大学数学c1练习题及答案

合集下载
相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

练习一

一、选择题(在每小题的四个备选答案中选出一个正确答案,并将正确答案的序号填入题后的括号内。(每小题3分,共24分 ) 1、 函数x

x f -=11

arctan

)(当1→x 时的极限就是( C )、 (A)

2π (B) 2

π

- (C) 0 (D) 不存在、 2、 若

c x F dx x f +=⎰)()(,若0a ≠,则=+⎰xdx b ax f )(2( )、

(A)

c

b ax F ++)(2

(B)

)(21

2b ax F a

+ (C)

c b ax F a

++)(21

2 (D)

c b ax aF ++)(22、

3、 若函数 ()⎩⎨⎧>-≤=0

)1(0

2

x x b x e x f ax 在x =0处可导,则( )、 (A) 1==b a (B) 0,1==b a (C) 1,0==b a (D) 1,2-=-=b a 、

4、 函数1

1

x x e y e +=- 就是( )、

(A)偶函数 (B)奇函数 (C)非奇非偶函数; (D)既就是奇函数又就是偶函数、

5、 设函数)(x f 在点a x =处可导,则=--+→x

x a f x a f x )

()(lim

( )、

(A) )(2a f ' (B) )(a f ' (C) )2(a f ' (D) 0、

6、 已知x y sin =,则=)

10(y

( )。

(A) x sin (B) x cos (C) x sin - (D) x cos -、 7、 若()f x 与()g x 均为区间I 内的可导函数,则在I 内,下列结论中正确的就是( )、

(A)若'()'()f x g x =,则 ()()f x g x = (B)若()()f x g x >,则'()'()f x g x >

(C)若'()'()f x g x =,则 ()()f x g x c =+ (D)若'()'()f x g x >,则()()f x g x >、

8、若()(1)(2)(3)f x x x x x =---,则方程'()0f x =根的个数为( )、

(A ) 0个 (B) 1个 (C) 2个 (D) 3个、

二、填空题(每题3分,共18分。) 9、 函数2

1

32

x y x x -=

-+的可去间断点为______________________、 10、 当0x →时,sin x x -就是2

x 的____________(填高阶、低阶或同阶)无穷小。

11、

设ln(y x =,则=dy _________ 、

12.已知点(0,1)就是曲线32

2y x bx c =++的拐点,则b =______, c =______;

13.已知()f x 的一个原函数就是2

ln x ,则

()f x dx =⎰_________;

14、 设

11()x

x

f x e dx e

c =+⎰,则()f x = __ 、

三、计算题(每题6分,共42分) 15.计算极限0

11

lim[

]ln(1)x x x

→-+、

16.求极限:2

1

lim(cos )x x x →、

17.设函数)(x y y =由方程2y x

xy e e +=所确定,求(0)y '。

18、 设参数方程(1cos )

(1sin )

t

t

x e t y e t ⎧=+⎪⎨=+⎪⎩确定函数()y f x =,求在0t =时曲线的切线方程、 19.求不定积分:2

sin 3xdx ⎰

20、 计算不定积分

:

21、 计算不定积分:

21

arctan xdx x ⎰

四、解答题(8分)

22、某服装公司确定,为卖出x 套服装,其单价应为 x p 5.0150-=,同时还确定,生产x 套服装的总成本可表示为2

25.04000)(x x C +=。求:

(1)为使利润最大化,公司必须生产多少套服装?最大利润为多少? (2) 为实现利润最大化,其服装单价应定为多少? 五、证明题(8分)

23、证明:当0x >时,不等式tan ln(1)1arc x

x x

+>+成立、

练习一答案

一、选择题(在每小题的四个备选答案中选出一个正确答案,并将正确答案的序号填入题后的括号内。(每小题3分,共24分。)

(B ) 1、 D; 2、 C; 3、 C; 4、 B; 5、 A; 6、 C; 7、 C; 8、

D 、

二、填空题(每题3分,共18分。)

9、 1x =;10、高阶;11

;12、 则0b =, 1c =;;13、2ln x C +;14、21

x

-

三、计算题(每题6分,共36分) 15.计算极限0

11

lim[

]ln(1)x x x

→-+、

解:0

11lim[

]ln(1)x x x →-+0ln(1)lim ln(1)x x x x x →-+=+2

0ln(1)

lim

x x x x →-+=01

11

(1)lim 22

x x x →-

+== (6分) 16.求极限:2

10

)

(cos lim x x x →、

解:2

1

)

(cos lim x

x x →2

cos 1cos 110

)

1cos 1(lim x x

x x x --→-+=2

1-=e (6分)

或2

1

)(cos lim x x x →2

cos ln lim

x

x x e

→=x x x x e

cos 2sin lim

0-→=2

1-=e

17.设函数)(x y y =由方程x

y e e xy 2=+所确定,求(0)y '。 解:两边对x 求导数:x

y

e

y e y x y 22='+'+ 3分

得:y

x e x y

e y +-='22 4分

(0)2y '= 5分

18.设参数方程(1cos )

(1sin )

t

t

x e t y e t ⎧=+⎪⎨=+⎪⎩确定函数()y f x =,求在0t =时曲线的切线方程。 解:

(1sin cos )t dy e t t dt -=++ ,(1cos sin )t dx e t t dt

=+- 'y =

/1sin cos /1cos sin dy dy dt t t

dx dx dt t t

++==+- 0

'1t y =∴= (4分)

0,2,1t x y ===

所以,切线方程为: 10x y --= (2分)

相关文档
最新文档