高中必修一函数的奇偶性详细讲解及练习(详细答案).

合集下载

高中必修一函数的奇偶性详细讲解及练习(详细答案)

高中必修一函数的奇偶性详细讲解及练习(详细答案)

函数的单调性和奇偶性例1(1)画出函数y=-x2+2|x|+3的图像,并指出函数的单调区间.解:函数图像如下图所示,当x≥0时,y=-x2+2x+3=-(x-1)2+4;当x<0时,y=-x2-2x+3=-(x+1)2+4.在(-∞,-1]和[0,1]上,函数是增函数:在[-1,0]和[1,+∞)上,函数是减函数.评析函数单调性是对某个区间而言的,对于单独一个点没有增减变化,所以对于区间端点只要函数有意义,都可以带上.(2)已知函数f(x)=x2+2(a-1)x+2在区间(-∞,4]上是减函数,求实数a的取值范围.分析要充分运用函数的单调性是以对称轴为界线这一特征.解:f(x)=x2+2(a-1)x+2=[x+(a-1)]2-(a-1)2+2,此二次函数的对称轴是x=1-a.因为在区间(-∞,1-a]上f(x)是单调递减的,若使f(x)在(-∞,4]上单调递减,对称轴x=1-a必须在x=4的右侧或与其重合,即1-a≥4,a≤-3.评析这是涉及逆向思维的问题,即已知函数的单调性,求字母参数范围,要注意利用数形结合.例2判断下列函数的奇偶性:(1)f(x)=-(2)f(x)=(x-1).解:(1)f(x)的定义域为R.因为f(-x)=|-x+1|-|-x-1|=|x-1|-|x+1|=-f(x).所以f(x)为奇函数.(2)f(x)的定义域为{x|-1≤x<1},不关于原点对称.所以f(x)既不是奇函数,也不是偶函数.评析用定义判断函数的奇偶性的步骤与方法如下:(1)求函数的定义域,并考查定义域是否关于原点对称.(2)计算f(-x),并与f(x)比较,判断f(-x)=f(x)或f(-x)=-f(x)之一是否成立.f(-x)与-f(x)的关系并不明确时,可考查f(-x)±f(x)=0是否成立,从而判断函数的奇偶性.例3已知函数f(x)=.(1)判断f(x)的奇偶性.(2)确定f(x)在(-∞,0)上是增函数还是减函数?在区间(0,+∞)上呢?证明你的结论.解:因为f(x)的定义域为R,又f(-x)===f(x),所以f(x)为偶函数.(2)f(x)在(-∞,0)上是增函数,由于f(x)为偶函数,所以f(x)在(0,+∞)上为减函数.其证明:取x1<x2<0,f(x1)-f(x2)=- ==.因为x1<x2<0,所以x2-x1>0,x1+x2<0,x21+1>0,x22+1>0,得f(x1)-f(x2)<0,即f(x1)<f(x2).所以f(x)在(-∞,0)上为增函数.评析奇函数在(a,b)上的单调性与在(-b,-a)上的单调性相同,偶函数在(a,b)与(-b,-a)的单调性相反.例4已知y=f(x)是奇函数,它在(0,+∞)上是增函数,且f(x)<0,试问F(x)=在(-∞,0)上是增函数还是减函数?证明你的结论.分析根据函数的增减性的定义,可以任取x1<x2<0,进而判定F(x1)-F(x2)=-=的正负.为此,需分别判定f(x1)、f(x2)与f(x2)的正负,而这可以从已条件中推出.解:任取x1、x2∈(-∞,0)且x1<x2,则有-x1>-x2>0.∵y=f(x)在(0,+∞)上是增函数,且f(x)<0,∴f(-x2)<f(-x1)<0.①又∵f(x)是奇函数,∴f(-x2)=-f(x2),f(-x1)=-f(x1)②由①、②得f(x2)>f(x1)>0.于是F(x1)-F(x2)=>0,即F(x1)>F(x2),所以F(x)=在(-∞,0)上是减函数.评析本题最容易发生的错误,是受已知条件的影响,一开始就在(0,+∞)内任取x1<x2,展开证明.这样就不能保证-x1,-x2,在(-∞,0)内的任意性而导致错误.避免错误的方法是:要明确证明的目标,有针对性地展开证明活动.例5讨论函数f(x)=(a≠0)在区间(-1,1)内的单调性.分析根据函数的单调性定义求解.解:设-1<x1<x2<1,则f(x1)-f(x2)=-=∵x1,x2∈(-1,1),且x1<x2,∴x1-x2<0,1+x1x2>0,(1-x21)(1-x22)>0于是,当a>0时,f(x1)<f(x2);当a<0时,f(x1)>f(x2).故当a>0时,函数在(-1,1)上是增函数;当a<0时,函数在(-1,1)上为减函数.评析根据定义讨论(或证明)函数的单调性的一般步骤是:(1)设x1、x2是给定区间内任意两个值,且x1<x2;(2)作差f(x1)-f(x2),并将此差式变形;(3)判断f(x1)-f(x2)的正负,从而确定函数的单调性.例6求证:f(x)=x+ (k>0)在区间(0,k]上单调递减.解:设0<x1<x2≤k,则f(x1)-f(x2)=x1+ -x2-=∵0<x1<x2≤k,∴x1-x2<0,0<x1x2<k2,∴f(x1)-f(x2)>0∴f(x1)>f(x2),∴f(x)=x+ 中(0,k]上是减函数.评析函数f(x)在给定区间上的单调性反映了函数f(x)在区间上函数值的变化趋势,是函数在区间上的整体性质.因此,若要证明f(x)在[a,b]上是增函数(减函数),就必须证明对于区间[a,b]上任意两点x1,x2,当x1<x2时,都有不等式f(x1)<f(x2)(f(x1)>f(x2))类似可以证明:函数f(x)=x+ (k>0)在区间[k,+∞]上是增函数.例7判断函数f(x)=的奇偶性.分析确定函数的定义域后可脱去绝对值符号.解:由得函数的定义域为[-1,1].这时,|x-2|=2-x.∴f(x)=,∴f(-x)===f(x).且注意到f(x)不恒为零,从而可知,f(x)=是偶函数,不是奇函数.评析由于函数解析式中的绝对值使得所给函数不像具有奇偶性,若不作深入思考,便会作出其非奇非偶的判断.但隐含条件(定义域)被揭示之后,函数的奇偶性就非常明显了.这样看来,解题中先确定函数的定义域不仅可以避免错误,而且有时还可以避开讨论,简化解题过程.函数奇偶性练习一、选择题1.已知函数f(x)=ax2+bx+c(a≠0)是偶函数,那么g(x)=ax3+bx2+cx()A .奇函数B .偶函数C .既奇又偶函数D .非奇非偶函数 2.已知函数f (x )=ax 2+bx +3a +b 是偶函数,且其定义域为[a -1,2a ],则( ) A .31=a ,b =0 B .a =-1,b =0 C .a =1,b =0 D .a =3,b =0 3.已知f (x )是定义在R 上的奇函数,当x ≥0时,f (x )=x 2-2x ,则f (x )在R 上的表达式是( ) A .y =x (x -2) B .y =x (|x |-1) C .y =|x |(x -2) D .y =x (|x |-2) 4.已知f (x )=x 5+ax 3+bx -8,且f (-2)=10,那么f (2)等于( ) A .-26 B .-18 C .-10 D .10 5.函数1111)(22+++-++=x xx x x f 是()A .偶函数B .奇函数C .非奇非偶函数D .既是奇函数又是偶函数 6.若)(x ϕ,g (x )都是奇函数,2)()(++=x bg a x f ϕ在(0,+∞)上有最大值5, 则f (x )在(-∞,0)上有( )A .最小值-5B .最大值-5C .最小值-1D .最大值-3 二、填空题 7.函数2122)(xx x f ---=的奇偶性为________(填奇函数或偶函数) .8.若y =(m -1)x 2+2mx +3是偶函数,则m =_________. 9.已知f (x )是偶函数,g (x )是奇函数,若11)()(-=+x x g x f ,则f (x )的解析式为_______.10.已知函数f (x )为偶函数,且其图象与x 轴有四个交点,则方程f (x )=0的所有实根之和为________. 三、解答题11.设定义在[-2,2]上的偶函数f (x )在区间[0,2]上单调递减,若f (1-m )<f (m ),求实数m 的取值范围.12.已知函数f (x )满足f (x +y )+f (x -y )=2f (x )·f (y )(x ∈R ,y ∈R ),且f (0)≠0, 试证f (x )是偶函数.13.已知函数f (x )是奇函数,且当x >0时,f (x )=x 3+2x 2—1,求f (x )在R 上的表达式.14.f (x )是定义在(-∞,-5] [5,+∞)上的奇函数,且f (x )在[5,+∞)上单调递减,试判断f (x )在(-∞,-5]上的单调性,并用定义给予证明.15.设函数y =f (x )(x ∈R 且x ≠0)对任意非零实数x 1、x 2满足f (x 1·x 2)=f (x 1)+f (x 2), 求证f (x )是偶函数.函数的奇偶性练习参考答案1. 解析:f (x )=ax 2+bx +c 为偶函数,x x =)(ϕ为奇函数,∴g (x )=ax 3+bx 2+cx =f (x )·)(x ϕ满足奇函数的条件. 答案:A2.解析:由f (x )=ax 2+bx +3a +b 为偶函数,得b =0. 又定义域为[a -1,2a ],∴a -1=2a ,∴31=a .故选A . 3.解析:由x ≥0时,f (x )=x 2-2x ,f (x )为奇函数,∴当x <0时,f (x )=-f (-x )=-(x 2+2x )=-x 2-2x =x (-x -2).∴,,)0()0()2()2()(<≥---=⎩⎨⎧x x x x x x x f 即f (x )=x (|x |-2)答案:D4.解析:f (x )+8=x 5+ax 3+bx 为奇函数,f (-2)+8=18,∴f (2)+8=-18,∴f (2)=-26. 答案:A5.解析:此题直接证明较烦,可用等价形式f (-x )+f (x )=0. 答案:B 6.解析:)(x ϕ、g (x )为奇函数,∴)()(2)(x bg x a x f +=-ϕ为奇函数. 又f (x )在(0,+∞)上有最大值5, ∴f (x )-2有最大值3.∴f (x )-2在(-∞,0)上有最小值-3, ∴f (x )在(-∞,0)上有最小值-1. 答案:C7.答案:奇函数8.答案:0解析:因为函数y =(m -1)x 2+2mx +3为偶函数,∴f (-x )=f (x ),即(m -1)(-x )2+2m (-x )+3=(m —1)x 2+2mx +3,整理,得m =0. 9.解析:由f (x )是偶函数,g (x )是奇函数,可得11)()(--=-x x g x f ,联立11)()(-=+x x g x f ,∴11)1111(21)(2-=----=x x x x f . 答案:11)(2-=x x f 10.答案:0 11.答案:21<m12.证明:令x =y =0,有f (0)+f (0)=2f (0)·f (0),又f (0)≠0,∴可证f (0)=1.令x =0,∴f (y )+f (-y )=2f (0)·f (y )⇒f (-y )=f (y ),故f (x )为偶函数. 13.解析:本题主要是培养学生理解概念的能力.f (x )=x 3+2x 2-1.因f (x )为奇函数,∴f (0)=0.当x <0时,-x >0,f (-x )=(-x )3+2(-x )2-1=-x 3+2x 2-1, ∴f (x )=x 3-2x 2+1.因此,.)0()0()0(12012)(,,2323<=>+--+=⎪⎩⎪⎨⎧x x x x x x x x f 点评:本题主要考查学生对奇函数概念的理解及应用能力. 14.解析:任取x 1<x 2≤-5,则-x 1>-x 2≥-5.因f (x )在[5,+∞]上单调递减,所以f (-x 1)<f (-x 2)⇒f (x 1)<-f (x 2)⇒f (x 1)>f(x2),即单调减函数.点评:此题要注意灵活运用函数奇偶性和单调性,并及时转化.15.解析:由x1,x2 R且不为0的任意性,令x1=x2=1代入可证,f(1)=2f(1),∴f(1)=0.又令x1=x2=-1,∴f[-1×(-1)]=2f(1)=0,∴(-1)=0.又令x1=-1,x2=x,∴f(-x)=f(-1)+f(x)=0+f(x)=f(x),即f(x)为偶函数.点评:抽象函数要注意变量的赋值,特别要注意一些特殊值,如,x1=x2=1,x1=x2=-1或x1=x2=0等,然后再结合具体题目要求构造出适合结论特征的式子即可.。

高中 必修一 函数的奇偶性 知识点+例题 全面

高中 必修一 函数的奇偶性 知识点+例题 全面

辅导讲义――函数的奇偶性[例1] 下面四个结论中,错误有____________(填序号)①偶函数的图象一定与x 轴相交; ②奇函数的图象一定通过原点; ③偶函数的图象关于原点对称;[巩固1] 已知函数f(x)为偶函数,则函数f(x-1)有( ).A.对称轴y 轴B.对称中心(0,0)C. 对称轴x=1D. 对称中心(1,0)[巩固2] 已知函数f (x )=x 2+2mx+1是偶函数,则m=_________;[例2] 设偶函数f(x)的定义域为[-5,5],若当x ∈[0,5]时,f (x )的图象如图所示,则不等式f (x )<0的解集是________.[巩固1] 已知函数f(x)是定义在(-3,3)上的奇函数,当0<x <3时,f(x)的图象如图所示,则不等式f(-x )•x>0的解集 是__________________.[巩固2]若定义在[-1,1]上的两个函数f(x),g(x)分别是偶函数和奇函数,且它们在[0,1]上图象如图所示,则不等式0)()(<x g x f 的解集是___________________.(例2) (巩固1) (巩固2)1、定义法:①先判断函数的定义域是不是关于原点对称;②判断f (-x )= f (x )或f (-x )=- f (x )是否成立;③若f (-x )= f (x ),则f (x )为偶函数;若f (-x )=- f (x ),则f (x )为奇函数;若f (-x )= f (x )且f (-x )=- f (x ),则f (x )既是奇函数又是偶函数,即f (x )=0,x ∈D ,D 关于原点对称; 若f (-x )≠f (x )且f (-x )≠- f (x ),则f (x )为非奇非偶函数.[例1]判断下列函数是否具有奇偶性.1、3)(2-=x x f2、11)(-+-=x x x f3、1)1)(1(2---=x x x y 4、 233)(x x x f -=知识模块3函数奇偶性的判断方法精典例题透析[巩固1]判断下列函数的奇偶性.1、11)(22-+-=xxxf2、xxxxf-+•-=11)1()(3、)0()(≠=aaxf4、11)(-++=xxxf2、图像法:奇(或偶)函数的充要条件就是它的图象关于原点(或y轴)对称;且在判断奇函数的时候,一定要注意在函数在原点处有无意义,如果有意义,则f(0)=0.[例1]下列图象表示的函数中具有奇偶性的是()[巩固1] 画出下列函数的函数图象,并判断它们的奇偶性.(1)1)(2-=xxf;(2)3)(xxf=;(3)xxxf-=2)(.根据函数奇偶性的定义,判断一次函数、二次函数、反比例函数以及常数函数的单调性.奇函数关于原点对称,偶函数关于y轴对称,即我们只需把(0,+∞)上函数的图象和性质讨论清楚,就可以知道函数在(-∞,0)上的图象及性质.奇偶函数图象的对称性可做如下推广:(表中a,b,c为常数)f(x)在定义域内恒满足y= f(x)的图象关于_____对称f(a+x)= f(a-x)直线x=a精典例题透析知识模块4奇偶函数的对称性10。

高中数学函数的奇偶性(解析版)

高中数学函数的奇偶性(解析版)

1.函数的奇偶性(1)奇偶性的定高中数学函数的奇偶性(解析版)义奇偶性定义图象特点偶函数如果对于函数f (x )的定义域内任意一个x ,都有f (-x )=f (x ),那么函数f (x )是偶函数关于y 轴对称奇函数如果对于函数f (x )的定义域内任意一个x ,都有f (-x )=-f (x ),那么函数f (x )是奇函数关于原点对称(2)函数奇偶性常用结论结论1:如果函数f (x )是奇函数且在x =0处有意义,那么f (0)=0.结论2:如果函数f (x )是偶函数,那么f (x )=f (-x )=f (|x |).结论3:若函数y =f (x +b )是定义在R 上的奇函数,则函数y =f (x )关于点(b ,0)中心对称.结论4:若函数y =f (x +a )是定义在R 上的偶函数,则函数y =f (x )关于直线x =a 对称.结论5:已知函数f (x )是定义在区间D 上的奇函数,则对任意的x ∈D ,都有f (x )+f (-x )=0.特别地,若奇函数f (x )在D 上有最值,则f (x )max +f (x )min =0.推论1:若函数f (x )是奇函数,且g (x )=f (x )+c ,则必有g (-x )+g (x )=2c .推论2:若函数f (x )是奇函数,且g (x )=f (x )+c ,则必有g (x )max +g (x )min =2c .结论6:在公共定义域内有:奇±奇=奇;偶±偶=偶;奇±偶=非奇非偶;奇)(÷⨯奇=偶,偶)(÷⨯偶=偶,奇)(÷⨯偶=奇.结论7:若函数f (x )的定义域关于原点对称,则函数f (x )能表示成一个偶函数与一个奇函数的和的形式.记g (x )=12[f (x )+f (-x )],h (x )=12[f (x )-f (-x )],则f (x )=g (x )+h (x ).结论8:奇函数在其定义域内关于原点对称的两个区间上具有相同的单调性;偶函数在其定义域内关于原点对称的两个区间上具有相反的单调性.结论9:偶函数在其定义域内关于原点对称的区间上有相同的最大(小)值,取最值时的自变量互为相反数;奇函数在其定义域内关于原点对称的区间上的最值互为相反数,取最值时的自变量也互为相反数.结论10:复合函数y =f [g (x )]的奇偶性:内偶则偶,两奇为奇.结论11:指数型函数的奇偶性(1)函数f (x )=a x +a -x (a >0且a ≠1)是偶函数;(2)函数f (x )=a x -a -x (a >0且a ≠1)是奇函数;(3)函数f (x )=a x +1a x -1(a >0且a ≠1)是奇函数;(4)函数f (x )=a x -a -x a x +a -x =a 2x +1a 2x-1(a >0且a ≠1)是奇函数;结论12:对数型函数的奇偶性(1)函数f (x )=log a m -x m +x (a >0且a ≠1)是奇函数;函数f (x )=log a m +xm -x (a >0且a ≠1)是奇函数;(2)函数f (x )=log a x -m x +m (a >0且a ≠1)是奇函数;函数f (x )=log a x +mx -m (a >0且a ≠1)是奇函数;(3)函数f (x )=log a mx -b mx +b (a >0且a ≠1)是奇函数;函数f (x )=log a mx +bmx -b(a >0且a ≠1)是奇函数;(4)函数f(x)=log a(1+m2x2±mx)(a>0且a≠1)是奇函数.2.函数的对称性(奇偶性的推广)(1)函数的轴对称定理1:如果函数y=f(x)满足f(x+a)=f(b-x),则函数y=f(x)的图象关于直线x=a+b2对称.推论1:如果函数y=f(x)满足f(a+x)=f(a-x),则函数y=f(x)的图象关于直线x=a对称.推论2:如果函数y=f(x)满足f(x)=f(-x),则函数y=f(x)的图象关于直线x=0(y轴)对称,就是偶函数的定义,它是上述定理1的简化.(2)函数的点对称定理2:如果函数y=f(x)满足f(a+x)+f(a-x)=2b,则函数y=f(x)的图象关于点(a,b)对称.推论1:如果函数y=f(x)满足f(a+x)+f(a-x)=0,则函数y=f(x)的图象关于点(a,0)对称.推论2:如果函数y=f(x)满足f(x)+f(-x)=0,则函数y=f(x)的图象关于原点(0,0)对称,就是奇函数的定义,它是上述定理2的简化.(3)两个等价关系若函数y=f(x)关于直线x=a轴对称,则以下三式成立且等价:f(a+x)=f(a-x)⇔f(2a-x)=f(x)⇔f(2a+x)=f(-x)若函数y=f(x)关于点(a,0)中心对称,则以下三式成立且等价:f(a+x)=-f(a-x)⇔f(2a-x)=-f(x)⇔f(2a+x)=-f(-x)考点一判断函数的奇偶性【方法总结】判断函数的奇偶性:首先看函数的定义域是否关于原点对称;在定义域关于原点对称的条件下,再化简解析式,根据f(-x)与f(x)的关系作出判断.分段函数奇偶性的判断,要分别从x>0或x<0来寻找等式f(-x)=f(x)或f(-x)=-f(x)成立,只有当对称的两个区间上满足相同关系时,分段函数才具有确定的奇偶性.用函数奇偶性常用结论6或特值法可秒杀.【例题选讲】[例1](1)下列函数为偶函数的是()A.y=B.y=x2+e|x|C.y=x cos x D.y=ln|x|-sin x答案B解析对于选项A,易知y=tan B,设f(x)=x2+e|x|,则f(-x)=(-x)2+e|-x|=x2+e|x|=f(x),所以y=x2+e|x|为偶函数;对于选项C,设f(x)=x cos x,则f(-x)=-x cos(-x)=-x cos x=-f(x),所以y=x cos x为奇函数;对于选项D,设f(x)=ln|x|-sin x,则f(2)=ln2-sin 2,f(-2)=ln2-sin(-2)=ln2+sin2≠f(2),所以y=ln|x|-sin x为非奇非偶函数,故选B.(2)下列函数中,既不是奇函数,也不是偶函数的是()A.y=x+sin2x B.y=x2-cos x C.y=2x+12xD.y=x2+sin x 答案D解析对于A,定义域为R,f(-x)=-x+sin2(-x)=-(x+sin2x)=-f(x),为奇函数;对于B,定义域为R,f(-x)=(-x)2-cos(-x)=x2-cos x=f(x),为偶函数;对于C,定义域为R,f(-x)=2-x+12-x=2x+12x=f(x),为偶函数;对于D,y=x2+sin x既不是偶函数也不是奇函数.(3)设函数f(x)=e x-e-x2,则下列结论错误的是()A.|f(x)|是偶函数B.-f(x)是奇函数C.f(x)|f(x)|是奇函数D.f(|x|)f(x)是偶函数答案D解析∵f(x)=e x-e-x2,则f(-x)=e-x-e x2=-f(x).∴f(x)是奇函数.∵f(|-x|)=f(|x|),∴f(|x|)是偶函数,∴f(|x|)f(x)是奇函数.(4)已知f(x)=4-x2,g(x)=|x-2|,则下列结论正确的是()A.h(x)=f(x)+g(x)是偶函数B.h(x)=f(x)·g(x)是奇函数C.h(x)=g(x)·f(x)2-x是偶函数D.h(x)=f(x)2-g(x)是奇函数答案D解析h(x)=f(x)+g(x)=4-x2+|x-2|=4-x2+2-x,x∈[-2,2].h(-x)=4-x2+2+x≠h(x),且h(-x)≠-h(x),不满足函数奇偶性的定义,是非奇非偶函数.B.h(x)=f(x)·g(x)=4-x2|x-2|=4-x2(2-x),x∈[-2,2].h(-x)=4-x2(2+x)≠h(x),且h(-x)≠-h(x),不满足函数奇偶性的定义,是非奇非偶函数.C.h(x)=g(x)·f(x)2-x=4-x2,x∈[-2,2),定义域不关于原点对称,是非奇非偶函数.D.h(x)=f(x)2-g(x)=4-x2x,x∈[-2,0)∪(0,2],是奇函数.(5)已知函数f(x)满足f(x+1)+f(-x+1)=2,则以下四个选项一定正确的是()A.f(x-1)+1是偶函数B.f(x-1)-1是奇函数C.f(x+1)+1是偶函数D.f(x+1)-1是奇函数答案-12解析法一:因为f(x+1)+f(-x+1)=2,所以f(x)+f(2-x)=2,所以函数y=f(x)的图象关于点(1,1)中心对称,而函数y=f(x+1)-1的图象可看作是由y=f(x)的图象先向左平移1个单位长度,再向下平移1个单位长度得到,所以函数y=f(x+1)-1的图象关于点(0,0)中心对称,所以函数y=f(x+1)-1是奇函数,故选D.法二:由f(x+1)+f(-x+1)=2,得f(x+1)-1+f(-x+1)-1=0,令F(x)=f(x+1)-1,则F(x)+F(-x)=0,所以F(x)为奇函数,即f(x+1)-1为奇函数,故选D.【对点训练】1.下列函数为奇函数的是()A.f(x)=x3+1B.f(x)=ln1-x1+xC.f(x)=e x D.f(x)=x sin x1.答案B解析对于A,f(-x)=-x3+1≠-f(x),所以其不是奇函数;对于B,f(-x)=ln1+x1-x=-ln 1-x 1+x=-f(x),所以其是奇函数;对于C,f(-x)=e-x≠-f(x),所以其不是奇函数;对于D,f(-x)=-x sin(-x)=x sin x=f(x),所以其不是奇函数.故选B.2.函数f(x)=9x+13x的图象()A.关于x轴对称B.关于y轴对称C.关于坐标原点对称D.关于直线y=x对称2.答案B解析因为f(x)=9x+13x=3x+3-x,易知f(x)为偶函数,所以函数f(x)的图象关于y轴对称.3.下列函数中既不是奇函数也不是偶函数的是()A.y=2|x|B.y=lg(x+x2+1)C.y=2x+2-x D.y=lg1x+13.答案D解析对于D项,1x+1>0,即x>-1,其定义域关于原点不对称,是非奇非偶函数.4.已知f(x)=x2x-1,g(x)=x2,则下列结论正确的是()A.f(x)+g(x)是偶函数B.f(x)+g(x)是奇函数C.f(x)g(x)是奇函数D.f(x)g(x)是偶函数4.答案A解析令h(x)=f(x)+g(x),因为f(x)=x2x-1,g(x)=x2,所以h(x)=x2x-1+x2=x·2x+x2(2x-1),定义域为(-∞,0)∪(0,+∞).因为h(-x)=-x·2-x-x2(2-x-1)=x(1+2x)2(2x-1)=h(x),所以h(x)=f(x)+g(x)是偶函数,令F(x)=f(x)g(x)=x22(2x-1),定义域为(-∞,0)∪(0,+∞).所以F(-x)=(-x)22(2-x-1)=x2·2x2(1-2x),因为F(-x)≠F(x)且F(-x)≠-F(x),所以F(x)=g(x)f(x)既不是奇函数也不是偶函数.5.设f(x)=e x+e-x,g(x)=e x-e-x,f(x),g(x)的定义域均为R,下列结论错误的是() A.|g(x)|是偶函数B.f(x)g(x)是奇函数C.f(x)|g(x)|是偶函数D.f(x)+g(x)是奇函数5.答案D解析f(-x)=e-x+e x=f(x),f(x)为偶函数.g(-x)=e-x-e x=-g(x),g(x)为奇函数.|g(-x)|=|-g(x)|=|g(x)|,|g(x)|为偶函数,A正确;f(-x)g(-x)=f(x)[-g(x)]=-f(x)g(x),所以f(x)g(x)为奇函数,B正确;f(-x)|g(-x)|=f(x)|g(x)|,所以f(x)|g(x)|是偶函数,C正确;f(x)+g(x)=2e x,f(-x)+g(-x)=2e-x≠-(f(x)+g(x)),且f(-x)+g(-x)=2e-x≠f(x)+g(x),所以f(x)+g(x)既不是奇函数也不是偶函数,D错误,故选D.6.设函数f(x),g(x)的定义域都为R,且f(x)是奇函数,g(x)是偶函数,则下列结论中正确的是() A.f(x)g(x)是偶函数B.|f(x)|g(x)是奇函数C.f(x)|g(x)|是奇函数D.|f(x)g(x)|是奇函数6.答案C解析对于A:令h(x)=f(x)·g(x),则h(-x)=f(-x)·g(-x)=-f(x)·g(x)=-h(x),∴h(x)是奇函数,A错.对于B:令h(x)=|f(x)|g(x),则h(-x)=|f(-x)|g(-x)=|-f(x)|·g(x)=|f(x)|g(x)=h(x),∴h(x)是偶函数,B错.对于C:令h(x)=f(x)|g(x)|,则h(-x)=f(-x)|g(-x)|=-f(x)·|g(x)|=-h(x),∴h(x)是奇函数,C正确.对于D:令h(x)=|f(x)·g(x)|,则h(-x)=|f(-x)·g(-x)|=|-f(x)·g(x)|=|f(x)·g(x)|=h(x),∴h(x)是偶函数,D错.考点二已知函数的奇偶性,求函数解析式中参数的值【方法总结】已知函数的奇偶性求函数解析式中参数的值:常常利用待定系数法,由f(x)±f(-x)=0得到关于待求参数的恒等式,由系数的对等性得参数的值或对方程求解.对于选填题可用特值法进行秒杀.【例题选讲】[例2](1)若函数f(x)=x ln(x+a+x2)为偶函数,则a=________.答案1解析f(x)为偶函数,则y=ln(x+a+x2)为奇函数,所以ln(x+a+x2)+ln(-x+a+x2)=0,则ln(a+x2-x2)=0,∴a=1.(2)已知函数f(x)=2×4x-a2x的图象关于原点对称,g(x)=ln(ex+1)-bx是偶函数,则log a b=()A.1B.-1C.-12D.14答案B解析由题意得f(0)=0,∴a=2.∵g(1)=g(-1),∴ln(e+1)-b=ln(1e+1)+b,∴b=12,∴log212=-1.故选B.(3)若函数f(x)-1,0<x≤2,1,-2≤x≤0,g(x)=f(x)+ax,x∈[-2,2]为偶函数,则实数a=答案-12解析因为f (x )-1,0<x ≤2,1,-2≤x ≤0,所以g (x )=f (x )+ax -1,-2≤x ≤0,1+a )x -1,0<x ≤2,因为g (x )-1,-2≤x ≤0,+a )x -1,0<x ≤2为偶函数,所以g (-1)=g (1),即-a -1=1+a -1=a ,所以2a =-1,所以a =-12.(4)已知函数f (x )=a -2e x +1(a ∈R )是奇函数,则函数f (x )的值域为()A .(-1,1)B .(-2,2)C .(-3,3)D .(-4,4)答案A解析法一:由f (x )是奇函数知f (-x )=-f (x ),所以a -2e -x +1=-a +2e x +1,得2a =2e x+1+2e -x +1,所以a =1e x +1+e x e x +1=1,所以f (x )=1-2e x +1.因为e x +1>1,所以0<1e x +1<1,-1<1-2e x +1<1,所以函数f (x )的值域为(-1,1).法二:函数f (x )的定义域为R ,且函数f (x )是奇函数,所以f (0)=a -1=0,即a =1,所以f (x )=1-2e x +1.因为e x +1>1,所以0<1e x +1<1,-1<1-2e x +1<1,所以函数f (x )的值域为(-1,1).(5)已知f (x )是奇函数,且当x <0时,f (x )=-e ax ,若f (ln 2)=8,则a =________.答案-3解析当x >0,-x <0,f (-x )=-e-ax.因为f (x )是奇函数,所以当x >0时,f (x )=-f (-x )=e-ax,所以f (ln 2)=e-a ln2=(e ln 2)-a =2-a =8.解得a =-3.【对点训练】7.若f (x )=ln(e 3x +1)+ax 是偶函数,则a =________.7.答案-32解析函数f (x )=ln(e 3x +1)+ax 是偶函数,故f (-x )=f (x ),即ln(e-3x+1)-ax =ln(e 3x +1)+ax ,化简得ln(1+e 3x )-ln e 3x -ax =ln(e 3x +1)+ax ,即-3x -ax =ax ,所以2ax +3x =0恒成立,所以a =-328.若函数f (x )=x 3(12x -1+a )为偶函数,则a 的值为________.8.答案12解析解法1:因为函数f (x )=x 3(12x -1+a )为偶函数,所以f (-x )=f (x ),即(-x )3(12-x -1+a )=x 3(12x -1+a ),所以2a =-(12-x -1+12x -1),所以2a =1,解得a =12.解法2:因为函数f (x )=x 3(12x -1+a )为偶函数,所以f (-1)=f (1),所以(-1)3×(12-1-1+a )=13×(121-1+a ),解得a =12,经检验,当a =12时,函数f (x )为偶函数.9.函数f (x )=(x +1)(x +a )x 3为奇函数,则a =________.9.答案-1解析由题意得f (-1)+f (1)=0,即2(a +1)=0,解得a =-1,经检验,a =-1时,函数f (x )为奇函数.10.已知奇函数f (x )x +a ,x >0,-2-x,x <0,则实数a =________.10.答案-4解析因为函数f (x )为奇函数,则f (-x )=-f (x ),f (-1)=-f (1),所以4-21=-(21+a ),解得a =-4.11.已知f (x )=3ax 2+bx -5a +b 是偶函数,且其定义域为[6a -1,a ],则a +b =()A .17B .-1C .1D .711.答案A解析因为偶函数的定义域关于原点对称,所以6a -1+a =0,所以a =17.又因为f (x )为偶函数,所以b =0,即a +b =17.故选A .12.若函数f (x )=ax +b ,x ∈[a -4,a ]的图象关于原点对称,则函数g (x )=bx +ax ,x ∈[-4,-1]的值域为________.12.答案-2,-12解析由函数f (x )的图象关于原点对称,可得a -4+a =0,即a =2,则函数f (x )=2x +b ,其定义域为[-2,2],所以f (0)=0,所以b =0,所以g (x )=2x ,易知g (x )在[-4,-1]上单调递减,故值域为[g (-1),g (-4)],即-2,-12.考点三已知函数的奇偶性,求函数的值【方法总结】已知函数的奇偶性求函数值:将待求值利用奇偶性转化为已知区间上的函数值求解.【例题选讲】[例3](1)已知函数f (x )是定义在R 上的奇函数,当x ∈(-∞,0)时,f (x )=2x 3+x 2,则f (2)=____.答案12解析∵x ∈(-∞,0)时,f (x )=2x 3+x 2,且f (x )在R 上为奇函数,∴f (2)=-f (-2)=-[2×(-2)3+(-2)2]=12.(2)设f (x )是定义在R 上的奇函数,当x ≤0时,f (x )=2x +2x +b (b 为常数),则f (1)=________.答案52解析由题意知f (0)=20+2×0+b =0,解得b =-1.所以当x ≤0时,f (x )=2x +2x -1,所以f (1)=-f (-1)=-[2-1+2×(-1)-1]=52(3)设函数f (x )是定义在R 上的奇函数,且f (x )3(x +1),x ≥0,(x ),x <0,,则g (-8)=()A .-2B .-3C .2D .3答案A解析法一当x <0时,-x >0,且f (x )为奇函数,则f (-x )=log 3(1-x ),所以f (x )=-log 3(1-x ).因此g (x )=-log 3(1-x ),x <0,故g (-8)=-log 39=-2.法二由题意知,g (-8)=f (-8)=-f (8)=-log 39=-2.【对点训练】13.若函数f (x )是定义在R 上的奇函数,当x ≥0时,f (x )=log 2(x +2)-1,则f (-6)=()A .2B .4C .-2D .-413.答案C解析根据题意得f (-6)=-f (6)=1-log 2(6+2)=1-3=-2.14.已知函数f (x )是偶函数,当x >0时,f (x )=ln x ,则21(())f f e 的值为________.14.答案ln 2解析由已知可得21(f e =ln 1e 2=-2,所以21((f f e=f (-2).又因为f (x )是偶函数,所以21(())f f e =f (-2)=f (2)=ln 2.15.已知f (x )是定义在R 上的奇函数,当x ≥0时,f (x )=3x +m (m 为常数),则f (-log 35)=()A .-6B .6C .4D .-415.答案D解析因为f (x )是定义在R 上的奇函数,且当x ≥0时,f (x )=3x +m ,所以f (0)=1+m =0⇒m =-1,则f (-log 35)=-f (log 35)=-(3log 35-1)=-4.16.设函数f (x )是定义在R 上的奇函数,且f (x )3x +1,x ≥0,x ,x <0,则g (f (-8))=()A .-1B .-2C .1D .216.答案A解析因为f (x )为奇函数,所以f (-8)=-f (8)=-log 39=-2,所以g (f (-8))=g (-2)=f (-2)=-f (2)=-log 33=-1.考点四已知函数的奇偶性,求函数的解析式【方法总结】已知函数的奇偶性求解析式:将待求区间上的自变量转化到已知区间上,再利用奇偶性求出,或充分利用奇偶性构造关于f (x )的方程(组),从而得到f (x )的解析式.对于奇函数可在x 以及解析式前同时加负号,对于偶函数可在x 前加负号进行秒杀.【例题选讲】[例4](1)设f (x )为奇函数,且当x ≥0时,f (x )=e x -1,则当x <0时,f (x )=()A .e -x -1B .e -x +1C .-e -x -1D .-e -x +1答案D 解析通解:依题意得,当x <0时,f (x )=-f (-x )=-(e -x -1)=-e -x +1,选D .优解:依题意得,f (-1)=-f (1)=-(e 1-1)=1-e ,结合选项知,选D .(2)已知f (x )为偶函数,当x ≤0时,f (x )=e -x -1-x ,则f (x )=________.答案-x -1-x ,x ≤0x -1+x ,x >0解析当x >0时,-x <0,则f (-x )=e x -1+x ,又f (-x )=f (x ),因此f (x )=e x -1+x .所以f (x )-x -1-x ,x ≤0x -1+x ,x >0.(3)若定义在R 上的偶函数f (x )和奇函数g (x )满足f (x )+g (x )=e x ,则g (x )=()A .e x -e -xB .12(e x +e -x )C .12(e -x -e x )D .12(e x -e -x )答案D解析因为f (x )+g (x )=e x ,所以f (-x )+g (-x )=f (x )-g (x )=e -x ,所以g (x )=12(e x -e -x ).【对点训练】17.已知f (x )是奇函数,且x ∈(0,+∞)时的解析式是f (x )=-x 2+2x ,若x ∈(-∞,0),则f (x )=________.17.答案x 2+2x解析由题意知f (x )是定义在R 上的奇函数,当x ∈(-∞,0)时,-x ∈(0,+∞),所以f (-x )=-(-x )2+2×(-x )=-x 2-2x =-f (x ),所以f (x )=x 2+2x .18.函数y =f (x )是R 上的奇函数,当x <0时,f (x )=2x ,则当x >0时,f (x )=()A .-2xB .2-xC .-2-xD .2x18.答案C解析当x >0时,-x <0,∵x <0时,f (x )=2x ,∴当x >0时,f (-x )=2-x .∵f (x )是R 上的奇函数,∴当x >0时,f (x )=-f (-x )=-2-x .19.已知f (x )是定义在R 上的奇函数,当x >0时,f (x )=x 2-4x ,则f (x )=________.19.答案2-4x ,x >0x 2-4x ,x ≤0解析∵f (x )是定义在R 上的奇函数,∴f (0)=0.又当x <0时,-x >0,∴f (-x )=x 2+4x .又f (x )为奇函数,∴f (-x )=-f (x ),即f (x )=-x 2-4x (x <0),∴f (x )2-4x ,x >0,x 2-4x ,x ≤0.20.已知函数f (x )为奇函数,当x >0时,f (x )=x 2-x ,则当x <0时,函数f (x )的最大值为________.20.答案14解析法一:当x <0时,-x >0,所以f (-x )=x 2+x .又因为函数f (x )为奇函数,所以f (x )=-f (-x )=-x 2-x =+14,所以当x <0时,函数f (x )的最大值为14.法二:当x >0时,f (x )=x 2-x -14,最小值为-14,因为函数f (x )为奇函数,所以当x <0时,函数f (x )的最大值为14.考点五与奇函数相关的函数的求值【方法总结】对于可表示成奇函数加常数的函数,如果已知一个数的函数值,求它的相反数的函数值或求两个相反数的函数值的问题,可用奇函数的结论5的推论1:若函数f (x )是奇函数,且g (x )=f (x )+c ,则必有g (-x )+g (x )=2c ,如果是涉及到函数的最大值与最小值的问题则可用推论2:若函数f (x )是奇函数,且g (x )=f (x )+c ,则必有g (x )max +g (x )min =2c 进行秒杀.【例题选讲】[例5](1)已知函数f (x )=ln(1+9x 2-3x )+1,则f (lg 2)+1(lg )2f 等于()A .-1B .0C .1D .2答案D解析设g (x )=ln(1+9x 2-3x )=f (x )-1,g (-x )=ln(1+9x 2+3x )=ln11+9x 2-3x=-g (x ).∴g (x )是奇函数,∴f (lg 2)-1+1(lg 2f -1=g (lg 2)+1(lg )2g =0,因此f (lg 2)+1(lg 2f =2.(2)已知函数f (x )=ln(1+x 2-x )+1,f (a )=4,则f (-a )=________.若g (10)=2019,则g (-10)的值为()A .-2219B .-2019C .-1919D .-1819答案D解析由题意,因为f (x +y )=f (x )+f (y ),∴f (0+0)=f (0)+f (0)=f (0),即f (0)=0,令y =-x ,则有f (x -x )=f (x )+f (-x )=f (0)=0,即f (-x )=-f (x ),即f (x )是奇函数,若g (x )=f (x )+sin x +x 2,g (10)=2019,则g (10)=f (10)+sin 10+100=2019,则g (-10)=f (-10)-sin 10+100=-f (10)-sin 10+100,两式相加得200=2019+g (-10),得g (-10)=200-2019=-1819,故选D(4)已知函数f (x )=a sin x +b ln 1-x1+x+t ,若1()2f +1()2f =6,则实数t =()A .-2B .-1C .1D .3答案D 解析令g (x )=a sin x +b ln1-x1+x ,则易知g (x )为奇函数,所以1(2g +1()2g -=0,则由f (x )=g (x )+t ,得1()2f +1()2f -=1()2g +1(2g -+2t =2t =6,解得t =3.故选D .(5)已知函数f (x )=2|x |+1+x 3+22|x |+1的最大值为M ,最小值为m ,则M +m 等于()A .0B .2C .4D .8答案C解析易知f (x )的定义域为R ,f (x )=2·(2|x |+1)+x 32|x |+1=2+x 32|x |+1,设g (x )=x 32|x |+1,则g (-x )=-g (x )(x ∈R ),∴g (x )为奇函数,∴g (x )max +g (x )min =0.∵M =f (x )max =2+g (x )max ,m =f (x )min =2+g (x )min ,∴M +m =2+g (x )max +2+g (x )min =4,故选C .【对点训练】21.已知函数f (x )=x +1x-1,f (a )=2,则f (-a )=________.21.答案-4解析法一:因为f (x )+1=x +1x ,设g (x )=f (x )+1=x +1x ,易判断g (x )=x +1x故g (x )+g (-x )=x +1x -x -1x=0,即f (x )+1+f (-x )+1=0,故f (x )+f (-x )=-2.所以f (a )+f (-a )=-2,故f (-a )=-4.法二:由已知得f (a )=a +1a -1=2,即a +1a =3,所以f (-a )=-a -1a -11=-3-1=-4.22.已知函数f (x )=x 3+sin x +1(x ∈R ),若f (a )=2,则f (-a )的值为()A .3B .0C .-1D .-222.答案B解析设F (x )=f (x )-1=x 3+sin x ,显然F (x )为奇函数,又F (a )=f (a )-1=1,所以F (-a )=f (-a )-1=-1,从而f (-a )=0.故选B .23.对于函数f (x )=a sin x +bx 3+cx +1(a ,b ,c ∈R ),选取a ,b ,c 的一组值计算f (1),f (-1),所得出的正确结果可能是()A .2和1B .2和0C .2和-1D .2和-223.答案B解析设g (x )=a sin x +bx 3+cx ,显然g (x )为定义域上的奇函数,所以g (1)+g (-1)=0,所以f (1)+f (-1)=g (1)+g (-1)+2=2,只有B 选项中两个值的和为2.24.已知函数f (x )=ax 3+b sin x +4(a ,b ∈R ),f (lg(log 210))=5,则f (lg(lg2))=()A .-5B .-1C .3D .424.答案C解析设g (x )=ax 3+b sin x ,则f (x )=g (x )+4,且函数g (x )为奇函数.又lg(lg2)+lg(log 210)=lg(lg2·log 210)=lg1=0,所以f (lg(lg2))+f (lg(log 210))=2×4=8,所以f (lg(lg2))=3.故选C .25.已知f (x ),g (x )分别是定义在R 上的偶函数和奇函数,且f (x )-g (x )=x 3+x 2+1,则f (1)+g (1)=()A .-3B .-1C .1D .325.答案C解析用“-x ”代替“x ”,得f (-x )-g (-x )=(-x )3+(-x )2+1,化简得f (x )+g (x )=-x 3+x 2+1,令x =1,得f (1)+g (1)=1.故选C .26.设函数f (x )=(x +1)2+sin xx 2+1的最大值为M ,最小值为m ,则M +m =________.26.答案2解析显然函数f (x )的定义域为R ,f (x )=(x +1)2+sin x x 2+1=1+2x +sin x x 2+1,设g (x )=2x +sin xx 2+1,则g (-x )=-g (x ),∴g (x )为奇函数,由奇函数图象的对称性知g (x )max +g (x )min =0,∴M +m =[g (x )+1]max+[g(x)+1]min=2+g(x)max+g(x)min=2.27.设函数f(x)=(e x+e-x)sin x+t,x∈[-a,a]的最大值和最小值分别为M,N.若M+N=8,则t=() A.0B.2C.4D.827.答案4解析设g(x)=(e x+e-x)sin x,x∈[-a,a],因为g(x)是奇函数,所以g(x)max+g(x)min=0,所以M+N=g(x)max+g(x)min+2t=2t=8,所以t=4.28.若定义在[-2020,2020]上的函数f(x)满足:对任意x1∈[-2020,2020],x2∈[-2020,2020]都有f(x1+x2)=f(x1)+f(x2)-2019,且x>0时有f(x)>2019,f(x)的最大值、最小值分别为M,N,则M+N =()A.2019B.2020C.4040D.403828.答案D解析令x1=x2=0得f(0)=2f(0)-2019,所以f(0)=2019,令x1=-x2得f(0)=f(-x2)+f(x2)-2019=2019,所以f(-x2)+f(x2)=4038,令g(x)=f(x)-2019,则g(x)max=M-2019,g(x)min=N -2019,因为g(-x)+g(x)=f(-x)+f(x)-4038=0,所以g(x)是奇函数,所以g(x)max+g(x)min=0,即M-2019+N-2019=0,所以M+N=4038.29.已知函数f(x)=(x2-2x)·sin(x-1)+x+1在[-1,3]上的最大值为M,最小值为m,则M+m=() A.4B.2C.1D.029.答案A解析f(x)=[(x-1)2-1]sin(x-1)+x-1+2,令t=x-1,g(t)=(t2-1)sin t+t,则y=f(x)=g(t)+2,t∈[-2,2].显然M=g(t)max+2,m=g(t)min+2.又g(t)为奇函数,则g(t)max+g(t)min=0,所以M+m=4,故选A.30.若关于x的函数f(x)+cos xt≠0)的最大值为a,最小值为b,且a+b=2,则t=____.30.答案1解析f(x)+cos x t+t sin x+x2x2+cos x,设g(x)=t sin x+x2x2+cos x,则g(x)为奇函数,g(x)max=a-t,g(x)min=b-t.∵g(x)max+g(x)min=0,∴a+b-2t=0,即2-2t=0,解得t=1.。

高一数学函数奇偶性练习题及答案解析

高一数学函数奇偶性练习题及答案解析

高一数学函数奇偶性练习题及答案解析数学函数奇偶性练习题及答案解析1.下列命题中,真命题是A.函数y=1x是奇函数,且在定义域内为减函数B.函数y=x3x-10是奇函数,且在定义域内为增函数C.函数y=x2是偶函数,且在-3,0上为减函数D.函数y=ax2+cac≠0是偶函数,且在0,2上为增函数解析:选C.选项A中,y=1x在定义域内不具有单调性;B中,函数的定义域不关于原点对称;D中,当a<0时,y=ax2+cac≠0在0,2上为减函数,故选C.2.奇函数fx在区间[3,7]上是增函数,在区间[3,6]上的最大值为8,最小值为-1,则2f-6+f-3的值为A.10B.-10C.-15D.15解析:选C.fx在[3,6]上为增函数,fxmax=f6=8,fxmin=f3=-1.∴2f-6+f-3=-2f6-f3=-2×8+1=-15.3.fx=x3+1x的图象关于A.原点对称B.y轴对称C.y=x对称D.y=-x对称解析:选A.x≠0,f-x=-x3+1-x=-fx,fx为奇函数,关于原点对称.4.如果定义在区间[3-a,5]上的函数fx为奇函数,那么a=________.解析:∵fx是[3-a,5]上的奇函数,∴区间[3-a,5]关于原点对称,∴3-a=-5,a=8.答案:81.函数fx=x的奇偶性为A.奇函数B.偶函数C.既是奇函数又是偶函数D.非奇非偶函数解析:选D.定义域为{x|x≥0},不关于原点对称.2.下列函数为偶函数的是A.fx=|x|+xB.fx=x2+1xC.fx=x2+xD.fx=|x|x2解析:选D.只有D符合偶函数定义.3.设fx是R上的任意函数,则下列叙述正确的是A.fxf-x是奇函数B.fx|f-x|是奇函数C.fx-f-x是偶函数D.fx+f-x是偶函数解析:选D.设Fx=fxf-x则F-x=Fx为偶函数.设Gx=fx|f-x|,则G-x=f-x|fx|.∴Gx与G-x关系不定.设Mx=fx-f-x,∴M-x=f-x-fx=-Mx为奇函数.设Nx=fx+f-x,则N-x=f-x+fx.Nx为偶函数.4.已知函数fx=ax2+bx+ca≠0是偶函数,那么gx=ax3+bx2+cxA.是奇函数B.是偶函数C.既是奇函数又是偶函数D.是非奇非偶函数解析:选A.gx=xax2+bx+c=xfx,g-x=-x•f-x=-x•fx=-gx,所以gx=ax3+bx2+cx是奇函数;因为gx-g-x=2ax3+2cx不恒等于0,所以g-x=gx不恒成立.故gx不是偶函数.5.奇函数y=fxx∈R的图象必过点A.a,f-aB.-a,faC.-a,-faD.a,f1a解析:选C.∵fx是奇函数,∴f-a=-fa,即自变量取-a时,函数值为-fa,故图象必过点-a,-fa.6.fx为偶函数,且当x≥0时,fx≥2,则当x≤0时A.fx≤2B.fx≥2C.fx≤-2D.fx∈R解析:选B.可画fx的大致图象易知当x≤0时,有fx≥2.故选B.7.若函数fx=x+1x-a为偶函数,则a=________.解析:fx=x2+1-ax-a为偶函数,∴1-a=0,a=1.答案:18.下列四个结论:①偶函数的图象一定与纵轴相交;②奇函数的图象一定通过原点;③fx=0x∈R既是奇函数,又是偶函数;④偶函数的图象关于y轴对称.其中正确的命题是________.解析:偶函数的图象关于y轴对称,不一定与y轴相交,①错,④对;奇函数当x=0无意义时,其图象不过原点,②错,③对.答案:③④9.①fx=x2x2+2;②fx=x|x|;③fx=3x+x;④fx=1-x2x.以上函数中的奇函数是________.解析:1∵x∈R,∴-x∈R,又∵f-x=-x2[-x2+2]=x2x2+2=fx,∴fx为偶函数.2∵x∈R,∴-x∈R,又∵f-x=-x|-x|=-x|x|=-fx,∴fx为奇函数.3∵定义域为[0,+∞,不关于原点对称,∴fx为非奇非偶函数.4fx的定义域为[-1,0∪0,1]即有-1≤x≤1且x≠0,则-1≤-x≤1且-x≠0,又∵f-x=1--x2-x=-1-x2x=-fx.∴fx为奇函数.答案:②④10.判断下列函数的奇偶性:1fx=x-1 1+x1-x;2fx=x2+x x<0-x2+x x>0.解:1由1+x1-x≥0,得定义域为[-1,1,关于原点不对称,∴fx为非奇非偶函数. 2当x<0时,-x>0,则f-x=--x2-x=--x2+x=-fx,当x>0时,-x<0,则f-x=-x2-x=--x2+x=-fx,综上所述,对任意的x∈-∞,0∪0,+∞,都有f-x=-fx,∴fx为奇函数.11.判断函数fx=1-x2|x+2|-2的奇偶性.解:由1-x2≥0得-1≤x≤1.由|x+2|-2≠0得x≠0且x≠-4.∴定义域为[-1,0∪0,1],关于原点对称.∵x∈[-1,0∪0,1]时,x+2>0,∴fx=1-x2|x+2|-2=1-x2x,∴f-x=1--x2-x=-1-x2x=-fx,∴fx=1-x2|x+2|-2是奇函数.12.若函数fx的定义域是R,且对任意x,y∈R,都有fx+y=fx+fy成立.试判断fx的奇偶性.解:在fx+y=fx+fy中,令x=y=0,得f0+0=f0+f0,∴f0=0.再令y=-x,则fx-x=fx+f-x,即fx+f-x=0,∴f-x=-fx,故fx为奇函数.感谢您的阅读,祝您生活愉快。

高一函数的奇偶性和周期性知识点+例题+练习 含答案

高一函数的奇偶性和周期性知识点+例题+练习 含答案

1.函数的奇偶性奇偶性定义图象特点偶函数一般地,设函数y=f(x)的定义域为A如果对于任意的x∈A,都有f(-x)=f(x),那么称函数y=f(x)是偶函数.关于y轴对称奇函数如果对于任意的x∈A,都有f(-x)=-f(x),那么称函数y=f(x)是奇函数.关于原点对称2.周期性(1)周期函数:对于函数y=f(x),如果存在一个非零常数T,使得当x取定义域内的任何值时,都有f(x+T)=f(x),那么就称函数y=f(x)为周期函数,称T为这个函数的周期.(2)最小正周期:如果在周期函数f(x)的所有周期中存在一个最小的正数,那么这个最小正数就叫做f(x)的最小正周期.【思考辨析】判断下面结论是否正确(请在括号中打“√”或“×”)(1)偶函数图象不一定过原点,奇函数的图象一定过原点.(×)(2)若函数y=f(x+a)是偶函数,则函数y=f(x)关于直线x=a对称.(√)(3)函数f(x)在定义域上满足f(x+a)=-f(x),则f(x)是周期为2a(a>0)的周期函数.(√)(4)若函数y=f(x+b)是奇函数,则函数y=f(x)关于点(b,0)中心对称.(√)(5)如果函数f(x),g(x)为定义域相同的偶函数,则F(x)=f(x)+g(x)是偶函数.(√)(6)若T是函数的一个周期,则nT(n∈Z,n≠0)也是函数的周期.(√)1.(2015·福建改编)下列函数中,①y=x;②y=|sin x|;③y=cos x;④y=e x-e-x为奇函数的是________.(填函数序号)答案 ④解析 对于④,f (x )=e x -e -x 的定义域为R ,f (-x )=e -x -e x =-f (x ),故y =e x -e -x 为奇函数.而y =x 的定义域为{x |x ≥0},不具有对称性,故y =x 为非奇非偶函数.y =|sin x |和y =cos x 为偶函数.2.已知f (x )是定义在R 上的奇函数,f (x +1)是偶函数,则f (1)+f (2)+f (3)+f (4)=________. 答案 0解析 由f (x +1)是偶函数得f (-x +1)=f (x +1),又f (x )是定义在R 上的奇函数,所以f (-x +1)=-f (x -1),即-f (x -1)=f (x +1),所以f (x +2)=-f (x ),即f (x )+f (x +2)=0,所以f (1)+f (3)=0,f (2)+f (4)=0,因此f (1)+f (2)+f (3)+f (4)=0. 3.(2015·天津)已知定义在R 上的函数f (x )=2|x-m |-1(m 为实数)为偶函数,记a =f (log 0.53),b=f (log 25),c =f (2m ),则a ,b ,c 的大小关系为______________. 答案 c <a <b解析 由函数f (x )=2|x -m |-1为偶函数,得m =0, 所以f (x )=2|x |-1,当x >0时,f (x )为增函数, log 0.53=-log 23,所以log 25>|-log 23|>0, 所以b =f (log 25)>a =f (log 0.53)>c =f (2m )=f (0).4.(2014·天津)设f (x )是定义在R 上的周期为2的函数,当x ∈[-1,1)时,f (x )=⎩⎪⎨⎪⎧-4x 2+2, -1≤x <0,x , 0≤x <1,则f (32)=________.答案 1解析 函数的周期是2, 所以f (32)=f (32-2)=f (-12),根据题意得f (-12)=-4×(-12)2+2=1.5.(教材改编)已知函数f (x )是定义在R 上的奇函数,当x ≥0时,f (x )=x (1+x ),则x <0时,f (x )=________. 答案 x (1-x )解析 当x <0时,则-x >0,∴f (-x )=(-x )(1-x ).又f (x )为奇函数,∴f (-x )=-f (x )=(-x )(1-x ), ∴f (x )=x (1-x ).题型一 判断函数的奇偶性例1 判断下列函数的奇偶性: (1)f (x )=x 3-x ; (2)f (x )=(x +1)1-x1+x; (3)f (x )=⎩⎪⎨⎪⎧x 2+x , x <0,-x 2+x , x >0.解 (1)定义域为R ,关于原点对称, 又f (-x )=(-x )3-(-x )=-x 3+x =-(x 3-x ) =-f (x ), ∴函数为奇函数.(2)由1-x1+x ≥0可得函数的定义域为(-1,1].∵函数定义域不关于原点对称, ∴函数为非奇非偶函数.(3)当x >0时,-x <0,f (x )=-x 2+x , ∴f (-x )=(-x )2-x =x 2-x =-(-x 2+x )=-f (x ); 当x <0时,-x >0,f (x )=x 2+x , ∴f (-x )=-(-x )2-x =-x 2-x =-(x 2+x )=-f (x ).∴对于x ∈(-∞,0)∪(0,+∞), 均有f (-x )=-f (x ).∴函数为奇函数.思维升华 (1)利用定义判断函数奇偶性的步骤:(2)分段函数奇偶性的判断,要注意定义域内x 取值的任意性,应分段讨论,讨论时可依据x 的范围取相应的解析式化简,判断f (x )与f (-x )的关系,得出结论,也可以利用图象作判断.(1)下列四个函数:①f (x )=-x |x |;②f (x )=x 3;③f (x )=sin x ;④f (x )=ln xx,同时满足以下两个条件:①定义域内是减函数;②定义域内是奇函数的是________.(2)函数f (x )=log a (2+x ),g (x )=log a (2-x )(a >0且a ≠1),则函数F (x )=f (x )+g (x ),G (x )=f (x )-g (x )分别是______________(填奇偶性). 答案 (1)① (2)偶函数,奇函数解析 (1)①中,f (x )=⎩⎪⎨⎪⎧-x 2,x >0,x 2,x ≤0,由函数性质可知符合题中条件,故①正确;②中,对于比较熟悉的函数f (x )=x 3可知不符合题意,故②不正确;③中,f (x )=sin x 在定义域内不具有单调性,故②不正确;④中,定义域关于原点不对称,故④不正确. (2)F (x ),G (x )定义域均为(-2,2),由已知F (-x )=f (-x )+g (-x )=log a (2-x )+log a (2+x )=F (x ), G (-x )=f (-x )-g (-x )=log a (2-x )-log a (2+x ) =-G (x ),∴F (x )是偶函数,G (x )是奇函数.题型二 函数的周期性例2 (1)设f (x )是定义在R 上的周期为3的函数,当x ∈[-2,1)时,f (x )=⎩⎪⎨⎪⎧4x 2-2,-2≤x ≤0,x ,0<x <1,则f ⎝⎛⎭⎫52=________. (2)已知f (x )是定义在R 上的偶函数,并且f (x +2)=-1f (x ),当2≤x ≤3时,f (x )=x ,则f (105.5)=______.答案 (1)-1 (2)2.5解析 (1)因为f (x )是周期为3的周期函数, 所以f ⎝⎛⎭⎫52=f ⎝⎛⎭⎫-12+3=f ⎝⎛⎭⎫-12 =4×⎝⎛⎭⎫-122-2=-1. (2)由已知,可得f (x +4)=f [(x +2)+2] =-1f (x +2)=-1-1f (x )=f (x ).故函数的周期为4.∴f (105.5)=f (4×27-2.5)=f (-2.5)=f (2.5). ∵2≤2.5≤3,由题意,得f (2.5)=2.5. ∴f (105.5)=2.5.思维升华 (1)函数的周期性反映了函数在整个定义域上的性质.对函数周期性的考查,主要涉及函数周期性的判断,利用函数周期性求值. (2)函数周期性的三个常用结论: ①若f (x +a )=-f (x ),则T =2a , ②若f (x +a )=1f (x ),则T =2a ,③若f (x +a )=-1f (x ),则T =2a (a >0).设函数f (x )(x ∈R )满足f (x +π)=f (x )+sin x .当0≤x <π时,f (x )=0,则f ⎝⎛⎭⎫23π6=____________. 答案 12解析 ∵f (x +2π)=f (x +π)+sin(x +π)=f (x )+sin x -sin x =f (x ),∴f (x )的周期T =2π, 又∵当0≤x <π时,f (x )=0,∴f ⎝⎛⎭⎫5π6=0, 即f ⎝⎛⎭⎫-π6+π=f ⎝⎛⎭⎫-π6+sin ⎝⎛⎭⎫-π6=0, ∴f ⎝⎛⎭⎫-π6=12,∴f ⎝⎛⎭⎫23π6=f ⎝⎛⎭⎫4π-π6=f ⎝⎛⎭⎫-π6=12.题型三 函数性质的综合应用命题点1 函数奇偶性的应用例3 (1)已知f (x ),g (x )分别是定义在R 上的偶函数和奇函数,且f (x )-g (x )=x 3+x 2+1,则f (1)+g (1)=________.(2)(2015·课标全国Ⅰ)若函数f (x )=x ln(x +a +x 2)为偶函数,则a =________. 答案 (1)1 (2)1解析 (1)因为f (x )是偶函数,g (x )是奇函数,所以f (1)+g (1)=f (-1)-g (-1)=(-1)3+(-1)2+1=1.(2)f (x )为偶函数,则ln(x +a +x 2)为奇函数,所以ln(x +a +x 2)+ln(-x +a +x 2)=0,即ln(a +x 2-x 2)=0,∴a =1.命题点2 单调性与奇偶性、周期性结合例4 (1)已知f (x )是定义在R 上的以3为周期的偶函数,若f (1)<1,f (5)=2a -3a +1,则实数a的取值范围为________.(2)已知定义在R 上的奇函数f (x )满足f (x -4)=-f (x ),且在区间[0,2]上是增函数,则f (-25),f (11),f (80)的大小关系是__________________. 答案 (1)(-1,4) (2)f (-25)<f (80)<f (11)解析 (1)∵f (x )是定义在R 上的周期为3的偶函数, ∴f (5)=f (5-6)=f (-1)=f (1),∵f (1)<1,f (5)=2a -3a +1,∴2a -3a +1<1,即a -4a +1<0,解得-1<a <4.(2)∵f (x )满足f (x -4)=-f (x ),∴f (x -8)=f (x ),∴函数f (x )是以8为周期的周期函数,则f (-25)=f (-1), f (80)=f (0),f (11)=f (3). 由f (x )是定义在R 上的奇函数, 且满足f (x -4)=-f (x ), 得f (11)=f (3)=-f (-1)=f (1).∵f (x )在区间[0,2]上是增函数, f (x )在R 上是奇函数,∴f (x )在区间[-2,2]上是增函数, ∴f (-1)<f (0)<f (1), 即f (-25)<f (80)<f (11).思维升华 (1)关于奇偶性、单调性、周期性的综合性问题,关键是利用奇偶性和周期性将未知区间上的问题转化为已知区间上的问题.(2)掌握以下两个结论,会给解题带来方便:①f (x )为偶函数⇔f (x )=f (|x |).②若奇函数在x =0处有意义,则f (0)=0.(1)若f (x )=ln(e 3x +1)+ax 是偶函数,则a =________.(2)已知f (x )是定义在R 上的奇函数,当x >0时,f (x )=x 2-4x ,则不等式f (x )>x 的解集用区间表示为________.答案 (1)-32(2)(-5,0)∪(5,+∞)解析 (1)函数f (x )=ln(e 3x +1)+ax 是偶函数,故f (-x )=f (x ),即ln(e -3x +1)-ax =ln(e 3x +1)+ax ,化简得ln1+e 3xe 3x +e 6x=2ax =ln e 2ax ,即1+e 3xe 3x +e6x =e 2ax ,整理得e 3x +1=e 2ax +3x (e 3x +1),所以2ax +3x =0,解得a =-32.(2)∵f (x )是定义在R 上的奇函数,∴f (0)=0. 又当x <0时,-x >0, ∴f (-x )=x 2+4x .又f (x )为奇函数,∴f (-x )=-f (x ), ∴f (x )=-x 2-4x (x <0), ∴f (x )=⎩⎪⎨⎪⎧x 2-4x ,x >0,0,x =0,-x 2-4x ,x <0.①当x >0时,由f (x )>x 得x 2-4x >x ,解得x >5;②当x =0时,f (x )>x 无解;③当x <0时,由f (x )>x 得-x 2-4x >x , 解得-5<x <0.综上得不等式f (x )>x 的解集用区间表示为(-5,0)∪(5,+∞).2.忽视定义域致误典例 (1)若函数f (x )=k -2x1+k ·2x在定义域上为奇函数,则实数k =________.(2)已知函数f (x )=⎩⎪⎨⎪⎧x 2+1,x ≥0,1,x <0,则满足不等式f (1-x 2)>f (2x )的x 的取值范围是________.易错分析 (1)解题中忽视函数f (x )的定义域,直接通过计算f (0)=0得k =1. (2)本题易出现以下错误:由f (1-x 2)>f (2x )得1-x 2>2x ,忽视了1-x 2>0导致解答失误. 解析 (1)∵f (-x )=k -2-x1+k ·2-x =k ·2x -12x +k,∴f (-x )+f (x )=(k -2x )(2x +k )+(k ·2x -1)·(1+k ·2x )(1+k ·2x )(2x +k )=(k 2-1)(22x +1)(1+k ·2x )(2x +k ).由f (-x )+f (x )=0可得k 2=1, ∴k =±1.(2)画出f (x )=⎩⎪⎨⎪⎧x 2+1,x ≥0,1,x <0的图象,由图象可知,若f (1-x 2)>f (2x ),则⎩⎪⎨⎪⎧1-x 2>0,1-x 2>2x ,即⎩⎪⎨⎪⎧-1<x <1,-1-2<x <-1+2,得x ∈(-1,2-1). 答案 (1)±1 (2)(-1,2-1)温馨提醒 (1)已知函数的奇偶性,利用特殊值确定参数,要注意函数的定义域.(2)解决分段函数的单调性问题时,应高度关注:①对变量所在区间的讨论.②保证各段上同增(减)时,要注意左、右段端点值间的大小关系.③弄清最终结果取并集还是交集.[方法与技巧]1.判断函数的奇偶性,首先应该判断函数定义域是否关于原点对称.定义域关于原点对称是函数具有奇偶性的一个必要条件. 2.利用函数奇偶性可以解决以下问题①求函数值;②求解析式;③求函数解析式中参数的值;④画函数图象,确定函数单调性. 3.在解决具体问题时,要注意结论“若T 是函数的周期,则kT (k ∈Z 且k ≠0)也是函数的周期”的应用. [失误与防范]1.f (0)=0既不是f (x )是奇函数的充分条件,也不是必要条件.应用时要注意函数的定义域并进行检验.2.判断分段函数的奇偶性时,要以整体的观点进行判断,不可以利用函数在定义域某一区间上不是奇、偶函数而否定函数在整个定义域的奇偶性.A 组 专项基础训练 (时间:40分钟)1.下列函数中,①y =log 2|x |;②y =cos 2x ;③y =2x -2-x 2;④y =log 22-x 2+x ,既是偶函数又在区间(1,2)上单调递增的是________. 答案 ①解析 对于①,函数y =log 2|x |是偶函数且在区间(1,2)上是增函数;对于②,函数y =cos 2x在区间(1,2)上不是增函数;对于③,函数y =2x -2-x 2不是偶函数;对于④,函数y =log 22-x2+x 不是偶函数.2.已知f (x )是定义在R 上的奇函数,当x ≥0时,f (x )=3x +m (m 为常数),则f (-log 35)的值为________. 答案 -4解析 由f (x )是定义在R 上的奇函数,得f (0)=1+m =0,解得m =-1,∴f (x )=3x -1.∵log 35>log 31=0,∴f (-log 35)=-f (log 35)=3log 5(31)--=-4.3.已知f (x )在R 上是奇函数,且满足f (x +4)=f (x ),当x ∈(0,2)时,f (x )=2x 2,则f (2 019)=________. 答案 -2解析 ∵f (x +4)=f (x ),∴f (x )是以4为周期的周期函数, ∴f (2 019)=f (504×4+3)=f (3)=f (-1).又f (x )为奇函数,∴f (-1)=-f (1)=-2×12=-2, 即f (2 019)=-2.4.若函数f (x )=(ax +1)(x -a )为偶函数,且函数y =f (x )在x ∈(0,+∞)上单调递增,则实数a 的值为________. 答案 1解析 ∵函数f (x )=(ax +1)(x -a )=ax 2+(1-a 2)x -a 为偶函数, ∴f (-x )=f (x ),即f (-x )=ax 2-(1-a 2)x -a =ax 2+(1-a 2)x -a , ∴1-a 2=0,解得a =±1.当a =1时,f (x )=x 2-1,在x ∈(0,+∞)上单调递增,满足条件.当a =-1时,f (x )=-x 2+1,在x ∈(0,+∞)上单调递减,不满足条件.故a =1.5.已知f (x )是定义在R 上的奇函数,当x ≥0时,f (x )=x 2+2x ,若f (2-a 2)>f (a ),则实数a 的取值范围是____________. 答案 (-2,1)解析 ∵f (x )是奇函数,∴当x <0时,f (x )=-x 2+2x .作出函数f (x )的大致图象如图中实线所示,结合图象可知f (x )是R 上的增函数,由f (2-a 2)>f (a ),得2-a 2>a ,解得-2<a <1.6.函数f (x )在R 上为奇函数,且当x >0时,f (x )=x +1,则当x <0时,f (x )=________. 答案 --x -1解析 ∵f (x )为奇函数,当x >0时,f (x )=x +1,∴当x <0时,-x >0,f (-x )=-x +1=-f (x ),即x <0时,f (x )=-(-x +1)=--x -1. 7.已知定义在R 上的偶函数f (x )在[0,+∞)上单调递增,且f (1)=0,则不等式f (x -2)≥0的解集是____________________.答案 (-∞,1]∪[3,+∞)解析 由已知可得x -2≥1或x -2≤-1,解得x ≥3或x ≤1,∴所求解集是(-∞,1]∪[3,+∞).8.设定义在R 上的函数f (x )同时满足以下条件:①f (x )+f (-x )=0;②f (x )=f (x +2);③当0≤x ≤1时,f (x )=2x -1,则f ⎝⎛⎭⎫12+f (1)+f ⎝⎛⎭⎫32+f (2)+f ⎝⎛⎭⎫52=________. 答案 2解析 依题意知:函数f (x )为奇函数且周期为2,∴f ⎝⎛⎭⎫12+f (1)+f ⎝⎛⎭⎫32+f (2)+f ⎝⎛⎭⎫52=f ⎝⎛⎭⎫12+f (1)+f ⎝⎛⎭⎫-12+f (0)+f ⎝⎛⎭⎫12=f ⎝⎛⎭⎫12+f (1)-f ⎝⎛⎭⎫12+f (0)+f ⎝⎛⎭⎫12=f ⎝⎛⎭⎫12+f (1)+f (0)=212-1+21-1+20-1= 2. 9.已知函数f (x )=⎩⎪⎨⎪⎧ -x 2+2x ,x >0,0,x =0,x 2+mx ,x <0是奇函数.(1)求实数m 的值;(2)若函数f (x )在区间[-1,a -2]上单调递增,求实数a 的取值范围.解 (1)设x <0,则-x >0,所以f (-x )=-(-x )2+2(-x )=-x 2-2x .又f (x )为奇函数,所以f (-x )=-f (x ).于是x <0时,f (x )=x 2+2x =x 2+mx ,所以m =2.(2)要使f (x )在[-1,a -2]上单调递增,结合f (x )的图象知⎩⎪⎨⎪⎧a -2>-1,a -2≤1,所以1<a ≤3,故实数a 的取值范围是(1,3].10.设f (x )是定义在R 上的奇函数,且对任意实数x ,恒有f (x +2)=-f (x ),当x ∈[0,2]时,f (x )=2x -x 2.(1)求证:f (x )是周期函数;(2)当x ∈[2,4]时,求f (x )的解析式;(3)计算f (0)+f (1)+f (2)+…+f (2 016).(1)证明 ∵f (x +2)=-f (x ),∴f (x +4)=-f (x +2)=f (x ).∴f (x )是周期为4的周期函数.(2)解 ∵x ∈[2,4],∴-x ∈[-4,-2],∴4-x ∈[0,2],∴f (4-x )=2(4-x )-(4-x )2=-x 2+6x -8.又f (4-x )=f (-x )=-f (x ),∴-f (x )=-x 2+6x -8,即f (x )=x 2-6x +8,x ∈[2,4].(3)解 ∵f (0)=0,f (1)=1,f (2)=0,f (3)=-1.又f (x )是周期为4的周期函数,∴f (0)+f (1)+f (2)+f (3)=f (4)+f (5)+f (6)+f (7)=…=f (2 012)+f (2 013)+f (2 014)+f (2 015)=0.∴f (0)+f (1)+f (2)+…+f (2 016)=f (2 016)=f (0)=0.B 组 专项能力提升(时间:20分钟)11.已知f (x )是定义域为(-1,1)的奇函数,而且f (x )是减函数,如果f (m -2)+f (2m -3)>0,那么实数m 的取值范围是____________.答案 ⎝⎛⎭⎫1,53 解析 ∵f (x )是定义域为(-1,1)的奇函数,∴-1<x <1,f (-x )=-f (x ).∴f (m -2)+f (2m -3)>0可转化为f (m -2)>-f (2m -3),∴f (m -2)>f (-2m +3),∵f (x )是减函数,∴m -2<-2m +3,∵⎩⎪⎨⎪⎧ -1<m -2<1,-1<2m -3<1,m -2<-2m +3.∴1<m <53. 12.设f (x )是定义在R 上且周期为2的函数,在区间[-1,1]上,f (x )=⎩⎪⎨⎪⎧ax +1,-1≤x <0,bx +2x +1,0≤x ≤1,其中a ,b ∈R .若f ⎝⎛⎭⎫12=f ⎝⎛⎭⎫32,则a +3b 的值为________.答案 -10解析 因为f (x )是定义在R 上且周期为2的函数,所以f ⎝⎛⎭⎫32=f ⎝⎛⎭⎫-12,且f (-1)=f (1),故f ⎝⎛⎭⎫12=f ⎝⎛⎭⎫-12,从而12b +212+1=-12a +1,即3a+2b=-2.①由f(-1)=f(1),得-a+1=b+2 2,即b=-2a.②由①②得a=2,b=-4,从而a+3b=-10.13.已知f(x)是R上最小正周期为2的周期函数,且当0≤x<2时,f(x)=x3-x,则函数y=f(x)的图象在区间[0,6]上与x轴的交点个数为________.答案7解析因为当0≤x<2时,f(x)=x3-x,又f(x)是R上最小正周期为2的周期函数,且f(0)=0,所以f(6)=f(4)=f(2)=f(0)=0.又f(1)=0,所以f(3)=f(5)=0.故函数y=f(x)的图象在区间[0,6]上与x轴的交点个数为7.14.设函数f(x)是定义在R上的偶函数,且对任意的x∈R恒有f(x+1)=f(x-1),已知当x∈[0,1]时,f(x)=2x,则有①2是函数f(x)的周期;②函数f(x)在(1,2)上是减函数,在(2,3)上是增函数;③函数f(x)的最大值是1,最小值是0.其中所有正确命题的序号是________.答案①②解析在f(x+1)=f(x-1)中,令x-1=t,则有f(t+2)=f(t),因此2是函数f(x)的周期,故①正确;当x∈[0,1]时,f(x)=2x是增函数,根据函数的奇偶性知,f(x)在[-1,0]上是减函数,根据函数的周期性知,函数f(x)在(1,2)上是减函数,在(2,3)上是增函数,故②正确;由②知f(x)在[0,2]上的最大值f(x)max=f(1)=2,f(x)的最小值f(x)min=f(0)=f(2)=20=1,且f(x)是周期为2的周期函数.∴f(x)的最大值是2,最小值是1,故③错误.15.函数f(x)的定义域为D={x|x≠0},且满足对于任意x1,x2∈D,有f(x1·x2)=f(x1)+f(x2).(1)求f(1)的值;(2)判断f(x)的奇偶性并证明你的结论;(3)如果f(4)=1,f(x-1)<2,且f(x)在(0,+∞)上是增函数,求x的取值范围.解 (1)∵对于任意x 1,x 2∈D , 有f (x 1·x 2)=f (x 1)+f (x 2),∴令x 1=x 2=1,得f (1)=2f (1),∴f (1)=0.(2)f (x )为偶函数.证明:令x 1=x 2=-1,有f (1)=f (-1)+f (-1),∴f (-1)=12f (1)=0. 令x 1=-1,x 2=x 有f (-x )=f (-1)+f (x ), ∴f (-x )=f (x ),∴f (x )为偶函数.(3)依题设有f (4×4)=f (4)+f (4)=2, 由(2)知,f (x )是偶函数,∴f (x -1)<2⇔f (|x -1|)<f (16).又f (x )在(0,+∞)上是增函数.∴0<|x -1|<16,解之得-15<x <17且x ≠1. ∴x 的取值范围是{x |-15<x <17且x ≠1}.。

高中必修一函数的奇偶性详细讲解及练习(详细答案)

高中必修一函数的奇偶性详细讲解及练习(详细答案)

函数的单调性和奇偶性例1 (1)画出函数y= -X2+2 I x | +3的图像,并指出函数的单调区间.解:函数图像如下图所示,当X>0时,y = -X2+2X+3 = - (X-1 ) 2+4;当X V 0 时,y = -X2-2X+3 = - ( X+1) 2 +4 .在(4, -1 ]和[0, 1 ]上,函数是增函数:在[-1 , 0]和[1 , +〜上,函数是减函数.评析函数单调性是对某个区间而言的,对于单独一个点没有增减变化,所以对于区间端点只要函数有意义,都可以带上.(2)已知函数f ( X)=X2+2 (a-1) X+2在区间(亠,4]上是减函数,求实数a的取值范围.分析要充分运用函数的单调性是以对称轴为界线这一特征.解:f ( X ) = X2+2 (a-1) X+2 =[X+ (a-1)]2- (a-1) 2+2,此二次函数的对称轴是X = 1-a.因为在区间(-a, 1-a]上f (x)是单调递减的,若使f (X)在(4, 4]上单调递减,对称轴X= 1-a必须在X=4的右侧或与其重合,即1-a>4 a<3.评析这是涉及逆向思维的问题,即已知函数的单调性,求字母参数范围,要注意利用数形结合.例2判断下列函数的奇偶性:(1) f ( X)=-2 f ( X)=(X-1 ) •1 .解:(1) f (x)的定义域为R.因为f ( -X )=| -X+1 | - | -X-1 |=| X-1 | - | X+1 | = -f (X).所以f ( X )为奇函数.(2) f ( X)的定义域为{X | -1WV 1},不关于原点对称.所以 f ( X )既不是奇函数,也不是偶函数.评析用定义判断函数的奇偶性的步骤与方法如下:(1 )求函数的定义域,并考查定义域是否关于原点对称.(2)计算f (-x),并与f ( x)比较,判断f (-x) = f ( x)或f (-x) = -f (x)之一是否成立.f(-x)与-f (x)的关系并不明确时,可考查f (-x) ± (x)= 0是否成立,从而判断函数的奇偶性.例3已知函数f (x)= 1 +「.(1)判断f (x)的奇偶性.(2)确定f (x)在(-a, 0) 上是增函数还是减函数?在区间(0, +8)上呢?证明你的结论. 解:因为f (x)的定义域为R,又] 1f ( -x )= j 亠- J = j : ... = f (x),所以f (x)为偶函数.(2) f ( 乂)在(-8, 0) 上是增函数,由于f (x)为偶函数,所以f (x)在(0, +8)上为减函数. 其证明:取X i V X2V0,] ] £_彳(心-珂)(乃+可)f (x i) -f (X2)= J「- j = I—「= r — h .因为x1v X2v 0,所以X2-X1> 0, X什X2< 0 ,2 2x 1+1 > 0, x 2+1 > 0,得 f (X1) -f (X2)V 0,即 f (X1)V f (X2).所以f ( X )在(-8, 0) 上为增函数.评析奇函数在(a,b)上的单调性与在(-b,-a)上的单调性相同,偶函数在(a,b)与(-b,-a)的单调性相反.1例4已知y=f (x)是奇函数,它在(0, +8)上是增函数,且 f (x)v 0,试问F (x)= 在(-8, 0)上是增函数还是减函数?证明你的结论.1 ]分析根据函数的增减性的定义,可以任取X1V X2< 0,进而判定F( X1)-F( X2)==「:• ' ■■-的正负•为此,需分别判定 f (X1)、f (X2)与f (X2)的正负,而这可以从已条件中推出.解:任取X1、X2^( -8, 0)且X1< X2,则有-X1 > -X2> 0 .T y = f (x)在(0, +8)上是增函数,且f (X)< 0,二 f (-x2)< f (-x1)< 0. ①又••• f (x)是奇函数,• •• f ( -X2)= -f (X2), f ( -X i)= -f (X i) ②由①、②得 f ( X2)> f (X i)> 0 •于是F (x i) -F (X2)= * '…一 >0,即F (X i)> F (X2),1所以F ( X)=在(-m, 0)上是减函数.评析本题最容易发生的错误,是受已知条件的影响,一开始就在( 0 , +8)内任取X i< X2,展开证明.这样就不能保证-X i , -X2,在(-8, 0)内的任意性而导致错误.避免错误的方法是:要明确证明的目标,有针对性地展开证明活动.ax例5讨论函数f (x)= 1-/ (a^0在区间(-1, 1)内的单调性.分析根据函数的单调性定义求解.解:设-1 < x1< x2< 1,贝Uf (X i) -f (X2)= • 一' 1 - _以帀―X?)(l+可巧)=''-'l'lT x1, x2€( -1, 1),且x1< x2 ,•- X1-X2< 0, 1+X1X2> 0,(1-x21)( 1-X22)> 0于是,当a> 0 时,f (X1)< f (X2);当a< 0 时,f (X1)> f (X2).故当a> 0时,函数在(-1, 1)上是增函数;当a< 0时,函数在(-1, 1) 上为减函数.评析根据定义讨论(或证明)函数的单调性的一般步骤是:(1 )设x1、X2是给定区间内任意两个值,且X1< X2;(2)作差f (X1) -f (X2),并将此差式变形;(3)判断f (X1) -f (X2)的正负,从而确定函数的单调性.例6求证:f (x) = x+ .■. ( k> 0)在区间(0, k]上单调递减.解:设0 < X1 < X2 < k 贝Uf (X1) -f (X2)= X<|+ -X2---■ 0 V x1< X2w k2二X i-X2< 0, 0< X i X2< k ,••• f ( X1) -f (x2)> 0••• f ( X1)> f ( X2),• f ( X) = X+一中(0, k]上是减函数.评析函数f ( X)在给定区间上的单调性反映了函数 f (X)在区间上函数值的变化趋势,是函数在区间上的整体性质.因此,若要证明 f (X)在]a,b]上是增函数(减函数),就必须证明对于区间[a,b]上任意两点X1 , X2,当X1< X2 时,都有不等式 f ( X1)< f ( X2)( f(X1)> f ( X2))类似可以证明:函数f (X)= X+ 二(k > 0)在区间[k, +8]上是增函数.例7判断函数f (x)= 工-'二的奇偶性.分析确定函数的定义域后可脱去绝对值符号.)—2 01^ - 2| + x 0解:由II 1得函数的定义域为]-1, 1].这时,丨X-2 | = 2-X.• f ( X)= - ,• f (-X) = - = - = f (X)是偶函数,不是奇函数.且注意到f ( X)不恒为零,从而可知,f ( X )评析由于函数解析式中的绝对值使得所给函数不像具有奇偶性,若不作深入思考,便会作出其非奇非偶的判断.但隐含条件(定义域)被揭示之后,函数的奇偶性就非常明显了.这样看来,解题中先确定函数的定义域不仅可以避免错误,而且有时还可以避开讨论,简化解题过程.函数奇偶性练习、选择题1 .已知函数f (X) = ax2+ bx+ c (a^ 0)是偶函数,那么g (X) = ax3+ bx2+ ex ( )已知函数f (x ) = ax + bx + 3a + b 是偶函数,且其定义域为]a — 1, 2a ],则(2义在R 上的奇函数,当x >0时,f (x ) = x — 2x ,则f (x )在R 上的表达式是()二、填空题X —2 —2-「的奇偶性为,1-x 2(填奇函数或偶函数)2若y =( m — 1) x + 2mx+ 3是偶函数,则m =1已知f (x )是偶函数,g (X )是奇函数,若 f(x) ■ g (x):X 一 1 则f (x )的解析式为 10•已知函数f( x )为偶函数,且其图象与x 轴有四个交点,贝y 方程f( x )= 0的所有实根之和为 三、解答题 11.设定义在[—2, 2]上的偶函数 f (x )在区间[0, 2]上单调递减,若f (1 — n ) v f (m ),求实 数m 的取值范围. 12.已知函数f (x )满足f (x + y ) + f (x — y )= 2f (x ) • f (y ) (x R, y R ),且 f (0)工 0, 试证f (x )是偶函数. 13.已知函数f (x )是奇函数,且当x >0时,f (x )= x 3 + 2x 2— 1,求f (x )在R 上的表达式.A .奇函数B .偶函数 C.既奇又偶函数D.非奇非偶函数A . a — — , b = 03B. a =— 1, b = oC. a = 1, b = 0D. a = 3, b = 0已知f (x )是定.A . y = x (x — 2)B . y = x (| x |— 1)C. y =1 x | (x — 2)D. y = x (| x | — 2)已知 f (x )= x 5 + ax 3 + bx — 8,且 f (— 2)= 10, 那么f (2)等于( A . — 26B.— 18C.— 10D. 10函数f (x) a Y —x :—x 二1 是 (J x 2A .偶函数B.奇函数C.非奇非偶函数D.既是奇函数又是偶函数 若:(x) , g (x )都是奇函数, f (x^ bg (x) 2 在(0,+m )上有最大值 5,则 f (x ) 在(—a,0)上有(A. 最小值—5B .最大值—5 C.最小值—1 D.最大值—3函数f (x)二14. f (x )是定义在(—s,— 5: : 5,+^)上的奇函数,且试判断f (x )在(— s,— 5]上的单调性,并用定义给予证明.15.设函数y =f (x ) (R 且x 丰0)对任意非零实数 求证f (x )是偶函数.函数的奇偶性练习参考答案1. 解析:f (x ) = ax 2 + bx + c 为偶函数,::(x)二x 为奇函数,••• g (x )= ax 3 + bx 2 + cx = f (x ) • :(x)满足奇函数的条件.答案:A2 .解析:由f (x ) = ax 2 + bx + 3a + b 为偶函数,得b = 0.1 又定乂域为]a — 1, 2a ], • a — 1 = 2a ,「・ a =—.故选 A .33.解析:由x > 0时,f (x ) = x 2— 2x , f (x )为奇函数,2 2•••当 X V 0 时,f (x )=— f (— x )=—( x + 2x )=— x — 2x = x (— x — 2).f (x )在]5,+s)上单调递减,X i 、X 2 满足 f ( x i • X 2)= f ( x i )+ f ( X 2),(X—O),即f (x)= x( |x| - 2)(X 0),答案:D4.解析:f (x) + 8=x5+ ax3+ bx 为奇函数,f (- 2)+ 8= 18,「.f (2)+ 8=- 18,「. f (2)=- 26. 答案:A5•解析:此题直接证明较烦,可用等价形式 f ( —x)+ f (x)= 0. 答案:B6. 解析:(x)、g (x)为奇函数,••• f (x) - 2 二a「(x) • bg (x)为奇函数.又f (x)在(0,+s)上有最大值5, • f (x)—2有最大值3.• f (x)—2在(—a, 0) 上有最小值—3, • f (x)在(—a, 0) 上有最小值—1 . 答案:C7. 答案:奇函数8. 答案:0解析:因为函数y =( m—1) x2+ 2mx^ 3为偶函数,2 2••• f ( —x)= f (x),即(m—1) (—x) + 2m(—x)+ 3 =( m-1) x + 2m好3,整理,得m= 0.9. 解析:由f (x)是偶函数,g (x)是奇函数,可得1丄1立f(x) g(x)=X - 1F 八 _ 八—联1 \人)5入丿“,_ x T1111 f (X):(.- )22x -1_ X - 1X -1答案:f (X)二1210.答案:0 11.答案:1m -x -1 212. 证明:令x = y= 0,有f (0)+ f (0)= 2f (0) • f (0),又f (0)工0,二可证f (0)= 1.令x=0,•-f (y) + f ( —y)= 2f (0) • f (y)二f (—y) = f (y),故f (x)为偶函数.13. 解析:本题主要是培养学生理解概念的能力.f (x)= x3+ 2x2—1.因f (x)为奇函数,• f ( 0)= 0.当X V0 时,一x>0, f (—x) = (—x) 3+ 2 (—x) 2— 1 = —x3+ 2x2—1,• f (x)= x3—2x2+ 1.'X3+2X2-1 (x>0),因此,f(x)=20 (x = 0),X3一2x2 1 (x :: 0).点评:本题主要考查学生对奇函数概念的理解及应用能力.14. 解析:任取X1<X2W —5,则一X1>—X2》一5.因f (X )在[5 ,+a]上单调递减,所以 f (—X1)V f (—X2)= f (X1)V—f (X2)= f ( X1) f(x)”2)> f ( X2),即单调减函数.精品文档点评:此题要注意灵活运用函数奇偶性和单调性,并及时转化.15. 解析:由X1, X2E R且不为0的任意性,令X1 = X2 = 1代入可证,f (1 )= 2f (1), ••• f (1)= 0.又令X1 = X2=—1 ,•f :—1 x(—1) = 2f (1 )= 0,•(—1)= 0.又令X1 = —1, X2= X,•f (—X) = f (—1) + f (X)= 0+ f (X)= f (X),即f (x)为偶函数.点评:抽象函数要注意变量的赋值,特别要注意一些特殊值,如,X1 = X2= 1, X1 X2= 0等,然后再结合具体题目要求构造出适合结论特征的式子即可. X2=—1 或X=。

2024年新高一数学初升高衔接《函数的奇偶性》含答案解析

2024年新高一数学初升高衔接《函数的奇偶性》含答案解析

第11讲函数的奇偶性模块一思维导图串知识模块二基础知识全梳理(吃透教材)模块三核心考点举一反三模块四小试牛刀过关测1.理解奇函数、偶函数的定义,了解奇函数、偶函数图象的特征;2.掌握判断函数奇偶性的方法,会根据函数奇偶性求函数值或函数的解析式;3.能利用函数的奇偶性与单调性分析、解决较简单的综合问题.知识点1函数的奇偶性1、奇函数:如果对于函数()f x 的定义域内任意一个x ,都有()()f x f x -=-,那么函数()f x 是奇函数,图象关于原点对称.2、偶函数:如果对于函数()f x 的定义域内任意一个x ,都有()()f x f x -=,那么函数()f x 是偶函数,图象关于y 轴对称.偶函数()f x 的性质:()()(||)f x f x f x -==,可避免讨论.3、奇函数、偶函数图象对称性的推广()y f x =在定义域内恒满足()y f x =的图象的对称轴(中心)()()f a x f a x +=-直线x a =()()f x f a x =-直线2a x =()()f a x f b x +=-直线2a b x +=()()0f a x f a x ++-=点(,0)a ()()0f a x f b x ++-=点(,0)2a b+()()f a x f b x c++-=点(,)22a b c+知识点2判断奇偶性的常用方法1、定义法:若函数的定义域不是关于原点对称,则立即可判断该函数既不是奇函数也不是偶函数;若函数的定义域是关于原点对称的,再判断()f x -与()f x ±之一是否相等.【注意】判断()f x -与()f x 的关系时,也可以使用如下结论:(1)如果()0()f x f x --=或()1(()0)()f x f x f x -=≠,则函数()f x 为偶函数;(2)如果()0()f x f x -+=或()1(()0)()f x f x f x -=-≠,则函数()f x 为奇函数.2、图象法:奇(偶)函数等价于它的图象关于原点(y 轴)对称.3、性质法:设()f x ,()g x 的定义域分别是1D ,2D ,在它们的公共定义域上,一般具有下列结论:()f x ()g x ()()f xg x ±()()f xg x ⋅(())f g x 偶偶偶偶偶偶奇不确定奇偶奇偶不确定奇偶奇奇奇偶奇【注意】在(())f g x 中,()g x 的值域是()f x 定义域的子集.4、分段函数奇偶性的判断判断分段函数的奇偶性时,通常利用定义法判断.分段函数不是几个函数,而是一个函数.因此其判断方法也是先考查函数的定义域是否关于原点对称,然后判断()f x -与()f x 的关系.首先要特别注意x 与x -的范围,然后将它代入相应段的函数表达式中,()f x 与()f x -对应不同的表达式,而它们的结果按奇偶函数的定义进行比较.知识点3函数奇偶性的应用函数奇偶性的定义既是判断函数奇偶性的一种方法,又是在已知函数奇偶性时可以运用的一个性质,要注意函数奇偶性定义的正用和逆用.1、由函数的奇偶性求参数若函数解析式中含参数,则根据()()f x f x -=-或()()f x f x -=,利用待定系数法求参数;若定义域含参数,则根据定义域关于原点对称,利用区间的端点值之和为0求参数.2、由函数的奇偶性求函数值由函数的奇偶性求函数值时,若所给的函数具有奇偶性,则直接利用()()f x f x -=-或()()f x f x -=求解;若所给函数不具有奇偶性,一般续利用所给的函数构造一个奇函数或偶函数,然后利用其奇偶性求值.3、由函数的奇偶性求函数解析式的一般步骤(1)在哪个区间上求解析是,x 就设在哪个区间上;(2)把x -对称转化到已知区间上,代入已知区间的解析式得()f x -;(3)利用函数的奇偶性把()f x -改写成()f x -,从而求出()f x .知识点函数奇偶性与单调性的综合应用1、奇函数在关于原点对称的区间上的单调性相同,偶函数在关于原点对称的区间上的单调性相反.2、区间[,]a b 和[,]b a --关于原点对称(1)若()f x 为奇函数,且在[,]a b 上有最大值M ,则()f x 在[,]b a --上最小值M -;(2)若()f x 为偶函数,且在[,]a b 上有最大值M ,则()f x 在[,]b a --上最大值M .3、利用函数的奇偶性与单调性比较函数值或自变量的大小,关键是利用奇偶性把自变量转化到函数的同一个单调区间内,然后利用单调性比较.【注意】由12()()f x f x >或12()()f x f x <及函数的单调性列出不等式(组)时,要注意定义域对参数的影响.考点一:判断函数的奇偶性例1.(23-24高一上·广东·期末)下列函数是奇函数的是()A .()21f x x =+B .()31f x x =-C .()31f x x x=+D .()422f x x x=+【变式1-1】(23-24高一上·辽宁大连·期末)下列函数为偶函数的是()A.y =B .1y x =+C .3y x =D .2y x =【变式1-2】(23-24高一上·全国·课后作业)函数()()1(0)01(0)x x f x x x x -<⎧⎪==⎨⎪+>⎩的奇偶性是()A .奇函数B .偶函数C .非奇非偶函数D .既奇又偶函数【变式1-3】(23-24高一上·浙江嘉兴·期末)设函数()323f x x x =-,则下列函数是奇函数的是()A .()12f x ++B .()12f x -+C .()12f x --D .()12f x +-考点二:利用奇偶性求函数值例2.(23-24高一上·上海·月考)已知函数()y f x =在R 上是奇函数,且当0x >时,2()2f x x x =-,则(1)f -=()A .1-B .1C .0D .1±【变式2-1】(23-24高一上·四川雅安·月考)已知()f x 是偶函数,当0x >时,()23f x x x =-,则13f ⎛⎫-= ⎪⎝⎭()A .7-B .5-C .7D .5【变式2-2】(22-23高一上·浙江台州·期中)已知3()3bf x ax x=++,(4)5f =,则()4f -=()A .3B .1C .-1D .-5【变式2-3】(23-24高一上·安徽亳州·期中)如果函数()23,0,0x x y f x x ->⎧=⎨<⎩是奇函数,则(3)f -=()A .2-B .2C .3D .3-考点三:利用奇偶性求参数例3.(23-24高一上·辽宁阜新·期中)若函数()21f x x ax =++是定义在(,22)b b --上的偶函数,则2b f ⎛⎫= ⎪⎝⎭()A .14B .54C .74D .2【变式3-1】(23-24高一上·山西长治·期末)若()()()2f x x x x a =+-为奇函数,则a 的值为()A .1-B .0C .1D .2【变式3-2】(23-24高一下·贵州贵阳·月考)若函数()()()2117f x m x m x =++-+是定义在(2,33)n n --上的偶函数,则()()f n m f +=()A .34B .25C .16D .9【变式3-3】(23-24高一上·浙江宁波·期末)若函数()f x x x a=--为偶函数,则实数a 的取值范围是()A .3a ≤-B .3a ≥C .33a -≤≤D .3a ≤-或3a ≥考点四:利用奇偶性求解析式例4.(23-24高一上·北京·期中)设偶函数()f x 的定义域为R ,当()0,x ∈+∞时,()f x是增函数,则(f ,()πf ,()3f -的大小关系是()A .(π)(3)(f f f >->B .()(()π3f f f >>-C .()()(π3f f f <-<D .()(()π3f f f <<-【变式4-1】(23-24高一上·广东深圳·月考)已知函数()f x 是奇函数且满足()()2f x f x =-,当[]()1212,0,1x x x x ∈≠时,()()12120f x f x x x ->-恒成立,设()1a f =,83b f ⎛=⎫⎪⎝⎭,52c f ⎛⎫= ⎪⎝⎭,则,,a b c 的大小关系为()A .c b a<<B .b c a<<C .c a b<<D .a b c<<【变式4-2】(22-23高一上·北京海淀·月考)设函数()f x 的定义域为[]0,4,若()f x 在[]0,2上单调递减,且()2f x +为偶函数,则下列结论正确的是()A .()57122f f f ⎛⎫⎛⎫<< ⎪ ⎪⎝⎭⎝⎭B .()75122f f f ⎛⎫⎛⎫<< ⎪ ⎪⎝⎭⎝⎭C .()57122f f f ⎛⎫⎛⎫<< ⎪ ⎪⎝⎭⎝⎭D .()75122f f f ⎛⎫⎛⎫<< ⎪ ⎪⎝⎭⎝⎭【变式4-3】(23-24高一下·湖南长沙·月考)已知函数()f x 是定义在R 上的偶函数,函数()g x 是定义在R 上的奇函数,且()f x ,()g x 在[)0,∞+上单调递减,则()A .()()()()23f f f f >B .()()()()23f g f g <C .()()()()23g g g g >D .()()()()23g f g f <考点五:利用奇偶性与单调性比大小例5.(23-24高一下·云南·月考)已知偶函数()f x ,当0x >时,()2f x x x =+,则当0x <时,()f x =()A .2x x-+B .2x x--C .2x x+D .2x x-【变式5-1】(23-24高一上·江苏徐州·期中)设()f x 为奇函数,且当0x ≥时,()3f x x x =+,则当0x <时,()f x =()A .3x x-+B .3x x--C .3x x-D .3x x+【变式5-2】(23-24高一上·广东韶关·期中)如果函数(1),0()(),0x x x f x g x x ->⎧=⎨<⎩是奇函数,那么()g x =()A .(1)x x -+B .(1)x x +C .(1)x x -D .(1)x x --【变式5-3】(23-24高一上·云南昆明·月考)已知函数()f x 为奇函数,函数()g x 为偶函数,2()()1f x g x x x +=-+,则(2)f =()A .2-B .1-C .1D .2考点六:利用奇偶性与单调性解不等式例6.(2024·江西·模拟预测)已知奇函数()f x 在R 上单调递增,且()21f =,则不等式()10f x +<的解集为()A .()1,1-B .()2,2-C .()2,-+∞D .(),2-∞-【变式6-1】(22-23高一上·北京·月考)若定义在R 上的奇函数()f x 在(,0)-∞单调递减,且()20f =,则满足()0xf x ≥的x 的取值范围是()A .[]2,0[2,)∞-⋃+B .[]22-,C .[][,2]0,2∞--⋃D .[][],22,-∞-+∞ 【变式6-2】(23-24高一下·河北张家口·开学考试)已知()f x 是定义在R 上的偶函数,且在区间[)0,∞+单调递减,则不等式()()121f x f x ->+的解集为()A .()(),20,-∞-⋃+∞B .()2,0-C .()0,2D .()(),02,-∞+∞ 【变式6-3】(23-24高一上·重庆·期中)已知函数()31f x x x =++,且()()2342f a f a +-<,则实数a 的取值范围是()A .()4,1-B .()(),41,-∞-+∞U C .()(),14,-∞-⋃+∞D .()1,4-一、单选题1.(22-23高一上·天津北辰·月考)下列函数中,为偶函数的是()A .()f x =1xx -B .()f x 2x C .()f x 1x -1x -D .()f x =x +1x2.(23-24高一上·江苏镇江·月考)函数()f x 为定义在[1,21]a -+上的偶函数,则实数a 等于()A .1-B .1C .0D .无法确定3.(23-24高一下·安徽阜阳·月考)已知奇函数()f x 的定义域为R ,且当<2x -时,()82f x x =+;当02x <≤时,()22f x x =-,则()()()301f f f ++-=()A .7B .9C .-7D .-94.(23-24高一上·广东中山·月考)若偶函数()f x 在(],0-∞上单调递增,则().A .()()3122f f f ⎛⎫-<-< ⎪⎝⎭B .()()3122f f f ⎛⎫-<-< ⎪⎝⎭C .()()3212f f f ⎛⎫<-<- ⎪⎝⎭D .()()3212f f f ⎛⎫<-<- ⎪⎝⎭5.(23-24高一上·贵州毕节·月考)函数()f x 在(),-∞+∞单调递减,且为奇函数,若()21f -=,则满足()111f x -≤+≤的x 的取值范围是()A .[]3,1-B .[]1,3-C .[]22-,D .[]0,36.(23-24高一上·北京·期中)已知定义在[4,4]-上的偶函数()f x 在[0,4]上为减函数,且(1)(2)f x f +>-,则实数x 的取值范围是()A .()3,-+∞B .(]3,3-C .()3,1-D .()1,3-二、多选题7.(23-24高一上·内蒙古呼伦贝尔·月考)()f x 是定义在R 上的奇函数,下列结论中,正确的是()A .()()0f x f x -+=B .()()()2f x f x f x --=C .()()0f x f x -⋅≤D .()()1f x f x =--8.(22-23高一下·河南·月考)已知函数222,0(),0x x x f x x ax x ⎧-≥=⎨--<⎩为奇函数,则下列说法正确的为()A .2a =-B .2a =C .((1))1f f -=-D .()f x 的单调递增区间为,1(),)1(-∞-⋃+∞三、填空题9.(23-24高一上·北京·期中)已知函数()32–3f x ax x bx =++,且()106f =,则()10f -=.10.(23-24高一上·河北石家庄·期中)已知函数()323f x x ax x b =+-+是定义在R 上的奇函数,则a b +=.11.(23-24高一上·陕西西安·月考)已知函数()f x 对一切实数x 都满足()()0f x f x +-=,且当0x <时,()221f x x x =-+,则()f x =.四、解答题12.(23-24高一上·重庆璧山·月考)已知()f x 是定义在R 上的奇函数,且(1)4f =;当0x <时,2()f x x ax =+.(1)求a 的值;(2)求函数()f x 在R 上的解析式;(3)解方程()6f x =;13.(23-24高一上·浙江杭州·期中)已知函数()24xf x x=-,()2,2x ∈-.(1)判断函数()f x 的奇偶性;(2)用定义法证明:函数()f x 在()2,2-上单调递增;(3)求不等式()()120f t f t +->的解集.第11讲函数的奇偶性模块一思维导图串知识模块二基础知识全梳理(吃透教材)模块三核心考点举一反三模块四小试牛刀过关测1.理解奇函数、偶函数的定义,了解奇函数、偶函数图象的特征;2.掌握判断函数奇偶性的方法,会根据函数奇偶性求函数值或函数的解析式;3.能利用函数的奇偶性与单调性分析、解决较简单的综合问题.知识点1函数的奇偶性1、奇函数:如果对于函数()f x 的定义域内任意一个x ,都有()()f x f x -=-,那么函数()f x 是奇函数,图象关于原点对称.2、偶函数:如果对于函数()f x 的定义域内任意一个x ,都有()()f x f x -=,那么函数()f x 是偶函数,图象关于y 轴对称.偶函数()f x 的性质:()()(||)f x f x f x -==,可避免讨论.3、奇函数、偶函数图象对称性的推广()y f x =在定义域内恒满足()y f x =的图象的对称轴(中心)()()f a x f a x +=-直线x a =()()f x f a x =-直线2a x =()()f a x f b x +=-直线2a b x +=()()0f a x f a x ++-=点(,0)a ()()0f a x f b x ++-=点(,0)2a b+()()f a x f b x c++-=点(,)22a b c+知识点2判断奇偶性的常用方法1、定义法:若函数的定义域不是关于原点对称,则立即可判断该函数既不是奇函数也不是偶函数;若函数的定义域是关于原点对称的,再判断()f x -与()f x ±之一是否相等.【注意】判断()f x -与()f x 的关系时,也可以使用如下结论:(1)如果()0()f x f x --=或()1(()0)()f x f x f x -=≠,则函数()f x 为偶函数;(2)如果()0()f x f x -+=或()1(()0)()f x f x f x -=-≠,则函数()f x 为奇函数.2、图象法:奇(偶)函数等价于它的图象关于原点(y 轴)对称.3、性质法:设()f x ,()g x 的定义域分别是1D ,2D ,在它们的公共定义域上,一般具有下列结论:()f x ()g x ()()f xg x ±()()f xg x ⋅(())f g x 偶偶偶偶偶偶奇不确定奇偶奇偶不确定奇偶奇奇奇偶奇【注意】在(())f g x 中,()g x 的值域是()f x 定义域的子集.4、分段函数奇偶性的判断判断分段函数的奇偶性时,通常利用定义法判断.分段函数不是几个函数,而是一个函数.因此其判断方法也是先考查函数的定义域是否关于原点对称,然后判断()f x -与()f x 的关系.首先要特别注意x 与x -的范围,然后将它代入相应段的函数表达式中,()f x 与()f x -对应不同的表达式,而它们的结果按奇偶函数的定义进行比较.知识点3函数奇偶性的应用函数奇偶性的定义既是判断函数奇偶性的一种方法,又是在已知函数奇偶性时可以运用的一个性质,要注意函数奇偶性定义的正用和逆用.1、由函数的奇偶性求参数若函数解析式中含参数,则根据()()f x f x -=-或()()f x f x -=,利用待定系数法求参数;若定义域含参数,则根据定义域关于原点对称,利用区间的端点值之和为0求参数.2、由函数的奇偶性求函数值由函数的奇偶性求函数值时,若所给的函数具有奇偶性,则直接利用()()f x f x -=-或()()f x f x -=求解;若所给函数不具有奇偶性,一般续利用所给的函数构造一个奇函数或偶函数,然后利用其奇偶性求值.3、由函数的奇偶性求函数解析式的一般步骤(1)在哪个区间上求解析是,x 就设在哪个区间上;(2)把x -对称转化到已知区间上,代入已知区间的解析式得()f x -;(3)利用函数的奇偶性把()f x -改写成()f x -,从而求出()f x .知识点函数奇偶性与单调性的综合应用1、奇函数在关于原点对称的区间上的单调性相同,偶函数在关于原点对称的区间上的单调性相反.2、区间[,]a b 和[,]b a --关于原点对称(1)若()f x 为奇函数,且在[,]a b 上有最大值M ,则()f x 在[,]b a --上最小值M -;(2)若()f x 为偶函数,且在[,]a b 上有最大值M ,则()f x 在[,]b a --上最大值M .3、利用函数的奇偶性与单调性比较函数值或自变量的大小,关键是利用奇偶性把自变量转化到函数的同一个单调区间内,然后利用单调性比较.【注意】由12()()f x f x >或12()()f x f x <及函数的单调性列出不等式(组)时,要注意定义域对参数的影响.考点一:判断函数的奇偶性例1.(23-24高一上·广东·期末)下列函数是奇函数的是()A .()21f x x =+B .()31f x x =-C .()31f x x x=+D .()422f x x x=+【答案】C【解析】对于A ,因为()21f x x =+的定义域为R ,且()()22()11f x x x f x -=-+=+=,所以()21f x x =+为偶函数;对于B ,因为()31f x x =-的定义域为R ,且()()33()11f x x x f x -=-+=-+≠-,所以()31f x x =-不是奇函数;对于C ,因为()31f x x x=+的定义域为()(),00,∞-+∞U ,且()()333111()f x x x x f x x x x ⎛⎫-=-+=--=-+=- ⎪-⎝⎭,所以()31f x x x =+为奇函数;对于D ,因为()422f x x x =+的定义域为R ,且()()4242()2()2f x x x x x f x -=-+-=+=,所以()422f x x x =+为偶函数;故选:C .【变式1-1】(23-24高一上·辽宁大连·期末)下列函数为偶函数的是()A.y =B .1y x =+C .3y x =D .2y x =【答案】D【解析】对于A,y =[)0,∞+,它不关于原点对称,故A 不符合题意;对于B ,对于()1y f x x ==+而言,()()1201f f =≠=-,故B 不符合题意;对于C ,对于()3y f x x ==而言,()()1111f f =≠-=-,故C 不符合题意;对于D ,对于()2y f x x ==而言,其定义域为全体实数,关于原点对称,且()()()22f x x x f x -=-==,故D 符合题意.故选:D.【变式1-2】(23-24高一上·全国·课后作业)函数()()1(0)001(0)x x f x x x x -<⎧⎪==⎨⎪+>⎩的奇偶性是()A .奇函数B .偶函数C .非奇非偶函数D .既奇又偶函数【答案】A【解析】若0x <,则0x ->,则()()()11f x x x f x -=-+=--=-;若0x >,则0x -<,则()()()11f x x x f x -=--=-+=-.又()00f =,满足()()f x f x -=-.所以()()f x f x -=-,又函数()y f x =的定义域为R ,关于原点对称,因此,函数()y f x =为奇函数.故选:A.【变式1-3】(23-24高一上·浙江嘉兴·期末)设函数()323f x x x =-,则下列函数是奇函数的是()A .()12f x ++B .()12f x -+C .()12f x --D .()12f x +-【答案】A【解析】因为()323f x x x =-,对于A 选项,()()()32322312131233136323f x x x x x x x x x x ++=+-++=+++---+=-,令()313f x x x =-,该函数的定义域为R ,()()()()331133f x x x x x f x -=---=-+=-,则()12f x ++为奇函数,A 满足要求;对于B 选项,()()()323221213123313632f x x x x x x x x -+=---+=-+--+-+32692x x x =-+-,令()322692f x x x x =-+-,该函数的定义域为R ,则()2020f =-≠,所以,函数()12f x -+不是奇函数,B 不满足条件;对于C 选项,()()()323221213123313632f x x x x x x x x --=----=-+--+--32696x x x =-+-,令()323696f x x x x =-+-,该函数的定义域为R ,则()3060f =-≠,所以,函数()12f x --不是奇函数,C 不满足条件;对于D 选项,()()()323223121312331363234f x x x x x x x x x x +-=+-+-=+++----=--,令()3434f x x x =--,该函数的定义域为R ,则()4040f =-≠,所以,函数()12f x +-不是奇函数,D 不满足要求.故选:A.考点二:利用奇偶性求函数值例2.(23-24高一上·上海·月考)已知函数()y f x =在R 上是奇函数,且当0x >时,2()2f x x x =-,则(1)f -=()A .1-B .1C .0D .1±【答案】B【解析】()21121f =-=-,又()f x 在R 上是奇函数,故()()111f f -=-=.故选:B【变式2-1】(23-24高一上·四川雅安·月考)已知()f x 是偶函数,当0x >时,()23f x x x =-,则13f ⎛⎫-= ⎪⎝⎭()A .7-B .5-C .7D .5【答案】B【解析】()f x 是偶函数,当0x >时,()23f x x x=-,则1112316513333f f ⎛⎫⎛⎫-==⨯-=-=- ⎪ ⎪⎝⎭⎝⎭.故选:B【变式2-2】(22-23高一上·浙江台州·期中)已知3()3bf x ax x=++,(4)5f =,则()4f -=()A .3B .1C .-1D .-5【答案】B【解析】设()()33bg x f x ax x=-=+,定义域为()(),00,∞-+∞U ,则()()()33b bg x a x ax g x x x-=-+=--=--,故()g x 为奇函数,又()()443532g f =-=-=,则()42g -=-,所以()()443231f g -=-+=-+=.故选:B【变式2-3】(23-24高一上·安徽亳州·期中)如果函数()23,0,0x x y f x x ->⎧=⎨<⎩是奇函数,则(3)f -=()A .2-B .2C .3D .3-【答案】D【解析】记()()23,0,0x x g x f x x ->⎧=⎨<⎩,因为()g x 为奇函数,所以()()33g g -=-,又()()33g f -=-,()32333g =⨯-=,所以()()()3333f g g -=-=-=-.故选:D考点三:利用奇偶性求参数例3.(23-24高一上·辽宁阜新·期中)若函数()21f x x ax =++是定义在(,22)b b --上的偶函数,则2b f ⎛⎫= ⎪⎝⎭()A .14B .54C .74D .2【答案】D【解析】因为函数2()1=++f x x ax 是定义在(,22)b b --上的偶函数,所以220b b -+-=且()()2211f x x ax x ax f x -=-+=++=,则02a b =⎧⎨=⎩,所以2()1f x x =+,则2(1)1122b f f ⎛⎫==+= ⎪⎝⎭.故选:D .【变式3-1】(23-24高一上·山西长治·期末)若()()()2f x x x x a =+-为奇函数,则a 的值为()A .1-B .0C .1D .2【答案】D【解析】由函数()()()2f x x x x a =+-为奇函数,可得()()220f f -+=,可得()820a -=,解得2a =,经检验,当2a =时,()()()222(4)f x x x x x x =+-=-,满足()()f x f x -=-,符合题意,所以2a =.故选:D.【变式3-2】(23-24高一下·贵州贵阳·月考)若函数()()()2117f x m x m x =++-+是定义在(2,33)n n --上的偶函数,则()()f n m f +=()A .34B .25C .16D .9【答案】A【解析】因为()()()2117f x m x m x =++-+是定义在(2,33)n n --上的偶函数,所以2330n n -+-=,得到3n =,显然1m ≠-,由()y f x =图象关于y 轴对称,得到10m -=,解得1m =,所以()227f x x =+,满足要求,得到()()(3)(1)25934f f f f n m +=+=+=.故选:A.【变式3-3】(23-24高一上·浙江宁波·期末)若函数()f x x x a=--为偶函数,则实数a 的取值范围是()A .3a ≤-B .3a ≥C .33a -≤≤D .3a ≤-或3a ≥【答案】A【解析】 函数()f x =y =[3,3]-,且为偶函数,||y x x a ∴=--在[3,3]-(或其子集)上为偶函数,0x a ∴-≥恒成立,,(33) a x x ∴≤-≤≤恒成立, 3.a ∴≤-故选:A.考点四:利用奇偶性求解析式例4.(23-24高一上·北京·期中)设偶函数()f x 的定义域为R ,当()0,x ∈+∞时,()f x是增函数,则(f ,()πf ,()3f -的大小关系是()A .(π)(3)(f f f >->B .()(()π3f f f >>-C .()()(π3f f f <-<D .()(()π3f f f <<-【答案】A【解析】由()f x 是R 上的偶函数,得((3)(3)f f f f =-=,又()f x 在()0,∞+上单调递增,则(3)(π)f f f <<,所以(π)(3)(f f f >->.故选:A【变式4-1】(23-24高一上·广东深圳·月考)已知函数()f x 是奇函数且满足()()2f x f x =-,当[]()1212,0,1x x x x ∈≠时,()()12120f x f x x x ->-恒成立,设()1a f =,83b f ⎛=⎫ ⎪⎝⎭,52c f ⎛⎫= ⎪⎝⎭,则,,a b c 的大小关系为()A .c b a <<B .b c a<<C .c a b<<D .a b c<<【答案】B【解析】[]()1212,0,1x x x x ∈≠,()()12120f x f x x x ->-,故()f x 在[]0,1上单调递增,因为()f x 为奇函数,所以()f x 在[]1,1-上单调递增,因为()()2f x f x =-,所以8822333f f f b ⎛⎫⎛⎫⎛⎫=-=- ⎪ ⎪ ⎪=⎝⎭⎝⎭⎝⎭,5512222c f f f ⎛⎫⎛⎫⎛⎫==-=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,因为21132-<-<,所以()21132f f f ⎛⎫⎛⎫-<-< ⎪ ⎪⎝⎭⎝⎭,即b<c<a .故选:B 【变式4-2】(22-23高一上·北京海淀·月考)设函数()f x 的定义域为[]0,4,若()f x 在[]0,2上单调递减,且()2f x +为偶函数,则下列结论正确的是()A .()57122f f f ⎛⎫⎛⎫<< ⎪ ⎪⎝⎭⎝⎭B .()75122f f f ⎛⎫⎛⎫<< ⎪ ⎪⎝⎭⎝⎭C .()57122f f f ⎛⎫⎛⎫<< ⎪ ⎪⎝⎭⎝⎭D .()75122f f f ⎛⎫⎛⎫<< ⎪ ⎪⎝⎭⎝⎭【答案】C【解析】因为函数()2f x +为偶函数,所以函数()2f x +的图像关于y 轴对称,故函数()f x 的图像关于直线2x =对称,且()()13f f =,又()f x 在[]0,2上单调递减,故()f x 在[]2,4上单调递增,5723422<<<< ,()57322f f f ⎛⎫⎛⎫∴<< ⎪ ⎪⎝⎭⎝⎭,即()57122f f f ⎛⎫⎛⎫<< ⎪ ⎪⎝⎭⎝⎭故选:C【变式4-3】(23-24高一下·湖南长沙·月考)已知函数()f x 是定义在R 上的偶函数,函数()g x 是定义在R 上的奇函数,且()f x ,()g x 在[)0,∞+上单调递减,则()A .()()()()23f f f f >B .()()()()23f g f g <C .()()()()23g g g g >D .()()()()23g f g f <【答案】D【解析】因为()f x ,()g x 在[)0,∞+上单调递减,()f x 是偶函数,()g x 是奇函数,所以()g x 在R 上单调递减,()f x 在(],0-∞上单调递增,对于A 中,由()()23f f >,但无法判断()()2,3f f 的正负,所以A 不正确;对于B 中,因为()g x 是定义在R 上的奇函数,可得()00g =,又因为()g x 在[)0,∞+上单调递减,可得()()023g g >>,因为()f x 在[)0,∞+上单调递减,且()f x 为偶函数,所以()f x 在(,0)-∞上为增函数,所以()()()()23f g f g >,所以B 不正确;对于C 中,由()()23g g >,()g x 在R 上单调递减,所以()()()()23g g g g <,所以C不正确;对于D 中,由()()23f f >,()g x 在R 上单调递减,()()()()23g f g f <,所以D 正确.故选:D.考点五:利用奇偶性与单调性比大小例5.(23-24高一下·云南·月考)已知偶函数()f x ,当0x >时,()2f x x x =+,则当0x <时,()f x =()A .2x x -+B .2x x--C .2x x+D .2x x-【答案】D【解析】当0x <,则0x ->,()()()22f x x x x x -=-+-=-,又()f x 为偶函数,所以,当0x <时,()()2f x f x x x =-=-.故选:D.【变式5-1】(23-24高一上·江苏徐州·期中)设()f x 为奇函数,且当0x ≥时,()3f x x x =+,则当0x <时,()f x =()A .3x x -+B .3x x--C .3x x-D .3x x+【答案】D【解析】()f x 为奇函数,当0x ≥时,()3f x x x =+,则当0x <时,0x ->,()()()()33f x f x x x x x ⎡⎤=--=--+-=+⎣⎦.故选:D 【变式5-2】(23-24高一上·广东韶关·期中)如果函数(1),0()(),0x x x f x g x x ->⎧=⎨<⎩是奇函数,那么()g x =()A .(1)x x -+B .(1)x x +C .(1)x x -D .(1)x x --【答案】A【解析】当0x <时,0x ->,所以()(1)(1)f x x x x x -=---=+,又因为()f x 为奇函数,所以()()f x f x -=-,所以()(1)f x x x -=+,即()(1)f x x x =-+,所以当0x <时,()(1)g x x x =-+.故选:A.【变式5-3】(23-24高一上·云南昆明·月考)已知函数()f x 为奇函数,函数()g x 为偶函数,2()()1f x g x x x +=-+,则(2)f =()A .2-B .1-C .1D .2【答案】A【解析】根据题意,由2()()1f x g x x x +=-+①得2()()1f x g x x x -+-=++,因为()f x 为奇函数,()g x 为偶函数,所以()()f x f x -=-,()()g x g x -=,所以2()()1f x g x x x -+=++②,由①②得2()2f x x =-,所以()f x x =-,则(2)2f =-.故选:A.考点六:利用奇偶性与单调性解不等式例6.(2024·江西·模拟预测)已知奇函数()f x 在R 上单调递增,且()21f =,则不等式()10f x +<的解集为()A .()1,1-B .()2,2-C .()2,-+∞D .(),2-∞-【答案】D【解析】由()10f x +<,可得()1f x <-,因为()f x 是奇函数,且()21f =,所以()()2f x f <-,因为()f x 在R 上单调递增,所以<2x -,故不等式()10f x +<的解集为(),2∞--.故选:D【变式6-1】(22-23高一上·北京·月考)若定义在R 上的奇函数()f x 在(,0)-∞单调递减,且()20f =,则满足()0xf x ≥的x 的取值范围是()A .[]2,0[2,)∞-⋃+B .[]22-,C .[][,2]0,2∞--⋃D .[][],22,-∞-+∞ 【答案】B【解析】()f x 为R 上的奇函数,且在(,0)-∞单调递减,(2)0f =,(2)0f ∴-=,(0)0f =,且在()0,∞+上单调递减,所以()02f x x ≥⇒≤-或02x ≤≤,()020f x x ≤⇒-≤≤或2x ≥,()0xf x ∴≥可得0202x x x >⎧⎨≤-≤≤⎩或,或0202x x x ≤⎧⎨-≤≤≥⎩或,即02x <≤或20x -≤≤,即22x -≤≤,故选:B.【变式6-2】(23-24高一下·河北张家口·开学考试)已知()f x 是定义在R 上的偶函数,且在区间[)0,∞+单调递减,则不等式()()121f x f x ->+的解集为()A .()(),20,-∞-⋃+∞B .()2,0-C .()0,2D .()(),02,-∞+∞ 【答案】A【解析】因为()f x 是定义在R 上的偶函数,所以()()121f x f x ->+,又因为()f x 是在区间[)0,∞+单调递减,所以121x x -<+,即()()22121x x -<+,于是有2360x x +>,解得<2x -或0x >,故不等式()()121f x f x ->+的解集为()(),20,-∞-⋃+∞.故选:A.【变式6-3】(23-24高一上·重庆·期中)已知函数()31f x x x =++,且()()2342f a f a +-<,则实数a 的取值范围是()A .()4,1-B .()(),41,-∞-+∞U C .()(),14,-∞-⋃+∞D .()1,4-【答案】A【解析】函数()31f x x x =++的定义域为R ,令函数3()=+g x x x ,则()()1f xg x =+显然33()()()()()g x x x x x g x -=-+-=-+=-,函数3,y x y x ==在R 上都单调递增,因此3()=+g x x x 在R 上单调递增,不等式()()2342f a f a +-<化为2(34)12()1g a a g -+++<,即2(34)(3)4()g g a a g a <--=-+,于是234a a <-+,即2340a a +-<,解得41a -<<,所以实数a 的取值范围是()4,1-.故选:A一、单选题1.(22-23高一上·天津北辰·月考)下列函数中,为偶函数的是()A .()f x =1x x -B .()f x 2x C .()f x 1x -1x -D .()f x =x +1x【答案】B【解析】选项A 中,函数定义域是{|1}x x ≠,函数没有奇偶性;选项B 中,函数定义域是(,)-∞+∞,22()()()f x x x f x -=-==,是偶函数;选项C 中,函数定义域是{1},函数没有奇偶性;选项D 中,函数定义域是{|0}x x ≠,1()()f x x f x x-=--=-,函数是奇函数.故选:B .2.(23-24高一上·江苏镇江·月考)函数()f x 为定义在[1,21]a -+上的偶函数,则实数a 等于()A .1-B .1C .0D .无法确定【答案】C【解析】因为()f x 为定义在[1,21]a -+上的偶函数,所以1210a -++=,解得0a =.故选:C.3.(23-24高一下·安徽阜阳·月考)已知奇函数()f x 的定义域为R ,且当<2x -时,()82f x x =+;当02x <≤时,()22f x x =-,则()()()301f f f ++-=()A .7B .9C .-7D .-9【答案】B【解析】因为()f x 是定义域为R 的奇函数,所以()00f =,()()833832f f =--=-=-+,()()()211121f f -=-=--=,所以()()()3019f f f ++-=.故选:B .4.(23-24高一上·广东中山·月考)若偶函数()f x 在(],0-∞上单调递增,则().A .()()3122f f f ⎛⎫-<-< ⎪⎝⎭B .()()3122f f f ⎛⎫-<-< ⎪⎝⎭C .()()3212f f f ⎛⎫<-<- ⎪⎝⎭D .()()3212f f f ⎛⎫<-<- ⎪⎝⎭【答案】D【解析】由偶函数知:()2(2)f f =-,又()f x 在(],0-∞上单调递增且3212<--<-,所以3(2)()(1)2f f f -<-<-,即()()3212f f f ⎛⎫<-<- ⎪⎝⎭.故选:D 5.(23-24高一上·贵州毕节·月考)函数()f x 在(),-∞+∞单调递减,且为奇函数,若()21f -=,则满足()111f x -≤+≤的x 的取值范围是()A .[]3,1-B .[]1,3-C .[]22-,D .[]0,3【答案】A【解析】因为()f x 为奇函数且在(),-∞+∞上单调递减,且()21f -=,可得()()221f f =--=-,则不等式()111f x -≤+≤,等价于212x -≤+≤,解得31x -≤≤,所以实数x 的取值范围为[]3,1-.故选:A.6.(23-24高一上·北京·期中)已知定义在[4,4]-上的偶函数()f x 在[0,4]上为减函数,且(1)(2)f x f +>-,则实数x 的取值范围是()A .()3,-+∞B .(]3,3-C .()3,1-D .()1,3-【答案】C【解析】因为()f x 为定义在[4,4]-上的偶函数,且(1)(2)f x f +>-,可得()1(2)f x f +>,且()f x 在[0,4]上为减函数,则012x ≤+<,解得31x -<<,所以实数x 的取值范围是()3,1-.故选:C.二、多选题7.(23-24高一上·内蒙古呼伦贝尔·月考)()f x 是定义在R 上的奇函数,下列结论中,正确的是()A .()()0f x f x -+=B .()()()2f x f x f x --=C .()()0f x f x -⋅≤D .()()1f x f x =--【答案】AC【解析】由()f x 是定义在R 上的奇函数,得()()f x f x -=-,且()00f =,因此()()0f x f x -+=,A 正确;()()()2f x f x f x --=-,B 错误;又()()()20f x f x f x -⋅=-≤⎡⎤⎣⎦,C 正确;而当0x =时,()00f =,此时式子()()f x f x -无意义,D 错误.故选:AC8.(22-23高一下·河南·月考)已知函数222,0(),0x x x f x x ax x ⎧-≥=⎨--<⎩为奇函数,则下列说法正确的为()A .2a =-B .2a =C .((1))1f f -=-D .()f x 的单调递增区间为,1(),)1(-∞-⋃+∞【答案】BC【解析】因为函数()f x 为奇函数,(1)(1)f f ∴-=-,即1(12)a -+=--,解得2a =,故B 正确,A 错误;因为(1)121f -=-+=,所以((1))(1)1f f f -==-,故C 正确;作出()f x 的图象,如图,所以()f x 的单调递增区间为(,1)-∞-,(1,)+∞,D 选项形式错误,不能用并集的符号.故选:BC.三、填空题9.(23-24高一上·北京·期中)已知函数()32–3f x ax x bx =++,且()106f =,则()10f -=.【答案】188【解析】令()3g x ax bx =+,()2–3h x x =,R x ∈,则()()()33g x ax bx ax bx g x -=--=-+=-,()()2–3h x x h x -==,所以()g x 为奇函数,()h x 为偶函数,又()()()f x g x h x =+,且()()()1010106f g h =+=,()21010397h =-=,所以()1091g =-,()()101097h h -==,又()()101091g g -=-=,所以()()()1010109197188f g h -=-+-=+=.故答案为:18810.(23-24高一上·河北石家庄·期中)已知函数()323f x x ax x b =+-+是定义在R 上的奇函数,则a b +=.【答案】0【解析】由题意得()()()()()3232330f x f x x a x x b xax x b -+=-+---+++-+=,即2220ax b +=恒成立,则0a b ==,则0a b +=,故答案为:0.11.(23-24高一上·陕西西安·月考)已知函数()f x 对一切实数x 都满足()()0f x f x +-=,且当0x <时,()221f x x x =-+,则()f x =.【答案】2221,00,021,0x x x x x x x ⎧--->⎪=⎨⎪-+<⎩【解析】函数()f x 对一切实数x 都满足()()0f x f x +-=,所以()00f =,设0x >,则0x -<,2()21f x x x -=++,又因为()()0f x f x +-=,即()()f x f x =--,所以2()21f x x x =---所以2221,0()0,021,0x x x f x x x x x ⎧--->⎪==⎨⎪-+<⎩.四、解答题12.(23-24高一上·重庆璧山·月考)已知()f x 是定义在R 上的奇函数,且(1)4f =;当0x <时,2()f x x ax =+.(1)求a 的值;(2)求函数()f x 在R 上的解析式;(3)解方程()6f x =;【答案】(1)5;(2)225,0()5,0x x x f x x x x ⎧-+≥=⎨+<⎩;(3)解集为{}6,2,3-【解析】(1)()f x 是定义在R 上的奇函数,()()()1114f f a =--=--=,解得5a =;(2)当0x <时,2()5=+f x x x ,()f x 是定义在R 上的奇函数,则当0x >时,0x -<,则()()22()()55f x f x x x x x ⎡⎤=--=--+-=-+⎣⎦,0x =时也满足,所以225,0()5,0x x x f x x x x ⎧-+≥=⎨+<⎩.(3)方程()6f x =,即2056x x x ≥⎧⎨-+=⎩或2056x x x <⎧⎨+=⎩,解得2x =或3x =或6x =-,所以方程()6f x =的解集为{}6,2,3-.13.(23-24高一上·浙江杭州·期中)已知函数()24xf x x =-,()2,2x ∈-.(1)判断函数()f x 的奇偶性;(2)用定义法证明:函数()f x 在()2,2-上单调递增;(3)求不等式()()120f t f t +->的解集.【答案】(1)()f x 为奇函数;(2)证明见解析;(3)112t t ⎧⎫-<<⎨⎬⎩⎭【解析】(1)由()()22044x xf x f x x x --+=+=--,且定义域()2,2x ∈-关于原点对称,故()f x 为奇函数.(2)任取12,(2,2)x x ∈-,且12x x <,()()()()()()()()()()()()()()221221121212121212122222222212121212444444444444x x x x x x x x x x x x x x x x f x f x x x x x x x x x ----+--+-=-===--------,因为12,(2,2)x x ∈-,且12x x <,故120x x -<,()124,4x x ∈-,1240x x +>,2140x ->,2240x ->,所以()()()()121222124044x x x x x x -+<--,()()120f x f x -<,故函数()f x 在(2,2)-上单调递增;(3)由(1)(2)2()4xf x x =-为奇函数,且在(2,2)-上单调递增,()(12)0f t f t +->变形为()()(12)21f t f t f t >--=-,则要满足22122221t t t t -<-<⎧⎪-<<⎨⎪>-⎩,解得:112t -<<,故不等式的解集为112t t ⎧⎫-<<⎨⎬⎩⎭。

高中必修一函数的奇偶性详细讲解及练习(详细答案)

高中必修一函数的奇偶性详细讲解及练习(详细答案)

高中必修一函数的奇偶性详细讲解及练习(详细答案)首先,画出函数y=-x^2+2|x|+3的图像,然后确定函数的单调区间。

当x≥0时,y=-x^2+2x+3=-(x-1)+4;当x<0时,y=-x^2-2x+3=-(x+1)^2+4.因此,在区间(-∞,-1]和[1,+∞)上,函数是增函数;在[-1,1]上,函数是减函数。

需要注意的是,函数单调性是针对某个区间而言的,对于单独一个点没有增减变化,因此对于区间端点只要函数有意义,都可以带上。

接下来,考虑函数f(x)=x^2+2(a-1)x+2在区间(-∞,4]上是减函数的情况下,求实数a的取值范围。

首先,要充分运用函数的单调性,以对称轴为界线这一特征。

将f(x)=x^2+2(a-1)x+2写成[x+(a-1)]^2-(a-1)^2+2的形式,可以发现其对称轴是x=1-a。

因为在区间(-∞,1-a]上f(x)是单调递减的,若使f(x)在(-∞,4]上单调递减,对称轴x=1-a必须在x=4的右侧或与其重合,即1-a≥4,a≤-3.最后,判断函数f(x)=-2的奇偶性和函数f(x)=(x-1)的奇偶性。

对于第一个函数,其定义域为R,因为f(-x)=|-x+1|-|-x-1|=|x-1|-|x+1|=-f(x),因此f(x)为奇函数。

对于第二个函数,其定义域为{x|-1≤x<1},不关于原点对称,因此f (x)既不是奇函数,也不是偶函数。

判断函数的奇偶性时,需要先求出函数的定义域,并考查定义域是否关于原点对称。

然后计算f(-x),并与f(x)比较,判断f(-x)=f(x)或f (-x)=-f(x)之一是否成立。

如果f(-x)与-f(x)的关系不明确,可以考查f(-x)±f(x)是否成立,从而判断函数的奇偶性。

最后,对于函数f(x)=|x|/x,需要判断其奇偶性并确定其在(-∞,+∞)上是增函数还是减函数。

由于f(x)的定义域为R,且f(-x)=f(x),因此f(x)为偶函数。

高中数学必修1函数单调性和奇偶性专项练习(含答案)

高中数学必修1函数单调性和奇偶性专项练习(含答案)

高中数学必修1函数单调性和奇偶性专项练习(含答案)高中数学必修1 第二章函数单调性和奇偶性专项练一、函数单调性相关练题1、(1)函数f(x)=x-2,x∈{1,2,4}的最大值为3.在区间[1,5]上的最大值为9,最小值为-1.2、利用单调性的定义证明函数f(x)=(2/x)在(-∞,0)上是减函数。

证明:对于x1<x2.由于x1和x2都小于0,所以有x1<x2<0,因此有f(x2)-f(x1)=2/x1-2/x2=2(x2-x1)/x1x2<0.因此,f(x)在(-∞,0)上是减函数.3、函数f(x)=|x|+1的图像是一条V型曲线,单调区间为(-∞,0]和[0,∞).4、函数y=-x+2的图像是一条斜率为-1的直线,单调区间为(-∞,+∞).5、已知二次函数y=f(x)(x∈R)的图像是一条开口向下且对称轴为x=3的抛物线,比较大小:(1)f(6)与f(4);(2)f(2)与f(15).1) 因为f(x)是开口向下的抛物线,所以对于x>3,f(x)是减函数,对于x<3,f(x)是增函数。

因此,f(6)<f(4).2) 因为f(x)是开口向下的抛物线,所以对于x3,f(x)是增函数。

因此,f(2)>f(15).6、已知y=f(x)在定义域(-1,1)上是减函数,且f(1-a)<f(3a-2),求实数a的取值范围.因为f(x)在(-1,1)上是减函数,所以对于0f(3a-2)。

因此,实数a的取值范围为0<a<1.7、求下列函数的增区间与减区间:1) y=|x^2+2x-3|的图像是一条开口向上的抛物线,单调区间为(-∞,-3]和[1,+∞).2) y=1-|x-1|的图像是一条V型曲线,单调区间为(-∞,1]和[1,+∞).3) y=-x^2-2x+3的图像是一条开口向下的抛物线,单调区间为(-∞,-1]和[1,+∞).4) y=1/(x^2-x-20)的图像是一条双曲线,单调区间为(-∞,-4]和[-1,1]和[5,+∞).8、函数f(x)=ax^2-(3a-1)x+a^2在[1,+∞)上是增函数,求实数a的取值范围.因为f(x)在[1,+∞)上是增函数,所以对于x>1,有f(x)>f(1)。

人教版高中数学必修1 函数奇偶性 知识点 例题 练习试题 及其答案

人教版高中数学必修1 函数奇偶性 知识点  例题   练习试题   及其答案

函数奇偶性一、知识点:1.偶函数定义:一般地,如果对于函数f (x )定义域内任意一个x , 都有()()x f x f =-,那么函数f (x )就叫做偶函数。

2.奇函数定义:一般地,如果对于函数f (x )定义域内任意一个x , 都有()()x f x f -=-,那么函数f (x )就叫做奇函数。

3.判断函数奇偶性的步骤:⑴先判断函数f (x )定义域是否关于原点对称;若函数定义域不关于原点对称,则函数f (x )为非奇非偶函数; 若函数定义域关于原点对称,再进行第⑵步;⑵若()()x f x f =-或()()0=--x f x f ,则函数f (x )为偶函数; 若()()x f x f -=-或()()0=+-x f x f ,则函数f (x )为奇函数。

4.函数奇偶性的性质:⑴函数f (x )为偶函数⇔函数f (x )的图象关于y 轴对称; ⑵函数f (x )为奇函数⇔函数f (x )的图象关于原点对称;⑶若函数f (x )为偶函数,则对于定义域内的任意x ,都有()()x f x f =-; ⑷若函数f (x )为奇函数,则对于定义域内的任意x ,都有()()x f x f -=- ⑸若函数f (x )为奇函数且定义域含有0,则有()()00f f -=-即()00=f函数奇偶性练习一、范例精讲例1.下列函数是偶函数的是( )A. 21x y = B. 3x y = C. 2-=x y D. 1-=x y例2.已知2)(xx e e x f --=,则下列正确的是( )A .奇函数B .偶函数C .既是奇函数又是偶函数D .非奇非偶函数例3.已知y =f (x )是定义在R 上的奇函数,则下列函数中为奇函数的是( )①y =f (|x |);②y =f (-x );③y =xf (x );④y =f (x )+x . A .①③ B .②③ C .①④D .②④例4.函数)(x f 是R 上的偶函数,且当0>x 时,函数的解析式为.)(12-=xx f 求当0<x 时,函数的解析式.例5.设函数f (x )=1+x 21-x 2.(1)求f (x )的定义域;(2)判断f (x )的奇偶性;(3)求证:f ⎝ ⎛⎭⎪⎫1x +f (x )=0.例6.已知,,求.二、对应训练1.若f (x )为R 上的奇函数,给出下列四个说法:①f (x )+f (-x )=0 ;②f (x )-f (-x )=2f (x );③f (x )·f (-x )<0 ④1)()(-=-x f x f . 其中一定正确的有( ) A .0个 B .1个C .2个D .3个2.()x f y =是奇函数,当0>x 时,()(),1+=x x x f 则0<x 时,()=x f ( )A.()1+-x xB.()1+-x xC.()1-x xD.()1+x x 3.已知函数)(x f 是定义在R 上的奇函数,当x x x f x 2)(,02-=≥, 求)(x f 的解析式.4.设函数f (x )=ax 3+bx 2+cx +d 的图象如图所示,则f (-1)+f (1)=()A .大于0B .小于0C .等于0D .以上结论都不对5.设函数()()216x a f x x ++=+为奇函数,则实数=a ______________6.已知)(x f 是定义在[)2,0-∪(]0,2上的奇函数,当0>x 时,)(x f 的图象如上图所示,那么)(x f 的值域是函数单调性、奇偶性综合练习一、范例精讲例1.设f (x )满足f (-x )=f (x ),且在[0,+∞)上为增函数,则f (-2),f (-π),f (3)的大小顺序是( )A .f (-π)<f (-2)<f (3)B .f (-π)>f (-2)>f (3)C .f (-π)<f (3)<f (-2)D .f (-π)>f (3)>f (-2)例2.定义在R 上的偶函数f (x )满足:对任意的x 1,x 2∈[0,+∞)(x 1≠x 2),有f (x 2)-f (x 1)x 2-x 1<0,则( )A .f (3)<f (-2)<f (1)B .f (1)<f (-2)<f (3)C .f (-2)<f (1)<f (3)D .f (3)<f (1)<f (-2)例3.如果偶函数在具有最大值,那么该函数在有( )A .最大值B .最小值C .没有最大值D . 没有最小值例4.若函数 f (x )=(K-2)x 2+(K-1)x +3是偶函数,则f (x )的递减区间是例5.已知函数211)(xx f +=(1)判断)(x f 的奇偶性;(2)确定函数)(x f 在)0,(-∞上是增函数还是减函数?证明你的结论.例6.若f (x )满足f (-x )=-f (x ),且在(-∞,0)内是增函数,又f (-2)=0,则xf (x )<0的解集是( )A .(-2,0)∪(0,2)B .(-∞,-2)∪(0,2)C .(-∞,-2)∪(2,+∞)D .(-2,0)∪(2,+∞)二、对应训练1.已知奇函数()f x 在区间[]0,5上是增函数,那么下列不等式中成立的是( )()()()()()()()()()()()()43;43;43;34.A f f fB f f fC f f fD f f f ππππ>->>>>>->->-、、、、2.如果偶函数)(x f 在区间[3,7] 上是增函数且最大值为5,那么)(x f 在区间[]3,7--上是( )A.增函数且最小值是5B.增函数且最大值是5C.减函数且最大值是5D.减函数且最小值是5 3.已知函数f (x )=-2x +m ,其中m 为常数.(1)证明:函数在R 上是减函数;(2)当函数f (x )是奇函数时,求实数m 的值.4.已知y =f (x )是定义在R 上的偶函数,当x ≥0时,f (x )=x 2-2x .(1)求当x <0时,f (x )的解析式;(2)作出函数f (x )的图象,并指出其单调区间.函数奇偶性练习一、范例精讲例1.下列函数是偶函数的是( C )A. 21x y = B. 3x y = C. 2-=x y D. 1-=x y例2.已知2)(xx e e x f --=,则下列正确的是( A )A .奇函数B .偶函数C .既是奇函数又是偶函数D .非奇非偶函数例3.已知y =f (x )是定义在R 上的奇函数,则下列函数中为奇函数的是( D )①y =f (|x |);②y =f (-x );③y =xf (x );④y =f (x )+x . A .①③ B .②③ C .①④D .②④例4.函数)(x f 是R 上的偶函数,且当0>x 时,函数的解析式为.)(12-=xx f 求当0<x 时,函数的解析式.解析:当0<x 时,-x>0 ,则12--=-x x f )(.∵函数)(x f 是R 上的偶函数 ∴f(-x)=f (x )∴2()1f x x=--,x<0.例5.设函数f (x )=1+x 21-x 2.(1)求f (x )的定义域;(2)判断f (x )的奇偶性;(3)求证:f ⎝ ⎛⎭⎪⎫1x +f (x )=0.解:(1)由解析式知,函数应满足1-x 2≠0,即x ≠±1. ∴函数f (x )的定义域为{x ∈R|x ≠±1}. (2)由(1)知定义域关于原点对称, f (-x )=1+(-x )21-(-x )2=1+x 21-x 2=f (x ).∴f (x )为偶函数.(3)证明:∵f ⎝ ⎛⎭⎪⎫1x =1+⎝ ⎛⎭⎪⎫1x 21-⎝ ⎛⎭⎪⎫1x 2=x 2+1x 2-1,f (x )=1+x 21-x 2,∴f ⎝ ⎛⎭⎪⎫1x +f (x )=x 2+1x 2-1+1+x 21-x 2=x 2+1x 2-1-x 2+1x 2-1=0. 例6.已知,,求.解析: 已知中为奇函数,即=中,也即,,得,.二、对应训练1.若f (x )为R 上的奇函数,给出下列四个说法:①f (x )+f (-x )=0 ;②f (x )-f (-x )=2f (x );③f (x )·f (-x )<0 ④1)()(-=-x f x f 。

高一数学函数的奇偶性试题答案及解析

高一数学函数的奇偶性试题答案及解析

高一数学函数的奇偶性试题答案及解析1.若函数是偶函数,则的递减区间是【答案】【解析】偶函数的图像关于轴对称,故,则,则的递减区间是。

【考点】(1)偶函数图像的性质;(2)二次函数单调区间的求法。

2.设函数和分别是上的偶函数和奇函数,则下列结论恒成立的是A.是偶函数B.是奇函数C.是偶函数D.是奇函数【答案】A【解析】由设函数f(x)和g(x)分别是R上的偶函数和奇函数,我们易得到|f(x)|、|g(x)|也为偶函数,进而根据奇+奇=奇,偶+偶=偶,逐一对四个结论进行判断,即可得到答案.∵函数f(x)和g(x)分别是R上的偶函数和奇函数,则|g(x)|也为偶函数,则f(x)+|g(x)|是偶函数,故A满足条件;f(x)-|g(x)|是偶函数,故B不满足条件;|f(x)|也为偶函数,则|f(x)|+g(x)与|f(x)|-g(x)的奇偶性均不能确定故选A【考点】函数奇偶性的判断3.设函数为奇函数,,,则=()A.0B.C.D.-【答案】C.【解析】由题意知,,又因为函数为奇函数,所以,且,再令中得,,即,所以,故选C.【考点】函数的奇偶性;抽象函数.4.已知为偶函数,当时,,则满足的实数的个数为().A.2B.4C.6D.8【答案】D【解析】令,则,解得;又因为为偶函数,所以当时,,则或;当时,,方程无解;,方程有两解;,方程有一解;,方程有一解;即当时,有四解,由偶函数的性质,得当时,也有四解;综上,有8解.【考点】函数的性质、方程的解.5.偶函数满足,且在时,,若直线与函数的图像有且仅有三个交点,则的取值范围是()A.B.C.D.【答案】B【解析】因为,所以函数的图像关于直线对称,又是偶函数,所以,即有,所以是周期为2的函数,由,得,即,画出函数和直线的示意图因为直线与函数的图像有且仅有三个交点,所以根据示意图易知:由直线与半圆相切,可计算得到,由直线与半圆相切可计算得到,所以,选B.【考点】1.函数的对称性、奇偶性、周期性;2.函数图像;3.直线与圆的位置关系;4.点到直线的距离公式.6.若函数在其定义域上为奇函数,则实数 .【答案】【解析】小题可采用带特殊值法求得,检验此时在处有定义.【考点】奇函数定义及特殊值法.7.已知函数是偶函数(1)求k的值;(2)若函数的图象与直线没有交点,求b的取值范围;(3)设,若函数与的图象有且只有一个公共点,求实数的取值范围【答案】(1);(2);(3)【解析】(1)因为函数是偶函数,所以根据偶函数的定义,得到一个关于x,k的等式.由于对于任意的x都成立,相当于恒过定点的问题,所以求得k的值.(2)因为函数的图象与直线没有交点,所以对应的方程没有解,利用分离变量的思维可得到一个等式,该方程无解.所以等价两个函数与没有交点,所以求出函数的最值.即可得到b的取值范围.(3)因为,若函数与的图象有且只有一个公共点,所以等价于方程有且只有一个实数根.通过换元将原方程化为含参的二次方程的形式,即等价于该二次方程仅有一个大于零的实根,通过讨论即可得到结论.试题解析:(1)因为为偶函数,所以,即对于任意恒成立.于是恒成立,而不恒为零,所以. 4分(2)由题意知方程即方程无解.令,则函数的图象与直线无交点.因为,由,则,所以的取值范围是 . 8分(3)由题意知方程有且只有一个实数根.令,则关于的方程 (记为(*))有且只有一个正根.若,则,不合题意, 舍去;若,则方程(*)的两根异号或有两相等正根.由或;但,不合题意,舍去;而;若方程(*)的两根异号综上所述,实数的取值范围是. 12分【考点】1.函数的奇偶性.2.函数的与方程的思想的转化.3.换元法的应用.4.含参数的方程的根的讨论.8.设函数是定义在上的偶函数,当时,.若,则实数的值为 .【答案】【解析】若,则由,得,,解得成立.若,则由,得,即,,得,即,所以.【考点】函数的奇偶性.9.定义在上的函数,对任意都有,当时,,则________.【答案】【解析】由可知函数是周期函数且周期为;所以,而当时,,故.【考点】1.函数的周期性;2.抽象函数;3.函数的解析式.10.已知是定义在上的奇函数,当时,,那么的值是( ) A.B.C.D.【答案】A【解析】因为是定义在上的奇函数,所以.【考点】奇函数的定义.11.已知函数的定义域为,且为偶函数,则实数的值可以是( ) A.B.C.D.【答案】A【解析】因为函数的定义域为,所以在函数中,,则函数的定义域为,又因为为偶函数,所以,故选A.【考点】本题主要考查了抽象函数的定义域,以及偶函数的性质.12.已知定义在R上的单调递增函数满足,且。

高中数学新人教版必修一知识讲解及练习附答案知识讲解_ 奇偶性_提高

高中数学新人教版必修一知识讲解及练习附答案知识讲解_ 奇偶性_提高

高中数学新人教版必修一知识讲解及练习附答案函数的奇偶性编稿: 审稿:【学习目标】1.理解函数的奇偶性定义;2.会利用图象和定义判断函数的奇偶性;3.掌握利用函数性质在解决有关综合问题方面的应用. 【要点梳理】要点一、函数的奇偶性概念及判断步骤 1.函数奇偶性的概念偶函数:若对于定义域内的任意一个x ,都有f(-x)=f(x),那么f(x)称为偶函数. 奇函数:若对于定义域内的任意一个x ,都有f(-x)=-f(x),那么f(x)称为奇函数. 要点诠释:(1)奇偶性是整体性质; (2)x 在定义域中,那么-x 在定义域中吗?----具有奇偶性的函数,其定义域必定是关于原点对称的; (3)f(-x)=f(x)的等价形式为:()()()0,1(()0)()f x f x f x f x f x ---==≠, f(-x)=-f(x)的等价形式为:()()()01(()0)()f x f x f x f x f x -+-==-≠,; (4)由定义不难得出若一个函数是奇函数且在原点有定义,则必有f(0)=0; (5)若f(x)既是奇函数又是偶函数,则必有f(x)=0. 2.奇偶函数的图象与性质(1)如果一个函数是奇函数,则这个函数的图象是以坐标原点为对称中心的中心对称图形;反之,如果一个函数的图象是以坐标原点为对称中心的中心对称图形,则这个函数是奇函数.(2)如果一个函数为偶函数,则它的图象关于y 轴对称;反之,如果一个函数的图像关于y 轴对称,则这个函数是偶函数.3.用定义判断函数奇偶性的步骤(1)求函数()f x 的定义域,判断函数的定义域是否关于原点对称,若不关于原点对称,则该函数既不是奇函数,也不是偶函数,若关于原点对称,则进行下一步;(2)结合函数()f x 的定义域,化简函数()f x 的解析式;(3)求()f x -,可根据()f x -与()f x 之间的关系,判断函数()f x 的奇偶性.若()f x -=-()f x ,则()f x 是奇函数; 若()f x -=()f x ,则()f x 是偶函数;若()f x -()f x ≠±,则()f x 既不是奇函数,也不是偶函数;若()f x -()f x =且()f x -=-()f x ,则()f x 既是奇函数,又是偶函数要点二、判断函数奇偶性的常用方法(1)定义法:若函数的定义域不是关于原点对称,则立即可判断该函数既不是奇函数也不是偶函数;若函数的定义域是关于原点对称的,再判断()f x -与()f x ±之一是否相等.(2)验证法:在判断()f x -与()f x 的关系时,只需验证()f x -()f x ±=0及()1()f x f x -=±是否成立即可.(3)图象法:奇(偶)函数等价于它的图象关于原点(y 轴)对称.(4)性质法:两个奇函数的和仍为奇函数;两个偶函数的和仍为偶函数;两个奇函数的积是偶函数;两个偶函数的积是偶函数;一个奇函数与一个偶函数的积是奇函数.(5)分段函数奇偶性的判断判断分段函数的奇偶性时,通常利用定义法判断.在函数定义域内,对自变量x 的不同取值范围,有着不同的对应关系,这样的函数叫做分段函数.分段函数不是几个函数,而是一个函数.因此其判断方法也是先考查函数的定义域是否关于原点对称,然后判断()f x -与()f x 的关系.首先要特别注意x 与x -的范围,然后将它代入相应段的函数表达式中,()f x 与()f x -对应不同的表达式,而它们的结果按奇偶函数的定义进行比较.要点三、关于函数奇偶性的常见结论奇函数在其对称区间[a,b]和[-b ,-a]上具有相同的单调性,即已知()f x 是奇函数,它在区间[a,b]上是增函数(减函数),则()f x 在区间[-b ,-a]上也是增函数(减函数);偶函数在其对称区间[a,b]和[-b ,-a]上具有相反的单调性,即已知()f x 是偶函数且在区间[a,b]上是增函数(减函数),则()f x 在区间[-b ,-a]上也是减函数(增函数).【典型例题】类型一、判断函数的奇偶性 例1. 判断下列函数的奇偶性:(1)()(f x x =+; (2)f(x)=x 2-4|x|+3 ;(3)f(x)=|x+3|-|x-3|; (4)()|2|-2f x x =+;(5)22-(0)()(0)x x x f x x x x ⎧+≥⎪=⎨+<⎪⎩; (6)1()[()-()]()2f x g x g x x R =-∈【思路点拨】利用函数奇偶性的定义进行判断.【答案】(1)非奇非偶函数;(2)偶函数;(3)奇函数;(4)奇函数;(5)奇函数;(6)奇函数. 【解析】(1)∵f(x)的定义域为(]-1,1,不关于原点对称,因此f(x)为非奇非偶函数; (2)对任意x ∈R ,都有-x ∈R ,且f(-x)=x 2-4|x|+3=f(x),则f(x)=x 2-4|x|+3为偶函数 ;(3)∵x ∈R ,f(-x)=|-x+3|-|-x-3|=|x-3|-|x+3|=-f(x),∴f(x)为奇函数;(4)[)(]2-1x 11-x 0 x -1,00,1x 0x -4x+22≤≤⎧≥⎧∴∴∈⋃⎨⎨≠≠≠±⎩⎩且()(2)-2f x x x∴==+(-)-()f x f x ∴===,∴f(x)为奇函数;(5)∵x ∈R ,f(x)=-x|x|+x ∴f(-x)=-(-x)|-x|+(-x)=x|x|-x=-f(x),∴f(x)为奇函数; (6)11(-){(-)-[-(-)]}[(-)-()]-()22f xg x g x g x g x f x ===,∴f(x)为奇函数.【总结升华】判定函数奇偶性容易失误是由于没有考虑到函数的定义域.函数的定义域关于原点对称是函数具有奇偶性的前提条件,因此研究函数的奇偶性必须“坚持定义域优先”的原则,即优先研究函数的定义域,否则就会做无用功.如在本例(5)中若不研究定义域,在去掉|2|x +的绝对值符号时就十分麻烦.举一反三:【变式1】判断下列函数的奇偶性:(1)23()3xf x x =+;(2)()|1||1|f x x x =++-;(3)222()1x xf x x +=+;(4)22x 2x 1(x 0)f (x)0(x 0)x 2x 1(x 0)⎧+-<⎪==⎨⎪-++>⎩. 【答案】(1)奇函数;(2)偶函数;(3)非奇非偶函数;(4)奇函数. 【解析】(1)()f x 的定义域是R , 又223()3()()()33x xf x f x x x --==-=--++,()f x ∴是奇函数.(2)()f x 的定义域是R ,又()|1||1||1||1|()f x x x x x f x -=-++--=-++=,()f x ∴是偶函数. (3)22()()()11f x x x x x -=-+-+=-+()()()()f x f x f x f x ∴-≠--≠且,∴()f x 为非奇非偶函数.(4)任取x>0则-x<0,∴f(-x)=(-x)2+2(-x)-1=x 2-2x-1=-(-x 2+2x+1)=-f(x)任取x<0,则-x>0 f(-x)=-(-x)2+2(-x)+1=-x 2-2x+1=-(x 2+2x-1)=-f(x) x=0时,f(0)=-f(0) ∴x ∈R 时,f(-x)=-f(x) ∴f(x)为奇函数. 【高清课堂:函数的奇偶性356732例2(1)】【变式2】已知f(x),g(x)均为奇函数,且定义域相同,求证:f(x)+g(x)为奇函数,f(x)·g(x)为偶函数.证明:设F(x)=f(x)+g(x),G(x)=f(x)·g(x)则F(-x)=f(-x)+g(-x)=-f(x)-g(x)=-[f(x)+g(x)]=-F(x) G(-x)=f(-x)·g(-x)=-f(x)·[-g(x)]=f(x)·g(x)=G(x) ∴f(x)+g(x)为奇函数,f(x)·g(x)为偶函数. 【高清课堂:函数的奇偶性356732例2(2)】 【变式3】设函数()f x 和g(x )分别是R 上的偶函数和奇函数,则下列结论 恒成立的是 ( ).A .()f x +|g(x)|是偶函数B .()f x -|g(x)|是奇函数C .|()f x | +g(x)是偶函数D .|()f x |- g(x)是奇函数 【答案】A例2.已知函数(),f x x R ∈,若对于任意实数,a b 都有()()()f a b f a f b +=+,判断()f x 的奇偶性. 【答案】奇函数【解析】因为对于任何实数,a b ,都有()()()f a b f a f b +=+,可以令,a b 为某些特殊值,得出()()f x f x -=-.设0,a =则()(0)()f b f f b =+,∴(0)0f =. 又设,a x b x =-=,则(0)()()f f x f x =-+,()()f x f x ∴-=-,()f x ∴是奇函数.【总结升华】判断抽象函数的单调性,可用特殊值赋值法来求解.在这里,由于需要判断()f x -与()f x 之间的关系,因此需要先求出(0)f 的值才行.举一反三: 【变式1】 已知函数(),f x x R ∈,若对于任意实数12,x x ,都有121212()()2()()f x x f x x f x f x ++-=⋅,判断函数()f x 的奇偶性.【答案】偶函数 【解析】令120,,x x x ==得()()2(0)()f x f x f f x +-=,令210,,x x x ==得()()2(0)()f x f x f f x +=由上两式得:()()()()f x f x f x f x +-=+,即()()f x f x -=∴()f x 是偶函数.类型二、函数奇偶性的应用(求值,求解析式,与单调性结合)例 3. f(x),g(x)均为奇函数,()()()2H x af x bg x =++在()0,+∞上的最大值为5,则()H x 在(-,2∞)上的最小值为 .【答案】 -1【解析】考虑到(),()f x g x 均为奇函数,联想到奇函数的定义,不妨寻求()H x 与()H x -的关系.()H x +()H x -=()()2()()2af x bg x af x bg x +++-+-+()(),()()f x f x g x g x -=--=-,()()4H x H x ∴+-=.当0x <时,()4()H x H x =--, 而0x ->,()5H x ∴-≤,()1H x ∴≥- ∴()H x 在(,0)-∞上的最小值为-1.【总结升华】本例很好地利用了奇函数的定义,其实如果仔细观察还可以发现()()af x bg x +也是奇函数,从这个思路出发,也可以很好地解决本题.过程如下:0x >时,()H x 的最大值为5,0x ∴>时()()af x bg x +的最大值为3,0x ∴<时()()af x bg x +的最小值为-3,0x ∴<时,()H x 的最小值为-3+2=-1.举一反三:【变式1】已知f(x)=x 5+ax 3-bx-8,且f(-2)=10,求f(2). 【答案】-26【解析】法一:∵f(-2)=(-2)5+(-2)3a-(-2)b-8=-32-8a+2b-8=-40-8a+2b=10∴8a-2b=-50 ∴f(2)=25+23a-2b-8=8a-2b+24=-50+24=-26 法二:令g(x)=f(x)+8易证g(x)为奇函数 ∴g(-2)=-g(2) ∴f(-2)+8=-f(2)-8 ∴f(2)=-f(-2)-16=-10-16=-26.【总结升华】本题要会对已知式进行变形,得出f(x)+8= x 5+ax 3-bx 为奇函数,这是本题的关键之处,从而问题(2)g 便能迎刃而解.例4. 已知()f x 是定义在R 上的奇函数,当0x >时,2()31f x x x =+-,求()f x 的解析式.【答案】2231,0,()0,0,31,0.x x x f x x x x x ⎧+->⎪==⎨⎪-++<⎩【解析】()f x 是定义在R 上的奇函数,()()f x f x ∴-=-,当0x <时,0x ->,2()()()3()1f x f x x x ⎡⎤∴=--=--+--⎣⎦=231x x -++又奇函数()f x 在原点有定义,(0)0f ∴=.2231,0,()0,0,31,0.x x x f x x x x x ⎧+->⎪∴==⎨⎪-++<⎩【总结升华】若奇函数()f x 在0x =处有意义,则必有(0)0f =,即它的图象必过原点(0,0). 举一反三:【高清课堂:函数的奇偶性 356732 例3】 【变式1】(1)已知偶函数()f x 的定义域是R ,当0x ≤时2()31f x x x =--,求()f x 的解析式.(2)已知奇函数()g x 的定义域是R ,当0x >时2()21g x x x =+-,求()g x 的解析式.【答案】(1)2231(0)()31(0)x x x f x x x x ⎧+->⎪=⎨--≤⎪⎩;(2)2221(0)()0021(0)x x x g x x x x x ⎧+->⎪==⎨⎪-++<⎩ ()例5. 定义域在区间[-2,2]上的偶函数()g x ,当x ≥0时,()g x 是单调递减的,若(1)()g m g m -<成立,求m 的取值范围.【思路点拨】根据定义域知1-m ,m ∈[―1,2],但是1―m ,m 在[―2,0],[0,2]的哪个区间内尚不明确,若展开讨论,将十分复杂,若注意到偶函数()f x 的性质:()()(||)f x f x f x -==,可避免讨论.【答案】1[1,)2-. 【解析】由于()g x 为偶函数,所以(1)(1)g m g m -=-,()(||)g m g m =.因为x ≥0时,()g x 是单调递减的,故|1|||(1)()(|1|)(||)|1|2||2m m g m g m g m g m m m ->⎧⎪-<⇔-<⇔-≤⎨⎪≤⎩,所以222121222m m m m m ⎧-+>⎪-≤-≤⎨⎪-≤≤⎩,解得112m -≤<.故m 的取值范围是1[1,)2-.【总结升华】在解题过程中抓住偶函数的性质,将1―m ,m 转化到同一单调区间上,避免了对由于单调性不同导致1―m 与m 大小不明确的讨论,从而使解题过程得以优化.另外,需注意的是不要忘记定义域.类型三、函数奇偶性的综合问题例6. 已知()y f x =是偶函数,且在[0,+∞)上是减函数,求函数2(1)f x -的单调递增区间. 【思路点拨】本题考查复合函数单调性的求法。

高一数学函数的奇偶性试题答案及解析

高一数学函数的奇偶性试题答案及解析

高一数学函数的奇偶性试题答案及解析1.设函数和分别是上的偶函数和奇函数,则下列结论恒成立的是A.是偶函数B.是奇函数C.是偶函数D.是奇函数【答案】A【解析】由设函数f(x)和g(x)分别是R上的偶函数和奇函数,我们易得到|f(x)|、|g(x)|也为偶函数,进而根据奇+奇=奇,偶+偶=偶,逐一对四个结论进行判断,即可得到答案.∵函数f(x)和g(x)分别是R上的偶函数和奇函数,则|g(x)|也为偶函数,则f(x)+|g(x)|是偶函数,故A满足条件;f(x)-|g(x)|是偶函数,故B不满足条件;|f(x)|也为偶函数,则|f(x)|+g(x)与|f(x)|-g(x)的奇偶性均不能确定故选A【考点】函数奇偶性的判断2.若定义在上的奇函数和偶函数满足,则()A.B.C.D.【答案】A【解析】为奇函数和为偶函数,由可得,即,,可解得.故选A.【考点】函数的奇偶性.3.已知f(x)是定义在(-3,3)上的奇函数,当0<x<3时,如图所示,那么不等式f(x)cosx<0的解集是( ).A.B.C.D.【解析】图1图2如图1为f(x)在(-3,3)的图象,图2为y=cosx图象,要求得的解集,只需转化为在寻找满足如下两个关系的区间即可:,结合图象易知当时,,当时,,当时,,故选B.【考点】奇函数的性质,余弦函数的图象,数形结合思想.4.已知函数为偶函数,且若函数,则= .【答案】2014【解析】由函数为偶函数,且得从而,故应填入2014.【考点】函数的奇偶性.5.若函数在其定义域上为奇函数,则实数 .【答案】【解析】小题可采用带特殊值法求得,检验此时在处有定义.【考点】奇函数定义及特殊值法.6.函数的图像大致是()【答案】A【解析】因为的定义域为且,所以为上的偶函数,该函数的图像关于轴对称,只能是图像A、C选项之一,而,故选A.【考点】1.函数的图像;2.函数的奇偶性.7.已知,,则_ ____.【答案】5【解析】函数,,又为奇函数,所以.【考点】函数奇偶性.8.已知是奇函数,且,则.【解析】令,因为此函数是奇函数,所以。

高一数学函数的基本性质知识点及练习题含答案

高一数学函数的基本性质知识点及练习题含答案

函数的基本性质1.奇偶性(1)定义:如果对于函数f (x )定义域内的任意x 都有f (-x )=-f (x ),则称f (x )为奇函数;如果对于函数f (x )定义域内的任意x 都有f (-x )=f (x ),则称f (x )为偶函数。

如果函数f (x )不具有上述性质,则f (x )不具有奇偶性.如果函数同时具有上述两条性质,则f (x )既是奇函数,又是偶函数。

注意:函数是奇函数或是偶函数称为函数的奇偶性,函数的奇偶性是函数的整体性质;由函数的奇偶性定义可知,函数具有奇偶性的一个必要条件是,对于定义域内的任意一个x ,则-x 也一定是定义域内的一个自变量(即定义域关于原点对称)。

(2)利用定义判断函数奇偶性的格式步骤:首先确定函数的定义域,并判断其定义域是否关于原点对称; 确定f (-x )与f (x )的关系; 作出相应结论:若f (-x )=f (x )或f (-x )-f (x )=0,则f (x )是偶函数; 若f (-x )=-f (x )或f (-x )+f (x )=0,则f (x )是奇函数。

(3)简单性质:①图象的对称性质:一个函数是奇函数的充要条件是它的图象关于原点对称;一个函数是偶函数的充要条件是它的图象关于y 轴对称;②设()f x ,()g x 的定义域分别是12,D D ,那么在它们的公共定义域上:奇+奇=奇,奇⨯奇=偶,偶+偶=偶,偶⨯偶=偶 2.单调性(1)定义:一般地,设函数y =f (x )的定义域为I , 如果对于定义域I 内的某个区间D 内的任意两个自变量x 1,x 2,当x 1<x 2时,都有f (x 1)<f (x 2)(f (x 1)>f (x 2)),那么就说f (x )在区间D 上是增函数(减函数);注意:函数的单调性是在定义域内的某个区间上的性质,是函数的局部性质;必须是对于区间D 内的任意两个自变量x 1,x 2;当x 1<x 2时,总有f (x 1)<f (x 2)(2)如果函数y =f (x )在某个区间上是增函数或是减函数,那么就说函数y =f (x )在这一区间具有(严格的)单调性,区间D 叫做y =f (x )的单调区间。

【高中数学】函数的奇偶性 (含答案详解)

【高中数学】函数的奇偶性 (含答案详解)

B. f (−2) f (1) f (−1)
C. f (−2) f (−1) f (1)
D.无法确定
6.已知函数 f (x) 是偶函数,其图象与 x 轴有 9 个交点,则方程 f (x) = 0 的所有实根之和为
()
A.0
B.3
C.6
D.9
7.若函数 f (x) =
x
为奇函数,则 a = .
请你写出你认为比较常见的奇函数: y = x 偶函数: y = x2
3.函数奇偶性的判断方法
y=1 x
y
=
1 x2
y = x3
利用定义法判断函数奇偶性的步骤是:
① 首先考察定义域是否关于原点对称;
② 然后验证 f (−x) = f (x) 或 f (−x) = − f (x) .
二、课堂练习
1.判断具体函数的奇偶性 例 1.判断下列函数的奇偶性 (1) f (x) = x + 1
(2) f (x) = 2x2 + 2x ; x +1
(3)
f
(x)
=
x(1 − x(1 +
x), x),
x x
0 0

2.判断下列函数的奇偶性:
(1) f (x) = x − 1 ; x
(2) f (x) = x + 1 ; x
(3)
f
(x)
=
−x2 + x + 1, x
x2
+
x
− 1,
x
0
(1)一次函数 y = kx + b 为奇函数,则 b 要满足的条件是 b = 0 .
(2)二次函数 y = ax2 + bx + c 为偶函数,则要满足的条件是 b = 0 .

人教版高一数学必修1第13课时函数的奇偶性(含详细答案)

人教版高一数学必修1第13课时函数的奇偶性(含详细答案)

第13课时函数的奇偶性课时目标1.掌握利用函数的奇偶性定义判断函数奇偶性的方法和步骤.2.掌握奇偶函数的图象的对称性,并能利用其正确作出奇偶函数的草图.识记强化1.奇(偶)函数的概念.(1)一般地,如果对于函数f(x)的定义域内任意一个x,都有f(-x)=f(x),那么函数f(x)就叫做偶函数.(2)一般地,如果对于函数f(x)的定义域内任意一个x,都有f(-x)=-f(x),那么函数f(x)就叫做奇函数.(3)如果函数f(x)是奇函数或偶函数,就说f(x)具有奇偶性.2.奇(偶)函数的图象特点.(1)奇函数的图象关于原点对称;反过来,如果一个函数的图象关于原点对称,那么这个函数是奇函数.(2)偶函数的图象关于y轴对称;反过来,如果一个函数的图象关于y轴对称,那么这个函数是偶函数.(3)若当x=0时奇函数f(x)有意义,则f(0)=0.课时作业(时间:45分钟,满分:90分)一、选择题(本大题共6小题,每小题5分,共30分)1.函数f(x)=(x-1)·1+x1-x,x∈(-1,1)()A.是奇函数B.是偶函数C.既是奇函数又是偶函数D.是非奇非偶函数答案:B解析:∵x∈(-1,1),∴x-1<0.∴f(x)=(x-1)·1+x1-x=-1-x2.g (x )是偶函数得g (-x )=g (x ), H (-x )=f (-x )·g (-x )=-f (x )·g (x ) =-H (x )所以H (x )=f (x )·g (x )在区间D 上为奇函数.6.函数f (x )=ax 2+bx +2a -b 是定义在[a -1,2a ]上的偶函数,则a +b =( ) A .-13 B.13C .0D .1 答案:B解析:由偶函数的定义,知[a -1,2a ]关于原点对称,所以2a =1-a ,解得a =13.又f (x )为偶函数,则b=0. 所以a +b =13.二、填空题(本大题共3个小题,每小题5分,共15分)7.函数f (x )=ax 2+bx +3x +b 是偶函数,且其定义域为[a -1,2a ],则2a +3b =________. 答案:-253解析:因为偶函数的定义域关于原点对称, 所以(a -1)+2a =0,所以a =13.因为偶函数的图象关于y 轴对称, 所以-b +32a =0,所以b =-3.故2a +3b =-253.8.设奇函数f (x )的定义域为[-5,5],若当x ∈[0,5]时,f (x )的图象如图所示,则不等式f (x )<0的解集为________.答案:(-2,0)∪(2,5]解析:由奇函数的图象关于原点对称,作出函数f (x )在[-5,0)的图象,由图象可以看出,不等式f (x )<0的解集是(-2,0)∪(2,5],如图所示.9.已知f (x )、g (x )是R 上的奇函数,若F (x )=af (x )+bg (x )+2在区间(0,+∞)上的最大值为5,则F (x )在(-∞,0)上的最小值为________.答案:-1∴f(-7)=g(-7)+7=-17,得g(-7)=-24.∴f(7)=g(7)+7=24+7=31.13.(15分)函数f(x)的图象关于y轴对称,且x≥0时f(x)=x2-2x.求满足f(x-1)<3的x取值范围.解:∵f(x)图象关于y轴对称,所以函数f(x)为偶函数x≥0时,x2-2x=3,x=3或x=-1(舍去)即f(3)=3.∵f(x)为偶函数,∴f(x)=f(|x|)结合图象f(x-1)<3,f(|x-1|)<f(3)∴|x-1|<3,-2<x<4.。

高一数学函数的奇偶性试题答案及解析

高一数学函数的奇偶性试题答案及解析

高一数学函数的奇偶性试题答案及解析1.已知是定义在上的奇函数,当时,则当时___________.【答案】【解析】设,则,又是定义在上的奇函数,则,故填.【考点】函数的奇偶性.2.设是定义在R上的奇函数,且的图象关于直线对称,则=________【解析】因为是定义在R上的奇函数,所以f(-x)=-f(x).又因为的图象关于直线对称.所以f(x)=f(1-x).所以由上两式可得f(1-x)=-f(-x)即f(-x)="-" f(1-x)=f(2-x).所以函数是一个周期为2的函数.所以.又因为函数是R上的奇函数所以,.所以填0.【考点】1.函数的周期性.2.函数的对称性.3.函数的奇偶性.3.已知偶函数满足,且当时,,则.【答案】2【解析】由知此函数周期 4,因为为偶函数,所以【考点】函数奇偶性周期性4.已知函数,下列叙述(1)是奇函数;(2)是奇函数;(3)的解为(4)的解为;其中正确的是________(填序号).【答案】(1)(3)【解析】这类问题,必须对每个命题都判断其真假,根据的解析式,显然对任意的都有,即是奇函数,(1)正确;当然此时函数是偶函数,(2)错误;对(3)按照分类讨论,可解得不等式的解是,(3)正确;而对不等式来讲,时,不等式就不成立,故(4)错误.填(1)(3).【考点】分段函数,函数的奇偶性,分类讨论.5.已知是定义在上的偶函数,那么=【答案】【解析】是定义在上的偶函数,因为偶函数定义域关于原点对称,,又由偶函数关于轴对称得:,所以【考点】偶函数的性质应用6.已知函数是定义在上的偶函数.当时,,则当时,.【答案】【解析】把转化为,利用偶函数的定义即可得所求.试题解析:时,.所以,.因为是是定义在上的偶函数,所以.【考点】偶函数,转化与化归思想7.定义在上的奇函数,当时,,则方程的所有解之和为.【答案】【解析】利用奇函数的图象关于原点对称的性质,通过观察图象可知方程的解是及的解的相反数.试题解析:作出时的图象,如下所示:方程的解等价于的图象与直线的交点的横坐标,因为奇函数的图象关于原点对称,所以等价于()的图象与直线的交点的横坐标和()的图象与直线的交点的横坐标的相反数,.由得.所以方程的所有解之和为.【考点】奇函数,方程与函数思想8.函数f(x)=x5+x3的图象关于()对称().A.y轴B.直线y=x C.坐标原点D.直线y=-x【答案】C【解析】∵,∴函数是奇函数,它的图象关于原点对称.图象关于y轴对称的函数是偶函数。

函数的奇偶性 - 高中数学讲义与经典例题解析版

函数的奇偶性 - 高中数学讲义与经典例题解析版

函数的奇偶性知识讲解一、函数奇偶性的定义1.奇函数:设函数()y f x =的定义域为D ,如果对于D 内的任意一个x ,都有x D -∈,且()()f x f x -=-,则这个函数叫做奇函数.2.偶函数:设函数()y f x =的定义域为D ,如果对于D 内的任意一个x ,都有x D -∈,且()()f x f x -=,则这个函数叫做偶函数.二、奇偶函数的图象特征1.函数()y f x =是偶函数⇔()y f x =的图象关于y 轴对称;2.函数()y f x =是奇函数⇔()y f x =的图象关于原点对称.三、判断函数奇偶性的方法1.定义法:首先判断其定义域是否关于原点中心对称.若不对称,则为非奇非偶函数;若对称,则再判断()()f x f x -=-或()()f x f x -=是否为恒等式.定义的等价形式:()()0f x f x ±-=,()1()f x f x =±-.2.图象法3.性质法:设()f x ,()g x 的定义域分别是12,D D ,那么在它们的公共定义域12D D D = 上:奇±奇=奇,偶±偶=偶,奇⨯奇=偶,偶⨯偶=偶,奇⨯偶=奇;四、奇偶函数的性质1.函数具有奇偶性⇒其定义域关于原点对称;2.函数()y f x =是偶函数⇔()y f x =的图象关于y 轴对称;3.函数()y f x =是奇函数⇔()y f x =的图象关于原点对称.4.奇函数在对称区间上的单调性相同;偶函数在对称区间上的单调性相反.5.若奇函数()y f x =的定义域包含0,则(0)0f =.五、常见函数的奇偶性1.正比例函数(0)y kx k =≠是奇函数;2.反比例函数(0)k y k x=≠是奇函数;3.函数(00)y kx b k b =+≠≠,是非奇非偶函数;4.函数2(0)y ax c a =+≠是偶函数;5.常函数y c =是偶函数;6.对勾函数(0)k y x k x=+≠是奇函数;经典例题一.填空题(共12小题)1.给定四个函数:①y=x3+3;②y=1(x>0);③y=x3+1;④y=2+1.其中是奇函数的有①④(填序号).【解答】解::①函数的定义域为R,则f(﹣x)=﹣(x3+3)=﹣f(x),则函数f(x)是奇函数;②函数的定义域关于原点不对称,则函数f(x)为非奇非偶函数;③函数的定义域为R,f(0)=0+1=1≠0,则函数f(x)为非奇非偶函数;④函数的定义域为(﹣∞,0)∪(0,+∞),f(﹣x)=2+1−=﹣2+1=﹣f (x),则函数f(x)是奇函数,故答案为:①④2.f(x)是定义在R上的奇函数,当x<0时,f(x)=x2﹣3x,则当x>0时,f(x)=﹣x2﹣3x.【解答】解:∵f(x)是定义在R上的奇函数,∴f(﹣x)=﹣f(x),若x>0,则﹣x<0,∵x<0时,f(x)=x2﹣3x,∴当﹣x<0时,f(﹣x)=x2+3x=﹣f(x),∴f(x)=﹣x2﹣3x,故答案为:x2﹣3x,3.已知f(x)是R上偶函数,且在[0,+∞)上递减,比较o−34)与f(1+a+a2)的大小关系为f(1+a+a2)≤f(﹣34).【解答】解:根据题意,1+a+a2=(14+a+a2)+34=(a+12)2+34≥34,则又由f (x )在[0,+∞)上递减,则有f (1+a +a 2)≤f (34),又由f (x )是R 上偶函数,则有f (1+a +a 2)≤f (﹣34),故答案为:f (1+a +a 2)≤f (﹣34).4.已知f (x )是定义在(﹣1,1)上的奇函数,且在定义域上为增函数,若f (a ﹣2)<f (4﹣a 2),求a 2).【解答】解:因为f (x )是定义在(﹣1,1)上的奇函数,且在定义域上为增函数.所以f (a ﹣2)<f (4﹣a 2)等价于−1<−2<1−1<4−2<1−2<4−2,化简可得1<<33<2<5−3<<2解可得3<a <2.故答案为(3,2).5.设函数f (x )在R 上是偶函数,在区间(﹣∞,0)上递增,且f (2a 2+a +1)<f (2a 2﹣2a +3),则a 的取值范围=(23,+∞).【解答】解:根据题意,2a 2+a +1=2(a 2+12a +116)+78=2(a +12)2+78≥78,而2a 2﹣2a +3=2(a 2﹣a +14)+52=2(a ﹣12)2+52≥52;由f (x )在R 上是偶函数,在区间(﹣∞,0)上递增,可知f (x )在(0,+∞)上递减.若f (2a 2+a +1)<f (2a 2﹣2a +3),则2a 2+a +1>2a 2﹣2a +3,即3a ﹣2>0,解可得a >23,则a 的取值范围(23,+∞);故答案为:23,+∞).6.已知定义在R上的奇函数f(x)满足f(x)=x2+2x(x≥0),若f(3﹣a2)>f(2a﹣a2),则实数a的取值范围是a<32.【解答】解:∵函数f(x)=x2+2x(x≥0)是增函数,且f(0)=0,f(x)是奇函数∴f(x)是R上的增函数.由f(3﹣a2)>f(2a﹣a2),于是3﹣a2>2a﹣a2,因此,解得a<32.故答案为:a<32.7.若f(x)=ax3+bx+1﹣b是定义在区间[﹣4+a,a]的奇函数,则a+b= 3.【解答】解:∵f(x)=ax3+bx+1﹣b是定义在区间[﹣4+a,a]的奇函数,∴﹣4+a+a=0,f(0)=0.解得a=2,b=1.∴a+b=3.故答案为:3.8.若f(a+b)=f(a)•f(b)且f(1)=2.则o2)o1)+o3)o2)+…+o2012)o2011)=4022.【解答】解:令b=1.∴f(a+1)=f(a)f(1)or1)op=f(1)=2o2)o1)=2.o3)o2)=2. (2012)o2011)=2o2)o1)+o3)o2)+…+o2012)o2011)=2011×2=4022.答案:4022.9.已知函数f(x)满足f(ab)=f(a)+f(b),且f(2)=p,f(3)=q,那么f(72)=3p+2q.【解答】解:由题意可知:f(6)=f(2)+f(3)=p+q∴f(18)=f(6)+f(3)=p+q+q=p+2q∴f(36)=f(18)+f(2)=p+2q+p=2p+2q∴f(72)=f(36)+f(2)=2p+2q+p=3p+2q故答案为:3p+2q.10.已知函数f(x)的定义域D=(0,+∞),且对于任意x1,x2∈D,均有f(x1•x2)=f(x1)+f(x2)﹣1,且当x>1时,f(x)>1(1)求f(1)的值;(2)求证:f(x)在(0,+∞)上是增函数;(3)若f(16)=3,解不等式f(3x+1)≤2.【解答】解:(1)令x1=x2=1,∴f(1)=f(1)+f(1)﹣1∴f(1)=1,(2):设令0<x1<x2,21>1,当x>1时,f(x)>1∴f(21)>1,∴f(21•x1)=f(x2)=f(21)+f(x1)﹣1>f(x1),∴f(x)在(0,+∞)上是增函数;(3)令x1=x2=4,∴f(16)=f(4)+f(4)﹣1=3∴f(4)=2,∴f(3x+1)≤2=f(4),∵f(x)在(0,+∞)上是增函数;∴3+1>03+1≤4,解得−13<x≤1,故不等式f(3x+1)≤2的解集为(−13,1].11.已知f(x)是定义域在(0,+∞)上的单调递增函数.且满足f(6)=1.f(x)﹣f(y)=f()(x>0,y>0).则不等式f(x+3)<f(12的解集是(0,−3+3172).【解答】解:∵f(x)﹣f(y)=f()(x>0,y>0),令x=36,y=6,得f(36)﹣f(6)=f(6)∴f(36)=2f(6)=2,∵f(x+3)<f(1)+2,∴f(x+3)﹣f(1)=f(x(x+3))<2=f(36),∵f(x)是定义域在(0,+∞)上的单调递增函数,+3>0>0o+3)<36∴0<x−3+3172故不等式f(x+3)<f(1)+2的解集是(0,−3+3172),故答案为:(0−3+3172),12.已知函数f(x),对任意实数x1,x2都有f(x1+x2)=f(x1)+f(x2),且当x>0时f(x)>0,f(2)=1.解不等式f(2x2﹣1)<2的解集为[﹣102,102].【解答】解:∵f(x1+x2)=f(x1)+f(x2),设x1=x2=0,可得f(0)=2f(0),解得f(0)=0,令x1+x2=0,可得f(0)=f(x1)+f(x2),即有f(﹣x)=﹣f(x),即f(x)为奇函数;令x1<x2,即有x2﹣x1>0,f(x2﹣x1)>0,即为f(x2)=f(x1+x2﹣x1)=f(x1)+f(x2﹣x1)>f(x1),即有f(x)在R上为增函数;令x1=x2=2,可得f(4)=2f(2),解得f(4)=2,∵不等式f(2x2﹣1)<2=f(4)∴2x2﹣1<4,102<x<102102,102].102,102].二.解答题(共6小题)13.设函数y=f(x)(x∈R)对任意实数均满足f(x+y)=f(x)+f(y),求证f(x)是奇函数.【解答】证明:定义域关于原点对称,令x=y=0,代入f(x+y)=f(x)+f(y)得f(0)=0,令y=﹣x得:f(0)=f(x)+f(﹣x)=0,∴f(﹣x)=﹣f(x),∴f(x)是奇函数.14.判断并证明下列函数的奇偶性.(Ⅰ)f(x)=|x|+12;(Ⅱ)f(x)=x2+2x;(Ⅲ)f(x)=x+1.【解答】解:(Ⅰ)可得x≠0f(﹣x)=|﹣x|+1(−p2=f(x),故函数为偶函数;(Ⅱ)函数的定义域为R,且f (x )=x 2+2x 的图象为抛物线,对称轴为x=﹣1,不关于y 轴对称,也不关于原点对称,故函数非奇非偶;(Ⅲ)可得x ≠0,f (﹣x )=﹣x ﹣1=﹣f (x ),故函数为奇函数.15.判断下列函数的奇偶性:(1)f (x )=3,x ∈R ;(2)f (x )=5x 4﹣4x 2+7,x ∈[﹣3,3];(3)f (x )=|2x ﹣1|﹣|2x +1|;(4)f (x )=1−2,>00,=02−1,<0.【解答】解:(1)由f (﹣x )=3=f (x ),x ∈R ,可得函数f (x )为偶函数;(2)f (﹣x )=5(﹣x )4﹣4(﹣x )2+7=5x 4﹣4x 2+7=f (x ),x ∈[﹣3,3],可得函数f (x )为偶函数;(3)定义域为R ,f (﹣x )=|﹣2x ﹣1|﹣|﹣2x +1|=|2x +1|﹣|2x ﹣1|=﹣f (x ),可得f (x )为奇函数;(4)f (x )=1−2,>00,=02−1,<0,定义域为R ,当x >0时,﹣x <0,可得f (﹣x )=(﹣x )2﹣1=x 2﹣1=﹣f (x ),当x=0可得f (0)=0;当x <0时,﹣x >0,可得f (﹣x )=1﹣(﹣x )2=1﹣x 2=﹣f (x ),即有f(﹣x)=﹣f(x),可得f(x)为奇函数.16.判断下列函数的奇偶性(1)f(x)=a(a∈R)(2)f(x)=(1+x)3﹣3(1+x2)+2(3)f(x)=o1−p,<0o1+p,>0.【解答】解:(1)由奇偶性定义当a=0时,f(x)=0既是奇函数又是偶函数,当a≠0时,f(x)=f(﹣x)=a,故是偶函数;(2)f(x)=(1+x)3﹣3(1+x2)+2=x3+3x,由于f(x)+f(﹣x)=x3+3x+(﹣x)3+3(﹣x)=0,故f(x)=(1+x)3﹣3(1+x2)+2是奇函数.(3)当x<0时,﹣x>0,f(﹣x)=﹣x(1﹣x)=﹣f(x);当x>0时,﹣x<0,f(﹣x)=﹣x(1+x)=﹣f(x);由上证知,在定义域上总有f(﹣x)=﹣f(x);故函数f(x)=o1−p,<0o1+p,>0是奇函数.17.已知函数op=B2+23r是奇函数,且o2)=53.(1)求实数a,b的值;(2)判断函数f(x)在(﹣∞,﹣1]上的单调性,并加以证明.【解答】解:(1)函数op=B2+23r是奇函数,且o2)=53,可得f(﹣x)=﹣f(x),B2+2−3r=﹣B2+23r,可得﹣3x+b=﹣3x﹣b,解得b=0;4r26=53,解得a=2;(2)函数f(x)=22+23在(﹣∞,﹣1]上单调递增;理由:设x1<x2≤﹣1,则f(x1)﹣f(x2)=23(x1+11)﹣23(x2+12)=23(x1﹣x2)(1﹣112),由x1<x2≤﹣1,可得x1﹣x2<0,x1x2>1,即有1﹣112>0,则f(x1)﹣f(x2)<0,即f(x1)<f(x2),则f(x)在(﹣∞,﹣1]上单调递增.18.已知f(x)=1+.(1)求f(x)+f(1)的值;(2)求f(1)+f(2)+…+f(7)+f(1)+f(12)+…+f(17)的值.【解答】解:(1)∵f(x)=1+.∴f(x)+f(1)=1++11+1=1++11+=1,(2)由(1)得:f(1)+f(2)+…+f(7)+f(1)+f(12)+…+f(17)=7.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

函数的单调性和奇偶性
例1(1)画出函数y=-x2+2|x|+3的图像,并指出函数的单调区间.
解:函数图像如下图所示,当x≥0时,y=-x2+2x+3=-(x-1)2+4;当x<0时,y=-x2-2x+3=-(x+1)2
+4.在(-∞,-1]和[0,1]上,函数是增函数:在[-1,0]和[1,+∞)上,函数是减函数.
评析函数单调性是对某个区间而言的,对于单独一个点没有增减变化,所以对于区间端点只要函
数有意义,都可以带上.
(2)已知函数f(x)=x2+2(a-1)x+2在区间(-∞,4]上是减函数,求实数a的取值范围.分析要充分运用函数的单调性是以对称轴为界线这一特征.
解:f(x)=x2+2(a-1)x+2=[x+(a-1)]2-(a-1)2+2,此二次函数的对称轴是x=1-a.因为在区间(-∞,1-a]上f(x)是单调递减的,若使f(x)在(-∞,4]上单调递减,对称轴x=1-a必须在x=4的右侧或与其重合,即1-a≥4,a≤-3.
评析这是涉及逆向思维的问题,即已知函数的单调性,求字母参数范围,要注意利用数形结合.
例2判断下列函数的奇偶性:
(1)f(x)=-
(2)f(x)=(x-1).
解:(1)f(x)的定义域为R.因为
f(-x)=|-x+1|-|-x-1|
=|x-1|-|x+1|=-f(x).
所以f(x)为奇函数.
(2)f(x)的定义域为{x|-1≤x<1},不关于原点对称.所以f(x)既不是奇函数,也不是偶
函数.
评析用定义判断函数的奇偶性的步骤与方法如下:
(1)求函数的定义域,并考查定义域是否关于原点对称.
(2)计算f(-x),并与f(x)比较,判断f(-x)=f(x)或f(-x)=-f(x)之一是否成立.f (-x)与-f(x)的关系并不明确时,可考查f(-x)±f(x)=0是否成立,从而判断函数的奇偶性.
例3已知函数f(x)=.
(1)判断f(x)的奇偶性.
(2)确定f(x)在(-∞,0)上是增函数还是减函数?在区间(0,+∞)上呢?证明你的结论.解:因为f(x)的定义域为R,又
f(-x)===f(x),
所以f(x)为偶函数.
(2)f(x)在(-∞,0)上是增函数,由于f(x)为偶函数,所以f(x)在(0,+∞)上为减函数.其证明:取x1<x2<0,
f(x1)-f(x2)=- ==.
因为x1<x2<0,所以
x2-x1>0,x1+x2<0,
x21+1>0,x22+1>0,
得f(x1)-f(x2)<0,即f(x1)<f(x2).
所以f(x)在(-∞,0)上为增函数.
评析奇函数在(a,b)上的单调性与在(-b,-a)上的单调性相同,偶函数在(a,b)与(-b,-a)的单调性相反.
例4已知y=f(x)是奇函数,它在(0,+∞)上是增函数,且f(x)<0,试问F(x)=
在(-∞,0)上是增函数还是减函数?证明你的结论.
分析根据函数的增减性的定义,可以任取x1<x2<0,进而判定F(x1)-F(x2)=-
=的正负.为此,需分别判定f(x1)、f(x2)与f(x2)的正负,而这可以从已条件
中推出.
解:任取x1、x2∈(-∞,0)且x1<x2,则有-x1>-x2>0.
∵y=f(x)在(0,+∞)上是增函数,且f(x)<0,
∴f(-x2)<f(-x1)<0.①
又∵f(x)是奇函数,
∴f(-x2)=-f(x2),f(-x1)=-f(x1)②
由①、②得f(x2)>f(x1)>0.于是
F(x1)-F(x2)=>0,即F(x1)>F(x2),
所以F(x)=在(-∞,0)上是减函数.
评析本题最容易发生的错误,是受已知条件的影响,一开始就在(0,+∞)内任取x1<x2,展开证明.这样就不能保证-x1,-x2,在(-∞,0)内的任意性而导致错误.
避免错误的方法是:要明确证明的目标,有针对性地展开证明活动.
例5讨论函数f(x)=(a≠0)在区间(-1,1)内的单调性.
分析根据函数的单调性定义求解.
解:设-1<x1<x2<1,则
f(x1)-f(x2)=-

∵x1,x2∈(-1,1),且x1<x2,
∴x1-x2<0,1+x1x2>0,
(1-x21)(1-x22)>0
于是,当a>0时,f(x1)<f(x2);当a<0时,f(x1)>f(x2).
故当a>0时,函数在(-1,1)上是增函数;当a<0时,函数在(-1,1)上为减函数.
评析根据定义讨论(或证明)函数的单调性的一般步骤是:
(1)设x1、x2是给定区间内任意两个值,且x1<x2;
(2)作差f(x1)-f(x2),并将此差式变形;
(3)判断f(x1)-f(x2)的正负,从而确定函数的单调性.
例6求证:f(x)=x+ (k>0)在区间(0,k]上单调递减.
解:设0<x1<x2≤k,则
f(x1)-f(x2)=x1+ -x2-

∵0<x1<x2≤k,
∴x1-x2<0,0<x1x2<k2,
∴f (x 1)-f (x 2)>0 ∴f (x 1)>f (x 2),
∴f (x )=x+ 中(0,k ]上是减函数.
评析
函数f (x )在给定区间上的单调性反映了函数
f (x )在区间上函数值的变化趋势,是函数
在区间上的整体性质.因此,若要证明f (x )在[a,b ]上是增函数(减函数),就必须证明对于区间
[a,b ]上任意两点
x 1,x 2,当x 1<x 2时,都有不等式
f (x 1)<f (x 2)(f (x 1)>f (x 2))
类似可以证明:
函数f (x )=x+ (k >0)在区间[k ,+∞]上是增函数.
例7判断函数f (x )=的奇偶性.
分析
确定函数的定义域后可脱去绝对值符号.
解:由得函数的定义域为[-1,1].这时,|x-2|=2-x .
∴f (x )=,
∴f (-x )===f (x ).
且注意到f (x )不恒为零,从而可知,f (x )=是偶函数,不是奇函数.
评析
由于函数解析式中的绝对值使得所给函数不像具有奇偶性,若不作深入思考,便会作出其非
奇非偶的判断.但隐含条件(定义域)被揭示之后,函数的奇偶性就非常明显了.这样看来,解题中先确定函数的定义域不仅可以避免错误,而且有时还可以避开讨论,简化解题过程.
函数奇偶性练习
一、选择题
1.已知函数f (x )=ax 2
+bx +c (a ≠0)是偶函数,那么
g (x )=ax 3+bx 2
+cx (

A .奇函数
B .偶函数
C .既奇又偶函数
D .非奇非偶函数
2.已知函数f (x )=ax 2+bx +3a +b 是偶函数,且其定义域为[
a -1,2a ],则()
A .3
1a
,b =0 B .a =-1,b =0 C .a =1,b =0
D .a =3,b =0
3.已知f (x )是定义在R 上的奇函数,当x ≥0时,f (x )=x 2
-2x ,则f (x )在R 上的表达式是(

A .y =x (x -2)
B .y =x (|x |-1)
C .y =|x |(x -2)
D .y =x (|x |-2)。

相关文档
最新文档