矩阵在解线性方程组中的应用
矩阵在解线性方程组中的应用
矩阵在解线性方程组中的应用摘要线性方程组的求解是代数学中一个比较重要的内容. 线性方程组求解过程中,掌握各种求解线性方程组的方法是至关重要的. 基于线性方程组和矩阵之间的联系,可以用线性方程组系数和常数项所构成的行列式矩阵来研究线性方程组的求解问题. 本文主要讨论矩阵的秩在方程组的解的判断中的应用、矩阵的初等变换在解线性方程组中的应用. 关键词: 矩阵;线性方程组;矩阵的秩;初等变换一、引言矩阵和线性代数在高等代数中占据重要的位置,而解线性方程组在高等代数中也是十分重要的知识点. 中学时我们也初步了解并学习了解简单的线性方程组,知线性方程组的重要性,但是不是每一个线性方程组都有解,所以我们首先要做的就是判断线性方程组有无解, 通过对矩阵的学习,我们知道矩阵的秩可以判断线性方程组有无解,在有解的情况下可以利用矩阵求解线性方程组.在文献[1]中总结了矩阵、线性方程组的相关概念;文献[2]给出了线性方程组的一般解法的主要内容;文献[3-5]给出了矩阵的初等变换、矩阵的逆的相关概念概念以及龝矩阵的逆的一些相关问题;文献[6]给出了线性方程组解的判断条件;文献[7-10]给出了一些关于矩阵分析和解线性方程组问题分析中的简单的概念和应用. 本文主要研究矩阵和线性方程组的一些基本概念和其应用,通过矩阵来解线性方程组,并结合具体实际问题说明矩阵在解线性方程组中的应用,为今后的学习与研究提供有利工具.二、线性方程组的有关概念1. 线性方程组的定义定义 1[1] 一般线性方程组的定义是形如⎪⎪⎩⎪⎪⎨⎧=+++=+++=+++sn sn s s n n n n b x a x a x a b x a x a x a b x a x a x a 22112222212111212111 的方程组,这里的n x x x ,,, 21代表n 个未知量,s 则表示为线性方程的未知个数. 如果我们知道一个线性方程组的全部系数以及它的常数项,那么这个线性方程组就可以确定了,线性方程组就可以用下面的矩阵⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡s sns s n n b a a a b a a ab a a a 21222221111211进行表示. 令⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=sn s s n n a a a a a a a a a A 212222111211, ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=n x x x X 21, ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=n b b b b 21,可知线性方程组的系数矩阵A ,未知数矩阵为X ,常数项矩阵为b ,则可得到b AX =. 若常数项矩阵为零矩阵即0=AX ,那么我们称之为齐次线性方程组. 反之,若常数项矩阵b 为非零矩阵,则称为非齐次线性方程组. 2. 线性方程组的一般解法对于线性方程组的求解,除了可以进行特殊变换而获得特定形式的特殊型之外,还有两种线性方程组的一般解法: (1)消元法[2]所谓消元法,就是在方程中利用矩阵的初等变换,一步一步地消去未知量的个数,最终得到一个具有阶梯性的方程组,如果我们把最终初等变换得到的关于“00=”的恒等式(如果出现的话)全部去掉,观察其余的阶梯形方程看是否有零等于一个非零的常数的,如果有,这个常数的方程组无解,如果没有,则有解. 假设在方程组有解的情况下,令r 为阶梯形方程中未知量的个数,由上述定义1知,s 则表示为线性方程的未知个数,当s r =时,方程组有唯一确定的解;当s r <时,方程组可以有无穷多个解. 消元法也是我们在中学时解线性方程组是常用的一种方法,但当未知量有n 个的时候,一个一个的消元工作量也会很大. (2)克拉默法则[2]克拉默法则是建立在逆矩阵的使用基础上,对于线性方程组进行的一般解法,但要注意的是,使用克拉默法则求解线性方程组是有条件的:一是方程组必须是线性的,二是待求解的线性方程组中的方程的个数和未知量的个数相等,三是满足未知系数的矩阵行列式D 不等于0,即0≠D ,满足以上三种情况则可使用克拉默法则.定义 2[1]给出克拉默法则的一般描述:如果线性方程组⎪⎪⎩⎪⎪⎨⎧=+++=+++=+++s n sn s s n n n n b x a x a x a b x a x a x a b x a x a x a 22112222212111212111的系数矩阵⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=sn s s n n a a a a a a a a a A 212222111211的行列式,即它的系数行列式为0≠=A d 那么这个线性方程组有解,有且只有唯一的解,其系数的表达如下:d d x 11=,d dx 22=, ,dd x n n =,则可以得到线性方程组的解. 但克拉默法则并不适用于所有的满足条件的线性方程组,因为它的计算量太大,一般我们也不怎么会使用克拉默法则的方法求解线性方程组.三、矩阵的有关概念1. 矩阵的概念定义 3[1] 由n m ⨯个数),,2,1,,,2,1(n j m i a ij ==构成m 行n 列并括以圆括弧或方括弧的数表. 即⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=mn m m n n a La a M M M M a L a a a L a a A 212222111211称为n m ⨯矩阵. 例如⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=852*******A .2. 矩阵的初等变换矩阵的初等变换不仅在矩阵的学习中是一个重要内容,在线性方程组中也有广泛的应用,首先,给出矩阵的初等变换.定义 4[3] 下面三种变换成为矩阵的初等变换(1)交换矩阵的两行(列);(2)用一个非零数k 乘矩阵的某行(列); (3)矩阵的某行(列)的k 倍加到另一行(列).3. 矩阵的秩[4]讨论矩阵和线性方程组的关系时,矩阵的秩是较为重要的概念. 定义 5 矩阵的秩是指矩阵()nm ija A ⨯=的不为零的子式的最大阶数称为矩阵A 的秩,记作rankA 或rA . 显然),min()(n m A r ≤易得:若A 中至少有一个r 阶子式不等于零,且在),min(n m r <时,A 中所有的1+r 阶子式全为零,则A 的秩为r .矩阵的秩是判断线性方程组是否有解的重要条件. 因此,如何求解矩阵的秩是至关重要的. 目前,矩阵的秩的求解有如下两种方法.(1)矩阵的初等变换可以求解矩阵的秩(2)若矩阵为k 行,则先计算k 阶子式,若k 阶子式不为零,则秩为k ;如果k 阶子式为零,则计算1-k 阶子式,若1-k 阶子式中有一个不零,则秩为1-k ,若所有的1-k 阶子式都为零,则计算2-k 阶子式,以此类推,指导计算到m k -阶子式中不全为零,则秩为m k -为止.但第二种方法适应于k 较小时,当k 较大时,计算量大,也容易出错,此时可以利用矩阵的初等变换求矩阵的秩.有关矩阵的秩的求解,下面,我们提供了一些例题. 例 1[5] 求下列矩阵的秩⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=1003011-60302-42-20121-1A . 解 由题意,利用初等行变换可得⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡→⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡→⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡→⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡00000100300400001211040001403004000012111003014030040000121110030116030242201211------------, 所以矩阵A 的秩为3.例 2 求下列矩阵的秩⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=814331116321B .解 矩阵B 经过初等变换,可得到矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡110010101001, 则矩阵B 的秩为3.例 3 求矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=510312223A 的秩. 解 矩阵A 有3行,则计算0=A ,则计算2阶子式. 因为01-22-3≠,所以2)(=A r .下面总结了用初等变换法求矩阵的秩在解题过程中的步骤主要为: (1)通过初等行(列)变换将矩阵化为阶梯形;(2)由定理可知非零行的个数即为该矩阵的秩数,因此可以求出秩.4. 基于矩阵的线性方程组解的判断条件定理 1 线性方程组⎪⎪⎩⎪⎪⎨⎧=+++=+++=+++s n sn s s n n n n b x a x a x a b x a x a x a b x a x a x a 22112222212111212111有解的充分必要条件为:线性方程组的系数矩阵的秩等于增广矩阵的秩,即r(A )=r(A ),其中⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=sn s s n n a a a a a a a a a A 212222111211,⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=s sn s s n nb a a a b a a a b a a a A21222221111211. 若是n n ⨯阶的线性方程组,在判定线性方程组有解的条件下,我么还能通过矩阵的秩来进一步判定线性方程组解的个数:当n r <时,线性方程组有无穷解; 当n r =时,线性方程组有唯一的解.在一个齐次线性方程组中有非零行方程组解的充要条件,也就是它的系数增广矩阵的行列式等于零.例 4[6]判断下面的方程组有无解⎪⎩⎪⎨⎧=++=+=++346212432131321x x x x x x x x 解 由题意可以知道,上式方程组的系数矩阵为⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=426101214A ,它的增广矩阵可以写为⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=341621011214A ,由初等变换,我们可以将增广矩阵化为矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡9-2-1021012000, 可知2)(=A r ,3)(=A r ,因为2≠3,所以方程组无解.我们学会了利用矩阵的秩来判断方程组是否有解,那在方程组有解的情况下,我们就应该利用矩阵求解线性方程组.四、矩阵在解线性方程组中的应用以及解题思路矩阵的初等变换是解线性方程组的基本的方法,主要是将矩阵化为阶梯形的矩阵,主要的步骤有以下几步:第一步,写出线性方程组的一个增广矩阵;第二步,通过将增广矩阵化为阶梯形以此来判断线性方程组到底是否有解,当解存在时可以对矩阵进行以下步骤:第三步,把矩阵通过初等变换化为最简形式; 第四步,求出线性方程组的一个特解; 第五步,求线性方程组的一个通解. 例 5[7] 解下列方程组⎪⎩⎪⎨⎧=++=++=++8433632321321321x x x x x x x x x解 由题意,利用初等行变换可得,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡110010101001110032100101110032106321121032106321814331116321--- 可得线性方程组⎪⎩⎪⎨⎧===111321x x x , 所以原方程的解为(1,1,1).例 6[8] 解下列齐次线性方程组⎪⎪⎪⎩⎪⎪⎪⎨⎧=+-+-=+++=-++-=+-+=++-0441520410305202302343214321432143214321x x x x x x x x x x x x x x x x x x x x 分析 这是一个齐次线性方程组,但它的未知量的个数比较多,用消元法计算量还是很大的,这时我们就应该选择一种简单的方法去求解,我们可以利用矩阵的初等变换求线性方程组的解,这时我们只要把方程的系数矩阵描述出来,不写未知量,这也为我们节省了大量的计算和时间.解 方程的系数矩阵为⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡44-152-411031-152-21-31121-3 将系数矩阵初等化为阶梯形矩阵,可得→⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡→⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡→⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡55-10031-11031-1105-510-021-3144-152-411031-152-121-321-3144-152-411031-152-21-31121-3⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡→⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡00000095-1001-41021-310000005-9002-41021-31⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎣⎡→⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎣⎡→0000000095-100920109130010000000095-10092010913031 所以方程的一般解为⎪⎪⎪⎩⎪⎪⎪⎨⎧=-=-=434241959297x x x x x x , 其中4x 为未知量. 当取94=x 时,方程组的解为⎪⎪⎪⎪⎪⎭⎫⎝⎛=952-7-η,所以原方程通解为⎪⎪⎪⎪⎪⎭⎫ ⎝⎛--==9527k k X η.例 7[9] 求解下列线性方程组⎪⎪⎩⎪⎪⎨⎧=+--=-+-=-+-=+--0411226234432134321432143214321x x x x x x x x x x x x x x x x分析 首先计算出方程组的系数矩阵和增广矩阵,并对这两个矩阵进行简化,然后对比两个矩阵的秩是否相等从而判断解的存在情况. 解:对增广矩阵进行下列变换⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡→⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡→⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=000004-000022-500113-1-12-25-0026-150022-500113-1-104112-262-34-431-21-1113-1-1A ,首先判断方程组是否有解,根据增广矩阵A 和系数矩阵A 的关系可以知道,2)(=A r ,3)(=A r ,可以看出32≠,所以我们可以知道这个线性方程组没有解.例 8[10] 讨论b a ,为何值时,方程组⎪⎪⎩⎪⎪⎨⎧-=+++=--+-=++=+++1232)3(122043214324324321ax x x x b x x a x x x x x x x x有唯一解;无解;无穷多解,当有无穷多解时,求出通解.分析 此线性方程组为非齐次线性方程组,这题中通过判断线性方程组是否有解来求出未知数,判断线性方程组是否有解,就是要判断系数矩阵的秩与增广矩阵的秩是否相同,若有解,则可求出线性方程组的解.解 对线性方程组的增广矩阵进行过下列变换⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-+-→⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡------→⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--=01000101001221001111132102310122100111110232-31-01221001111a b a a b a a b a A(1)当1≠a 时,方程组有唯一的解; (2)当11-≠=b a 且时,方程组无解; (3)当11-==b a 且时,方程组有无穷多解. 此时方程组为⎩⎨⎧=++=+++12204324321x x x x x x x , 可得特解⎪⎪⎪⎪⎪⎭⎫⎝⎛=0011-α,导出组的基础解系为⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=102-1012-121ηη,,于是通解为2211ηηαβk k ++=.总结 在解线性方程组的问题中,首先先准确地判断方程组是否有解,以在方程组解存在的情况下为基础,那么在齐次线性方程组中,若齐次线性方程组的任何一组基础解为r n -ξξξ,,, 21,我们称它为方程组的一个基础解系,齐次线性方程组的任何一解都能表成r n -ξξξ,,, 21的线性组合.而在非齐次线性方程组中,应先求出0=Ax 的基础解系,则0=Ax 的通解为r n r n k k k x --+++=ξξξ...2211,设η为非齐次线性方程组b Ax =的特解,r n -ξξξ,,, 21为对应的齐次线性方程组0=Ax 的基础解系,则b Ax =的通解为ηξξξ++++=--r n r n k k k x ...2211,在方程组有解的情况下,解是唯一的充分必要条件是它的导出组只有零解.结论矩阵在我们求解解线性方程组中已经有了广泛的研究和应用,主要是通过矩阵的初等变换求线性方程组的解,而且矩阵的初等变换还可以很好地帮助我们更准确地判断线性方程组解是否存在的实际情况. 另外,通过矩阵的初等变换可以求出矩阵的秩以此来快速判断线性方程组的解也是非常重要的一种解题方法. 总而言之,矩阵再解线性方程组中有重要的作用,能够帮助我们更好地理清这类复杂问题的基本解题方法和思路,从而能让我们在实践中更好的灵活运用矩阵来快速求解线性方程组.参考文献[1] 北京大学数学系前代数小组. 高等代数[M]. 第四版. 北京:高等教育出版社,2013. [2] 林清. 矩阵在解线性方程组中的应用[J]. 湛江市高级技工学校,2015(11):583. [3] 郑庆云,宋一杰,杨晓叶. 利用矩阵初等变换求解方程组的解[J]. 阴山学刊,2017(01): 23-26.[4] 王玉兰. 矩阵求逆和齐次线性方程组的基础解系的统一算法[J]. 内蒙古科技与经济,2002(11):142.[5] 吴英柱. 矩阵的初等变换在线性代数中的若干应用与探讨[J]. 广东石油化工学院学报,2017(1):71-75,94.[6] 王卿文. 线性代数核心思想及应用[M]. 北京:科学出版社,2012.[7] 辛奎东. 关于线性方程组新解法的探索[J]. 黑龙江科技信息,2012(02):222-222.[8] 于永新. 用矩阵的初等行变换求齐次线性方程组的标准正交解系[J]. 辽宁科技大学学报, 2016(3):17.[9] 付美鑫. 利用行列式、矩阵求解线性方程组[J]. 黑龙江科学,2017(3):45-46.[10] 骆旗,褚青涛. 浅析矩阵在解线性方程组中的作用[J]. 时代教育,2018(7):139-139.11。
矩阵理论在高等数学中的应用与发展
矩阵理论是高等数学的一个重要分支,它的应用领域广泛,不仅在数学学科中发挥着重要的作用,还在物理学、工程学等学科中有许多实际的应用。
本文将探讨矩阵理论在高等数学中的应用与发展。
首先,矩阵在线性代数中的应用是最为广泛的。
在线性代数中,矩阵被用来表示线性方程组,通过矩阵的运算可以得到线性方程组的解。
矩阵的加法、减法和乘法等运算规则为线性方程组的求解提供了便利,使得计算更加简单高效。
此外,矩阵在线性变换中也有重要应用,通过矩阵的乘法运算,可以表示线性变换的组合和复合操作,这对于研究线性变换的性质和应用具有重要意义。
其次,矩阵理论在微积分中也有广泛运用。
微积分中的矩阵函数是一类在矩阵上定义的函数,它可以将矩阵作为输入并输出一个新的矩阵。
矩阵函数的导数和高阶导数等概念在微积分中也得到了相应的推广,矩阵导数的研究对于优化算法、控制理论等领域具有重要意义。
此外,矩阵理论还广泛应用于微分方程的研究中,矩阵微分方程是一类以矩阵形式表示的微分方程,它在描述一些物理过程、生物系统以及经济模型等方面具有重要的应用价值。
此外,矩阵理论在信号处理和图像处理等领域也发挥着重要作用。
在信号处理中,矩阵能够表示和处理多维信号,如图像和音频信号。
矩阵的特征值和特征向量等概念可以用于图像和音频信号的分析与处理,如图像的压缩、降噪和特征提取等。
在图像处理中,矩阵的运算和分解方法可以用于图像的变换与恢复等操作,从而提高图像处理的效率和质量。
在矩阵理论中,特征值和特征向量是一个重要的基础性概念。
它们不仅在线性代数和微积分中有广泛的应用,还在其他学科中发挥着重要作用。
矩阵的特征值和特征向量可以用于描述和分析系统的稳定性和动态特性。
在控制理论中,矩阵的特征值和特征向量可以用于判断一个系统的稳定性,并通过控制设计的方法来实现系统的稳定和优化控制。
在量子力学中,矩阵的特征值和特征向量与量子态和量子测量等概念相联系,为理解和描述微观粒子的行为提供了重要的工具。
矩阵与线性方程组的数学模型和解法
矩阵与线性方程组的数学模型和解法矩阵和线性方程组是线性代数中常见的数学概念,广泛应用于各个学科领域,包括工程、科学、经济等。
本文将介绍矩阵和线性方程组的数学模型以及常见的解法。
1. 矩阵的数学模型矩阵是由数字排列成的矩形阵列。
一个m×n的矩阵表示为:[A] = [a_ij]其中,a_ij是矩阵中第i行第j列的元素。
矩阵按行数和列数分别称为行数和列数,即m×n的矩阵有m行n列。
2. 线性方程组的数学模型线性方程组是一组以线性关系描述的方程组。
形式如下:a_11x_1 + a_12x_2 + ... + a_1nx_n = b_1a_21x_1 + a_22x_2 + ... + a_2nx_n = b_2......................a_m1x_1 + a_m2x_2 + ... + a_mnx_n = b_m其中,x_1, x_2, ..., x_n是未知数,a_ij是系数矩阵的元素,b_1, b_2, ..., b_m是常数项。
3. 线性方程组的解法解一个线性方程组的目标是找到一组满足所有方程的未知数值的解。
下面介绍两种常见的解法:高斯消元法和矩阵求逆法。
a. 高斯消元法高斯消元法是一种通过消元和回代的操作来求解线性方程组的方法。
具体步骤如下:Step 1: 构造增广矩阵[A|b],其中A为系数矩阵,b为常数项矩阵。
Step 2: 利用初等行变换将增广矩阵化简为上三角矩阵。
Step 3: 从最后一行开始,利用回代法求出未知数的值。
b. 矩阵求逆法矩阵求逆法是利用逆矩阵的性质来求解线性方程组的方法。
具体步骤如下:Step 1: 构造增广矩阵[A|I],其中A为系数矩阵,I为单位矩阵。
Step 2: 利用初等行变换将增广矩阵化简为[I|B],其中B为所求逆矩阵。
Step 3: 利用逆矩阵的性质,将常数项矩阵变换为解的矩阵。
4. 矩阵与线性方程组的应用矩阵和线性方程组在各个学科领域都有广泛的应用。
矩阵的秩与线性方程组线性代数的应用技巧
矩阵的秩与线性方程组线性代数的应用技巧矩阵是线性代数中的重要概念,对于解决线性方程组以及其他相关问题非常有用。
在矩阵的运算中,秩是一个重要的指标,它可以帮助我们判断矩阵的性质以及求解线性方程组的解。
一、矩阵的秩的定义矩阵的秩是指矩阵中非零行的最大线性无关行数,用r(A)表示。
换言之,矩阵的秩是指矩阵经过初等行变换后,行阶梯形矩阵中非零行的个数。
二、线性方程组的解与矩阵的秩的关系线性方程组可以用矩阵来表示,对于一个m×n的矩阵A和一个n×1的矩阵B,线性方程组可以表示为AX=B。
1. 当矩阵A的秩小于n时,即r(A) < n,存在自由变量,线性方程组有无穷多个解。
这是因为秩小于n时,矩阵A的行向量之间存在线性相关性,会导致方程组中存在冗余的方程,从而使得方程组的解不唯一。
2. 当矩阵A的秩等于n时,即r(A) = n,不存在自由变量,线性方程组有唯一解。
这是因为秩等于n时,矩阵A的行向量之间线性无关,不会存在冗余的方程,方程组的解是唯一的。
三、矩阵的秩的计算方法1. 初等行变换法:通过初等行变换把矩阵A化为行阶梯形矩阵,然后矩阵的秩等于行阶梯形矩阵中非零行的个数。
2. 矩阵的秩与其特征值的关系:矩阵A与其特征值λ有关,矩阵A 的秩等于特征值λ不等于0的个数。
四、矩阵的秩在实际应用中的意义矩阵的秩在很多实际问题中都有广泛的应用,包括物理、工程、经济等领域。
1. 线性回归分析:在线性回归分析中,我们可以通过计算相关系数矩阵的秩来判断自变量之间的相关性。
如果相关系数矩阵的秩小于自变量的个数,说明自变量之间存在冗余,可以进行变量选择。
2. 图像处理:在图像处理中,我们可以使用矩阵的秩来判断图像的压缩比例或图像的清晰度。
秩越小的矩阵代表图像的冗余信息越多,而秩越大的矩阵则代表图像的信息丢失越少,图像越清晰。
3. 线性规划:在线性规划中,我们可以通过计算约束矩阵的秩来判断约束条件是否完全满足,进而判断解的可行性。
高中数学矩阵在解线性方程组中的应用
高中数学矩阵在解线性方程组中的应用作者:霍健强来源:《大东方》2018年第06期摘要:在现代线性代数学科中求解线性方程组的问题是其中最重要的核心内容,而在研究求解的过程当中,我们发现很多涉及行列式、矩阵、逆矩阵、初等变换等方面的问题,为了阐述它们对线性方程组求解所起到的作用,我们根据线性方程组的基本概念,系数、常数等所构成的行列式矩阵,并以逐步深入递进的方式探讨它们之间的联系,最终达到理顺它们之间关系的目的,从而对线性代数的学习起到重要指导作用。
通过该论文的研究可以使我们对矩阵及其在解线性方程组中的应用有更深刻了解。
通过矩阵来解线性方程组,使得纯代数的数学问题与几何学科进行联系,交叉学科的研究使得问题的解题思路更加严谨,解题方法更加广泛关键词:矩阵;线性方程;应用一、线性方程组基本知识点1.线性方程组概念用数学分析实际问题是科学求证真理的必要手段,有两种思路可以对一般线性方程组进行求解,即有经验的方程组和特殊规律的方程组,利用最基本的理论或推论,用一些基本的概念转化成基本的微积分问题来解决;还有就是利用线性方程组的系数和常数提炼出来,然后构成一矩阵方程,进而通过矩阵的定义及相关定理,按照一定的解题思路进行求解。
线性方程组,即指在一个方程组中,至少含有一个未知数,且均为一次未知数,例如下列方程组(1)即为一次线性方程组。
以上关于未知数的矩阵,常数的矩阵,还有系数的矩阵构成的方程组可表示为。
其中全部为零,即用,这就是所说的其次方程组;如果不全部为零,即,叫做非其次线性方程组。
有一种特殊情况,即在系数的值固定的情况下,非齐次方程组的通解可看作是齐次方程组的解与非齐次方程组的通解,看成了两者的和。
2.线性方程组的解法线性方程组的求解,除了特殊的变换方法外,一般有两种方法可用:一是用克莱姆法则进行求解:其法则是建立在逆矩阵的基础上使用的,此法则在用的时候有两个必要条件需要注意:一是未知解的线性方程组的求解个数必须和方程组中方程个数必须是相同的,系数组成的矩阵必须不为零。
矩阵初等变换解方程组
矩阵初等变换解方程组
矩阵初等变换是一种解线性方程组的有效方法。
下面是一个简单的例子,说明如何使用矩阵初等变换来解线性方程组。
假设我们有以下线性方程组:
y + 2z = 2
-x + 2y - z = 3
首先,我们将这个方程组写成增广矩阵的形式:
1 ]
[ 1 -1 2 | 2 ]
[-1 2 -1 | 3 ]。
初等变换包括:
1.交换两行
2.将一行乘以一个非零常数
3.将一行的若干倍加到另一行上
我们的目标是通过初等变换将增广矩阵转换为行最简形式,这样我们就可以直接读取方程的解。
现在,我们开始进行初等变换:
第一步,我们可以交换第一行和第二行,得到:
2 ]
[ 2 1 -1 | 1 ]
[-1 2 -1 | 3 ]
第三行的第一个元素:
1 -1 | 1 ]
[ 0 0 3 | 5 ]
第三步,我们可以将第二行减去第一行的两倍,以消去第二行的第一个元素:
[ 1 -1 2 | 2 ]
[ 0 3 -5 | -3 ]
[ 0 0 3 | 5 ]
除以3,以将第三个主元素变为1:
2 ]
[ 0 3 -5 | -3 ]
[ 0 0 1 | 5/3 ]
,以消去第二行的第三个元素:
]
[ 0 3 0 | 7 ]
[ 0 0 1 | 5/3 ]
元素变为1:
1 0 | 7/3 ]
[ 0 0 1 | 5/3 ]
:
1 0 | 7/3 ]
[ 0 0 1 | 5/3 ]
我们可以直接读取方程组的解:
3
z = 5/3
应用中,可能需要根据具体情况进行更多的初等变换步骤。
线性方程组的解法与矩阵运算技巧
线性方程组的解法与矩阵运算技巧线性方程组是数学中常见的问题,它涉及到未知数和系数之间的关系。
解决线性方程组的问题,可以帮助我们理解和应用矩阵运算技巧,这在现代科学和工程领域中非常重要。
一、线性方程组的基本概念线性方程组是由一系列线性方程组成的方程组。
每个方程都是未知数的线性组合,形式可以表示为a1x1 + a2x2 + ... + anxn = b。
其中,a1, a2, ..., an是系数,x1, x2, ..., xn是未知数,b是常数。
二、高斯消元法高斯消元法是解决线性方程组的一种常用方法。
它通过消元和回代的方式,将方程组转化为上三角矩阵。
具体步骤如下:1. 将方程组写成增广矩阵的形式,即将系数和常数放在一起,形成一个矩阵。
2. 选取一个主元素,通常选择第一列的第一个非零元素作为主元素。
3. 将主元素所在的行与其他行进行消元,使得主元素下方的元素都变为零。
4. 重复上述步骤,直到将矩阵转化为上三角矩阵。
5. 进行回代,从最后一行开始,逐步求解未知数。
高斯消元法的优点是简单易懂,容易手工计算。
但是当方程组的规模较大时,计算量会非常大,效率较低。
三、矩阵运算技巧矩阵运算是解决线性方程组的另一种方法,它利用矩阵的性质和运算规则,可以更高效地求解线性方程组。
1. 矩阵的加法和减法矩阵的加法和减法是指对应位置元素的相加和相减。
例如,对于两个矩阵A和B,它们的加法可以表示为A + B = C,其中C的每个元素都是A和B对应位置元素的和。
减法同理。
2. 矩阵的乘法矩阵的乘法是指按照一定规则将两个矩阵相乘得到一个新的矩阵。
具体规则如下:- 两个矩阵A和B相乘,要求A的列数等于B的行数。
- 结果矩阵C的行数等于A的行数,列数等于B的列数。
- 结果矩阵C的每个元素是A的对应行和B的对应列的乘积之和。
3. 矩阵的转置矩阵的转置是指将矩阵的行和列互换得到的新矩阵。
例如,对于一个矩阵A,它的转置矩阵表示为A^T,即A的行变为A^T的列,A的列变为A^T的行。
线性方程组的解法及应用
线性方程组的解法及应用线性方程组是数学中常见的问题,其解法和应用十分广泛。
本文将介绍线性方程组的几种常见解法,并探讨了其在实际应用中的意义和重要性。
一、高斯消元法高斯消元法是解决线性方程组的常见方法之一。
其基本思想是通过一系列的行变换,将线性方程组转化为上三角矩阵或对角矩阵的形式,进而求解未知数。
通过逐行消元和回代过程,可以求得方程组的解。
高斯消元法是一种时间复杂度较低的求解线性方程组的方法,适用于各种规模的问题。
二、矩阵求逆法矩阵求逆法是另一种常见的求解线性方程组的方法。
根据矩阵的定义和性质,可以通过求解系数矩阵的逆矩阵,进而求得线性方程组的解。
这种方法较为简便,尤其适用于方程组的系数矩阵可逆的情况。
然而,由于求逆矩阵的计算复杂度较高,这种方法在处理大规模问题时可能变得不切实际。
三、克莱姆法则克莱姆法则是一种通过行列式的性质求解线性方程组的方法。
根据法则的定义,通过计算系数矩阵和常数矩阵的各个子行列式,可以得到线性方程组的解。
克莱姆法则具有简单的结构和直观的操作步骤,但其计算量较大,仅适用于小规模问题。
以上是几种常见的线性方程组解法,每种方法都有其适用的场景和特点。
在实际应用中,我们根据问题的特点和数据的规模,选择合适的解法以提高计算效率和准确性。
线性方程组求解的应用涉及到众多学科和领域,下面我们将探讨其中几个重要的应用。
四、物理学中的应用线性方程组在物理学中有着广泛的应用。
以力学为例,在分析力学问题中,往往需要通过线性方程组求解物体的运动状态和力的分布。
通过建立合适的力平衡方程和动力学方程,可以将问题转化为线性方程组,并求解得到物体的位移、速度和加速度等关键信息。
这对于理解物体的运动规律和进行工程设计具有重要意义。
五、经济学中的应用线性方程组在经济学中也有广泛的应用。
以宏观经济学为例,经济学家通常会建立一系列的数学模型,通过线性方程组描述经济系统中的供求关系、市场机制和宏观调控等。
通过求解线性方程组,可以得到不同经济指标之间的关系,帮助政策制定者做出科学的决策,推动经济稳定和发展。
整数矩阵及其在解线性方程组方面的应用
表 示 m ×n型 整 数 矩 阵 集 合. 然 , “c 显 z Q . A ∈Z , A 表 示 的转 置 ,( 表示 设 “以 ‘ rA)
A∈p “ 的秩 . 时
D ( , =D女A , k≤ r A ( ) 1≤ .
定义 4 设 A∈ A =DrA ) D( ) ,A D ( 。 A) . A≠ 0 置 . . A)= , , A) …
( )用 一1去换 』 2 4的某一 行 ( ) 列 ;
收稿 f期 :O 0 —1 1 21 2—0 5
( =D ( ) d ( ) B ,女A)
=
d ( , = l … , B) , r .
() 1
证明 : 由参考文献 [ ]可知 r 6 (
时 即可. 首先 考察 下述 3种情形 () iA B, i A (i )
定 义 3 设 A ∈Z A≠ 0,( )=r 取 k “, rA 任 E { , ,} A的所有 阶子式 的最 大公约 数 , 1… r , 记
为 D ( )称 其为 A的第 k 行列 式 因数. A , 级
显然 , A)I ( , = 1 … , D( D ) , r一1并 且
进 而 ( B) A)I ( . D 再 由
f ” ,
, 、 , 、
b 1
0
…
0
那 么D d ・ d = f ・ l ・
…, 其中d =d :
+d l 于是 与上述 讨论相 同 一dd j
,
L一 1 C ,i
不难推 出
( ) — iB ,(iB— — i ) —
=r证 明 ,
( )式成 立 , 1 显然 仅 证 经 一 次 初 等 变换 化 为
利用矩阵的逆矩阵求解线性方程组
利用矩阵的逆矩阵求解线性方程组线性代数是数学的一个重要分支,其研究诸多重要的数学对象,例如向量空间、矩阵、线性变换等。
线性代数的应用非常广泛,例如在物理、工程、计算机科学等领域都有着深入的应用。
矩阵是线性代数研究的核心对象,其可以用于解决许多实际问题,如在计算机图形学中用于表示三维图形的转换矩阵、在物理中用于表示方程组的矩阵等。
线性方程组是线性代数中的一个重要概念,其可以用于描述诸多实际问题,如平衡问题、电路问题、最优化问题等。
线性方程组可以表示为Ax=b的形式,其中A是系数矩阵,x是未知向量,b是已知向量。
如果A是一个可逆矩阵,即它的行列式不为0,那么我们可以用矩阵的逆矩阵来求解该线性方程组。
具体来说,我们可以通过Ax=b得到x=A^(-1)b,其中A^(-1)是A的逆矩阵。
下面我们通过一个简单的例子来说明如何利用矩阵的逆矩阵求解线性方程组。
例1:求解以下线性方程组x + 2y = 53x + 4y = 11解:将该线性方程组转化为矩阵形式,得到$\begin{bmatrix}1 & 2\\3 &4\end{bmatrix}$ $\begin{bmatrix}x\\y\end{bmatrix}$ =$\begin{bmatrix}5\\ 11\end{bmatrix}$我们可以计算出系数矩阵A的行列式为-2,因此它是可逆矩阵。
接下来,我们需要求出A的逆矩阵A^(-1)。
通过一些计算,我们可以得到A^(-1)等于下面这个矩阵:$\begin{bmatrix}-2 & 1\\1.5 & -0.5\end{bmatrix}$现在,我们可以用矩阵的逆矩阵求解线性方程组。
具体来说,我们可以计算出x=A^(-1)b等于下面这个向量:$\begin{bmatrix}x\\y\end{bmatrix}$ = $\begin{bmatrix}-2 & 1\\1.5 & -0.5\end{bmatrix}$ $\begin{bmatrix}5\\ 11\end{bmatrix}$ =$\begin{bmatrix}-3\\4\end{bmatrix}$因此,该线性方程组的解为x=-3,y=4。
初中数学知识点线性方程组的矩阵表示与解法
初中数学知识点线性方程组的矩阵表示与解法线性方程组是初中数学中一个重要的知识点,它在实际问题中有着广泛的应用。
在解决线性方程组的过程中,矩阵的表示和解法是常用的工具和方法。
下面将介绍线性方程组的矩阵表示以及一些解法。
一、线性方程组的矩阵表示线性方程组可以用矩阵表示,这样能够简化计算过程,使得问题更加清晰。
假设有一个包含m个方程和n个未知数的线性方程组,可以用如下形式表示:A · X = B其中,A是一个m行n列的矩阵,称为系数矩阵;X是一个n行1列的矩阵,称为未知数矩阵;B是一个m行1列的矩阵,称为常数矩阵。
二、线性方程组的解法解线性方程组的方法有很多种,常见的有高斯消元法、逆矩阵法和克拉默法则。
1. 高斯消元法高斯消元法是解线性方程组最常用的方法之一。
它的基本思想是通过一系列的行变换将系数矩阵A化为一个上三角矩阵R,进而求得未知数矩阵X的解。
具体步骤如下:(1)将方程组写成增广矩阵形式,即[A | B]。
(2)选取第一个非零元素a11为主元素,将第1行整行乘以1/a11,使主元素成为1。
(3)利用第一个方程的倍数和减去其他方程的相应倍数,使得第1列的其他元素变为0。
(4)选取第2列第2个非零元素a22为主元素,重复步骤(2)和(3),依此类推,直到完成将A化为上三角矩阵R。
(5)通过回代法求解未知数矩阵X。
2. 逆矩阵法逆矩阵法是利用矩阵的逆来求解线性方程组的方法。
当系数矩阵A可逆时,可以通过以下公式求解未知数矩阵X:X = A⁻¹ · B其中,A⁻¹表示矩阵A的逆矩阵。
但需要注意的是,当系数矩阵A不可逆时,逆矩阵法无法使用。
3. 克拉默法则克拉默法则是一种利用行列式求解线性方程组的方法。
对于一个n个未知数的线性方程组,如果系数矩阵A的行列式不等于0,则可以通过以下公式求解未知数矩阵X:Xi = |Ai| / |A|其中,Xi表示未知数矩阵X的第i个元素;|Ai|表示将第i列的元素替换为常数矩阵B后,系数矩阵A的行列式;|A|表示系数矩阵A本身的行列式。
矩阵在解线性方程组中的应用
矩阵在解线性方程组中的应用
矩阵在解线性方程组中的应用是一种非常有效和简单的方法,它可以将多个线性方程组表示为一个整体。
我们可以使用矩阵来表示这些线性方程,然后使用矩阵和线性代数的技巧来求解。
例如,考虑线性方程组:
$x + 2y = 4$
$2x + 4y = 8$
我们可以将其表示为矩阵形式:
$ \begin{bmatrix} 1 & 2 \\ 2 & 4
\end{bmatrix}\begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 4 \\ 8 \end{bmatrix} $
这样,我们就可以使用矩阵乘法和行列式的概念来求解这个线性方程组。
上式可以写成:
$ A \cdot X = B $
其中,A为系数矩阵,X为未知数向量,B为常数向量。
要求解此方程组,可以使用矩阵变换法,将系数矩阵A变换为单位矩阵,这样就可以得到X的解。
例如,$A \rightarrow I$,其中I为单位矩阵,可以得到:
$ \begin{bmatrix} 1 & 0 \\ 0 & 1
\end{bmatrix}\begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 2 \\ 4 \end{bmatrix} $
因此,最终解为:$x=2$,$y=4$。
矩阵解方程组的方法
矩阵解方程组的方法全文共四篇示例,供读者参考第一篇示例:矩阵是线性代数中的重要概念,而矩阵解方程组也是线性代数中的基础内容之一。
在实际应用中,往往会遇到包含多个未知数和多个方程的方程组,如何通过矩阵的方法来高效地解决这些方程组成了一项重要的技能。
本文将介绍矩阵解方程组的方法,包括高斯消元法、矩阵求逆法以及克拉默法则等。
一、高斯消元法高斯消元法是解线性方程组的一种基本方法。
它的基本思想是通过对方程组进行一系列的行变换,将其转化为简化的阶梯形或行最简形,从而得到方程组的解。
下面通过一个具体的例子来说明高斯消元法的应用。
考虑如下的线性方程组:\begin{cases}2x + 3y - z = 1 \\3x + 2y + z = 3 \\x - y + 2z = 9\end{cases}首先将上述的方程组写成增广矩阵的形式:然后通过一系列的行变换,将增广矩阵转化为简化的阶梯形:\begin{bmatrix}1 & -1 &2 & | & 9 \\0 & 5 & -5 & | & -10 \\0 & 0 & 1 & | & 0\end{bmatrix}最后通过反向代入法,可以求得方程组的解为x=2, y=-2, z=0。
二、矩阵求逆法A = \begin{bmatrix}1 &2 \\2 & 1\end{bmatrix},X = \begin{bmatrix}x \\y\end{bmatrix},B = \begin{bmatrix}3 \\4\end{bmatrix}然后求解系数矩阵A 的逆矩阵A^{-1}:最后通过矩阵乘法,可以求得方程组的解为X = A^{-1}B =\begin{bmatrix}1 \\1\end{bmatrix}。
三、克拉默法则首先求解系数矩阵A 的行列式|A|:然后求解系数矩阵A 分别替换成结果矩阵B 的行列式|B_x| 和|B_y|:最后通过克拉默法则,可以求得方程组的解为x = \frac{|B_x|}{|A|} = \frac{-5}{-3} = \frac{5}{3},y = \frac{|B_y|}{|A|} = \frac{-2}{-3} = \frac{2}{3}。
用矩阵求解线性方程组
用矩阵求解线性方程组在数学中,线性方程组是描述多个未知量和它们之间关系的方程组。
如果未知量数目等于方程数目,并且每个方程都是线性的,则方程组称为“线性方程组”。
解决线性方程组的常用方法之一是使用矩阵。
在本文中,我们将讨论使用矩阵求解线性方程组的方法。
1. 线性方程组和矩阵线性方程组可以用矩阵形式表示。
例如,以下线性方程组:2x + 3y - z = 1x - y + 2z = 3x + 2y - z = 0可以表示为矩阵方程:\begin{bmatrix} 2 & 3 & -1 \\ 1 & -1 & 2 \\ 1 & 2 & -1 \end{bmatrix}\begin{bmatrix} x \\ y \\ z \end{bmatrix}=\begin{bmatrix} 1 \\ 3 \\ 0 \end{bmatrix}其中,矩阵\begin{bmatrix} 2 & 3 & -1 \\ 1 & -1 & 2 \\ 1 & 2 & -1 \end{bmatrix}称为系数矩阵,向量\begin{bmatrix} x \\ y \\ z \end{bmatrix}称为未知向量,向量\begin{bmatrix} 1 \\ 3 \\ 0 \end{bmatrix}称为常向量。
2. 矩阵求解线性方程组的基本思路将线性方程组转换为矩阵方程后,可以使用矩阵的逆来求解未知向量。
具体来说,对于实数域上的矩阵方程AX = B如果矩阵A可逆,则可以将等式两边左乘A的逆矩阵A^-1,得到X = A^(-1)B其中,X和B都是列向量,A^-1是A的逆矩阵。
逆矩阵的定义是,如果存在一个矩阵A^-1,使得A^-1A = I其中,I是单位矩阵,则称A是可逆的,A^-1是A的逆矩阵。
对于实数域上的矩阵,如果矩阵的行列式不为0,则该矩阵可逆。
矩阵运算与线性方程组的解法
矩阵运算与线性方程组的解法矩阵运算和线性方程组是线性代数中非常重要的概念和工具。
它们在数学、物理、计算机科学等领域中扮演了重要的角色。
在本文中,我们将探讨矩阵运算和线性方程组的解法。
矩阵是由数个数按照一定的规律排列成的矩形阵列。
矩阵一般用大写字母表示,如A、B等。
矩阵由行和列组成,并且每个元素的位置用索引表示。
例如,A[i, j]表示矩阵A中第i行第j列的元素。
矩阵运算包括加法、减法和乘法等。
矩阵加法要求两个矩阵具有相同的行数和列数,相应位置元素相加得到新的矩阵。
矩阵减法也有类似的规定。
矩阵乘法的定义稍微复杂一些,它要求第一个矩阵的列数等于第二个矩阵的行数。
运算结果的矩阵的行数等于第一个矩阵的行数,列数等于第二个矩阵的列数。
解决线性方程组的一个常见方法就是使用矩阵运算。
线性方程组是由多个线性方程组成的方程组。
每个线性方程都具有类似“a1x1 + a2x2 + ... + anxn = b”的形式,其中a1, a2, ..., an是已知系数,x1, x2, ..., xn是未知数,b是已知常数。
我们的目标是找到满足所有线性方程的未知数的解。
矩阵运算的方法之一是高斯消元法。
高斯消元法将线性方程组转化为一个特殊的矩阵形式,通过一系列的行变换将矩阵转化为上三角矩阵。
然后,通过回代法求解得到线性方程组的解。
这个方法的基本思想就是通过矩阵运算,将方程组转化为一个简单的等价形式,使得求解变得更加容易。
另一个常用的方法是矩阵的逆和逆矩阵。
矩阵的逆是指对于一个矩阵A,存在另一个矩阵B,使得AB=BA=I,其中I是单位矩阵。
如果矩阵A具有逆,则称其为可逆矩阵或非奇异矩阵。
我们可以使用矩阵的逆来解决线性方程组。
假设我们有一个线性方程组Ax=b,我们可以将它转化为x=A^(-1)b,其中A^(-1)表示矩阵A的逆。
然后,我们可以使用已知的矩阵求逆的方法来求解x。
除了这些方法外,还有其他一些常见的矩阵运算和线性方程组的解法。
知识点总结矩阵的初等变换与线性方程组
知识点总结矩阵的初等变换与线性方程组矩阵的初等变换是线性代数中的一个重要概念,常用于解线性方程组。
这篇文章将对矩阵的初等变换及其与线性方程组的关系进行详细阐述。
一、矩阵的初等变换的定义和种类矩阵的初等变换是指对矩阵进行的三种基本操作:交换两行,用数乘一个非零常数乘以其中一行,以及把一行的倍数加到另一行上去。
这三种操作都可以表示为可逆矩阵的乘积,因此初等变换不改变矩阵的行秩和行空间。
三种初等变换可以分别表示为:1. 交换两行:用一个单位矩阵的行交换矩阵作用于原矩阵,例如将第i行与第j行交换可以表示为Pij * A,其中Pij为单位矩阵的行交换矩阵。
2.用数乘一个非零常数乘以其中一行:用一个对角矩阵作用于原矩阵,例如将第i行乘以非零常数k可以表示为Di(k)*A,其中Di(k)为对角矩阵。
3. 把一行的倍数加到另一行上去:用一个单位矩阵与其中一倍数的矩阵的和作用于原矩阵,例如将第j行的k倍加到第i行可以表示为Lij(k) * A,其中Lij(k)为单位矩阵与其中一倍数的矩阵的和。
二、矩阵的初等变换和线性方程组的关系解线性方程组的过程中,我们常用到矩阵的初等变换来简化方程组的形式,从而更容易找到方程组的解。
下面以一个简单的线性方程组为例进行说明。
假设有一个线性方程组:a1*x1+a2*x2=b1c1*x1+c2*x2=b2将该线性方程组表示为矩阵形式:A*X=B其中A为系数矩阵,X为未知数向量,B为常数向量。
我们可以通过矩阵的初等变换来简化系数矩阵A,从而简化方程组的求解过程。
1.交换两行:通过交换方程组的两个方程,可以改变线性方程组的次序,从而改变系数矩阵A的排列顺序。
这样做有时可以使系数矩阵更容易进行进一步的变换和求解。
2.用数乘一个非零常数乘以其中一行:通过将一些方程的系数乘以一个常数k,可以改变该方程的形式。
这样做可以使一些系数简化为1,从而更容易求解。
如果系数k为0,则可以直接删除该方程。
3.把一行的倍数加到另一行上去:通过将一些方程的系数与另一个方程相加,可以使两个方程中的一些系数为0,从而进一步简化系数矩阵A。
利用矩阵的初等变换解线性方程组
利用矩阵的初等变换解线性方程组主要利用矩阵的初等变换和矩阵的初等列变换混用这两种方法解一般线性方程组,前一种方法在许多情况下应用起来比较方便。
并简单介绍了用矩阵的初等行变换解一般线性方程组的方法。
文章最后把这三种方法做了详细比较,更好地突出了用矩阵的初等列变换解一般线性方程组这种方法的简便性1.本文分两个部分,即用矩阵的初等行变换解一般线性方程组,综合运用矩阵的初等行变换和列变换解一般线性方程组。
此篇文章对上述两种方法都作了理论证明,也列出了每种方法的求解步骤。
最后都分别列出了几个例题,进一步表明每种方法的求解步骤。
另外,结合北京大学数学系编的《高等代数》课本,细说了一下用矩阵的初等行变换求解一般线性方程组的方法。
最后,把这三种方法进行了详细的比较,突显出了用矩阵的初等列变换解线性方程组这种方法的简便。
对于一个一般非齐次线性方程组11112211211222221122n n n n m m mn n ma x a x a xb a x a x a x b a x a x a x b ++⋅⋅⋅⋅⋅⋅+=⎧⎪++⋅⋅⋅⋅⋅⋅+=⎪⎨⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⎪⎪++⋅⋅⋅⋅⋅⋅=⎩(1)若设111212122212n n m m mn a a a a a a A aa a ⋅⋅⋅⎛⎫ ⎪⋅⋅⋅ ⎪= ⎪⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ ⎪ ⎪⋅⋅⋅⎝⎭,12n x xX x ⎛⎫ ⎪⎪= ⎪⋅⋅⋅ ⎪ ⎪⎝⎭,12m b b B b ⎛⎫⎪ ⎪= ⎪⋅⋅⋅ ⎪ ⎪⎝⎭则(1)式变为AX B = (2)2. 用矩阵的初等行变换求解线性方程组令(),D A B =,设1n D C E +⎛⎫= ⎪⎝⎭, (3)设矩阵A 的秩为r ,因为每对C 进行一次初等列变换,就相当于在C 的右边乘上一个初等矩阵。
于是,对C 进行一系列的初等列变换,就相当于在C 的右边乘上一系列的初等矩阵。
矩阵与线性变换的性质与应用
矩阵与线性变换的性质与应用矩阵与线性变换是线性代数中的重要概念,它们在数学和应用领域中有着广泛的应用。
本文将介绍矩阵与线性变换的基本性质,并探讨它们在实际问题中的应用。
一、矩阵的基本性质1. 矩阵的定义矩阵是一个由一定数量的数按照长方阵列排列而成的矩形数表。
一般表示为m×n(m行n列)。
矩阵中的元素可以是实数、复数或者其他代数元素。
2. 矩阵的运算矩阵与矩阵之间有加法和乘法运算。
对于两个相同大小的矩阵A和B,它们的加法定义为A + B = C,其中C的每个元素等于A和B对应位置上元素的和。
矩阵的乘法定义为A × B = D,其中D的第i行第j列的元素等于A的第i行与B的第j列对应元素的乘积之和。
3. 矩阵的转置和逆矩阵矩阵的转置是指将矩阵的行和列互换得到的新矩阵。
转置后的矩阵记作A^T。
对于方阵A,如果存在一个矩阵B使得A × B = B × A = I(单位矩阵),则称B为A的逆矩阵。
逆矩阵可以用来解线性方程组,求解矩阵的逆矩阵需要满足一定的条件。
二、线性变换的基本性质1. 线性变换的定义线性变换是指保持向量加法和数乘运算的映射。
对于向量空间V中的两个向量u和v,以及标量c,线性变换T必须满足两个性质:T(u + v) = T(u) + T(v)和T(cu) = cT(u)。
2. 线性变换的表示与矩阵每个线性变换都可以由一个矩阵表示。
对于向量空间V中的一组基底B = {b1, b2, ..., bn},线性变换T定义为T(v) = Av,其中A 是一个由线性变换将基底B中的向量映射到对应的新坐标系中的向量所得到的矩阵。
3. 线性变换的性质线性变换具有以下性质:- 保持原点不变:T(0) = 0- 保持直线性质:对于直线上的点,线性变换后仍然在直线上- 保持比例关系:对于两个向量u和v,如果它们的比例关系为u = cv,那么它们的线性变换后的比例关系为T(u) = cT(v)三、矩阵与线性变换的应用1. 矩阵的行列式矩阵的行列式是一个标量值,可以用来判断矩阵是否可逆以及计算矩阵的逆矩阵。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
矩阵在解线性方程组中的应用摘要线性方程组的求解是代数学中一个比较重要的内容. 线性方程组求解过程中,掌握各种求解线性方程组的方法是至关重要的. 基于线性方程组和矩阵之间的联系,可以用线性方程组系数和常数项所构成的行列式矩阵来研究线性方程组的求解问题. 本文主要讨论矩阵的秩在方程组的解的判断中的应用、矩阵的初等变换在解线性方程组中的应用.关键词: 矩阵;线性方程组;矩阵的秩;初等变换The Application of Matrix in Solving Linear EquationsABSTRACTThe solution of linear equations is an important part of algebra.In the process of solving line ar equations,it is very important to master various methods of solving linear equations.Based on the relationship between linear equations and matrix,the determinant matrix composed of coefficient and constant term of linear equations can be used to study the solution of linear equations. This paper mainly discusses the application of the rank of matrix in the judgment of the solution of equations and the application of the elementary transformation of matrix in the solution of linear equations.Keywords: matrix;linear;equations;rank of matrix;elementary transformation目录摘要 (I)ABSTRACT ............................................................................................................................... I I一、引言 (1)二、线性方程组的有关概念 (1)1. 线性方程组的定义 (1)2. 线性方程组的一般解法 (2)三、矩阵的有关概念 (3)1. 矩阵的概念 (3)2. 矩阵的初等变换 (3)3. 矩阵的秩[4] (4)4. 基于矩阵的线性方程组解的判断条件 (5)四、矩阵在解线性方程组中的应用以及解题思路 (6)参考文献 (11)一、引言矩阵和线性代数在高等代数中占据重要的位置,而解线性方程组在高等代数中也是十分重要的知识点. 中学时我们也初步了解并学习了解简单的线性方程组,知线性方程组的重要性,但是不是每一个线性方程组都有解,所以我们首先要做的就是判断线性方程组有无解, 通过对矩阵的学习,我们知道矩阵的秩可以判断线性方程组有无解,在有解的情况下可以利用矩阵求解线性方程组.在文献[1]中总结了矩阵、线性方程组的相关概念;文献[2]给出了线性方程组的一般解法的主要内容;文献[3-5]给出了矩阵的初等变换、矩阵的逆的相关概念概念以及龝矩阵的逆的一些相关问题;文献[6]给出了线性方程组解的判断条件;文献[7-10]给出了一些关于矩阵分析和解线性方程组问题分析中的简单的概念和应用. 本文主要研究矩阵和线性方程组的一些基本概念和其应用,通过矩阵来解线性方程组,并结合具体实际问题说明矩阵在解线性方程组中的应用,为今后的学习与研究提供有利工具.二、线性方程组的有关概念1. 线性方程组的定义定义 1[1] 一般线性方程组的定义是形如⎪⎪⎩⎪⎪⎨⎧=+++=+++=+++sn sn s s n n n n b x a x a x a b x a x a x a b x a x a x a 22112222212111212111 的方程组,这里的n x x x ,,, 21代表n 个未知量,s 则表示为线性方程的未知个数. 如果我们知道一个线性方程组的全部系数和常数项,那么这个线性方程组就可以确定了,线性方程组就可以用下面的矩阵⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡s sn s s n n b a a a b a a a b a a a 21222221111211进行表示. 令⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=sn s s n n a a a a a a a a a A 212222111211, ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=n x x x X 21, ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=n b b b b 21, 可知线性方程组的系数矩阵A ,未知数矩阵为X ,常数项矩阵为b ,则可得到b AX =. 若常数项矩阵为零矩阵即0=AX ,那么我们称之为齐次线性方程组. 反之,若常数项矩阵b 为非零矩阵,则称为非齐次线性方程组.2. 线性方程组的一般解法对于线性方程组的求解,除了可以进行特殊变换而获得特定形式的特殊型之外,还有两种线性方程组的一般解法:(1)消元法[2]所谓消元法,就是在方程中利用矩阵的初等变换,一步步地消去未知量的个数,最终得到一个具有阶梯性的方程组,如果把最终初等变换得到的一些恒等式“0=0”(如果出现的话)全部去掉,观察其余的阶梯形方程看是否有零等于一个非零的常数的,如果方程组有,这个常数的方程组无解,如果没有,则有解. 在方程组有解的情况下,如果一个阶梯形方程组中一个方程的未知量的个数r 和方程中未知量的方程个数相等, 则这个方程组有唯一的解,如果一个阶梯形方程组中一个方程的未知量个数r 比方程中未知量的方程个数小,那么这个方程组可以有无穷多个解. 消元法也是我们在中学时解线性方程组是常用的一种方法,但当未知量有n 个的时候,一个一个的消元工作量也会很大.(2)克拉默法则[2]克拉默法则是建立在逆矩阵的使用基础上,对于线性方程组进行的一般解法,但要注意的是,使用克拉默法则求解线性方程组是有条件的:一是方程组必须是线性的,二是待求解的线性方程组中的方程的个数和未知量的个数相等,三是线性方程组中的未知系数矩阵行列式D 不等于0,满足以上三种情况则可使用克拉默法则.定义 2 给出克拉默法则的一般描述:如果线性方程组⎪⎪⎩⎪⎪⎨⎧=+++=+++=+++s n sn s s n n n n b x a x a x a b x a x a x a b x a x a x a 22112222212111212111的系数矩阵⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=sn s s n n a a a a a a a a a A 212222111211 的行列式,即它的系数行列式为0≠=A d 那么这个线性方程组有解,有且只有唯一的解,其系数的表达如下:d d x 11=,d d x 22=, ,dd x n n =,则可以得到线性方程组的解. 但克拉默法则并不适用于所有的满足条件的线性方程组,因为它的计算量太大,一般我们也不怎么使用克拉默法则的方法求解线性方程组.三、矩阵的有关概念1. 矩阵的概念定义 3[1] 由n m ⨯个数),,2,1,,,2,1(n j m i a ij ==构成m 行n 列并括以圆括弧或方括弧的数表. 即⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=mn m m n n a L a a M M M M a L a a a L a a A 212222111211称为n m ⨯矩阵. 例如 ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=852*******A .2. 矩阵的初等变换矩阵的初等变换不仅在矩阵的学习中是一个重要内容,在线性方程组中也有广泛的应用,首先,给出矩阵的初等变换.定义 4[3] 下面三种变换成为矩阵的初等变换(1)交换矩阵的两行(列);(2)用一个非零数k 乘矩阵的某行(列);(3)矩阵的某行(列)的k 倍加到另一行(列).3. 矩阵的秩[4]讨论矩阵和线性方程组的关系时,矩阵的秩是较为重要的概念.定义 5 矩阵的秩是指矩阵()n m ij a A ⨯=的不为零的子式的最大阶数称为矩阵A 的秩,记作rankA 或rA . 显然),min()(n m A r ≤易得:若A 中至少有一个r 阶子式不等于零,且在),min(n m r <时,A 中所有的1+r 阶子式全为零,则A 的秩为r .矩阵的秩是判断线性方程组是否有解的重要条件. 因此,如何求解矩阵的秩是至关重要的. 目前,矩阵的秩的求解有如下两种方法.(1)矩阵的初等变换可以求解矩阵的秩(2)若矩阵为k 行,则先计算k 阶子式,若k 阶子式不为零,则秩为k ;如果k 阶子式为零,则计算1-k 阶子式,若1-k 阶子式中有一个不零,则秩为1-k ,若所有的1-k 阶子式都为零,则计算2-k 阶子式,以此类推,指导计算到m k -阶子式中不全为零,则秩为m k -为止.但第二种方法适应于k 较小时,当k 较大时,计算量大,也容易出错,此时可以利用矩阵的初等变换求矩阵的秩.有关矩阵的秩的求解,下面,我们提供了一些例题.例 1[5] 求下列矩阵的秩⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=1003011-60302-42-20121-1A . 解 由题意,利用初等行变换可得 ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡→⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡→⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡→⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡00000100300400001211040001403004000012111003014030040000121110030116030242201211------------, 所以矩阵A 的秩为3.例 2 求下列矩阵的秩⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=814331116321B . 解 矩阵B 经过初等变换,可得到矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡110010101001, 则矩阵B 的秩为3.例 3 求矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=510312223A 的秩. 解 矩阵A 有3行,则计算0=A ,则计算2阶子式. 因为01-22-3≠,所以2)(=A r . 下面总结了用初等变换法求矩阵的秩在解题过程中的步骤主要为:(1) 进行初等变换;(2) 将矩阵化为阶梯形矩阵;(3) 通过初等变换判断非零行的个数可以求出秩.4. 基于矩阵的线性方程组解的判断条件定理 1 线性方程组⎪⎪⎩⎪⎪⎨⎧=+++=+++=+++s n sn s s n n n n b x a x a x a b x a x a x a b x a x a x a 22112222212111212111有解的充分必要条件为:线性方程组的系数矩阵的秩等于增广矩阵的秩,即r(A )=r(A ),其中⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=sn s s n n a a a a a a a a a A 212222111211,⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=s sn s s n n b a a a b a a a b a a a A 21222221111211. 若是n n ⨯阶的线性方程组,在判定线性方程组有解的条件下,我么还能通过矩阵的秩来进一步判定线性方程组解的个数:当n r <时,线性方程组有无穷解;当n r =时,线性方程组有唯一的解.在一个齐次线性方程组中有非零行方程组解的充要条件,也就是它的系数增广矩阵的行列式等于零.例 4[6]判断下列方程组是否有解 ⎪⎩⎪⎨⎧=++=+=++346212432131321x x x x x x x x 解 由题可知,方程组的系数矩阵为⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=426101214A , 增广矩阵为⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=341621011214A , 由初等变换,增广矩阵可化为矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡9-2-1021012000, 可知2)(=A r ,3)(=A r ,因为2≠3,所以方程组无解.我们学会了利用矩阵的秩来判断方程组是否有解,那在方程组有解的情况下,我们就应该利用矩阵求解线性方程组.四、矩阵在解线性方程组中的应用以及解题思路对于一般的线性方程组求解,可以通过分析其对应的矩阵来获得线性方程组的一些特征,从而我们就可以对线性方程组进行求解.矩阵的初等变换是解线性方程组的基本的方法,主要是将矩阵化为阶梯形矩阵,具体步骤如下:第一步,写出线性方程组的一个增广矩阵;第二步,判断线性方程组到底是否有解,假设它有解,则可以对矩阵进行下面的三步;第三步,化增广矩阵为初等变换为最简单的增广矩阵;第四步,求线性方程组的一个特解;第五步,求线性方程组的一个通解.例 5[7] 解下列方程组⎪⎩⎪⎨⎧=++=++=++8433632321321321x x x x x x x x x解 由题意,利用初等行变换可得,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡110010101001110032100101110032106321121032106321814331116321--- 可得线性方程组 ⎪⎩⎪⎨⎧===111321x x x ,所以原方程的解为(1,1,1).例 6[8] 解下列齐次线性方程组⎪⎪⎪⎩⎪⎪⎪⎨⎧=+-+-=+++=-++-=+-+=++-0441520410305202302343214321432143214321x x x x x x x x x x x x x x x x x x x x分析 这是一个齐次线性方程组,但它的未知量的个数比较多,用消元法计算量还是很大的,这时我们就应该选择一种简单的方法去求解,我们可以利用矩阵的初等变换求线性方程组的解,这时我们只要把方程的系数矩阵描述出来,不写未知量,这也为我们节省了大量的计算和时间.解 方程的系数矩阵为⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡44-152-411031-152-21-31121-3 将系数矩阵初等化为阶梯形矩阵,可得→⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡→⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡→⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡55-10031-11031-1105-510-021-3144-152-411031-152-121-321-3144-152-411031-152-21-31121-3⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡→⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡0000000095-1001-41021-31000000005-9002-41021-31⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎣⎡→⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎣⎡→000000095-10092019130010000000095-10092010913031所以方程的一般解为⎪⎪⎪⎩⎪⎪⎪⎨⎧=-=-=434241959297x x x x x x ,其中4x 为未知量. 当取94=x 时,方程组的解为⎪⎪⎪⎪⎪⎭⎫⎝⎛=952-7-η,所以原方程通解为⎪⎪⎪⎪⎪⎭⎫⎝⎛--==9527k k X η.例 7[9] 求解下列线性方程组⎪⎪⎩⎪⎪⎨⎧=+--=-+-=-+-=+--0411226234432134321432143214321x x x x x x x x x x x x x x x x分析 首先写出系数矩阵和增广矩阵,并对其进行简化,然后看两个矩阵的秩是否相来判断解的情况.解:对增广矩阵进行下列变换⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡→⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡→⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=000004-000022-500113-1-12-25-0026-150022-500113-1-104112-262-34-431-21-1113-1-1A ,首先判断方程组是否有解,根据增广矩阵和系数矩阵的关系可以知道,此时系数矩阵的秩等于2,而增广矩阵的秩等于3,因为32≠,所以我们可以知道这个线性方程组没有解.例 8[10] 讨论b a ,为何值时,方程组⎪⎪⎩⎪⎪⎨⎧-=+++=--+-=++=+++1232)3(122043214324324321ax x x x bx x a x x x x x x x x有唯一解;无解;无穷多解,当有无穷多解时,求出通解.分析 此线性方程组为非齐次线性方程组,这题中通过判断线性方程组是否有解来求出未知数,判断线性方程组是否有解,就是要判断系数矩阵的秩与增广矩阵的秩是否相同,若有解,则可求出线性方程组的解.解 对线性方程组的增广矩阵进行过下列变换⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-+-→⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡------→⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--=01000101001221001111132102310122100111110232-31-01221001111a b a a b a a b a A (1)当1≠a 时,方程组有唯一的解;(2)当11-≠=b a 且时,方程组无解;(3)当11-==b a 且时,方程组有无穷多解.此时方程组为 ⎩⎨⎧=++=+++12204324321x x x x x x x ,可得特解⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=0011-α, 导出组的基础解系为⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=102-1012-121ηη,, 于是通解为2211ηηαβk k ++=.总结 在解线性方程组的问题中,首先先准确地判断方程组是否有解,在方程组有解的基础情况下,那么在齐次线性方程组中,若齐次线性方程组的任何一组基础解为r n -ξξξ,,, 21,我们称它为方程组的一个基础解系,齐次线性方程组的任何一解都能表成r n -ξξξ,,, 21的线性组合.而在非齐次线性方程组中,应先求出0=Ax 的基础解系,则0=Ax 的通解为r n r n k k k x --+++=ξξξ...2211,设η为非齐次线性方程组b Ax =的特解,r n -ξξξ,,, 21为对应的齐次线性方程组0=Ax 的基础解系,则b Ax =的通解为ηξξξ++++=--r n r n k k k x ...2211,在方程组有解的情况下,解是唯一的充分必要条件是它的导出组只有零解.结论矩阵在解线性方程组中有广泛的应用,主要是通过矩阵的初等变换求线性方程组的解,而且矩阵的初等变换还可以帮助我们判断线性方程组是否有解的情况. 通过矩阵的初等变换求出矩阵的秩,用矩阵的秩来判断线性方程组的解也是非常重要的一种方法. 总而言之,矩阵再解线性方程组中有重要的作用,能帮助我们理清这类问题的解题思路,从而能让我们更好的灵活运用矩阵来求解线性方程组.参考文献[1]北京大学数学系前代数小组. 高等代数[M]. 第四版. 北京:高等教育出版社,2013.[2] 林清. 矩阵在解线性方程组中的应用[J]. 湛江市高级技工学校,2015(11):583.[3]郑庆云,宋一杰,杨晓叶. 利用矩阵初等变换求解方程组的解[J]. 阴山学刊,2017(01):23-26.[4] 王玉兰. 矩阵求逆和齐次线性方程组的基础解系的统一算法[J]. 内蒙古科技与经济,2002(11):142.[5]吴英柱. 矩阵的初等变换在线性代数中的若干应用与探讨[J]. 广东石油化工学院学报,2017(1):71-75,94.[6]王卿文. 线性代数核心思想及应用[M]. 北京:科学出版社,2012.[7]辛奎东. 关于线性方程组新解法的探索[J]. 黑龙江科技信息,2012(02):222-222.[8]于永新. 用矩阵的初等行变换求齐次线性方程组的标准正交解系[J]. 辽宁科技大学学报,2016(3):17.[9] 付美鑫. 利用行列式、矩阵求解线性方程组[J]. 黑龙江科学,2017(3):45-46.[10] 骆旗,褚青涛. 浅析矩阵在解线性方程组中的作用[J]. 时代教育,2018(7):139-139.致谢本论文是在导师xxx教授的指导下完成的,从选题到完成,每一步都是在导师的指导下完成的. 在此我要首先感谢老师,他能在忙碌的教学工作中挤出时间来审查、修改我的论文. 我还要感谢所有教过我的老师,他们严谨细致、一丝不苟的作风一直会是我工作学习中的榜样. 同时我还要感谢在我学习期间给予我帮助的同学们,是你们的开导让我能够开心的度过这四年美好的大学时光.。