平面BDM 的距离为3223P BMD BMD V d S -==△. 15.(2022·贵州·贵阳一中模拟预测(文))如图,四棱锥P ABCD -中,平面,PAB ABCD ⊥平面,AB CD ∥,AB AD ⊥3,3,2,60AB AD AP CD PAB ====∠=︒.M 是CD 中点,N 是PB 上一点.(1)若3,BP BN =求三棱锥P AMN -的体积;(2)是否存在点N ,使得MN 平面PAD ,若存在求PN 的长;若不存在,请说明理由.【答案】(1)1;(2)存在,73=PN . 【解析】 【分析】 (1)证得点M 到平面PAB 的距离是3AD =,进而可求出结果; (2)证得//MN PE ,进而可证出MN //平面PAD ,从而可求出PN 的长.(1)P AMN M PAN V V --=, 由面PAB ⊥面ABCD 且交线是AB ,又DA AB ⊥,DA ⊂面PAB , 所以DA ⊥平面PAB ,又MD //AB , ∴点M 到平面PAB 的距离是3AD =, 又3BP BN =,则22123sin603332APN APB S S ==⨯⨯⨯⨯=, ∴三棱锥P AME -的体积13313=⨯⨯=. (2)存在.//,3,2AB DC AB CD==,连接BM并延长至于AD交于点E,//DM AB,∴在EAB中:13 EM DMEB AB==,∴在PBE△中:在PB上取点N,使得23 BN BMBP BE==,而13PN PB=,则//MN PE,又MN⊄平面PAD,PE⊂平面PAD,MN∴//平面PAD,在PAB△中,2212322372PB=+-⨯⨯⨯=7PN∴=。
高三数学专项训练:立体几何解答题(文科)(一)

(Ⅱ)求证:EF∥平面PAB;
21.
(本小题满分12分)如图,已知 平面 , 平面 , 为等边三角形, , 为 中点.
(1)求证: 平面 ;
(2)求证:平面 平面 ;
(3)求直线 与平面 所成角的正弦值.
22.如图,四棱锥P—ABCD的底面ABCD是边长为1的菱形,∠BCD﹦60°,E是CD中点,
(Ⅰ)求证: 平面 ;
(Ⅱ)求三棱锥 的体积.
11.如图,在三棱锥 中,侧面 与侧面 均为等边三角形, , 为 中点.
(Ⅰ)证明: 平面 ;
(Ⅱ)求异面直线BS与AC所成角的大小.
12.(本题满分12分)
如图,已知AB 平面ACD,DE∥AB,△ACD是正三角形, ,且F是CD的中点.
(Ⅰ)求证AF∥平面BCE;
(1)求证:B1C∥平面AC1M;
(2)求证:平面AC1M⊥平面AA1B1B.
44.(本小题满分12分)
如图所示,四棱锥P-ABCD的底面ABCD是边长为1的菱形, BCD=60 ,E是CD的中点,PA 底面ABCD,PA=2。
(1)证明:平面PBE 平面PAB;
(2)求PC与平面PAB所成角的余弦值.
(Ⅰ)求证:EF//平面PAD;
(Ⅱ)求三棱锥C—PBD的体积。
15.右图为一组合体,其底面 为正方形, 平面 , ,且
(Ⅰ)求证: 平面 ;
(Ⅱ)求四棱锥 的体积;
(Ⅲ)求该组合体的表面积.
16.四棱锥 中,底面 为平行四边形,侧面 底面 , 为 的中点,已知 ,
(Ⅰ)求证: ;
(Ⅱ)在 上求一点 ,使 平面 ;
(Ⅲ)求三棱锥 的体积.
17.(本小题满分12分) 在三棱柱 中,底面是边长为 的正三角形,点 在底面 上的射影 恰是 中点.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
F EC ADB A 1C 1B 1BCAD FE ABC M NA 1B 1C 1BCB A 1C 1ADC 1D 1B 1A CD ABE《立体几何》解答题1.(2008年江苏卷)如图,在四面体ABCD 中,CB =CD , AD ⊥BD ,点E , F 分别是AB , BD 的中点. 求证:(Ⅰ)直线EF ∥平面ACD ; (Ⅱ)平面EFC ⊥平面BCD.2.(2009年江苏卷)如图,在直三棱柱ABC -A 1B 1C 1中, E 、F 分别是A 1B 、A 1C 的中点,点D 在B 1C 1上,A 1D ⊥B 1C求证:(Ⅰ)EF ∥平面ABC ; (Ⅱ)平面A 1FD ⊥平面BB 1C 1C.(第1题) (第2题) (第3题) (第4题) 3. 如图,直三棱柱ABC -A 1B 1C 1中,∠ACB =90°,M 、N 分别为A 1B 、B 1C 1的中点. (Ⅰ)求证:BC ∥平面MNB 1; (Ⅱ)求证:平面A 1CB ⊥平面ACC 1A 1.4. 如图,在直三棱柱ABC -A 1B 1C 1中,AC =BC =CC 1,AC ⊥BC, 点D 是AB 的中点. (Ⅰ)求证:CD ⊥平面A 1ABB 1; (Ⅱ)求证:AC 1∥平面CDB 1; (Ⅲ)线段AB 上是否存在点M ,使得A 1M ⊥平面CDB 15. 如图,已知正三棱柱ABC -A 1B 1C 1的所有棱长都为2,D 为CC 1中点,E为BC 的中点. (Ⅰ)求证:BD ⊥平面AB 1E ; (Ⅱ)求直线AB 1与平面BB 1C 1C 所成角的正弦值; (Ⅲ)求三棱锥C -ABD 的体积.6. 如图,在正方体ABCD -A 1B 1C 1D 1中,F 为AA 1的中点.求证:(Ⅰ)A 1C ∥平面FBD ; (Ⅱ)平面FBD ⊥平面DC 1B.(第5题) (第6题) (第7题)C 1D 1B 1CDA 1MA BCD A 1 B 1C 1D 1 M AC ENF A11BC 1CEFD7. 如图,在正方体ABCD -A 1B 1C 1D 1中,E 、F 为棱AD 、AB 的中点. (Ⅰ)求证:EF ∥平面CB 1D 1; (Ⅱ)求证:平面CAA 1C 1⊥平面CB 1D 1; (Ⅲ)如果AB =1,一个点从F 出发在正方体的表面上依次经过棱BB 1、B 1C 1、C 1D 1、D 1D 、DA 上的点,又回到F ,指出整个线路的最小值并说明理由.8. 正三棱柱ABC -A 1B 1C 1中,点D 是BC 的中点,BC =2BB 1, 设B 1D BC 1=F.(Ⅰ)求证:A 1C ∥平面AB 1D ; (Ⅱ)求证:BC 1⊥平面AB 1D. (第8题)9. 如图所示,在直四棱柱ABCD -A 1B 1C 1中, DB =BC, DB ⊥AC, 点M 是棱BB 1上一点.(Ⅰ)求证:B 1D 1 ∥面A 1BD ; (Ⅱ)求证:MD ⊥AC ; (Ⅲ)试确定点M 的位置, 使得平面DMC 1⊥平面CC 1D 1D. 10. 四棱锥P -ABCD 中,底面ABCD 是边长为8的菱形,∠BAD =60°,若PA =PD =5,平面PAD ⊥平面ABCD.(Ⅰ)求四棱锥P -ABCD 的体积; (Ⅱ)求证:AD ⊥PB ;(Ⅲ)若E 为BC 的中点,能否在棱PC 上找到一点F ,使平面DEF ⊥平面ABCD ,并证明你的结论(第9题) (第10题) (第11题) (第12题)11. 如图,四边形ABCD 为矩形,BC ⊥平面ABE ,F 为CE 上的点,且BF ⊥平面ACE. (Ⅰ)求证:AE ⊥BE ;(Ⅱ)设点M 为线段AB 的中点,点N 为线段CE 的中点.求证:MN ∥平面DAE .12. 如图,在直三棱柱ABC -A 1B 1C 1中,AB =AC =AA 1=3, BC =2 ,D 是BC 的中点,F 是CC 1上一点,且CF =2,E 是AA 1上一点,且AE =2. (Ⅰ) 求证:B 1F ⊥平面ADF ; (Ⅱ)求证:BE ∥平面ADF.13. 如图,在四棱锥P -ABCD 中,底面ABCD 为菱形,∠BAD =60°,Q 为AD 的中点.(Ⅰ)若PA =PD ,求证:平面PQB ⊥平面PAD ;CBABCMP DDB A 1A FA C(第18题)(Ⅱ)点M 在线段PC 上,PM =t PC ,试确定实数t 的值,使得PA ∥平面MQB.14. 如图,在四棱锥P -ABCD 中,平面PAD ⊥平面ABCD ,AB ∥DC , △PAD 是等边三角形,已知AD =4, BD =34,AB =2CD =8. (Ⅰ)设M 是PC 上的一点,证明:平面MBD ⊥平面PAD ;(Ⅱ)当M 点位于线段PC 什么位置时,PA ∥平面MBD (Ⅲ)求四棱锥P -ABCD 的体积.(第13题) (第14题) (第16题)16. 已知直三棱柱ABC -A 1B 1C 1中,D, E, F 分别为AA 1, CC 1, AB 的中点,M 为BE 的中点, AC ⊥BE. 求证:(Ⅰ)C 1D ⊥BC ; (Ⅱ)C 1D ∥平面B 1FM.17. 如图,已知直角梯形ABCD 中,AB ∥CD ,AB ⊥BC ,AB =1,BC =2,CD =1+3,过A 作AE ⊥CD ,垂足为E ,G 、F 分别为AD 、CE 的中点,现将△ADE 沿AE 折叠,使得DE ⊥EC. (Ⅰ)求证:BC ⊥面CDE ; (Ⅱ)求证:FG ∥面BCD ;(Ⅲ)在线段AE 上找一点R ,使得面BDR ⊥面DCB ,并说明理由.(第17题)18. 在四棱锥P - ABCD 中,四边形ABCD 是梯形,AD ∥BC ,∠ABC =90°,平面PAB ⊥平面ABCD ,平面PAD ⊥平面ABCD. (Ⅰ)求证:PA ⊥平面ABCD ;(Ⅱ)若平面PAB I 平面PCD l ,问:直线l 能否与平面ABCD 平行请说明理由.ADP 图乙A DBCP E FBACEFDF E P19. 如图,四棱锥P -ABCD 中,PA ⊥底面ABCD ,AC ⊥CD ,∠DAC =60°,AB =BC =AC ,E 是PD 的中点,F 为ED 的中点.(Ⅰ)求证:平面PAC ⊥平面PCD ; (Ⅱ)求证:CF ∥平面BAE. (第19题)20. 如图, ABCD 为矩形,CF ⊥平面ABCD ,DE ⊥平面ABCD ,AB =4a ,BC =CF =2a ,P 为AB 的中点.(Ⅰ)求证:平面PCF ⊥平面PDE ; (Ⅱ)求四面体PCEF 的体积.(第20题) (第21题)21. 如图, 在直三棱柱ABC -A 1B 1C 1中, ∠ACB =90°, E , F , G 分别是AA 1 , AC , BB 1的中点,且CG ⊥C 1G.(Ⅰ)求证:CG ∥平面BEF ; (Ⅱ)求证:CG ⊥平面A 1C 1G.22. 如图甲,在直角梯形PBCD 中,PB ∥CD ,CD ⊥BC ,BC =PB =2CD ,A 是PB 的中点.现沿AD 把平面PAD 折起,使得PA ⊥AB (如图乙所示),E 、F 分别为BC 、AB 边的中点. (Ⅰ)求证:PA ⊥平面ABCD ; (Ⅱ)求证:平面PAE ⊥平面PDE ;(Ⅲ)在PA PDE.23. 已知△BCD 中,∠BCD =90°,BC =CD =1,AB ⊥平面BCD , (第23题) ∠ADB =60°,E 、F 分别是AC 、AD 上的动点,λ==ADAFAC AE (10<<λ). (Ⅰ)求证:不论λ为何值,总有平面BEF ⊥平面ABC ;(Ⅱ)当为λ何值时,平面BEF ⊥平面ACD《立体几何》解答题参考答案1. 证明:(Ⅰ)∵E 、F 分别是AB 、BD 的中点, ∴EF 是△ABD 的中位线 ∴ EF ∥AD又∵EF ⊄面ACD ,AD ⊂面ACD, ∴直线EF ∥面ACD(Ⅱ)∵AD ⊥BD, EF ∥AD, ∴EF ⊥BD, ∵CB =CD, F 是BD 的中点, ∴CF ⊥BDABC MNA 1B 1C 1EBCB A 11ADF EC ADA 1C 1B 1BC AD FE 又EF ⋂CF =F, ∴BD ⊥面ECF, ∵BD ⊂面BCD, ∴面EFC ⊥面BCD 2. 证明:(Ⅰ)因为E, F 分别是A 1B, A 1C 的中点,所以EF ∥BC ,又EF ⊄平面ABC ,BC ⊂平面ABC ,所以EF ∥平面ABC ;(Ⅱ)因为直三棱柱ABC -A 1B 1C 1,所以BB 1 ⊥平面A 1B 1C 1,BB 1 ⊥A 1D ,又A 1D ⊥B 1C.所以A 1D ⊥平面BB 1C 1C ,又A 1D ⊂平面A 1FD ,所以平面A 1FD ⊥平面BB 1C 1C.(第1题) (第2题) (第3题) (第4题) 3. 证明:(Ⅰ)因BC ∥B 1C 1, 且B 1C 1⊂平面MNB 1, BC ⊄平面MNB 1,故BC ∥平面MNB 1. (Ⅱ)因BC ⊥AC ,且ABC -A 1B 1C 1为直三棱柱,故BC ⊥平面ACC 1A 1. 因BC ⊂平面A 1CB , 故平面A 1CB ⊥平面ACC 1A 1.4. 证明:(Ⅰ)∵ABC -A 1B 1C 1是直三棱柱,∴平面ABC ⊥平面A 1ABB 1, ∵AC =BC ,点D 是AB 的中点,∴CD ⊥AB, 面ABC ⋂面A 1ABB 1 =AB ∴CD ⊥平面A 1ABB 1(Ⅱ)连结BC 1,设BC 1与B 1C 的交点为E ,连结DE .∵D 是AB 的中点,E 是BC 1的中点,∴DE ∥AC 1∵DE ⊂平面CDB 1 , AC 1⊄平面CDB 1, ∴AC 1∥平面CDB 1.(Ⅲ)存在点M 为B. 由(Ⅰ)知 CD ⊥平面A 1ABB ,又 A 1B ⊂平面A 1ABB ,∴CD ⊥A 1B∵AC =BC =CC 1,AC ⊥BC ,点D 是AB 的中点.∴A 1A : AB =BD : BB 1=1:2, ∴A 1B ⊥B 1D, 又CD ⋂B 1D =D, ∴A 1B ⊥平面CDB 1.5. 解:(Ⅰ)∵棱柱ABC -A 1B 1C 1是正三棱柱,且E 为BC 的中点, ∴平面ABC ⊥平面BCC 1B 1,又AE ⊥BC 且AE ⊂平面ABC, ∴AE ⊥平面BCC 1B 1而D 为CC 1中点,且BD ⊂平面BCC 1B 1 ∴ AE ⊥BD由棱长全相等知Rt △BCD ≌Rt △B 1BE, 即111+=+90CBD B EB BB E B EB ∠∠∠∠=︒,故BD ⊥B 1E, 又AE ⋂B 1E =E , ∴BD ⊥平面AB 1E(Ⅱ)由AE ⊥平面BCC 1B 1知∠AB 1E 是直线AB 1与平面BB 1C 1C 所成的角,设为θ∵正三棱柱ABC -A 1B 1C 1的所有棱长都为2 , ∴在Rt △AEB 1中136sin 422AE AB θ===FFC 1A 1CBB1(Ⅲ)C ABD A CBD V V --= 11121332BCD S AE ∆=⋅=⨯⨯⨯= 6. 证明:(Ⅰ)连结AC, 设AC ⋂BD =O.∵F 为AA 1的中点,O 为AC 的中点 ∴FO ∥A 1C ∵A 1C ⊄平面BFD ,FO ⊂平面BFD ∴A 1C ∥平面BFD(Ⅱ)设正方体棱长为1 . ∵23,26,22,2311====FC O C OC FO ∴21212FC OC FO =+ ∴ FO ⊥OC 1又∵AA 1 ⊥平面ABCD ∴ AA 1⊥BD ∵ BD ⊥AC ∴BD ⊥平面A 1ACC 1 ∵ FO ⊂平面A 1ACC 1 ∴ BD ⊥FO ∵ BD ⋂C 1O =O ∴ FO ⊥平面BDC 1 ∵ FO ⊂平面BFD ∴ 平面BFD ⊥平面C 1BD 另证:∵122CC AOOC FA == ∴ Rt △FAO ∽Rt △OCC 1 ∴∠FOA =∠OC 1C ∴∠FOA +∠COC 1 =∠OC 1C +∠COC 1=90° ∴∠FOC 1=90° ∴FO ⊥OC 1 7. (Ⅰ)证明:连结BD. 在长方体AC 1中,对角线BD ∥B 1D 1.又Q E 、F 为棱AD 、AB 的中点, ∴ EF ∥BD. ∴ EF ∥B 1D 1. 又B 1D 1⊂平面CB 1D 1,EF ⊄平面CB 1D 1, ∴ EF ∥平面CB 1D 1. (Ⅱ)证明:Q 在长方体AC 1中,AA 1⊥平面A 1B 1C 1D 1,而B 1D 1⊂平面A 1B 1C 1D 1, ∴ AA 1⊥B 1D 1.又Q 在正方形A 1B 1C 1D 1中,A 1C 1⊥B 1D 1,∴B 1D 1⊥平面CAA 1C 1. 又Q B 1D 1⊂平面CB 1D 1, ∴平面CAA 1C 1⊥平面CB 1D 1.(Ⅲ)解:最小值为23.如图,将正方体六个面展开,从图中F 到F ,两点之间线段最短,而且依次经过棱BB 1、B 1C 1、C 1D 1、D 1D 、DA 上的中点,所求的最小值为23.8. 证明:(Ⅰ)连结A 1B, 设A 1B 与AB 1交于E, 连结DE∵点D 是BC 的中点,点E 是A 1B 的中点 ∴ DE ∥A 1C ∵ A 1C ⊄平面AB 1D , DE ⊂平面AB 1D ∴ A 1C ∥平面AB 1D (Ⅱ)∵△ABC 是正三角形,点D 是BC 的中点 ∴ AD ⊥BC∵平面ABC ⊥平面B 1BCC 1 ,平面ABC ⋂平面B 1BCC 1=BC ,AD ⊂平面ABC∴ AD ⊥平面B 1BCC 1 ∵BC 1⊂平面B 1BCC 1 ∴ AD ⊥BC 11CAMABCDA 1B1 C 1D 1 NN 1O ∵ 点D 是BC 中点,BC =2BB 1 ∴ BD =22BB 1 ∵2211==BC CC BB BD ∴ Rt △B 1BD ∽Rt △BCC 1 ∴ ∠BDB 1=∠BC 1C, ∴ ∠FBD +∠BDF =∠C 1BC +∠BC 1C =90° ∴ BC 1 ⊥B 1D∵B 1D ⋂AD =D ∴ BC 1 ⊥平面AB 1D9. (Ⅰ)证明:由直四棱柱, 得BB 1∥DD 1 ,且BB 1=DD 1. 所以BB 1D 1D 是平行四边形, 所以B 1D 1 ∥BD 而BD ⊂平面A 1BD ,B 1D 1⊄平面A 1BD ,所以B 1D 1 ∥平面A 1BD(Ⅱ)证明:因为BB 1 ⊥面ABCD,AC ⊂面ABCD ,所以BB 1 ⊥AC又因为BD ⊥AC,且1BD BB B ⋂=,所以AC ⊥面BB 1D 而MD ⊂面BB 1D ,所以MD ⊥AC(Ⅲ)当点M 为棱BB 1的中点时, 平面DMC 1⊥平面CC 1D 1D取DC 的中点N, D 1C 1中点N 1, 连结NN 1交DC 1于O, 连结OM. 因为N 是DC 中点, BD =BC, 所以BN ⊥DC ;又因为DC 是面ABCD 与面DCC 1D 1的交线,而面ABCD ⊥面DCC 1D 1, 所以 BN ⊥面DCC 1D 1又可证得,O 是NN 1的中点,所以BM ∥ON 且BM =ON, 即BMON 是平行四边形,所以BN ∥OM,所以OM ⊥平面D D CC 11, 因为OM ⊂面DMC 1, ai 所以平面DMC 1 ⊥平面D D CC 11. 10. 解:(Ⅰ) 过P 作PM ⊥AD 于M , ∵面PAD ⊥面ABCD, ∴PM ⊥面ABCD , 又PA =PD =5 ∴M 为AD 的中点且PM =34522=-, ∴3323238831=⨯⨯⨯⨯=-ABCD P V (Ⅱ)证明:连结BM , ∵BD =BA =8, AM =DM, ∴AD ⊥BM 又AD ⊥PM , BM ⋂PM =M∴AD ⊥面PMB 又PB ⊂面PMB ∴ AD ⊥PB(Ⅲ) 能找到并且F 为棱PC 的中点证法一:∵F 为PC 的中点,∴EF ∥PB , 又由(Ⅱ)可知AD ⊥面PMB ,∴AD ⊥DE ,AD ⊥EF∴AD ⊥面DEF , 又AD ⊂面ABCD , ∴面DEF ⊥面ABCD证法二:设CM ⋂DE =O, 连结FO , ∴O 为MC 的中点在△PMC 中FO ∥PM , ∵PM ⊥面ABCD , ∴FO ⊥面ABCD 又FO ⊂面DEF , ∴面DEF ⊥面ABCD11. 证明:(Ⅰ)因为BC ⊥平面ABE ,AE ⊂平面ABE ,所以AE ⊥BC ,D CEA 1BCB又BF ⊥平面ACE ,AE ⊂平面ACE ,所以AE ⊥BF ,又BF ⋂BC =B ,所以AE ⊥平面BCE, 又BE ⊂平面BCE ,所以 (Ⅱ)取DE 的中点P ,连接PA ,PN ,因为点N 为线段CE 的中点.所以PN ∥DC ,且DC PN 21=,又四边形ABCD 是矩形,点M 为线段AB 的中点, 所以AM ∥DC ,且DC AM 21=, 所以PN ∥AM ,且PN =AM ,故四边形AMNP 是平行四边形,所以MN ∥AP 而AP ⊂平面DAE ,MN ⊄平面DAE ,所以MN ∥平面DAE. 12. 证明:(Ⅰ) 因为 AB =AC , D 为BC 的中点, 所以AD ⊥BC又在直三棱柱ABC -A 1B 1C 1中,BB 1⊥平面ABC ,AD ⊂平面ABC,所以AD ⊥BB 1 , 又BC ⋂BB 1=B, 所以AD ⊥平面BCC 1B 1 , 又B 1F ⊂平面BCC 1B 1,所以AD ⊥B 1F, 在矩形BCC 1B 1中, C 1F =CD =1, CF =C 1B 1=2, 所以Rt △DCF ≌Rt △FC 1B 1 , 所以 ∠CFD =∠C 1B 1F 所以 ∠B 1FD =90°, 所以B 1F ⊥FD, 又AD ⋂FD =D, 所以B 1F ⊥平面ADF.(Ⅱ)连结EF, EC, 设EC ⋂AF =M, 连结DM, 因为AE =CF =2, 又AE ∥CF, AC ⊥AE,所以 四边形AEFC 是矩形,所以M 为EC 中点,又D 为BC 中点,所以 MD ∥BE , 因为MD ⊂平面ADF, BE ⊄平面ADF ,所以BE ∥平面ADF.13. 解:(Ⅰ)连结BD ,四边形ABCD 是菱形 ∵AD =AB ,∠BAD =60°∴△ABD 为正三角形,Q 为AD 的中点, ∴AD ⊥BQΘPA =PD , Q 为AD 的中点,∴ AD ⊥BQ 又BQ ⋂PQ =Q,∴ AD ⊥平面PQB, 又AD ⊂平面PAD, ∴ 平面PQB ⊥平面PAD(Ⅱ)当31=t 时,使得PA ∥平面MQB ,连结AC 交BQ 于N ,交BD 于O ,则O 为BD 的中点,又ΘBQ 为△ABD 边AD 上的中线,∴ N 为正△ABD 的中心,令菱形ABCD 的边长为a ,则a AN 33=,a AC 3=. ∵ PA ∥平面MQB , PA ⊂平面PAC ,平面PAC ⋂平面MQB =MN , ∴ PA ∥MNAB31333===a aAC AN PC PM 即:PC PM 31=, ∴ 31=t . 14. 解:(Ⅰ)在△ABD 中,∵AD =4, BD =34, AB =8,∴222AD BD AB +=. ∴ AD ⊥BD又 ∵平面PAD ⊥平面ABCD ,平面PAD ⋂平面ABCD =AD ,BD ⊂平面ABCD , ∴BD ⊥平面PAD .又BD ⊂平面MBD , ∴平面MBD ⊥平面PAD. (Ⅱ)当M 点位于线段PC 靠近C 点的三等分点处时,PA ∥平面MBD.证明如下:连接AC ,交BD 于点N ,连接MN .∵AB ∥DC ,所以四边形ABCD 是梯形.∵AB =2CD , ∴ CN : NA =1 : 2.又 ∵CM : MP =1 : 2, ∴CN : NA =CM : MP ∴ PA ∥MN.∵ PA ⊄平面MBD ,MN ⊂平面MBD ,∴ PA ∥平面MBD.(Ⅲ)过P 作PO ⊥AD 交AD 于O , ∵平面PAD ⊥平面ABCD ,∴PO ⊥平面ABCD .即PO 为四棱锥P-ABCD 的高.又 ∵△PAD 是边长为4的等边三角形,∴4PO =.在Rt △ADB 中,斜边AB=ABCD 的高. ∴梯形ABCD 的面积482ABCD S+=⨯= 故1243P ABCD V -=⨯=. 16. 证明:(Ⅰ)由直三棱柱可知CC 1⊥平面ABC, 所以CC 1⊥AC又因为AC ⊥BE, CC 1⋂BE =E, AC ⊥面BCE, 所以AC ⊥BC 又在直三棱柱中,CC 1⊥BC, AC ⋂CC 1=C ,故BC ⊥平面ACC 1A 1 , C 1D ⊂平面ACC 1A 1 , 所以BC ⊥C 1D(Ⅱ)连结AE ,因为C 1E ∥DA ,且C 1E =DA ,所以四边形ADC 1E 为平行四边形,所以C 1D ∥EA ,在△AEB 中,因为M, F 分别为BE, BA 的中点,所以MF ∥EA , 所以C 1D ∥MF ,又C 1D ⊄平面B 1FM ,MF ⊂平面B 1FM , 所以C 1D ∥平面B 1FM17. 证明:(Ⅰ)由已知得:DE ⊥AE, DE ⊥EC, AE ⋂EC =E, ∴DE ⊥平面ABCE, ∴DE ⊥BC, 又BC ⊥CE, DE ⋂EC =E , ∴BC ⊥平面DCE(Ⅱ)取AB 中点H ,连接GH , FH. ∴GH ∥BD, FH ∥BC,∴GH ∥平面BCD, FH ∥平面BCD(第18题)BD ∴平面FHG ∥平面BCD, ∴GF ∥平面BCD (或证明CQ ∥FG )(Ⅲ)当R 点满足3AR =RE 时,平面BDR ⊥平面BDC.证明:取BD 中点Q ,连结DR , BR , CQ , RQ计算得2,2CD BD CR DR CQ =====在△BDR 中2BR DR BD ===Q 延长BQ 到S 使SQ =RQ ,则在平行四边形BRDS 中, 对角线的平方和等于四边的平方和.由2222)2()(2RQ BD DR BR +=+可知RQ =, ∴在△CRQ 中,222CQ RQ CR += , ∴ CQ ⊥RQ又在△CBD 中, CD =CB, Q 为BD 的中点,∴CQ ⊥BD, BD ⋂RQ =Q ∴CQ ⊥平面BDR , 又CQ ⊂平面BDC, ∴平面BDC ⊥平面BDR 18. 解:(Ⅰ)因为∠ABC =90°,AD ∥BC ,所以AD ⊥AB.而平面PAB ⊥平面ABCD ,且平面PAB I 平面ABCD =AB,所以AD ⊥平面PAB, 所以AD ⊥PA. 同理可得AB ⊥PA. 由于AB 、AD ⊂平面ABCD ,且AB I AD =C, 所以PA ⊥平面ABCD.(Ⅱ)(解法一)不平行.证明:假定直线l ∥平面ABCD,由于l ⊂平面PCD ,且平面PCD I 平面ABCD =CD, 所以l ∥CD. 同理可得l ∥AB, 所以AB ∥CD. 这与AB 和CD 是直角梯形ABCD 的两腰相矛盾,故假设错误,所以直线l 与平面ABCD 不平行.(解法二)因为梯形ABCD 中AD ∥BC, 所以直线AB 与直线CD 相交,设AB I CD =T. 由T ∈CD ,CD ⊂平面PCD 得T ∈平面PCD. 同理T ∈平面PAB. 即T 为平面PCD 与平面PAB 的公共点,于是PT 为平面PCD 与平面PAB 的交线.所以直线l 与平面ABCD 不平行. 19. 证明:(Ⅰ)因为PA ⊥底面ABCD ,所以PA ⊥CD ,又AC ⊥CD ,且AC ⋂PA =A , 所以CD ⊥平面PAC , 又CD ⊂平面PCD ,所以平面PAC ⊥平面PCD .GAB 1FP(Ⅱ)解法一:取AE 中点G ,连接FG ,B G .因为F 为ED 的中点,所以FG ∥AD 且FG =12AD . 在△ACD 中,AC ⊥CD ,∠DAC =60°, 所以AC =12AD ,所以BC =12AD .在△ABC 中,AB =BC =AC ,所以∠ACB =60°, 从而∠ACB =∠DAC ,所以AD ∥BC .综上,FG ∥BC ,FG =BC ,四边形FGBC 为平行四边形,所以CF ∥BG .又BG ⊂平面BAE ,CF ⊄平面BAE ,所以CF ∥平面BAE .解法二:延长DC 与AB 交于G 点,连接EG .因为在△ABC 中,AB =BC =AC ,所以∠CAB =60°, 所以∠CAB =∠CAD , 即AC 为∠DAG 的平分线.又AC ⊥CD ,所以AG =AD ,C 为DG 中点,又F 为ED 的中点. 所以CF ∥EG .根据EG ⊂平面BAE ,CF ⊄平面BAE ,所以CF ∥平面BAE .20. 解:(Ⅰ)因为ABCD 为矩形,AB =2BC, P 为AB 的中点,所以三角形PBC 为等腰直角三角形,∠BPC =45°.同理可证∠APD =45°. 所以∠DPC =90°,即PC ⊥PD. 又DE ⊥平面ABCD ,PC 在平面ABCD 内,所以PC ⊥DE.因为DE ⋂PD =D ,所以PC ⊥PDE . 又因为PC 在平面PCF 内,所以平面PCF ⊥平面PDE. (Ⅱ)因为CF ⊥平面ABCD ,DE ⊥平面ABCD ,所以DE ∥CF. 又DC ⊥CF ,所以211424.22CEF S DC CF a a a ∆=⋅=⨯⨯=在平面ABCD 内,过P 作PQ ⊥CD 于Q ,则PQ ∥BC ,PQ =BC =2a . 因为BC ⊥CD ,BC ⊥CF , 所以BC ⊥平面PCEF ,所以 PQ ⊥平面DCEF , 亦即P 到平面DCEF 的距离为PQ =2a.2311842.333PCEF P CEF CEF V V PQ S a a a -∆==⋅=⋅⋅=(注:本题亦可利用31863P CEF B CEF E BCF D BCF V V V V DC BC CF a ----====⋅⋅=求得)21. 证明:(Ⅰ)连结AG 交BE 于D, 连接DF , EG.E BCA∵ E , G 分别是AA 1 , BB 1的中点,∴AE ∥BG 且AE =BG, ∴四边形AEGB 是平行四边形. ∴ D 是AG 的中点,又∵ F 是AC 的中点, ∴DF ∥CG则由DF ⊂面BEF, CG ⊄面BEF, 得CG ∥面BEF (注:也可证明平面A 1CG ∥平面BEF)(Ⅱ) ∵在直三棱柱ABC -A 1B 1C 1中,C 1C ⊥底面A 1B 1C 1, ∴C 1C ⊥A 1C 1 . 又∵∠A 1C 1B 1=∠ACB =90°, 即C 1B 1 ⊥A 1C 1, ∴ A 1C 1⊥面B 1C 1CB 而CG ⊂面B 1C 1CB, ∴ A 1C 1⊥CG 又CG ⊥C 1G, ∴CG ⊥平面A 1C 1G22. 解:(Ⅰ)证明:因为PA ⊥AD, PA ⊥AB, AB ⋂AD =A ,所以PA ⊥平面ABCD.(Ⅱ)证明:因为BC =PB =2CD, A 是PB 的中点,所以ABCD 是矩形,又E 为BC 边的中点,所以AE ⊥ED.又由PA ⊥平面ABCD, 得PA ⊥ED, 且PA ⋂AE =A, 所以ED ⊥平面PAE , 而ED ⊂平面PDE ,故平面PAE ⊥平面PDE.(Ⅲ)过点F 作FH ∥ED 交AD 于H ,再过H 作GH ∥PD 交PA 于G, 连结FG.由FH ∥ED, ED ⊂平面PED, 得FH ∥平面PED ; 由GH ∥PD ,PD ⊂平面PED ,得GH ∥平面PED ,又FH ⋂GH =H ,所以平面FHG ∥平面PED.所以FG ∥平面PDE. 再分别取AD 、PA 的中点M 、N ,连结BM 、MN , 易知H 是AM 的中点,G 是AN 的中点, 从而当点G 满足AG =41AP 时,有FG ∥平面PDE.23. 证明:(Ⅰ)∵AB ⊥平面BCD , ∴AB ⊥CD , ∵CD ⊥BC 且AB ⋂BC =B , ∴CD ⊥平面ABC. 又∵λ==ADAFAC AE (10<<λ) ∴不论λ为何值,恒有EF ∥CD ,∴EF ⊥平面ABC ,EF ⊂平面BEF,∴不论λ为何值, 恒有平面BEF ⊥平面ABC. (Ⅱ)由(Ⅰ)知,BE ⊥EF ,又平面BEF ⊥平面ACD ,∴BE ⊥平面ACD ,∴BE ⊥AC. ∵BC =CD =1,∠BCD =90°,∠ADB =60°,∴,660tan 2,2===οAB BD ∴722=+=BC AB AC由AB 2=AE·AC 得76=AE , ∴76==AC AE λ 故当76=λ时,平面BEF ⊥平面ACD.。