2018年考研数学模拟试题(数学三)

合集下载

考研数学三模拟题2018年(33)_真题(含答案与解析)-交互

考研数学三模拟题2018年(33)_真题(含答案与解析)-交互

考研数学三模拟题2018年(33)(总分100, 做题时间90分钟)一、填空题1.已知则f (n) (3)=______.SSS_FILL分值: 2[解析]则所以2.SSS_FILL分值: 23e [解析] 令则于是3.SSS_FILL分值: 22(1-ln2) [解析] 令则因为S(0)=0,所以则4.设级数条件收敛,则p的取值范围是______.SSS_FILL分值: 2[解析]因为条件收敛,所以即p的范围是5.设y=y(x)满足,且有y(1)=1,则.SSS_TEXT_QUSTI分值: 2[解析] 由得函数y=y(x)可微且,积分得,因为y(1)=1,所以C=0,于是,故6.微分方程的通解为______.SSS_TEXT_QUSTI分值: 2[解析] 由,得,即,令z=e y,则,解得,所以原方程的通解为.7.微分方程yy"-2(y") 2 =0的通解为______.SSS_TEXT_QUSTI分值: 2y=C或者[解析] 令y"=p,得,代入原方程得则p=0,或.当p=0时,y=C;当时,,即.由,得,从而,所以原方程的通解为y=C或者.8.微分方程的通解为______.SSS_TEXT_QUSTI分值: 2lnx+C [解析] 令,所以9.以y=C1 e x +e x (C2cosx+C3sinx)为特解的三阶常系数齐次线性微分方程为______.SSS_TEXT_QUSTI分值: 2y""-3y"+4y"-2y=0 [解析] 特征值为λ1 =1,λ2,3=1±i,特征方程为(λ-1)(λ-1+i)(λ-1-i)=0,即λ 3 -3λ 2+4λ-2=0,所求方程为y""-3y"+4y"-2y=0.10.设y(x)为微分方程y"-4y"+4y=0满足初始条件y(0)=1,y"(0)=2的特解,则SSS_TEXT_QUSTI分值: 2[解析] y"-4y"+4y=0的通解为y=(C1 +C2x)e 2x,由初始条件y(0)=1,y"(0)=2得C1 =1,C2=0,则y=e 2x,于是11.差分方程yt+1 -2yt=3×2 t的通解为y(t)=______.SSS_TEXT_QUSTI分值: 2[解析] yt+1 -2yt=0的通解为y(t)=C×2 t,f(t)=3×2 t,因为2为特征值,所以设特解为yt*=at×2 t,代入原方程得,故原方程的通解.二、选择题1.设条件收敛,且,则______.SSS_SINGLE_SELA |r|<1B |r|>1C r=-1D r=1分值: 2答案:C[解析] 因为条件收敛,所以级数一定不是正项或负项级数,故r≤0.若|r|<1,则,级数绝对收敛,矛盾;若|r|>1,则,存在充分大的N,当n>N时,{|un|}单调增加,,于是发散,矛盾,故|r|=1,再由r≤0得r=-1,选C.2.设,则______.A.B.C.D.SSS_SIMPLE_SINA B C D分值: 2答案:B[解析] 显然条件收敛,,因为,而收敛,所以收敛,选B.3.设幂级数在x=6处条件收敛,则幂级数的收敛半径为______.A.2B.4C.D.无法确定SSS_SIMPLE_SINA B C D分值: 2答案:A[解析] 因为在x=6处条件收敛,所以级数的收敛半径为R=4,又因为级数有相同的收敛半径,所以的收敛半径为R=4,于是的收敛半径为R=2,选A.4.设y(x)是微分方程y"+(x-1)y"+x 2 y=e x满足初始条件y(0)=0,y"(0)=1的解,则______.SSS_SINGLE_SELA 等于1B 等于2C 等于0D 不存在分值: 2答案:A[解析] 微分方程y"+(x-1)y"+x 2 y=e x中,令x=0,则y"(0)=2,于是,选A.5.二阶常系数非齐次线性微分方程y"-2y"-3y=(2x+1)e -x的特解形式为______.• A.(ax+b)e-x•**•**(ax+b)e-x**(ax+b)e-xSSS_SIMPLE_SINA B C D分值: 2答案:D[解析] 方程y"-2y"-3y=(2x+1)e -x的特征方程为λ 2 -2λ-3=0,特征值为λ1 =-1,λ2=3,故方程y"-2y"-3y=(2x+1)e -x的特解形式为x(ax+b)e -x,选D.6.设φ1 (x),φ2(x),φ3(x)为二阶非齐次线性方程y"+a1(x)y"+a2(x)y=f(x)的三个线性无关解,则该方程的通解为______.SSS_SINGLE_SELA C1[φ1(x)+φ2(x)]+C2φ3(x)B C1[φ1(x)-φ2(x)]+C2φ3(x)C C1[φ1(x)+φ2(x)]+C2[φ1(x)-φ3(x)]D C1φ1(x)+C2φ2(x)+C3φ3(x),其中C1+C2+C3=1分值: 2答案:D[解析] 因为φ1 (x),φ2(x),φ3(x)为方程y"+a1(x)y"+a2(x)y=f(x)的三个线性无关解,所以φ1 (x)-φ3(x),φ2(x)-φ3(x)为方程y"+a1(x)y"+a2(x)y=0的两个线性无关解,于是方程y"+a1 (x)y"+a2(x)y=f(x)的通解为C1[φ1(x)-φ3(x)]+C2[φ2(x)-φ3(x)]+φ3(x)即C1φ1(x)+C2φ2(x)+C3φ3(x),其中C3=1-C1-C2或C1+C2+C3=1,选D.三、解答题1.讨论级数的敛散性.SSS_TEXT_QUSTI分值: 5解令则因为而收敛,所以收敛,由正项级数的比较审敛法得收敛.2.设收敛,举例说明级数不一定收敛;若是正项收敛级数,证明一定收敛.SSS_TEXT_QUSTI分值: 5解令,由交错级数的Leibniz审敛法,级数收敛,而发散.设是正项收敛级数,则,取ε0 =1,存在自然数N,当n>N时,|an-0|<1,从而0≤an<1,当n>N时,有.由收敛得收敛,再由比较审敛法得收敛,所以收敛.3.设,级数中,哪个级数一定收敛?SSS_TEXT_QUSTI分值: 5解不一定收敛,如,显然,而,因为收敛,而发散,所以发散;不一定收敛,如,显然发散;不一定收敛,如,显然发散;一定收敛.由,得,又收敛,所以收敛,即绝对收敛,所以一定收敛.4.若正项级数收敛,证明:收敛.SSS_TEXT_QUSTI分值: 5证明因为收敛,所以,当x>0时,ln(1+x)<x,于是为正项级数,而,所以再由收敛,故收敛.设.SSS_TEXT_QUSTI5.求的值;分值: 2.5解,则,,因为,所以.SSS_TEXT_QUSTI6.证明:对任意常数λ>0,收敛.分值: 2.5证明因为,所以,而收敛(λ>0),所以收敛.7.设,讨论级数的敛散性,若收敛求其和.SSS_TEXT_QUSTI分值: 5解因为收敛,所以收敛.因为所以于是的和为8.设{nan}收敛,且收敛,证明:级数收敛.SSS_TEXT_QUSTI分值: 6证明令Sn =a1+a2+…+an,S"n+1=(a1-a)+2(a2-a1)+…+(n+1)(an+1 -an),则S"n+1 =(n+1)an+1-Sn-a,因为收敛且数列{nan}收敛,所以都存在,于是存在,根据级数收敛的定义,收敛.9.设an>0(n=1,2,…)且单调减少,又级数发散,判断的敛散性.SSS_TEXT_QUSTI分值: 6解因为单调减少且an>0(n=1,2,…),所以存在,令,由发散,得A>0.根据正项级数的根值审敛法,由,得级数收敛.证明:SSS_TEXT_QUSTI10.设an >0,且{nan}有界,则级数收敛;分值: 3证明因为{nan }有界,所以存在M>0,使得0<nan≤M,即,而级数收敛,所以级数收敛.SSS_TEXT_QUSTI11.若,则级数收敛.分值: 3证明取,因为,所以存在N>0,当n>N时,,即,或者,而收敛,所以收敛.设(n=1,2,…;an >0,bn>0),证明:SSS_TEXT_QUSTI12.若级数收敛,则级数收敛;分值: 3证明由,则数列单调递减有下界,根据极限存在准则,存在,令.无论A=0还是A>0,若级数收敛,则级数收敛.SSS_TEXT_QUSTI13.若级数发散,则级数发散.分值: 3证明若A=0,由级数发散,得级数发散;若A>0,级数敛散性相同,故若级数发散,则级数发散.14.设{un },{cn}为正项数列,证明:(1)若对一切正整数n满足cn un-cn+1un+1≤0,且发散,则也发散;(2)若对一切正整数n满足,且收敛,则也收敛.SSS_TEXT_QUSTI分值: 6证明显然为正项级数.(1)因为对所有n满足cn un-cn+1un+1≤0,于是cn un≤cn+1un+1cnun≥…≥c1u1>0,从而.因为发散,所以也发散.(2)因为对所有n满足,则cn un-cn+1un+1≥aun+1,即cn un≥(cn+1+a)an+1,所以,于是因为收敛,所以也收敛.15.对常数p,讨论幂级数的收敛区间.SSS_TEXT_QUSTI分值: 6解由,得幂级数的收敛半径为R=1.(1)当p<0时,记q=-p,则有,因而当x=±1时,发散,此时幂级数的收敛区间为(-1,1),(2)当0<p<1时,对,因为,所以x=1时,级数发散,当x=-1时,显然收敛,此时幂级数的收敛区间为[-1,1);(3)当p>1时,对,因为,而收敛,所以级数收敛,当x=-1时,显然绝对收敛,此时幂级数的收敛区间为[-1,1].1。

2018考研数学(三)真题

2018考研数学(三)真题

代入已知条件
f x dx 0, 得
0
1
2 1 1 f 1 1 0 f f x x dx 0 2 2 2 2 2 1 2 2 1 f x 1 1 1 x f f x dx 2 2 2 2 2 0 0 2 1 2 1 1 1 f f x dx 2 2 0 2 2 1 f 1 1 f x dx, 0 2 2 2
1 1 0 (5) 下列矩阵中, 与矩阵 0 1 1 相似的为 0 0 1 1 1 1 (A) 0 1 1 . 0 0 1 1 0 1 (B) 0 1 1 . 0 0 1


1 1 1 (C) 0 1 0 . 0 0 1
x
lim
0 x
x
2 x
2
0,
f 0 lim
x 0
cos x 1 lim x 0 x
x
2 x
2
1 , 2
f 0 lim
x 0
cos x 1 lim x 0 x

x 2 x

2
lim
1 ,Y 服从参数为 的泊松 2
设总体 X 的概率密度为 f x;
1 e , 其中 0, 为未知参数, X1 , X 2 X n 为来自总体 2
x
X 的简单随机样本,记 的最大似然估计量为 .
(Ι )求 ; (Ⅱ)求 E 和 D .
1 , 则 P AC A B 2

考研数学三模拟题2018年(13)_真题(含答案与解析)-交互

考研数学三模拟题2018年(13)_真题(含答案与解析)-交互

考研数学三模拟题2018年(13)(总分100, 做题时间90分钟)一、填空题1.设且存在三阶非零矩阵B,使得AB=O,则a=______,b=______.SSS_FILL分值: 12 1[解析] 因为AB=O,所以r(A)+r(B)≤3,又B≠O,于是r(B)≥1,故r(A)≤2,从而a=2,b=1.2.设η为非零向量,η为方程组AX=0的解,则a=______,方程组的通解为______.SSS_FILL分值: 13 k(-3,1,2) T [解析] AX=0有非零解,所以|A|=0,解得a=3,于是方程组AX=0的通解为k(-3,1,2) T.二、选择题1.设A是m×s矩阵,B为s×n矩阵,则方程组BX=0与ABX=0同解的充分条件是______.SSS_SINGLE_SELA r(A)=sB r(A)=mC r(B)=sD r(B)=n分值: 1答案:A[解析] 设r(A)=s,显然方程组BX=0的解一定为方程组ABX=0的解,反之,若ABX=0。

因为r(A)=s,所以方程组AY=0只有零解,故BX=0,即方程组BX=0与方程组ABX=0同解,选A.2.设n阶矩阵A的伴随矩阵A *≠O,且非齐次线性方程组AX=b有两个不同解η1,η2,则下列命题正确的是______.A.AX=b的通解为k1η1+k2η2B.η1+η2为AX=b的解C.方程组AX=0的通解为k(η1 -η2)D.AX=b的通解为SSS_SIMPLE_SINA B C D分值: 1答案:C[解析] 因为非齐次线性方程组AX=b的解不唯一,所以r(A)<n,又因为A *≠O,所以r(A)=n-1,η2 -η1为齐次线性方程组AX=0的基础解系,选C.3.设有方程组AX=0与BX=0,其中A,B都是m×n矩阵,下列四个命题:(1)若AX=0的解都是BX=0的解,则r(A)≥r(B)(2)若r(A)≥r(B),则AX=0的解都是BX=0的解(3)若AX=0与BX=0同解,则r(A)=r(B)(4)若r(A)=r(B),则AX=0与BX=0同解以上命题正确的是______.SSS_SINGLE_SELA (1)(2)B (1)(3)C (2)(4)D (3)(4)分值: 1答案:B[解析] 若方程组AX=0的解都是方程组BX=0的解,则n-r(A)≤n-r(B),从而r(A)≥r(B),(1)为正确的命题;显然(2)不正确;因为同解方程组系数矩阵的秩相等,但反之不对,所以(3)是正确的,(4)是错误的,选B.4.设A是m×n矩阵,B是n×m矩阵,则______.SSS_SINGLE_SELA 当m>n时,线性齐次方程组ABX=0有非零解B 当m>n时,线性齐次方程组ABX=0只有零解C 当n>m时,线性齐次方程组ABX=0有非零解D 当n>m时,线性齐次方程组ABX=0只有零解分值: 1答案:A[解析] AB为m阶方阵,当m>n时,因为r(A)≤n,r(B)≤n且r(AB)≤min{r(A),r(B)},所以r(AB)<m,于是方程组ABX=0有非零解,选A.5.设A为m×n阶矩阵,则方程组AX=b有唯一解的充分必要条件是______.SSS_SINGLE_SELA r(A)=mB r(A)=nC A为可逆矩阵D r(A)=n且b可由A的列向量组线性表示分值: 1答案:D[解析] 方程组AX=b有解的充分必要条件是b可由矩阵A的列向量组线性表示,在方程组AX=b有解的情形下,其有唯一解的充分必要条件是r(A)=n,故选D.三、解答题1.设向量组α1,α2,…,αn-1为n维线性无关的列向量组,且与非零向量β1,β2正交.证明:β1,β2线性相关.SSS_TEXT_QUSTI分值: 5[证明] 令因为α1,α2,…,αn-1与β1,β2正交,所以Aβ1 =0,Aβ2=0,即β1,β2为方程组AX=0的两个非零解,因为r(A)=n-1,所以方程组AX=0的基础解系含有一个线性无关的解向量,所以β1,β2线性相关.2.设齐次线性方程组其中ab≠0,n≥2.讨论a,b取何值时,方程组只有零解、有无穷多个解?在有无穷多个解时求出其通解.SSS_TEXT_QUSTI分值: 5[解](1)当a≠b,a≠(1-n)b时,方程组只有零解;(2)当a=b时,方程组的同解方程组为x1 +x2+…+xn=0,其通解为X=k1(-1,1,0,…,0) T +k2 (-1,0,1,…,0) T+…+kn-1(-1,0,…,0,1) T(k1,k2,…,kn-1为任意常数);(3)令当a=(1-n)b时,r(A)=n-1,显然(1,1,…,1) T为方程组的一个解,故方程组的通解为k(1,1,…,1) T (k为任意常数).3.设A为三阶矩阵,A的第一行元素为a,b,c且不全为零,又且AB=O,求方程组AX=0的通解.SSS_TEXT_QUSTI分值: 5[解] 由AB=O得r(A)+r(B)≤3且r(A)≥1.(1)当k≠9时,因为r(B)=2,所以r(A)=1,方程组AX=0的基础解系含有两个线性无关的解向量,显然基础解系可取B的第1、3两列,故通解为(2)当k=9时,r(B)=1,1≤r(A)≤2,当r(A)=2时,方程组AX=0的通解为当r(A)=1时,A的任意两行都成比例,不妨设a≠0,由得通解为4.a,b取何值时,方程组有解?SSS_TEXT_QUSTI分值: 5[解](1)a≠1时,唯一解为(2)a=1,b≠-1时,r(A)≠ ,因此方程组无解;(3)a=1,b=-1时,通解为X=k1 (1,-2,1,0) T +k2(1,-2,0,1) T +(-1,1,0,0) T (k1,k2为任意常数).5.A,B为n阶矩阵且r(A)+r(B)<n.证明:方程组AX=0与BX=0有公共的非零解.SSS_TEXT_QUSTI分值: 5[证明] 方程组的解即为方程组AX=0与BX=0的公共解.因为所以方程组有非零解,故方程组AX=0与BX=0有公共的非零解.设(Ⅰ) α1,α2,α3,α4为四元非齐次线性方程组BX=b的四个解,其中α1=SSS_TEXT_QUSTI 6.求方程组(Ⅰ)的基础解系;分值: 2[解] 方程组(Ⅰ)的基础解系为SSS_TEXT_QUSTI7.求方程组(Ⅱ)BX=0的基础解系;分值: 2[解] 因为r(B)=2,所以方程组(Ⅱ)的基础解系含有两个线性无关的解向量,为方程组(Ⅱ)的基础解系;SSS_TEXT_QUSTI8.(Ⅰ)与(Ⅱ)是否有公共的非零解?若有公共解求出其公共解.分值: 2[解] 方程组(Ⅰ)的通解为方程组(Ⅱ)的通解为=k,则方程组(Ⅰ)与方程组(Ⅱ)的公共解为k(-1,令,则有取k21,1,1) T (其中k为任意常数).设(Ⅰ)(Ⅱ)SSS_TEXT_QUSTI9.求(Ⅰ),(Ⅱ)的基础解系;分值: 3[解] 的基础解系为的基础解系为SSS_TEXT_QUSTI10.求(Ⅰ),(Ⅱ)的公共解.分值: 3[解] 方法一(Ⅰ),(Ⅱ)公共解即为的解,(Ⅰ),(Ⅱ)的公共解为方法二(Ⅰ)的通解代入(Ⅱ) =2k2,故(Ⅰ),(Ⅱ)的公共解为(-k,k,2k,k) T =k(-1,1,2,1) T (k为任意常数).方法三(Ⅰ)的通解为(Ⅱ)的通解为令∴(Ⅰ),(Ⅱ)的公共解为11.问a,b,c取何值时,(Ⅰ),(Ⅱ)为同解方程组?SSS_TEXT_QUSTI分值: 5[解] 方法一的通解为把(Ⅱ)的通解代入(Ⅰ),得方法二因为(Ⅰ),(Ⅱ)同解,所以它们的增广矩阵有等价的行向量组,(Ⅱ)的增广矩阵为阶梯阵,其行向量组线性无关.α1可由β1,β2,β3唯一线性表出,α1=-2β1+β2+aβ2a=-1,α2可由β1,β2,β3唯一线性表出,α2=β1+β2-β3b=-2,α3可由β1,β2,β3唯一线性表出,α3=3β1+β2+β3c=4.12.证明线性方程组(Ⅰ)有解的充分必要条件是方程组(Ⅲ)是同解方程组.SSS_TEXT_QUSTI分值: 5[证明] 令方程组(Ⅰ)可写为AX=b,方程组(Ⅱ)、(Ⅲ)可分别写为A TY=0及若方程组(Ⅰ)有解,则r(A)=r( ),从而又因为(Ⅲ)的解一定为(Ⅱ)的解,所以(Ⅱ)与(Ⅲ)同解;反之,若(Ⅱ)与(Ⅲ)同解,则从而r(A)=r( ),故方程组(Ⅰ)有解.13.设的一个基础解系为写出的通解并说明理由.SSS_TEXT_QUSTI分值: 5[解] 令则(Ⅰ)可写为AX=0,令其中则(Ⅱ)可写为BY=0,因为β1,β2,…,βn为(Ⅰ)的基础解系,因此r(A)=n,β1,β2,…,βn线性无关,.α1T,α2T,…,αn T为BY=0的一组解,而r(B)=n,α1T,α2T,…,αnT线性无关,因此α1T,α2T,…,αnT为BY=0的一个基础解系.14.设A是m×s矩阵,B是s×n矩阵,且r(B)=r(AB).证明:方程组BX=0与ABX=0是同解方程组.SSS_TEXT_QUSTI分值: 5[证明] 首先,方程组BX=0的解一定是方程组ABX=0的解.令r(B)=r且ξ1,ξ2,…,ξn-r是方程组BX=0的基础解系,现设方程组ABX=0有一个解η0不是方程组BX=0的解,即Bη≠0,显然ξ1,ξ2,…,ξn-r,η0线性无关,若ξ1,ξ2,…,ξn-r,η线性相关,则存在不全为零的常数k1,k2,…,kn-r,k,使得k1ξ1+k2ξ2+…+kn-rξn-r +kη=0,若k=0,则k1ξ1+k2ξ2+…+kn-rξn-r+kη=0,因为ξ1,ξ2,…,ξn-r线性无关,所以k1=k2=…=kn-r=0,从而ξ1,ξ2,…,ξn-r,η线性无关,所以k≠0,故η可由ξ1,ξ2,…,ξn-r线性表示,由齐次线性方程组解的结构,有Bη=0,矛盾,所以ξ1,ξ2,…,ξn-r,η线性无关,且为方程组ABX=0的解,从而n-r(AB)≥n-r+1,r(AB)≤r-1,这与r(B)=r(AB)矛盾,故方程组BX=0与ABX=0同解.设A,B,C,D都是n阶矩阵,r(CA+DB)=n.SSS_TEXT_QUSTI15.证明分值: 3[证明] 因为n=r(CA+DB)=所以SSS_TEXT_QUSTI16.设ξ1,ξ2,…,ξr与η1,η2,…,ηs分别为方程组Ax=0与BX=0的基础解系,证明:ξ1,ξ2,…,ξr,η1,η2,…,ηs线性无关.分值: 3[证明] 因为所以方程组只有零解,从而方程组AX=0与BX=0没有非零的公共解,故ξ1,ξ2,…,ξr与η1,η2,…,ηs线性无关.17.设A为n阶矩阵,A11≠0.证明:非齐次线性方程组AX=b有无穷多个解的充分必要条件是A * b=0.SSS_TEXT_QUSTI分值: 5[证明] 设非齐次线性方程组AX=b有无穷多个解,则r(A)<n,从而|A|=0,于是A * b=A * AX=|A|X=0.反之,设A * b=0,因为b≠0,所以方程组A * X=0有非零解,从而r(A * )<n,又A11≠0,所以r(A * )=1,且r(A)=n-1.因为r(A * )=1,所以方程组A * X=0的基础解系含有n-1个线性无关的解向量,而A * A=0,所以A的列向量组α1,α2,…,αn为方程组A * X=0的一组解向量.由A11≠0,得α2,…,αn线性无关,所以α2,…,αn是方程组A* X=0的基础解系.因为A * b=0,所以b可由α2,…,αn线性表示,也可由α1,α2,…,αn线性表示,故r(A)= =n-1<n,即方程组AX=b有无穷多个解.18.证明:r(AB)≤min{r(A),r(B)}.SSS_TEXT_QUSTI分值: 5[证明] 令r(B)=r,BX=0的基础解系含有n-r个线性无关的解向量,因为BX=0的解一定是ABX=0的解,所以ABX=0的基础解系所含的线性无关的解向量的个数不少于BX=0的基础解系所含的线性无关的解向量的个数,即n-r(AB)≥n-r(B),r(AB)≤r(B);又因为r[(AB) T ]=r(AB)=r(B T A T)≤r(A T )=r(A),所以r(AB)≤min{r(A),r(B)}.19.证明:r(A)=r(A T A).SSS_TEXT_QUSTI分值: 5[证明] 只需证明AX=0与A T AX=0为同解方程组即可.若AX0 =0,则A T AX=0.反之,若A T AX0 =0,则XT A T AX=0 (AX) T (AX)=0 AX=0,所以AX=0与A T AX=0为同解方程组,从而r(A)=r(A T A).20.设A是m×n矩阵,且非齐次线性方程组AX=b满足.证明:方程组AX=b 的线性无关的解向量的个数最多是n-r+1个.SSS_TEXT_QUSTI分值: 5[证明] 因为r(A)=r<n,所以齐次线性方程组AX=0的基础解系含有n-r个线性无关的解向量,设为ξ1,ξ2,…,ξn-r.设η为方程组AX=b的一个特解,令β0=η,β1=ξ1+η,β2=ξ2+η…,βn-r=ξn-r+η0,显然β,β1,β2,…,βn-r为方程组AX=b的一组解.令k0β+k1β1+…+kn-rβn-r=0,即(k0 +k1+…+kn-r)η+k1β1+k2β2+…+kn-rβn-r=0,上式两边左乘A得(k0 +k1+…+kn-r)b=0,因为b为非零列向量,所以k0 +k1+…+kn-r=0,于是k1ξ1+k2ξ2+…+kn-rξn-r=0,注意到ξ1,ξ2,…,ξn-r线性无关,所以k1=k2=…=kn-r=0,故β0,ξ1,ξ2,…,ξn-r线性无关,即方程组AX=b存在由n-r+1个线性无关的解向量构成的向量组.设ξ1,ξ2,…,ξn-r+2为方程组AX=b的一组线性无关解,令γ1=β2-β1,γ2=β3-β1,…,γn-r+1=βn-r+2-β1,根据定义,易证γ1,γ2,…,γn-r+1线性无关,又γ1,γ2,…,γn-r+1为齐次线性方程组AX=0的一组解,即方程组AX=0含有n-r+1个线性无关的解,矛盾,所以AX=b的任意n-r+2个解向量都是线性相关的,所以AX=b的线性无关的解向量的个数最多为n-r+1个.21.讨论方程组的解的情况,在方程组有解时求出其解,其中a,b为常数.SSS_TEXT_QUSTI分值: 5[解](1)当a≠-1,b≠-2时.因为D≠0,所以方程组有唯一解,由克拉默法则得(2)当a=-1,b≠-2时,当b≠-1时,方程组无解当b=-1时,方程组的通解为(3)当a≠-1,b=-2时,当a=1时,方程组的通解为当a≠1时,显然r(A)=2≠ =3,方程组元解.22.设问a,b,c为何值时,矩阵方程AX=B有解?有解时求出全部解.SSS_TEXT_QUSTI分值: 5[解] 令X=(X1,X2,X3),B=(β1,β2,β3),方程组AX=B等价于则AX=B有解的充分必要条件是r(A)=r( ),由r(A)=r( )得a=1,b=2,c=-2,此时AX1=β1的通解为AX2=β2的通解为AX 3 =β 3 的通解为 则 其中k 1 ,k 2 ,k 3 为任意常数. 1。

2018年考研数学三真题及答案解析(完整版)

2018年考研数学三真题及答案解析(完整版)

(C) f x cos x
(D) f x cos x
【答案】(D)
【解析】根据导数的定义:
x sin x
x
lim
lim
x 0,可导;
(A) x0 x
x0 x
x sin x
x
lim
lim
x 0,可导;
(B) x0
x
x0 x
cos lim
x
1

lim

1 2
t 0
t 0
2= lim (1 bt)et 1 lim et 1 lim btet 1 b,
t 0
t
t t 0
t t 0
从而b 1.
综上,a 1,b 1.
(16)(本题满分 10 分)
设平面区域D由曲线y 3 1 x2 与直线y 3x及y轴围成, 计算二重积分 x2dxdy.
2018 年全国硕士研究生入学统一考试数学(三)试题及答案解析
一、选择题:1 8 小题,每小题 4 分,共 32 分.下列每题给出的四个选项中,只有一个选项符合题目要求的.
(1) 下列函数中,在 x 0 处不可导的是( )
(A) f x x sin x
(B) f x x sin x
x
x
x 0时,可得f (x) 2xf (x) f (x) 2xf (x) 0.
由公式得:f (x) Ce(2x)dx =Cex2 , f (0) 2 C 2. 故f (x)=2ex2 f (1) 2e.
(13) 设A为3阶矩阵, a1, a2, a3是线性无关的向量组,若Aa1 a1 a2, Aa2 a2 a3, Aa3 a1 a3,

2018年考研数学三试题与答案解析(完整版)

2018年考研数学三试题与答案解析(完整版)

M 2 (1
2

2x ) dx 22 1dx 1 x2
x - , 时, 1 cos x 1, 所以K M 2 2 令f ( x) 1 x e x , f (0) 0, f ( x) 1 e x 当x 0, 时,f ( x ) 0; 当x , 0 时,f ( x ) 0 2 2 1 x 所以x - , 时,有f ( x ) 0,从可有 x 1,由比较定理得N<M, 故选C e 2 2
B. f ( x ) x sin( D. f ( x ) cos(
x) x)
f - 0 lim
x 0
x sin x x x sin x x
lim
x 0
x sin x x sin x x sin x 0 lim 0, f lim 0 x 0 x 0 x x x x sin x x sin x x sin x 0 lim 0, f lim 0 x 0 x 0 x x x
0 2
B. r ( A BA) r ( A). D. r ( A B ) r ( A B ).
T T
【解析】特殊值法:由已知可将 f ( x ) 看成随机变量 X N 1, 布的对称性, P X 0 0.2

2
的概率密度,根据正态分
1 n Xi , n i 1
Born to win
2018 年考研数学三试题与答案解析(完整版)
——跨考教育数学教研室
一、选择题:1~8 小题,每小题 4 分,共 32 分,下列每小题给出的四个选项中,只有一项 符合题目要求的,请将所选项前的字母填在答题纸 指定位置上. ... 1. 下列函数中,在 x 0 处不可导的是( A. f ( x ) x sin( x ) C. f x cos( x ) 【答案】D 【解析】 A 可导: ) 。

(完整版)2018考研数学三真题.docx

(完整版)2018考研数学三真题.docx

2018 年全国硕士研究生入学统一考试数学(三)试题一、选择题 :1 : 8 小题 , 每小题 4 分 , 共 32 分. 下列每题给出的四个选项中, 只有一个选项符合题目要求的.(1)下列函数中,在 x 0 处不可导的是()(A)f x x sin x(B)f x x sin x(C)f x cos x(D)f x cos x设函数 f x在 0,11x dx0,则()(2)上二阶可导,且f(A) 当f( x)10(B)当 f( x)0时 , f(10 0时, f ()) 22(C)当 f ( x)10(D)当 f( x)0时 , f(10 0时 , f ( ))22 2xxdx, K(3)设 M21x2 dx, N 2121cosx dx, 则()21x2e2(A) M N K(B) M K N(C) K M N(D)K N M(4)设某产品的成本函数 C (Q )可导,其中 Q为产量 .若产量为 Q0时平均成本最小,则()(A) C (Q0 )0(B) C (Q0 ) C (Q0 )(C) C (Q0 )Q0C (Q0 )(D)Q0 C (Q0 ) C (Q0 )110(5)下列矩阵中,与矩阵011相似的为()001111101(A)011(B)011001001111101(C)010(D)010001001(6)设A、B为n阶矩阵,记 r X 为矩阵 X的秩, X ,Y 表示分块矩阵,则()(A)r A, AB r A(B)r A, BA r A(C)(D)r A T B TX 的概率密度f x 满足 f1x f 120.6, 则 P X 0 (( 7 )设随机变量x , 且 f x dx)(A) 0.2(B) 0.3(C) 0.4(D) 0.5(8)设 X1 , X 2 ,..., X n (n 2)为来自总体 N (,2 )(0) 的简单随机样本,令X 1 n X i ,n i 1S1n( X i X ) 2 , S* 1 n( X i)2 , 则()n 1 i 1n i 1n( X)(B)n ( X)1)(A)S ~ t( n)S~ t( nn( X)(D)n ( X)1)(C)S*~ t( n)S*~ t( n二、填空题: 9 :14 小题 , 每小题 4分, 共 24 分 .(9)曲线 y x22ln x在其拐点处的切线方程是________.(10)e x arcsin 1 e2 x dx________.(11)差分方程2 y x y x 5的通解是________.(12)设函数 f x 满足 f x x f x2xf x x o x x0 ,且 f0 2,则 f 1______.(13)设A为3阶矩阵 , a1 ,a2 , a3是线性无关的向量组 , 若Aa1a1a2 , Aa2 a2a3 , Aa3a1 a3 ,则A =__________.(14)随机事件 A, B,C 相互独立 , 且 P A P B P C 1, 则P AC A U B__________. 2三、解答题: 15~ 23 小题 , 共 94分 . 解答应写出文字说明、证明过程或演算步骤.(15)( 本题满分 10 分)1已知实数 a, b 满足lim ax b e x x 2, 求a, b.x(16)( 本题满分 10 分)设平面区域 D由曲线 y 3 1x2与直线 y3x及 y轴围成 , 计算二重积分x2dxdy.D(17)( 本题满分 10 分)将长为 2m的铁丝分成三段,依次围成圆、正方形与正三角形. 三个图形的面积之和是否存在最小值?若存在,求出最小值.(18)( 本题满分 10 分)已知 cos2 x1a n x n ( 1x1),求 a n .(1 x)2n 0(19)( 本题满分 10 分)设数列 x n满足: x10, x n e x n 1e x n1(n 1,2,L ), 证明 x n收敛,并求 lim x n .n (20)( 本题满分 11 分)设实二次型 f ( x1 , x2 , x3 ) (x1, x2x3 )2( x2x3 )2( x1ax3) 2 , 其中 a是参数 .(I)求 f (x1, x2 , x3 ) 0的解;(II)求 f ( x1 , x2 , x3 )的规范形 .(21)( 本题满分 11 分)12a1a2已知 a是常数,且矩阵 A= 130可经初等列变换化为矩阵B= 01 1 .27a111(I)求a;(II)求满足 AP B的可逆矩阵 P.(22)( 本题满分 11 分 )设随机变量 X 与 Y相互独立, X的概率分布为 P X 1 P X11,Y服从参数为的泊松分布 . 2令 Z XY .(I)求Cov X , Z ;(II)求 Z的概率分布 .(23)( 本题满分 11 分 )设总体 X的概率密度为1xf (x,) e ,x,2其中(0,)为未知参数,X1, X2,L, X n为来自总体X的简单随机样本记的最大似然估计量为μ..(I)求 ?;(II)求 E ?和 D ( ?).。

2018考研数学三真题及答案

2018考研数学三真题及答案

2018考研数学三真题及答案一、 选择题1.下列函数中,在 0x =处不可导的是()().sin A f x x x = ().B f x x =().?C f x cos x = ().D f x =答案:() D 解析:方法一:()()()000sin 0limlim lim sin 0,x x x x x x f x f x x xx A →→→-===可导 ()()()0000limlim 0,x x x x f x f x x B →→→-===可导()()()20001cos 102limlim lim 0,x x x x x f x f x x C x→→→---===可导 ()()()000102limlim x x x x f f x xD x →→→--==不存在,不可导 应选()D . 方法二:因为()(1)0f f x ==()()000102lim limx x x x f x f x x→→→--==不存在 ()f x ∴在0x =处不可导,选()D对()():?A f x xsinx =在 0x =处可导 对()()32:~?B f x x x =在 0x =处可导 对()():x x C f cos =在 0x =处可导. 2.设函数()f x 在[0,1]上二阶可导,且()10,f x dx =⎰则()()1'0,02A f x f ⎛⎫<<⎪⎝⎭当时 ()()1''0,02B f x f ⎛⎫<< ⎪⎝⎭当时 ()()1'0,02C f x f ⎛⎫><⎪⎝⎭当时 ()()1''0,02D f x f ⎛⎫>< ⎪⎝⎭当时 答案()D【解析】将函数()f x 在12处展开可得()()()()()222111000''1111',22222''1111111''',22222222f f x f f x x f f x dx ff x x dx f f x dx ξξξ⎛⎫⎛⎫⎛⎫⎛⎫=+-+- ⎪ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=+-+-=+-⎢⎥ ⎪ ⎪⎪ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎢⎥⎣⎦⎰⎰⎰故当''()0f x >时,()111.0.22f x dx f f⎛⎫⎛⎫>< ⎪ ⎪⎝⎭⎝⎭⎰从而有选()D 。

2018年考研数学三真题及答案解析

2018年考研数学三真题及答案解析

1
0 0 1
1 0 1
B. 0 1
1
0 0 1
1 1 1
C. 0 1
0
0 0 1
1 0 1
D. 0 1
0
0 0 1
答案: A
1 1 0
1 1 0
解析:令
P
0
1
0

P 1
0
1
0
0 0 1
0 0 1
1 1 0 1 1 1 1 1 0
P 1
AP
一、 选择题
2018 年考研数学三真题及答案
1.下列函数中,在 x 0处不可导的是()
A. f x x sin x
B. f x x sin x
C. f x ?cos x
D. f x cos x
答案: D
解析:方法一:
A lim f x f 0 lim x sin x lim x sin x 0, 可导
n 1 i 1 i
2
1
n
(X
X )2 ,
ni i 1
则下列选项正确的是 ______ .
n X
(A)
t n ;
S
n X
(C) S*
t n ;
n X
(B)
t n 1 ;
S
n X
(D) S*
t n 1 .
n

由于
X
~
N
0, 1
,(n 1)S 2 2
(Xi X )2
x0
x
x0 x
应选 D .
方法二:
因为 f (x) cos x , f 0 1
f x f 0 cos

考研数学三模拟题2018年(45)_真题(含答案与解析)-交互

考研数学三模拟题2018年(45)_真题(含答案与解析)-交互

考研数学三模拟题2018年(45)(总分100, 做题时间90分钟)一、填空题1.设每次试验成功的概率为0.2,失败的概率为0.8,设独立重复试验直到成功为止的试验次数为X,则E(X)=______.SSS_FILL该题您未回答:х该问题分值: 15 [解析] X的分布律为P(X=k)=0.2×0.8 k-1,k1,2,….因为所以2.设总体X~N(0,8),Y~N(0,2 2 ),且X1及(Y1,Y2)分别为来自上述两个总体的样本,则SSS_FILL该题您未回答:х该问题分值: 1F(1,2)[解析]3.设总体X~N(μ,σ 2 ),X1,X2,…,Xn是来自总体X的样本,则D(S 2 )=______.SSS_FILL该题您未回答:х该问题分值: 1 [解析] 因为所以4.设X~N(1,σ 2 ),Y~N(2,σ 2 )为两个相互独立的总体,X1,X2,…,Xm 与Y1,Y2,…,Yn分别为来自两个总体的简单样本,则服从______分布.SSS_FILL该题您未回答:х该问题分值: 1[解析]且相互独立,则5.设X~N(μ,σ 2 ),其中σ 2已知,μ为未知参数.从总体X中抽取容量为16的简单随机样本.且μ的置信度为0.95的置信区间中的最小长度为0.588,则σ 2 =______.SSS_FILL该题您未回答:х该问题分值: 1** [解析] 在σ 2 已知的情况下,μ的置信区间为 /其中 /于是有 /二、选择题1.对于随机变量X1,X2,…,Xn,下列说法不正确的是______.A.若X1,X2,…,Xn两两不相关,则B.若X1,X2,…,Xn相互独立,则D(X1+X2+…+Xn)=D(X1)+D(X2)+…+D(Xn)C.若X1,X2,…,Xn相互独立同分布,服从N(0,σ 2 ),则D.若D(X1 +X2+…+Xn)=D(X1)+D(X2)+…+D(Xn),则X1+X2+…+Xn两两不相关SSS_SIMPLE_SINA B C D该题您未回答:х该问题分值: 1答案:D[解析] 若X1 +X2+…+Xn相互独立,则B,C是正确的,若X1+X2+…+Xn两两不相关,则A是正确的,选.2.设(X,Y)服从二维正态分布,其边缘分布为X~N(1,1),Y~N(2,4),X,Y的相关系数为ρXY=-0.5,且P(aX+by≤1)=0.5,则______.A.B.C.D.SSS_SIMPLE_SINA B C D该题您未回答:х该问题分值: 1答案:D[解析] 因为(X,Y)服从二维正态分布,所以aX+bY服从正态分布,E(aX+bY)=a+2b,D(aX+by)=a 2 +4b 2 +2abCov(X,Y)=a 2 +4b 2 -2ab,即aX+bY~N(a+2b,a 2 +4b 2 -2ab),由P(aX+by≤1)=0.5得a+2b=1,所以选D.3.设X1,X2,…,Xn是来自正态总体X~N(μ,σ 2 )的简单随机样本,记则服从t(n-1)分布的随机变量是______.A.B.C.D.SSS_SIMPLE_SINA B C D该题您未回答:х该问题分值: 1答案:D[解析] 即选D.4.设X~t(n),则下列结论正确的是______.A.X 2~F(1,n)B.C.X 2~χ 2 (n)D.X 2~χ 2 (n-1)SSS_SIMPLE_SINA B C D该题您未回答:х该问题分值: 1答案:A[解析] 由X~t(n),得其中U~N(0,1),V~χ 2 (n),且U,V相互独立,于是选A.5.从正态总体X~N(0,σ 2 )中抽取简单随机样本X1,X2,…,Xn,则可作为参数σ 2的无偏估计量的是______.A.B.C.D.SSS_SIMPLE_SINA B C D该题您未回答:х该问题分值: 1答案:A[解析] 因为所以为σ 2的无偏估计量,选A.三、解答题1.设总体X~N(0,σ 2 ),X1,X2,…,Xn为来自总体X的简单随机样本,S 2 = 求所服从的分布.SSS_TEXT_QUSTI该题您未回答:х该问题分值: 6 [解] 又且相互独立,则即设X1,X2,…,Xn(n>2)是来自总体X~N(0,1)的简单随机样本,记Yi=Xi- (i=1,2,…,n).求:SSS_TEXT_QUSTI2.D(Yi);该题您未回答:х该问题分值: 3[解] 由得SSS_TEXT_QUSTI3.Cov(Y1,Yn).该题您未回答:х该问题分值: 3[解] 因为X 1 ,X 2 ,…,X n (n >2)相互独立, 所以 由 得4.设总体X ~N(μ,σ 2 ),X 1 ,X 2 ,…,X n 是来自总体X 的样本,令 求E(X 1 T).SSS_TEXT_QUSTI该题您未回答:х 该问题分值: 6[解] 因为X 1 ,X 2 ,…,X n 独立同分布,所以有E(X 1 T)=E(X 2 T)=…=E(X n T)5.设总体X 服从正态分布N(μ,σ 2 )(σ>0),X 1 ,X 2 ,…,X n 为来自总体X 的简单随机样本,令求Y 的数学期望与方差.SSS_TEXT_QUSTI该题您未回答:х 该问题分值: 6 [解]而于是 6.设总体X 服从正态分布N(μ,σ 2 )(σ>0).从该总体中抽取简单随机样本X1,X 2 ,…,X 2n (n >2).令求统计量 的数学期望.SSS_TEXT_QUSTI该题您未回答:х 该问题分值: 6[解] 令Y i =X i +X n+i (i=1,2,…,n),则Y 1 ,Y 2 ,…,Y n 为正态总体N(2μ,2σ 2 )的简单随机样本,=(n-1)S 2 ,其中S 2 为样本Y 1 ,Y2,…,Y n 的方差,而E(S 2 )=2σ 2 ,所以统计量U= 的数学期望为E(U)=E[(n-1)S 2 ]=2(n-1)σ 2 . 7.设总体且X,Y相互独立,来自总体X,Y的样本均值为,样本方差为记求统计量的数学期望.SSS_TEXT_QUSTI该题您未回答:х该问题分值: 6[解] 由相互独立,可知a,b与相互独立,显然a+b=1.E(U)=μ[E(a)+E(b)]=μE(a+b)=μE(1)=μ.8.设总体X~N(μ,σ 2 ),X1,X2,…,Xn+1为总体X的简单随机样本,记求统计量服从的分布.SSS_TEXT_QUSTI该题您未回答:х该问题分值: 6[解] 因为Xn+1~N(μ,σ 2 ),且它们相互独立,所以又相互独立,所以由t分布的定义,有9.设总体X的概率分布为X 0 1 2 3p θ 2 2θ(1-θ) θ 2 1-2θ是未知参数.用样本值3,1,3,0,3,1,2,3求θ的矩估计值和最大似然估计值.SSS_TEXT_QUSTI该题您未回答:х该问题分值: 6[解] E(X)=0×θ 2+1×2θ(1-θ)+2×θ 2+3×(1-2θ)=3-4θ,令得参数θ的矩估计值为L(θ)=θ 2×[2θ(1-θ)] 2×θ 2×(1-2θ) 4=4θ 6 (1-θ) 2 (1-2θ) 4,lnL(θ)=ln4+6lnθ+2ln(1-θ)+4ln(1-2θ),令得参数θ的最大似然估计值为10.设总体样本值为1,1,3,2,1,2,3,3,求θ的矩估计和最大似然估计.SSS_TEXT_QUSTI该题您未回答:х该问题分值: 7[解] (1)X为离散型随机变量,其分布律为E(X)=3-3θ.今3-3θ=2得θ的矩估计值为(2)L(1,1,3,2,1,2,3,3;θ)=P(X=1)P(X=1)…P(X=3)=θ 3×θ 2×(1-2θ) 3,lnL(θ)=5lnθ+3ln(1-2θ),令得θ的最大似然估计值为11.设总体X~U[0,θ],其中θ>0,求θ的极大似然估计量,判断其是否是θ的无偏估计量.SSS_TEXT_QUSTI该题您未回答:х该问题分值: 7[解] 总体X的密度函数和分布函数分别为设x1,x2,…,xθ为总体X的样本观察值,似然函数为(i=1,2,…,n).当0<xi<θ(i=1,2,…,n)时,且当θ越小时L(θ)越大,所以θ的最大似然估计值为=max{x1,x2,…,xn},θ的最大似然估计量为=max{X1,X2,…,Xn}.因为=max{X1,X2,…,Xn}的分布函数为则的概率密度为所以=max{X1,X2,…,Xn}不是θ的无偏估计量.12.设总体X的密度函数为θ>0为未知参数,a>0为已知参数,求θ的极大似然估计量.SSS_TEXT_QUSTI该题您未回答:х该问题分值: 7[解]令得参数θ的极大似然估计量为13.设总体X~U(θ1,θ2),X1,X2,…,Xn是来自总体X的样本,求θ1,θ2的矩估计和最大似然估计.SSS_TEXT_QUSTI该题您未回答:х该问题分值: 7 [解] (1)令(2)lnL(θ1,θ2)=-nln(θ2-θ1),而因为lnL(θ1,θ2)是θ1的单调增函数,是θ2的单调减函数,所以14.设总体X在区间(0,θ)内服从均匀分布,X1,X2,X3是来自总体的简单随机样本.证明:都是参数θ的无偏估计量,试比较其有效性.SSS_TEXT_QUSTI该题您未回答:х该问题分值: 7[解] 因为总体X在区间(0,θ)内服从均匀分布,所以分布函数为令则则U,V的密度函数分别为因为所以都是参数θ的无偏估计量.因为所以更有效.15.设总体X,Y相互独立且都服从N(μ,σ 2 )分布,(X1,X2,…,Xm)与(Y1,Y2,…,Yn)分别为来自总体X,Y的简单随机样本.证明:为参数σ 2的无偏估计量.SSS_TEXT_QUSTI该题您未回答:х该问题分值: 7[证明] 令因为所以于是即为参数σ 2的无偏估计量.1。

2018年数学三考研真题及解析

2018年数学三考研真题及解析

2018年全国硕士研究生入学统一考试数学三试题解析一、选择题:1~8小题,每小题4分,共32分,下列每小题给出的四个选项中,只有一项符合题目要求的,请将所选项前的字母填在答题纸...指定位置上. 1. 下列函数中,在0x =错误!未找到引用源。

处不可导的是( )。

A. ()sin()f x x x =B. ()f x x =C. ()cos()f x x =D. ()f x =【答案】D 【解析】 A 可导:()()()()-0000sin sin sin sin 0lim lim 0,0lim lim 0x x x x x x x x x x x xf f x x x x--+++→→→→⋅⋅''====== B 可导:()()-0000sin 0lim lim 0,0lim lim 0x x x x x x f f x x--+++→→→→-⋅⋅''======C 可导:()()22-000011cos -1cos -1220lim lim 0,0lim lim 0x x x x x x x x f f x x x x--+++→→→→--''====== D 不可导:()()()()()-000-11-11220lim lim ,0lim lim -2200x x x x x x f f x x f f --+++→→→→+--''======''≠2 .已知函数()f x 在[]0,1上二阶可导,且()10,=⎰f x dx 则A.当()0'<f x 时,102⎛⎫<⎪⎝⎭f B. 当()0''<f x 时,102⎛⎫< ⎪⎝⎭f C. 当()0'>f x 时,102⎛⎫< ⎪⎝⎭f D. 当()0''>f x 时,102⎛⎫< ⎪⎝⎭f 【答案】D 【解析】A 错误:()()()11000,10111,2,022f x f x dx dx f x x f x ⎛⎫'===-< ⎪⎛⎫=-+-+= ⎝⎝⎭⎪⎭⎰⎰B 错误:()()()100212111111,033243120,20,f x dx dx f x x f f x x ⎛⎫''==⎛⎫=-+-+=-+=-< ⎪⎝⎭=> ⎪⎝⎭⎰⎰C 错误:()()()1100111,0220,10,2f x d f x x x f x dx f x ⎛⎫=-⎛⎫'-===> ⎪⎝⎭= ⎪⎝⎭⎰⎰D 正确:方法1:由()0f x ''>可知函数是凸函数,故由凸函数图像性质即可得出102f ⎛⎫< ⎪⎝⎭方法2:21112200011111()()()()()(),22222111111()()()()()()()()()02222221()0,()0.2f x f f x f x x f x dx f f x f x dx f f x dx f x f ξξξξ'''=+-+-'''''=+-+-=+-=''><⎰⎰⎰介于和之间,又故 3.设()(2222222211,,1,1ππππππ---++===++⎰⎰⎰x x xM dx N dx K dx x e 则 A.>>M N K B.>>M K NC.>>K M ND.>>K N M 【答案】C 【解析】222222(1)11-,11,22()1,(0)0,()10,()0;,0()0221-,()01N<M,C22x xx xM dx dx x x K Mf x x e f f x e x f x x f x x x f x e ππππππππππ--=+=+⎡⎤∈≥>⎢⎥⎣⎦'=+-==-⎡⎤⎡⎤''∈<∈->⎢⎥⎢⎥⎣⎦⎣⎦+⎡⎤∈≤≤⎢⎥⎣⎦⎰⎰时,所以令当时,当时,所以时,有,从可有,由比较定理得故选4. 设某产品的成本函数()C Q 可导,其中Q 为产量,若产量为0Q 时平均成本最小,则( ) A. ()00C Q '= B.()()00C Q C Q '= C.()()000C Q Q C Q '= D. ()()000Q C Q C Q '= 【答案】D【解析】根据平均成本()C Q C Q=,根据若产量为0Q 时平均成本最小,则有 ()()()()()()()0000000220Q Q Q QC Q Q C Q C Q Q C Q C C Q Q C Q Q Q ==''--''===⇒=5.下列矩阵中,与矩阵110011001⎛⎫ ⎪ ⎪ ⎪⎝⎭相似的为 A. 111011001-⎛⎫⎪⎪ ⎪⎝⎭ B.101011001-⎛⎫ ⎪ ⎪ ⎪⎝⎭ C. 111010001-⎛⎫ ⎪⎪ ⎪⎝⎭D.101010001-⎛⎫ ⎪ ⎪ ⎪⎝⎭【答案】A【解析】方法一:排除法令110011001Q ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦,特征值为1,1,1,()2r E Q -= 选项A :令111011001A -⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦,A 的特征值为1,1,1,()0110012000r E A r -⎡⎤⎢⎥-=-=⎢⎥⎢⎥⎣⎦ 选项B :令101011001B -⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦,B 的特征值为1,1,1,()0010011000r E B r ⎡⎤⎢⎥-=-=⎢⎥⎢⎥⎣⎦ 选项C :令111010001C -⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦,C 的特征值为1,1,1,()0110001000r E C r -⎡⎤⎢⎥-==⎢⎥⎢⎥⎣⎦选项B :令101010001D -⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦,D 的特征值为1,1,1,()0010001000r E D r ⎡⎤⎢⎥-==⎢⎥⎢⎥⎣⎦若矩阵Q 与J 相似,则矩阵E Q -与E J -相似,从而()()r E Q r E J -=-,故选(A )方法二:构造法(利用初等矩阵的性质)令110010001P ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦,1110010001P --⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦1110111011011001001P P --⎡⎤⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦ ,所以110111011011001001-⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦与相似故选(A )6.设,A B 为n 阶矩阵,记()r X 为矩阵X 的秩,(,)X Y 表示分块矩阵,则 A.()().r A AB r A = B.()().r A BA r A = C.()max{()()}.r A B r A r B =, D.()().T T r A B r A B = 【答案】(A )【解析】(,)(,)[(,)]()r E B n r A AB r A E B r A =⇒== 故选(A )7.设()f x 为某分布的概率密度函数,(1)(1)f x f x +=-,()200.6f x dx =⎰,则{0}P X <=A.0.2 B.0.3 C.0.4 D.0.6 【答案】A【解析】特殊值法:由已知可将()f x 看成随机变量()21,X N σ的概率密度,根据正态分布的对称性,()00.2P X <= 8.已知12,,,n X X X 为来自总体2~(,)X N μσ的简单随即样本,11ni i X X n ==∑,*S S ==A.()~()X t n S μ- B.()~(1)X t n S μ--C.*)~()X t n Sμ-D. *)~(1)X t n Sμ-- 【答案】B 【解析】2,XN n σμ⎛⎫⎪⎝⎭()()()22211,0,1n SX N n χσ--, 又2X S 与相互独立,所以)()1X t n Sμ--,故选项B 正确,而A 错.()()()*22210,1,n S X Nn μχσσ--,2X S *与相互独立 ()n X t n μ-,故选项C ,D 错。

考研数学三模拟题2018年(4)_真题(含答案与解析)-交互

考研数学三模拟题2018年(4)_真题(含答案与解析)-交互

考研数学三模拟题2018年(4) (总分100, 做题时间90分钟) 解答题 1.若随机变量序列X 1 ,X 2 ,…,X n ,…满足条件 证明:{X n }服从大数定律.SSS_TEXT_QUSTI该题您未回答:х 该问题分值: 1.5 【证】由切比雪夫不等式,对任意的ε>0有所以对任意的ε>0,故{X n }服从大数定律. 2.某计算机系统有100个终端,每个终端有20%的时间在使用,若各个终端使用与否相互独立,试求有10个或更多个终端在使用的概率.SSS_TEXT_QUSTI该题您未回答:х 该问题分值: 1.5【解】设则同时使用的终端数所求概率为3.设X 1 ,X 2 ,…,X n 为总体X 的一个样本,EX=μ,DX=σ 2 <∞,求SSS_TEXT_QUSTI该题您未回答:х 该问题分值: 1.5【解】 进而有从装有1个白球,2个黑球的罐子里有放回地取球,记 这样连续取5次得样本X 1 ,X 2 ,X 3 ,X 4 ,X 5 .记Y=X 1 +X 2 +…+X 5 ,求:SSS_TEXT_QUSTI4.Y的分布律,EY,E(Y 2 );该题您未回答:х该问题分值: 1.75【解】Y是连续5次取球中取得黑球的个数,所以从而SSS_TEXT_QUSTI5.,E(S 2 )(其中,S 2分别为样本X1,X2,…,X5的均值与方差).该题您未回答:х该问题分值: 1.75【解】由于X的分布律为所以6.若X~χ 2 (n),证明:EX=n,DX=2n.SSS_TEXT_QUSTI该题您未回答:х该问题分值: 2【证】因X~χ 2 (n),所以X可表示为其中X1,X2,…,Xn相互独立,且均服从N(0,1),于是7.已知X~t(n),求证:X 2~F(1,n).SSS_TEXT_QUSTI该题您未回答:х该问题分值: 2【证】X~t(n),则X可表示为其中Z~N(0,1),Y~χ 2 (n)且Z,Y相互独立,又Z 2~χ 2 (1),于是8.设X1,X2,…,Xm,Y1,Y2,…,Yn独立.Xi~N(a,σ 2 ),i=1,2,…,m,Yi~N(b,σ 2 ),i=1,2,…,n,而α,β为常数.试求的分布.SSS_TEXT_QUSTI该题您未回答:х该问题分值: 2【解】由于Xi ~N(a,σ 2 ),i=1,2,…,m,Yi~N(b,σ 2 ),i=1,2,…,n,且X1,X2,…,Xm,Y1,Y2,…,Yn相互独立,则也服从正态分布.所以9.一个罐子里装有黑球和白球,黑、白球数之比为a:1.现有放回的一个接一个地抽球,直至抽到黑球为止,记X为所抽到的白球个数.这样做了n次以后,获得一组样本:X1,X2,…,Xn基于此,求未知参数a的矩估计和最大似然估计.SSS_TEXT_QUSTI该题您未回答:х该问题分值: 2【解】由题意知,随机变量X的分布律为令解得对于给定的样本X1,X2,…,Xn,似然函数为取对数,得令得解得10.罐中有N个硬币,其中有θ个是普通硬币(掷出正面与反面的概率各为0.5),其余N-θ个硬币两面都是正面,从罐中随机取出一个硬币,把它连掷两次,记下结果,但不去查看它属于哪种硬币,如此重复n次,若掷出0次、1次、2次正面的次数分别为n0,n1,n2,利用(1)矩法;(2)最大似然法,求参数θ的估计量.SSS_TEXT_QUSTI该题您未回答:х该问题分值: 2【解】设X为“连掷两次正面出现的次数”,A={取出的硬币为普通硬币},则即X的分布为(1) 解得θ=N(2-μ1),θ的矩估计为(2)解得θ的最大似然估计11.设总体X的概率密度为又设X1,X2,…,Xn是来自X的一个简单随机样本,求未知参数θ的矩估计量SSS_TEXT_QUSTI该题您未回答:х该问题分值: 2【解】X的数学期望为用样本均值代替①中的EX得此方程的解即为θ的矩估计量12.设总体X的概率密度为试用样本X1,X2,…,Xn求参数α的矩估计和最大似然估计.SSS_TEXT_QUSTI该题您未回答:х该问题分值: 2【解】先求矩估计:解得所以α的矩估计为再求极大似然估计:解得α的极大似然估计:13.设X1,X2,…,Xn是来自对数级数分布的一个样本,求p的矩估计.SSS_TEXT_QUSTI该题您未回答:х该问题分值: 2【解】因为p很难解出来,所以再求总体的二阶原点矩①÷②得所以所以得p的矩估计14.设总体X服从参数为N和p的二项分布,X1,X2,Xn为取自X的样本,试求参数N和p的矩估计.SSS_TEXT_QUSTI该题您未回答:х该问题分值: 2【解】解之得N=μ1/p,即所以N和p的矩估计为15.设总体X的分布列为截尾几何分布P{X=k}=θk-1(1-θ), k=1,2,…,r,P{X=r+1}=θr,从中抽得样本X1,X2,…,Xn,其中有m个取值为r+1,求θ的极大似然估计.SSS_TEXT_QUSTI该题您未回答:х该问题分值: 2【解】解似然方程得θ的极大似然估计设总体X服从正态分布N(μ,σ 2 ),X1,X2,…,Xn是其样本.SSS_TEXT_QUSTI16.求C使得是σ 2的无偏估计量;该题您未回答:х该问题分值: 2【解】可见当是σ 2的无偏估计量.SSS_TEXT_QUSTI17.求k使得为σ的无偏估计量.该题您未回答:х该问题分值: 2【解】18.设X1,X2,…,Xn是来自总体X的一个样本,是θ的一个估计量,若θ+kn,试证:是θ的相合(一致)估计量.SSS_TEXT_QUSTI该题您未回答:х该问题分值: 2【证】由切比雪夫不等式,对任意的ε>0有于是即依概率收敛于θ,故是θ的相合(一致)估计量.19.设X1,X2,…,Xn是取自均匀分布在[0,θ]上的一个样本,试证:Tn=max{X1,X2,…,Xn}是θ的相合估计.SSS_TEXT_QUSTI该题您未回答:х该问题分值: 2【证】Tn =X(n)的分布函数为Tn的密度为所以由切比雪夫不等式有当n→∞时,故Tn是θ的相合估计.20.已知X具有概率密度X1,X2,…,Xn为X的简单随机样本.求未知参数α的矩估计和最大似然估计.SSS_TEXT_QUSTI该题您未回答:х该问题分值: 2【解】先求矩估计.故再求最大似然估计得α的最大似然估计21.设总体X~N(μ,σ 2 ),X1,X2,X3是来自X的样本,证明:估计量都是μ的无偏估计,并指出它们中哪一个最有效.SSS_TEXT_QUSTI该题您未回答:х该问题分值: 2【证】故都是μ的无偏估计.所以最有效.22.设X1,X2,…,Xn为总体X的一个样本,设EX=μ,DX=σ 2,试确定常数C,使为μ 2的无偏估计.SSS_TEXT_QUSTI该题您未回答:х该问题分值: 2【解】由题意知:23.设总体服从U[0,θ],X1,X2,…,Xn为总体的样本,证明:为θ的一致估计.SSS_TEXT_QUSTI该题您未回答:х该问题分值: 2【证】由切比雪夫不等式有:因此得为θ的一致估计.24.设从均值为μ,方差为σ 2>0的总体中分别抽取容量为n1,n2的两个独立样本,样本均值分别为证明:对于任何满足条件a+b=1的常数a,b,是μ的无偏估计量,并确定常数a,b,使得方差DT达到最小.SSS_TEXT_QUSTI该题您未回答:х该问题分值: 2【证】由题意得:所以故T是μ的无偏估计量.又令对a求导并解方程如下:得到所以处取得极小值,此时方差DT达到最小.25.设X1,X2,…,Xn独立同分布,X2的取值有四种可能,其概率分布分别为:p1 =1-θ,p2=θ-θ 2,p3=θ 2 -θ 3,p4=θ 3,记N,为X1,X2,…,Xn中出现各种可能的结果的次数,N1+N2+N3+N4=n.确定a1,a2,a3,a4使为θ的无偏估计.SSS_TEXT_QUSTI该题您未回答:х该问题分值: 2【解】由于Ni ~B(n,pi),i=1,2,3,4,所以E(Ni)=npi,从而有:若使T是θ的无偏估计,即要求解之得:即是θ的无偏估计.设总体X~N(μ1,σ 2 ),Y~N(μ2,σ 2 ).从总体X,Y中独立地抽取两个容量为m,n的样本X1,…,Xm和Y1,…,Yn.记样本均值分别为若是σ 2的无偏估计.求:SSS_TEXT_QUSTI26.C;该题您未回答:х该问题分值: 2【解】 同理故则SSS_TEXT_QUSTI27.Z 的方差DZ .该题您未回答:х 该问题分值: 2 【解】因故 则有28.设有k 台仪器,已知用第i 台仪器测量时,测定值总体的标准差为σ i ,i=1,2,…,k ,用这些仪器独立地对某一物理量θ各观察一次,分别得到X 1 ,X 2 ,…,X k ,设仪器都没有系统误差,即E(X i )=θ,i=1,2,…,k ,试求:a 1 ,a 2 ,…,a k 应取何值,使用 估计θ时, 是无偏的,并且最小?SSS_TEXT_QUSTI该题您未回答:х 该问题分值: 2 【解】(1)即当 是无偏的.(2)令函数 问题归结为求多元函数g(a 1 ,a 2 ,…,a k )在条件 之下的最小值.作拉格朗日函数:G(a 1 ,a 2 ,…,a k ,λ)=g(a 1 ,a 2 ,…,a k )+λ(a 1 +a 2 +…+a k -1).29.设{X n }是一随机变量序列,X n 的密度函数为:试证:SSS_TEXT_QUSTI该题您未回答:х该问题分值: 2【证】对任意给定的ε>0,由于30.设X1,X2, (X)n,…是独立同分布的随机变量序列,EXi=μ,DXi=σ2,i=1,2,…,令证明:随机变量序列{Yn}依概率收敛于μ.SSS_TEXT_QUSTI该题您未回答:х该问题分值: 2【证】由切比雪夫不等式得:所以31.一生产线生产的产品成箱包装,每箱的重量是随机的,假设每箱平均重量50千克,标准差为5千克,若用最大载重为5吨的汽车承运,试用中心极限定理说明每辆车最多可装多少箱,才能保障不超载的概率大于0.977(Φ(2)=0.977).SSS_TEXT_QUSTI该题您未回答:х该问题分值: 2【解】设Xi是“装运的第i箱的重量”,n表示装运箱数.则EXi =50,DXi=5 2 =25,且装运的总重量Y=X1 +X2+…+Xn,{Xn}独立同分布,EY=50n,DY=25n.由列维—林德伯格中心极限定理知Y~N(50n,25n).于是故也就是最多可以装98箱.32.用概率论方法证明:SSS_TEXT_QUSTI该题您未回答:х该问题分值: 2【证】设{Xn }为一独立同分布随机变量序列,每个Xk服从参数为1的泊松分布,则EXk =1,DXk=1,服从参数为n的泊松分布.故有由列维—林德伯格中心极限定理知:33.截至2010年10月25日,上海世博会参观人数超过了7000万人.游园最大的痛苦就是人太多.假设游客到达中国馆有三条路径,沿第一条路径走3个小时可到达;沿第二条路径走5个小时又回到原处;沿第三条路径走7个小时也回到原处.假定游客总是等可能地在三条路径中选择一个,试求他平均要用多少时间才能到达中国馆.SSS_TEXT_QUSTI该题您未回答:х该问题分值: 2【解】设游客需要X小时到达中国馆,则X的可能取值为3,5+3,7+3,5+5+3,5+7+3,7+7+3,…要写出X的分布律很困难,所以无法直接求EX.为此令Y={第一次所选的路径},即{Y=i}表示“选择第i条路径”.则因为E(X|Y=1)=3,E(X|Y=2)=5+EX,E(X|Y=3)=7+EX,所以故EX=15,即该游客平均要15个小时才能到达中国馆.34.设X1,X2, (X)n为一列独立同分布的随机变量,随机变量N只取正整数且N与{Xn}独立,求证:SSS_TEXT_QUSTI该题您未回答:х该问题分值: 2【证】35.假设你是参加某卫视“相亲节目”的男嘉宾,现有n位女嘉宾在你面前自左到右排在一条直线上,每两位相邻的女嘉宾的距离为a(米).假设每位女嘉宾举手时你必须和她去握手,每位女嘉宾举手的概率均为,且相互独立,若Z 表示你和一位女嘉宾握手后到另一位举手的女嘉宾处所走的路程,求EZ.SSS_TEXT_QUSTI该题您未回答:х该问题分值: 2【解】设按从左到右的顺序将女嘉宾编号为1,2,…,n.X为“已经握手的女嘉宾的编号”,Y表示“将要去握手的女嘉宾的编号”,则于是36.对于任意二事件A1,A2,考虑二随机变量试证明:随机变量X1和X2独立的充分必要条件是事件A1和A2相互独立.SSS_TEXT_QUSTI该题您未回答:х该问题分值: 2【证】记pi =P(Ai)(i=1,2),p12=P(A1A2),而ρ是X1和X2的相关系数.易见,随机变量X1和X2都服从0—1分布,并且(1)必要性.设随机变量X1和X2独立,则P(A1 A2)=P{X1=1,X2=1}=P{X1=1}P{X2=1}=P(A1)P(A2).从而,事件A1和A2相互独立.(2)充分性.设事件A1和A2相互独立,则也都独立,故从而,随机变量X1和X2相互独立.37.假设有四张同样卡片,其中三张上分别只印有a1,a2,a3,而另一张上同时印有a1,a2,a3.现在随意抽取一张卡片,令Ak={卡片上印有ak }.证明:事件A1,A2,A3两两独立但不相互独立.SSS_TEXT_QUSTI该题您未回答:х该问题分值: 2【证】由于对任意k,j=1,2,3且k≠j,有可见事件A1,A2,A3两两独立.但是,由于可见事件A1,A2,A3不相互独立.38.某商品一周的需求量X是随机变量,已知其概率密度为假设各周的需求量相互独立,以Uk表示k周的总需求量,试求:(1)U2和U3的概率密度fk(x)(k=2,3);(2)接连三周中的周最大需求量的概率密度f(3)(x).SSS_TEXT_QUSTI该题您未回答:х该问题分值: 2【解】以Xi (i=1,2,3)表示“第i周的需求量”,则Xi的概率密度均为而U2 =X1+X2,U3=U2+X3.三周中周最大需求量为X(3)=max{X1,X2,X3}.(1)当x≤0时,显然f2 (x)=f3(x)=0;对于x>0,有于是,两周和三周的总需求量U2和U3的概率密度(2)设F(x)是随机变量X的分布函数.由题意知连续三周中的周最大需求量X(3)的分布函数为G(x)=[F(x)] 3.于是,有39.设X和Y相互独立都服从0-1分布:P{X=1}=P{Y=1}=0.6,试证明:U=X+Y,V=X-Y不相关,但是不独立.SSS_TEXT_QUSTI该题您未回答:х该问题分值: 2由协方差的定义和性质,以及X和Y相互独立,可见Cov(U,V)=E(UV)-EUEV=E(X 2 -Y 2 )-E(X+Y)E(X-Y)=E(X 2 )-E(Y 2 )=0.于是,U=X+Y,V=X-Y不相关.(2)现在证明U=X+Y,V=X-Y不独立.事实上,由P{U=0}=P{X=0,Y=0}=P{X=0}P{Y=0}=0.16,P{V=0}=P{X=0,Y=0}+P{X=1,Y=1}=P{X=0}P{Y=0}+P{X=1}P{Y=1}=0.52,P{U=0,V=0}=P{X=0,Y=0}=P{X=0}P{Y=0}=0.16≠0.16×0.52=P{U=0}P{V=0},可见U和V不独立.40.假设G={(x,y)|x 2 +y 2≤r 2 }是以原点为圆心,半径为r的圆形区域,而随机变量X和Y的联合分布是在网G上的均匀分布.试确定随机变量X和Y的独立性和相关性.SSS_TEXT_QUSTI该题您未回答:х该问题分值: 2【解】(1)X和Y的联合密度为那么,X的密度函数f1 (x)和Y的密度函数f2(y)相应为由于f(x,y)≠f1 (x)f2(y),可见随机变量X和Y不独立.(2)证明X和Y不相关,即X和Y的相关系数ρ=0.因此,有于是,X和Y的相关系数ρ=0.这样,X和Y虽然不相关,但是不独立.41.假设某季节性商品,适时地售出1千克可以获利s元,季后销售每千克净亏损t元.假设一家商店在季节内该商品的销售量X(千克)是一随机变量,并且在区间(a,b)内均匀分布.问季初应安排多少这种商品,可以使期望销售利润最大?SSS_TEXT_QUSTI该题您未回答:х该问题分值: 2【解】根据条件随机变量X的概率密度为以Y=P(h)表示“销售利润”,它与季初应安排商品的数量h有关.由条件知为求使期望利润最大的h,我们计算销售利润Y=P(h)的数学期望.为此,首先注意到:a<h<b,销售利润Y=P(h)的数学期望为对h求导并令其等于0,得于是,季初安排h千克商品,可以使期望销售利润最大.42.独立地重复进行某项试验,直到成功为止,每次试验成功的概率为p.假设前5次试验每次的试验费用为10元,从第6次起每次的试验费用为5元.试求这项试验的总费用的期望值a.SSS_TEXT_QUSTI该题您未回答:х该问题分值: 2【解】以X表示“试验的总次数”,首先求X的概率分布.设Ak={第k次试验成功}(k=1,2,…),则P(Ak)=p,X的概率分布为其中q=1-p.于是试验的总次数X服从参数为p的几何分布.现在求试验的总费用的期望值a.由条件知,试验的总费用为该项试验的总费用Y是一随机变量,其期望值为例如,设p=0.8,q=0.2,得a=12.498元;设p=q=0.5,得a=19.6875元;设p=0.2,q=0.8,得a=41.808元;设p=0.1,q=0.9,得a=70.4755元.43.利用列维—林德伯格定理,证明:棣莫弗—拉普拉斯定理.SSS_TEXT_QUSTI该题您未回答:х该问题分值: 2【证】设随机变量X1,X2,…,Xn相互独立,同服从0—1分布;EXi =p,DXi=pq (i=1,2,…,n),Sn =X1+X2+…+Xn,ESn=np,DSn=npq,其中q=1-p.X1,X2,…,Xn满足列维—林德伯格定理的条件:X1,X2,…,Xn独立同分布且数学期望和方差存在,当n充分大时近似地Sn~N(np,npq).44.某保险公司接受了10000辆电动自行车的保险,每辆车每年的保费为12元.若车丢失,则赔偿车主1000元.假设车的丢失率为0.006,对于此项业务,试利用中心极限定理,求保险公司:(1)亏损的概率α;(2)一年获利润不少于40000元的概率β;(3)一年获利润不少于60000元的概率γ.SSS_TEXT_QUSTI该题您未回答:х该问题分值: 2【解】设X为“需要赔偿的车主人数”,则需要赔偿的金额为Y=0.1X(万元);保费总收入C=12万元.易见,随机变量X服从参数为n,p的二项分布,其中n=10000,p=0.006;EX=np=60,DX=np(1-p)=59.64.由棣莫弗—拉普拉斯定理知,随机变量X近似服从正态分布N(60,59,64),随机变量Y近似服从正态分布N(6,0.5964).(1)保险公司亏损的概率(2)保险公司一年获利润不少于4万元的概率(3)保险公司一年获利润不少于6万元的概率45.将n个观测数据相加时,首先对小数部分按“四舍五入”舍去小数位后化为整数.试利用中心极限定理估计:(1)试当n=1500时求舍位误差之和的绝对值大于15的概率;(2)估计数据个数n满足何条件时,以不小于90%的概率,使舍位误差之和的绝对值小于10的数据个数n.SSS_TEXT_QUSTI该题您未回答:х该问题分值: 2【解】设Xi 是“第i个数据的舍位误差”,由条件可以认为Xi独立且都在区间[-0.5,0.5]上服从均匀分布,从而EXi =0,DXi=1/12.记Sn =X1+X2+…+Xn,为n个数据的舍位误差之和,则ESn =0,DSn=n/12.根据列维—林德伯格中心极限定理,当n充分大时Sn近似服从N(0,n/12).记Φ(x)为N(0,1)的分布函数.(1)由于近似服从标准正态分布,且n=1500,可见(2)数据个数n应满足条件:由于近似服从N(0,1),可见于是,当n>721时,才能使误差之和的绝对值小于10的概率不小于90%.46.设X是任一非负(离散型或连续型)随机变量,已知的数学期望存在,而ε>0是任意实数.证明:不等式SSS_TEXT_QUSTI该题您未回答:х该问题分值: 2【证】(1)设X是离散型随机变量,其一切可能值为{xi},则(2)设X是连续型随机变量,其概率密度为f(x),则47.设事件A出现的概率为p=0.5,试利用切比雪夫不等式,估计在1000次独立重复试验中事件A出现的次数在450到550次之间的概率α.SSS_TEXT_QUSTI该题您未回答:х该问题分值: 2【解】设vn是“1000次独立重复试验中事件A出现的次数”,则vn~B(1000,0.5),EX=1000×0.5=500,DX=1000×0.5 2 =250.利用切比雪夫不等式,知设来自总体X的简单随机样本X1,X2,…,Xn,总体X的概率分布为其中0<θ<1.分别以v1,v2表示X1,X2,…,Xn中1,2出现的次数,试求SSS_TEXT_QUSTI48.未知参数θ的最大似然估计量;该题您未回答:х该问题分值: 2【解】求参数θ的最大似然估计量.样本X1,X2,…,Xn中1,2和3出现的次数分别为v1,v2和n-v1-v2,则似然函数和似然方程为似然方程的唯一解就是参数θ的最大似然估计量SSS_TEXT_QUSTI49.未知参数θ的矩估计量;该题您未回答:х该问题分值: 2【解】求参数θ的矩估计量.总体X的数学期望为EX=θ 2+4θ(1-θ)+3(1-θ) 2.在上式中用样本均值估计数学期望EX,可得θ的矩估计量SSS_TEXT_QUSTI50.当样本值为1,1,2,1,3,2时的最大似然估计值和矩估计值.该题您未回答:х该问题分值: 2【解】对于样本值1,1,2,1,3,2,由上面得到的一般公式,可得最大似然估计值矩估计值51.假设一批产品的不合格品数与合格品数之比为R(未知常数).现在按还原抽样方式随意抽取的n件中发现k件不合格品.试求R的最大似然估计值.SSS_TEXT_QUSTI该题您未回答:х该问题分值: 2【解】设a是这批产品中不合格品的件数,b是合格品的件数.从而,a=Rb,合格品率为设X是“随意抽取的一件产品中不合格品的件数”,则X服从参数为p的0-1分布.对于来自总体X的简单随机样本X1,X2,…,Xn,记vn=X1+X2+…+Xn,则似然函数和似然方程为由条件知vn =X1+X2+…+Xn=k,于是似然方程的唯一解即是R的最大似然估计值.1。

考研数学三模拟题2018年(29)_真题-无答案

考研数学三模拟题2018年(29)_真题-无答案

考研数学三模拟题2018年(29)(总分100,考试时间90分钟)解答题1. 证明:方阵A是正交矩阵,即AA T=E的充分必要条件是:(1)A的列向量组组成标准正交向量组,即或(2)A的行向量组组成标准正交向量组,即2. 证明:n>3的非零实方阵A,若它的每个元素等于自己的代数余子式,则A是正交矩阵.3. 证明:方阵A是正交矩阵的充分必要条件是|A|=±1,且若|A|=1,则它的每一个元素等于自己的代数余子式;若|A|=-1,则它的每个元素等于自己的代数余子式乘-1.设α=[a1,a2,…,an]T≠0,β=[b1,b2,…,bn]T≠0,且αTβ=0,A=E+αβT,试计算:4. |A|;5. An;6. A-1.7. 设A是主对角元为0的四阶实对称阵,E是4阶单位阵,且E+AB是不可逆的对称阵,求A.8. 设证明:A=E+B可逆,并求A-1.9. A,B均是n阶矩阵,且AB=A+B.证明:A-E可逆,并求(A-E)-1.10. 设B是可逆阵,A和B同阶,且满足A2+AB+B2=O证明:A和A+B都是可逆阵,并求A-1和(A+B)-1.11. 已知A,B是三阶方阵,A≠O,AB=O.证明:B不可逆.12. 设A=(aij)n×n,且求r(A*)及A*.13. 已知n阶矩阵求|A|中元素的代数余子式之和,第i行元素的代数余子式之和及主对角元的代数余子式之和14. 设矩阵A的伴随矩阵且ABA-1=BA-1+3E,求B.15. 设A是n阶可逆阵,将A的第i行和第j行对换得到的矩阵记为B.证明:B可逆,并推导A-1和B-1的关系.16. 设A是n阶可逆阵,其每行元素之和都等于常数a.证明:(1)a≠0;(2)A-1的每行元素之和均为.17. A,B为n阶方阵.证明:18. 计算19. 设有矩阵Am×n,Bn×m,Em+AB可逆.(1)验证:En+BA也可逆,且(En+BA)-1=En-B(Em+AB)-1A;(2)设其中利用(1)证明:P可逆,并求P-1.20. 已知α1=[1,-1,1]T,α2=[1,t,-1]T,α3=[t,1,2]T,β=[4,t2,-1]T,若β可由α1,α2,α3线性表示,且表示法不唯一,求t及β的表达式.21. 设向量组α1,α2,…,αs(s≥2)线性无关,且β1=α1+α2,β2=α2+α3,…,βs-1=αs-1+αs,βs=αs+α1.讨论向量组β1,β2,…,βs的线性相关性.22. 设向量组α1,α2,…,αt是齐次线性方程组Ax=0的一个基础解系,向量β不是方程组Ax=0的解,即Aβ≠0.证明:向量组β,β+α1,β+α2,…,β+αt线性无关.23. 设向量组(Ⅰ)与向量组(Ⅱ),若(Ⅰ)可由(Ⅱ)线性表示,且r(Ⅰ)=r(Ⅱ)=r.证明:(Ⅰ)与(Ⅱ)等价.24. 求齐次线性方程组的基础解系.25. 问λ为何值时,线性方程组有解,并求出解的一般形式.26. λ为何值时,方程组无解,有唯一解或有无穷多解?并在有无穷多解时写出方程组的通解.设四元齐次线性方程组(Ⅰ)为又已知某齐次线性方程组(Ⅱ)的通解为k1[0,1,1,0]T+k2[-1,2,2,1]T.27. 求线性方程组(Ⅰ)的基础解系;28. 问线性方程组(Ⅰ)和(Ⅱ)是否有非零公共解?若有,则求出所有的非零公共解.若没有,则说明理由.29. 设γ1,γ2,…,γt和η1,η2,…,ηs分别是AX=0和BX=0的基础解系.证明:AX=0和BX=0有非零公共解的充要条件是γ1,γ2,…,γt和η1,η2,…,ηs线性相关.30. 已知α1=[1,2,-3,1]T,α2=[5,-5,a,11]T,α3=[1,-3,6,3]T,α4=[2,-1,3,a]T.问:(1)a为何值时,向量组α1,α2,α3,α4线性相关;(2)a为何值时,向量组α1,α2,α3,α4线性无关;(3)a为何值时,α4能由α1,α2,α3线性表出,并写出它的表出式.31. 已知问λ取何值时,(1)β可由α1,α2,α3线性表出,且表达式唯一;(2)β可由α1,α2,α3线性表出,但表达式不唯一;(3)β不能由α1,α2,α3线性表出.32. 设向量组α1=[a11,a21,…,an1]T,α2=[a12,a22,…,an2]T,…,αs=[a1s,a2s,…,ans]T.证明:向量组α1,α2,…,αs线性相关(线性无关)的充要条件是齐次线性方程组有非零解(有唯一零解).33. 已知α1,α2,…,αs线性无关,β可由α1,α2,…,αs线性表出,且表示式的系数全不为零.证明:α1,α2,…,αs,β中任意s个向量线性无关.34. 已知向量组α1,α2,…,αs+1(s>1)线性无关,βi=αi+tαi+1,i=1,2,…,s.证明:向量组β1,β2,…,βs线性无关.设A是3×3矩阵,α1,α2,α3是三维列向量,且线性无关,已知Aα1=α2+α3,Aα2=α1+α3,Aα3=α1+α2.35. 证明:Aα1,Aα2,Aα3线性无关;36. 求|A|.37. 已知A是n阶矩阵,α1,α2,…,αs是n维线性无关向量组,若Aα1,Aα2,…,Aαs 线性相关.证明:A不可逆.38. 设A是n×m阶矩阵,B是m×n矩阵,E是n阶单位阵.若AB=E,证明:B的列向量组线性无关.。

2018年考研数学三真题与答案解析

2018年考研数学三真题与答案解析

2018年考研数学三真题及答案解析一、选择题(4分)1 •下列函数中在e = oil:不可导的是()扎f⑵-\x\sin. |x|B. = |a|siii y/\^\G f @)= CM |zD、J⑵=roe \/|r|【麻】D2谡團數在[0 J「上二阶可导.且力血=0 ■则(〉化当< 0时0B.当严go时」点心D、Sf ff(T)>0【答臺】DJT 空离1C王设Af =丄玉£[斗必,N= /_¥吕^忑-K = /_刍1 + idr,则()久N> K艮M>K >NJ K > M>N匕K>N> M【答室】C4:殳某士品的5&本囲故G(Q)可导.具中Q九产量・若产量为班时平均成本最小.则()&"Q D)- 0氐C\Q Q)= QQa)G 仪(QJ - Qo^(<?o)P Q0缶-叽)【蒔塞]D^1 1 0'5.下列拒氏中,空阵0 1 1梧似的为()-0 0 1 _■1 1 -1'人 0 1 L0 0 1 ■1 0 -110 1 10 0 1ri 1 -rC.0 1 0_0 0 14 o -i iD、0 1 0 I0 0 1d al【答室】A匕设4 D知阶袒阵,记伪矩肚X的枝「(&幻表示甘埃矩隹,则()人r^A, AB) = T(J4)BS 3A) = r(A)J r(A?B) = max{r(4)?r(B)}D, r(A,3) = r(A T,B T)[答案】A了蛙随机豈量工的惑養厦f 0)淒定几1 +刃=/(1 - X).且k f (工问=0』,则P{X< 0}=()入0.2B、03C x 0.4D、05【希A&设Xl.Xd,…,X n(n> 2)为来自总脚仏/脸A0)的筲单随机样本<,令天■扌f J 土丈的一那.b■侶f 因-G 侧();-1 »1-1 » t-i【答套]8二、填空题(4分)虫曲㈱=/ +型”在具拐点处的切巻方程为_________【答却V=4®-310.J*E T arcsjin. 二店血=________【答案】e1 arrsiji v 1 - e Ha一讥一严 + C口■羞分方程-轴-5凶通解是倍臺】u, = e ■ 2T+1 - 5.12>画数汛z)萬卫甲(h 4- Az)—归⑹—2Z^(B)A S十o(A*)g? T O)fi^(O) = 2 ,则就1) = _____【答棄】网=加1 窑盂^为” Ol.0!* 巧方誌向fi® * 若Afl] = dR + flg .A HJ =+ fls Aij =01+03 二#1 = __________【軽】214随匚事件儿乩牒互独立’且-P(3)-P[C)- i .则P(AC\A LIB}-【答垂】扌三解答题(10分)1王已知宾数仏b」満足1血匸一0险足+ b)E:—彳=2 »求仏b【答秦】叙-号可得皿s*包牡1. 2其中lim t^)+ 仏岬-J 吟十 lim t^)+ 时=l™t^)+ 远”十b可那吋亠4 吟=2 —齐而臺使得压叫卫* 吟存在,必须有■血=1.1W ,有Km匕T* o^1- L - 2- b. St&-1_踪上(a = 1^ & = 1【咎秦】稅分区域口凰17将长为2m 的铁丝分成三段,依次围成HR 正方形与正三角形,三个圏形的面积之 和是否存在最小值?若存在.求出最小值.r 则有总+ J ; +之=2及乂,彭2 >^y 2 r 正三甬形的面积为気= 器H 「则问题擴化为在祭件a +y + z=2.x 隼/的最小值&令 資”+ A(i +y + z- 2) f a? +A = 0 2+入r =咗 血心n工曲=妒 r (vs (i-i 1)--占2 /少1二内滋-声丘2 x 3dx rV 』具于对于/ V3(l-z a)dz . * =血片可化为 屮僻r?g 丿应=芈圧血也⑺)=半•彳=徐「 而v 综上"昌一黒』喙一习0 J 圆前面积为 糾,总面积 ,爲之> OF .求 x-v ■鬲f'M 西+9_再9v^ir+4v ■存+9 r忑=—更—【答秦】设分成的三段分别为头闵 Si = ^x 2 t 正方形的面积为隔二 $=討+討 函数吉丞+壽/ “討+討 / QL 呢dL则有 M j 布—店龙十忍 鮫“+护+ ” 该点的囲数彳直即为最A 值,*解得唯n 牛极值点为〈 二 0 2 = 0最小值为^/X切卄 i = (一 1产日(刼 +2)=2n+2,n=O,l,2r -;口陥=需卢+ (一 1严刊(加十1)=气黑一(加+ l ).n = 0J …Ui 益数列{%”蒿足:4 >0^X B+1三『程-l (n = 1,2^-).证明{%}收鈣I 「并 求】叽十入【答臺】由题意可和斗屮.=血吩严「 首先证阴&讣的有界性:证明跖j >■ 0 ;当n = 1时山1 > 0』斷=恵时「盹> 0 ,则孔+1 =加气詈,其中 e Jfc-1 > i fc ,可知用1 > B L 1 = 0 r 因此对于任息的U ,有弓> 0.再证明{工讣的星疆性:JJ 因为才时]—£Xn=芒比」一已珈=e In-l-J n e Tng %令f (z ) = e* — 1 — xe^ t 则f (H )=—詔 f f (H )= —ze E< 0(x > 0) r 故当n > 0 时,fb ) < /(□) = 0 ,从而严羅一丹< 0 ”記却.一险C 0 ”可知{唧单调递痰 综上「{%}为单希谨减有下界的憩列f 可知{%}收巍。

2018考研数学三模拟1试卷与解答

2018考研数学三模拟1试卷与解答

(B) 必要非充分
(C) 充分必要
1 1 x 2
(D) 非充分且非必要
(4)设 f ( x, y ) 为连续函数,则使 ( ) (A) f ( x, y) f ( x, y)
x 2 y 2 1

f ( x, y )dxdy 4 dx
0
0
f ( x, y )dy 成立的一个充分条件是
n x
x
(C)若 lim f ( x) , lim g ( x) 均不存在,则 lim f ( x) g ( x) 不存在
x x0 x x0 x x0
(D) lim[ f ( x) g ( x)] 不存在,但 lim g ( x) 存在,则 lim f ( x) 不存在
第 4 页 共 9 页
需要论文查重、建立模板请联系群主371991061
2018 数学考研模拟试卷
合肥工业大学 (共创) 考研辅导中心
Tel: 0551-62905018
数学三(模拟 1)参考答案
一、选择题: (1)~(8)小题,每小题 4 分,共 32 分.
(1)【解】当 f ( x)
0, x 0, 1, x 0, g ( x) ,则 lim f ( x) g ( x) 0 是存在的,故【答案】C. x 0 1, x 0. 0, x 0.
2
, X n 是 X ~ P( ) (Poisson 分布)的简单随机样本, X 与S 2 分别是样本 X1 ,
). (C) n、 (D) (B)
, X n 的样本


n


n
二、填空题:9~14 小题,每小题 4 分,共 24 分.请将答案写在答题纸指点位置上.

考研数学三模拟题2018年(27)_真题(含答案与解析)-交互

考研数学三模拟题2018年(27)_真题(含答案与解析)-交互

考研数学三模拟题2018年(27) (总分100, 做题时间90分钟)一、填空题1.设A为三阶实对称矩阵,α1 =(a,-a,1) T是方程组AX=0的解,α2=(a,1,1-a) T是方程组(A+E)X=0的解,则a=______.SSS_FILL该题您未回答:х该问题分值: 11 [解析] 因为A为实对称矩阵,所以不同特征值对应的特征向量正交,因为AX=0及(A+E)X=0有非零解,所以λ1 =0,λ2=-1为矩阵A的特征值,α1=(a,-a,1) T,α2=(a,1,1-a) T是它们对应的特征向量,所以有=a 2 -a+1-a=0,解得a=1.2.设有三个线性无关的特征向量,则a=______.SSS_FILL该题您未回答:х该问题分值: 14 [解析] 由得λ1 =-1,λ2=λ3=1.因为A有三个线性无关的特征向量,所以r(E-A)=1,解得a=4.3.设有三个线性无关的特征向量,则a=______.SSS_FILL该题您未回答:х该问题分值: 10 [解析] 由|λE-A|=0得A的特征值为λ1 =-2,λ2=λ3=6.因为A有三个线性无关的特征向量,所以A可以对角化,从而r(6E-A)=1,解得a=0.4.f(x1,x2,x3,x4)=X T AX的正惯性指数是2,且A 2 -2A=O,该二次型的规范形为______.SSS_FILL该题您未回答:х该问题分值: 1[解析] A 2 -2A=0 r(A)+r(2E-A)=4 A可以对角化,λ1 =2,λ2=0,又二次型的正惯性指数为2,所以λ1 =2,λ2=0分别都是二重,所以该二次型的规范形为.二、选择题1.设A为n阶矩阵,下列结论正确的是______.A.矩阵A的秩与矩阵A的非零特征值的个数相等B.若A~B,则矩阵A与矩阵B相似于同一对角阵C.若r(A)=r<n,则A经过有限次初等行变换可化为D.若矩阵A可对角化,则A的秩与其非零特征值的个数相等SSS_SIMPLE_SINA B C D该题您未回答:х该问题分值: 1答案:D[解析] A不对,如A的两个特征值都是0,但r(A)=1;B不对,因为A~B不一定保证A,B可以对角化;C不对,如A经过有限次行变换化为经过行变换不能化为因为A可以对角化,所以存在可逆矩阵P,使得于是r(A)= 故选D.2.设A,B为n阶可逆矩阵,则______.• A.存在可逆矩阵P,使得P-1AP=B• B.存在正交矩阵Q,使得Q T AQ=B•**,B与同一个对角矩阵相似D.存在可逆矩阵P,Q,使得PAQ=BSSS_SIMPLE_SINA B C D该题您未回答:х该问题分值: 1答案:D[解析] 因为A,B都是可逆矩阵.所以A,B等价,即存在可逆矩阵P,Q,使得PAQ=B,选D.3.设则A与B______.SSS_SINGLE_SELA 合同且相似B 相似但不合同C 合同但不相似D 既不相似又不合同该题您未回答:х该问题分值: 1答案:C[解析] 显然A,B都是实对称矩阵,由|λE-A|=0,得A的特征值为λ1=1,λ2 =2,λ3=9,由|λE-B|=0,得B的特征值为λ1=1,λ2=λ3=3,因为A,B惯性指数相等,但特征值不相同,所以A,B合同但不相似,选C.4.设A是三阶实对称矩阵,若对任意的三维列向量X,有X T AX=0,则______.SSS_SINGLE_SELA |A|=0B |A|>0C |A|<0D 以上都不对该题您未回答:х该问题分值: 1答案:A[解析] 设二次型其中Q为正交矩阵.取则f=X T AX=λ1=0,同理可得λ2=λ3=0,由于A是实对称矩阵,所以r(A)=0,从而A=O,选A.三、解答题1.设有三个线性无关的特征向量,求a及A n.SSS_TEXT_QUSTI该题您未回答:х该问题分值: 5[解] 由得λ1=λ2,λ3=2.因为矩阵A有三个线性无关的特征向量,所以A一定可对角化,从而r(E-A)=1,即a=1,故由λ=1时,由(E-A)X=0,得由λ=2时,由(2E-A)X=0,得令则两边n次幂得从而设方程组有无穷多个解,为矩阵A的分别属于特征值λ1=1,λ2 =-2,λ3=-1的特征向量.SSS_TEXT_QUSTI2.求A;该题您未回答:х该问题分值: 3[解] 因为方程组有无穷多个解,所以解得a=1.令则从SSS_TEXT_QUSTI3.求|A * +3E|.该题您未回答:х该问题分值: 3[解] |A|=2,A *对应的特征值为即2,-1,-2,A * +3E对应的特征值为5,2,1,所以|A * +3E|=10.=2是A 设A为三阶实对称矩阵,A的每行元素之和为5,AX=0有非零解且λ1的特征值,对应特征向量为(-1,0,1) T.SSS_TEXT_QUSTI4.求A的其他特征值与特征向量;该题您未回答:х该问题分值: 3[解] 因为A的每行元素之和为5,所以有=5,对应的特征向量为即A有特征值λ2又因为AX=0有非零解,所以r(A)<3,从而A有特征值0,设特征值0对应的特征向量为,根据不同特征值对应的特征向量正交得解得特征值0对应的特征向量为SSS_TEXT_QUSTI5.求A.该题您未回答:х该问题分值: 3[解] 令由得6.设求a,b及正交矩阵P,使得P T AP=B.SSS_TEXT_QUSTI该题您未回答:х该问题分值: 5[解] 因为A~B,所以tr(A)=tr(B),|A|=|B|,即解得a=1,b=0,则因为A~B,所以矩阵A,B的特征值都为λ1 =1,λ2=0,λ3=6.当λ=1时,由(E-A)X=0,得当λ=0时,由(0E-A)X=0,得当λ=6时,由(6E-A)X=0,得令再令则有P T AP=B.7.设A,B为n阶矩阵,且r(A)+r(B)<n.证明:A,B有公共的特征向量.SSS_TEXT_QUSTI该题您未回答:х该问题分值: 5[证明] 因为r(A)+r(B)<n,所以r(A)<n,r(B)<n,于是λ=0为A,B公共的特征值,A的属于特征值λ=0的特征向量即为方程组AX=0的非零解;B的属于特征值λ=0的特征向量即为方程组BX=0的非零解,因为所以方程组有非零解,即A,B有公共的特征向量.设A是b阶矩阵,α1,α2,…,αn是n维列向量,且αn≠0,若Aα1=α2,Aα2=α3,…,Aαn-1=αn,Aαn=0.SSS_TEXT_QUSTI8.证明:α1,α2,…,αn线性无关;该题您未回答:х该问题分值: 2.5[证明] 令x1α1+x2α2+…+rnαn=0,则x1Aα1+x2Aα2+…+xnAαn=0 x1α2+x2α3+…+xn-1αn=0x1Aα2+x2Aα3+…+xn-1Aαn=0 x1α3+x2α4+…+xn-22αn-2=0 …x1αn=0因为αn ≠0,所以x1=0,反推可得x2=…=xn=0,所以α1,α2,…,αn线性无关.SSS_TEXT_QUSTI9.求A的特征值与特征向量.该题您未回答:х该问题分值: 2.5[解] 令P=(α1,α2,…,αn),则则A与B相似,由|λE=B|=0 λ1=…=λn=0,即A的特征值全为零,又r(A)=n-1,所以AX=0的基础解系只含有一个线性无关的解向量,而Aαn =0αn(αn≠0),所以A的全部特征向量为kαn(k≠0).10.设A为三阶方阵,A的每行元素之和为5,AX=0的通解为设β= 求Aβ.SSS_TEXT_QUSTI该题您未回答:х该问题分值: 5[解] 因为A的每行元素之和为5,所以有即A有一个特征值为λ1=5,其对应的特征向量为又AX=0的通解为则r(A)=1 λ2=λ3=0,其对应的特征向量为Aξ2 =0,Aξ3=0.令x1ξ1,x2ξ2,x3ξ3=β,解得x1=8,x2=-1,x3=-2,则Aβ=8Aξ1 -Aξ2-2Aξ3=8Aξ1=11.求a,b及可逆矩阵P,使得P -1 AP=B.SSS_TEXT_QUSTI该题您未回答:х该问题分值: 5[解] 由|λE-B|=0,得λ1 =-1,λ2=1,λ3=2,因为A~B,所以A的特征值为λ1 =-1,λ2=1,λ3=2.由tr(A)=λ1+λ2+λ3,得a=1,再由|A|=b=λ1λ2λ3=-2,得b=-2,即A=由(-E-A)X=0,得ξ1=(1,1,0) T;由(E-A)X=0,得ξ2=(-2,1,1) T;由(2E-A)X=0,得ξ3=(-2,1,0) T,令则由(-E-B)X=0,得η1=(-1,0,1) T;由(E-B)X=0,得η2=(1,0,0) T;由(2E-B)X=0,得η3=(8,3,4) T,令则由得令则P -1 AP=B.12.设求A的特征值与特征向量,判断矩阵A是否可对角化,若可对角化,求出可逆矩阵P及对角阵.SSS_TEXT_QUSTI该题您未回答:х该问题分值: 5[解] |λE-A|= =(λ+a-1)(λ-a)(λ-a-1)=0,得矩阵A的特征值为λ1=1-a,λ2 =a,λ3=1+a.(1)当1-a≠a,1-a≠1+a,a≠1+a,即a≠0且时,因为矩阵A有三个不同的特征值,所以A一定可以对角化.λ1 =1-a时,由[(1-a)E-A]X=0得λ2=a时,由(aE-A)X=0得ξ2=λ3=1+a时,由[(1+a)E-A]X=0得(2)当a=0时,λ1=λ3=1,因为r(E-A)=2,所以方程组(E-A)X=0的基础解系只含有一个线性无关的解向量,故矩阵A不可以对角化.(3)当时,,因为,所以方程组的基础解系只含有一个线性无关的解向量,故A不可以对角化.13.设A为m×n实矩阵,且r(A)=n.证明:A T A的特征值全大于零.SSS_TEXT_QUSTI该题您未回答:х该问题分值: 5[证明] 首先A T A为实对称矩阵,r(A T A)=n,对任意的X>0,X T (A TA)X=(AX) T (AX),令AX=α,因为r(A)=n,所以α≠0,所以(AX) T(AX)=α T α=|α| 2>0,即二次型X T (A T A)X是正定二次型,A T A为正定矩阵,所以A T A的特征值全大于零.14.设A为n阶正定矩阵.证明:对任意的可逆矩阵P,P T AP为正定矩阵.SSS_TEXT_QUSTI该题您未回答:х该问题分值: 5[证明] 首先A T =A,因为(p T AP) T =P T A T (P T ) T =P T AP,所以P T AP为对称矩阵,对任意的X≠0,X T (P T AP)X=(PX) T A(PX),令PX=α,因为P 可逆且X≠0,所以α≠0,又因为A为正定矩阵,所以α T Aα>0,即X T (P T AP)X>0,故X T (P T AP)X为正定二次型,于是P T AP为正定矩阵.15.设P为可逆矩阵,A=P T P.证明:A是正定矩阵.SSS_TEXT_QUSTI该题您未回答:х该问题分值: 5[证明] 显然A T =A,对任意的X≠0,X T AX=(PX) T (PX),因为X≠0且P可逆,所以PX≠0,于是X T AX=(PX) T (PX)=|PX| 2>0,即X T AX为正定二次型,故A为正定矩阵.16.设A,B为n阶正定矩阵.证明:A+B为正定矩阵.SSS_TEXT_QUSTI该题您未回答:х该问题分值: 5[证明] 因为A,B正定,所以A T =A,B T =B,从而(A+B) T =A+B,即A+B为对称矩阵.对任意的X≠0,X T (A+B)X=X T AX+X T BX,因为A,B为正定矩阵,所以X T AX>0,X T BX>0,因此X T (A+B)X>0,于是A+B为正定矩阵.17.三元二次型f=X T AX经过正交变换化为标准形,且A * +2E的非零特征值对应的特征向量为求此二次型.SSS_TEXT_QUSTI该题您未回答:х该问题分值: 5[解] 因为f=X T AX经过正交变换后的标准形为,所以矩阵A的特征值为λ1=λ2=1,λ3=-2.由|A|=λ1λ2λ3=-2得A *的特征值为μ1=μ2 =-2,μ3=1,从而A * +2E的特征值为0,0,3,即α1为A * +2E的属于特征值3的特征向量,故也为A的属于特征值λ3=-2的特征向量.令A的属于特征值λ1=λ2=1的特征向量为因为A为实对称矩阵,所以有=0,即x1 +x3=0故矩阵A的属于λ1=λ2=1的特征向量为令由得所求的二次型为18.设二次型经过正交变换X=QY化为标准形,求参数a,b及正交矩阵Q.SSS_TEXT_QUSTI该题您未回答:х该问题分值: 5[解] 二次型的矩阵形式为f=X T AX其中因为所以A~B(因为正交矩阵的转置矩阵即为其逆矩阵),于是A的特征值为1,1,4.而|λE-A|=λ 3 -(a+4)λ 2 +(4a-b 2+2)λ+(-3a-2b+2b 2 +2),所以有λ 3 -(a+4)λ 2 +(4a-b 2+2)λ+(-3a-2b+2b 2+2)=(λ-1) 2(λ-4),解得a=2,b=1.当λ1=λ2=1时,由(E-A)X=0得由λ3=4时,由(4E-A)X=0得显然ξ1,ξ2,ξ3两两正交,单位化为则19.设齐次线性方程组有非零解,且为正定矩阵,求a,并求当|A|= 时X T AX的最大值.SSS_TEXT_QUSTI该题您未回答:х该问题分值: 5[解] 因为方程组有非零解,所以=a(a+1)(a-3)=0,即a=-1或a=0或a=3.因为A是正定矩阵,所以aii>0(i=1,2,3),所以a=3.当a=3时,由得A的特征值为1,4,10.因为A为实对称矩阵,所以存在正交矩阵Q,使得而当时,=Y T Y=Y T Q T QY=(QY) T (QY)=X T X=|X| 2 =2所以当时,X T AX的最大值为20(最大值20可以取到,如y1 =y2=0,y3= ).20.设A为实对称矩阵,且A的特征值都大于零.证明:A为正定矩阵.SSS_TEXT_QUSTI该题您未回答:х该问题分值: 5[证明] A所对应的二次型为f=X T AX,因为A是实对称矩阵,所以存在正交变换X=QY,使得对任意的X≠0,因为X=QY,所以Y=Q T X≠0,于是,即对任意的X≠0有X T AX>0,所以X T AX为正定二次型,故A 为正定矩阵.21.设A为m阶正定矩阵,B为m×n实矩阵.证明:B T AB正定的充分必要条件是r(B)=n.SSS_TEXT_QUSTI该题您未回答:х该问题分值: 5[证明] 因为(B T AB) T =B T A T (B T ) T =B T AB,所以B T AB为对称矩阵,设B T AB是正定矩阵,则对任意的X≠0,X T B T ABX=(BX) T A(BX)>0,所以BX≠0,即对任意的X≠0有BX≠0,或方程组BX=0只有零解,所以r(B)=n.反之,设r(B)=n,则对任意的X≠0,有BX≠0,因为A为正定矩阵,所以X T (B T AB)X=(BX) T A(BX)>0,所以B T AB为正定矩阵.1。

考研数学三模拟题2018年(2)_真题-无答案

考研数学三模拟题2018年(2)_真题-无答案

考研数学三模拟题2018年(2)(总分100,考试时间90分钟)解答题1. 设其中函数f,g具有二阶连续偏导数,求2. 设z=f(2x-y)+g(x,xy),其中函数f(t)二阶可导,g(u,v)具有二阶连续偏导数,求3. 设函数z=f(u),方程确定u是x,y的函数,其中f(u),φ(u)可微,P(t),φ"(u)连续,且φ"(u)≠1.求4. 设5. 设u=f(x,y,z)有连续偏导数,y=y(x)和z=z(x)分别由方程exy-y=0和ez-xz=0所确定,求设函数f(u)在(0,+∞)内具有二阶导数,且满足等式6. 验证7. 若f(1)=0,f"(1)=1,求函数f(u)的表达式.8. 设z=u(x,y)eax+y,求常数a,使9. 已知函数u=u(x,y)满足方程试选择参数a,b,利用变换u(x,y)=v(x,y)eax+by将原方程变形,使新方程中不出现一阶偏导数项.10. 求二元函数z=f(x,y)=x2y(4-x-y)在由直线x+y=6,x轴和y轴所围成的闭区域D上的极值、最大值与最小值.某公司可通过电台及报纸两种方式做销售某种商品的广告,根据统计资料,销售收入R万元与电台广告费x1万元及报纸广告费用x2万元之间的关系有如下经验公式:11. 在广告费用不限的情况下,求最优广告策略;12. 若提供的广告费用为1.5万元,求相应的最优广告策略.13. 求f(x,y)=x+xy-x2-y2在闭区域D={(x,y)|0≤x≤1,0≤y≤2}上的最大值和最小值.14. 设f(x,y)=kx2+2kxy+y2在点(0,0)处取得极小值,求k的取值范围.15. 设f(x,y)具有二阶连续偏导数.证明:由方程f(x,y)=0所确定的隐函数y=φ(x)在x=a 处取得极值b=φ(a)的必要条件是且当r(a,b)>0时,b=φ(a)是极大值;当r(a,b)<0时,b=φ(a)是极小值,其中16. 求函数z=x2+y2+2x+y在区域D:x2+y2≤1上的最大值与最小值.17. 求内接于椭球面的长方体的最大体积.18. 在第一象限的椭圆上求一点,使过该点的法线与原点的距离最大.19. 厂家生产的一种产品同时在两个市场销售,售价分别为p1和p2,销售量分别为q1和q2,需求函数分别为q1=24-0.2p1和q2=10-0.05p2,总成本函数为C=35+40(q1+q2).试问:厂家如何确定两个市场的售价,能使其获得的总利润最大?最大总利润为多少? 20. 在球面x2+y2+z2=5R2(x>0,y>0,z>0)上,求函数f(x,y,z)=lnx+lny+3lnz的最大值,并利用所得结果证明不等式21. 设(1)(2)讨论它们在点(0,0)处的①偏导数的存在性;②函数的连续性;③方向导数的存在性;④函数的可微性.22. 设A,B,C为常数,B2-AC>0,A≠0.u(x,y)具有二阶连续偏导数.试证明:必存在非奇异线性变换ξ=λ1x+y,η=λ2x+y (λ1,λ2为常数),将方程23. 设f(x,y)在点O(0,0)的某邻域U内连续,且常数.试讨论f(0,0)是否为f(x,y)的极值?是极大值还是极小值?24. 求函数f(x,y)=x2+2y2-x2y2在区域D={(x,y)|x2+y2≤4,y≥0}上的最大值与最小值.25. 设h(t)为三阶可导函数,u=h(xyz),且满足求u的表达式,其中26. 证明:f(x,y)=Ax2+2Bxy+Cy2在约束条件下有最大值和最小值,且它们是方程k2-(Aa2+Cb2)k+(AC-B2)a2b2=0的根.27. 某厂家生产的一种产品同时在两个市场销售,售价分别为p1和p2,销售量分别为q1和q2.需求函数分别为:q1=2-ap1+bp2,q2=1-cp2+dp1.总成本函数C=3+k(q1+q2).其中a,b,c,d,k都为大于0的常数,且4ac≠(b+d)2.试问厂家如何确定两个市场的售价,能够使获得的总利润最大.28. 设生产某种产品必须投入两种要素,x1和x2分别为两要素的投入量,Q为产出量.如果生产函数为其中α,β为正常数,且α+β=1.假设两种要素价格分别为p1,p2.试问产出量为12时,两要素各投入多少,可以使得投入总费用最小?29. 设生产函数和成本函数分别为当成本预算为S时,两种要素投入量x和y为多少时,产量Q最大,并求最大产量.。

考研数学三模拟题2018年(63)_真题-无答案

考研数学三模拟题2018年(63)_真题-无答案

考研数学三模拟题2018年(63)(总分100,考试时间90分钟)一、选择题1. 已知向量组α1,α2,α3,α4线性无关,则向量组2α1+α3+α4,α2-α4,α3+α4,α2+α3,2α1+α2+α3的秩是______A. 1B. 2C. 3D. 42. 设n阶(n≥3)矩阵若矩阵A的秩为n-1,则a必为______A.1B.C.-1D.3. 设n维列向量组α1,α2,…,αm(m<n)线性无关,则n维列向量组β1,β2,…,βm线性无关的充分必要条件为______A. 向量组α1,α2,…,αm可由向量组β1,β2,…,βm线性表出B. 向量组β1,β2,…,βm可由向量组α1,α2,…,αm线性表出C. 向量组α1,α2,…,αm向量组β1,β2,…,βm等价D. 矩阵A=[α1,α2,…,αm]与矩阵B=[β1,β2,…,βm]等价4. 要使都是线性方程组AX=0的解,只要系数矩阵A为______A.[-2,1,1]B.C.D.5. 齐次线性方程组的系数矩阵为A,若存在3阶矩阵B≠O,使得AB=O,则______A. λ=-2且|B|=0B. λ=-2且|B|≠0C. λ=1且|B|=0D. λ=1且|B|≠06. 齐次线性方程组的系数矩阵A4×5=[β1,β2,β3,β4,β5]经过初等行变换化成阶梯形矩阵为则______A. β1不能由β3,β4,β5线性表出B. β2不能由β1,β3,β5线性表出C. β3不能由β1,β2,β5线性表出D. β4不能由β1,β2,β3线性表出7. 设A为m×n矩阵,齐次线性方程组AX=0仅有零解的充分条件是______A. A的列向量线性无关B. A的列向量线性相关C. A的行向量线性无关D. A的行向量线性相关8. 设A为n阶实矩阵,则对线性方程组(Ⅰ)AX=0和(Ⅱ)ATAX=0,必有______A. (Ⅱ)的解是(Ⅰ)的解,(Ⅰ)的解也是(Ⅱ)的解B. (Ⅱ)的解是(Ⅰ)的解,但(Ⅰ)的解不是(Ⅱ)的解C. (Ⅰ)的解不是(Ⅱ)的解,(Ⅱ)的解也不是(Ⅰ)的解D. (Ⅰ)的解是(Ⅱ)的解,但(Ⅱ)的解不是(Ⅰ)的解9. 已知β1,β2是AX=b的两个不同的解,α1,α2是相应的齐次方程组AX=0的基础解系,k1,k2是任意常数,则AX=b的通解是______A.B.C.D.10. 设A是m×n矩阵,则方程组AX=b有唯一解的充分必要条件是______A. m=n且|A|≠0B. AX=0有唯一零解C. A的列向量组α1,α2,…,αn和α1,α2,…,αn,b是等价向量组D. r(A)=n,b可由A的列向量线性表出11. 设A是4×5矩阵,且A的行向量组线性无关,则下列说法错误的是______A.ATX=0只有零解**=0必有无穷多解C.对任意的b,ATX=b有唯一解D.对任意的b,AX=b有无穷多解12. 设A是m×n矩阵,B是s×n矩阵,则齐次线性方程组BX=0和ABX=0是同解方程组的一个充分条件是______A. r(A)=mB. r(A)=sC. r(B)=sD. r(B)=n13. 设A,B是n阶方阵,X,Y,b是n×1矩阵,则方程组有解的充要条件是______A. r(A)=r(A|b),r(B)任意B. AX=b有解,BY=0有非零解C. |A|≠0,b可由B的列向量线性表出D. |B|≠0,b可由A的列向量线性表出14. 设α1,α2,α3是四元非齐次线性方程组AX=b的三个解向量,且r(A)=3,α1=[1,2,3,4]T,α2+α3=[0,1,2,3]T,k是任意常数,则方程组AX=b的通解是______A.B.C.D.15. 设λ1,λ2是n阶矩阵A的特征值,α1,α2分别是A的对应于λ1,λ2的特征向量,则______A. 当λ1=λ2时,α1,α2对应分量必成比例B. 当λ1=λ2时,α1,α2对应分量不成比例C. 当λ1≠λ2时,α1,α2对应分量必成比例D. 当λ1≠λ2时,α1,α2对应分量必不成比例16. 已知α1=[-1,1,a,4]T,α2=[-2,1,5,a]T,α3=[a,2,10,1]T是4阶方阵A的3个不同特征值对应的特征向量,则a的取值为______A. a≠5B. a≠-4C. a≠3D. a≠-3且a≠-417. 设A,B为n阶矩阵,且A与B相似,E为n阶单位矩阵,则______A. λE-A=λE-BB. A与B有相同的特征值和特征向量C. A与B都相似于一个对角矩阵D. 对任意常数t,tE-A与tE-B相似18. 设A为n阶矩阵,下列命题正确的是______A.若α为AT的特征向量,那么α为A的特征向量B.若α为A*的特征向量,那么α为A的特征向量C.若α为A2的特征向量,那么α为A的特征向量D.若α为2A的特征向量,那么α为A的特征向量19. 已知3阶矩阵A有特征值λ1=1,λ2=2,λ3=3,则2A*的特征值是______A. 1,2,3B. 4,6,12C. 2,4,6D. 8,16,2420. 已知A是3阶矩阵,r(A)=1,则λ=0______A. 必是A的二重特征值B. 至少是A的二重特征值C. 至多是A的二重特征值D. 一重、二重、三重特征值都可能21. 已知ξ1,ξ2是方程(λE-A)X=0的两个不同的解向量,则下列向量中必是A的对应于特征值λ的特征向量的是______A. .ξ1B. .ξ1C. ξ1-ξ2D. ξ1+ξ222. 设则下列选项中是A的特征向量的是______A.ξ1=[1,2,1]TB.ξ2=[1,-2,1]TC.ξ3=[2,1,2]TD.ξ4=[2,1,-2]T23. 下列矩阵中能相似于对角阵的矩阵是______A.B.C.D.24. 下列矩阵中不能相似于对角阵的矩阵是A.B.C.D.25. A是n阶方阵,则A相似于对角阵的充分必要条件是______A. A有n个不同的特征值B. A有n个不同的特征向量C. A的每个ri重特征值λi,r(λiE-A)=n-riD. A是实对称矩阵26. 设,其中与对角矩阵相似的有A. A,B,CB. B,DC. A,C,DD. A,C27. 设A,B均为n阶矩阵,A可逆且A~B,则下列命题中:①AB~BA;②A2~B2;③AT~BT;④A-1~B-1.正确命题的数量为______A. 1B. 2C. 3D. 428. 已知,α1是矩阵A属于特征值λ=2的特征向量,α2,α3是矩阵A属于特征值λ=6的线性无关的特征向量,那么矩阵P不能是______A. [α1,-α2,α3]B. [α1,α2+α3,α2-2α3]C. [α1,α3,α2]D. [α1+α2,α1-α2,α3]29. 设A是n阶实矩阵,将A的第i列与第j列对换,然后再将第i行和第j行对换,得到B,则A,B有______A.B.C.D.30. 下列矩阵中与合同的矩阵是______A.B.C.D.31. 实二次型f(x1,x2,…,xn)的秩为r,符号差为s,且f和-f合同,则必有______A. r是偶数,s=1B. r是奇数,s=1C. r是偶数,s=0D. r是奇数,s=032. 设A=E-2XXT,其中X=[x1,x2,…,xn]T,且XTX=1,则A不是______A. 对称阵B. 可逆阵C. 正交阵D. 正定阵二、填空题1.2. 设a,b,a+b均非0,则行列式3. 已知A,B为3阶相似矩阵,λ1=1,λ2=2为A的两个特征值,|B|=2,则行列式4. 设n阶矩阵则|A|=______.5. 设A=[α1,α2,α3]是3阶矩阵,|A|=4,若B=[α1-3α2+2α3,α2-3α3,2α2+α3],则|B|=______.6. 设α=[1,0,1]T,A=ααT,n是正数,则|aE-An|=______.7. 设A是m阶矩阵,B是n阶矩阵,且|A|=a,|B|=b,,则|C|=______.8. 设A为奇数阶矩阵,AAT=ATA=E,|A|>0,则|A-E|=______.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2018年考研数学模拟试题(数学三)
一、选择题(本题共8小题,每小题4分,满分32分,在每小题给出的四个选项中,只有一项符合题目要求)
(1) 设)(x y 是微分方程x e y x y x y =+'-+''2)1(的满足0)0(=y ,1)0(='y 的解,则
2
0)(lim x x
x y x -→ ( ) (A )等于0. (B )等于1. (C )等于2. (D )不存在.
(2)设在全平面上有0),(<∂∂x y x f ,0),(>∂∂y y x f ,则保证不等式1122(,)(,)f x y f x y <成立的条件是( )
(A )21x x >,21y y <.
(B )21x x <,21y y <. (C )21x x >,21y y >. (D )21x x <,21y y >.
(3)设)(x f 在),(+∞-∞存在二阶导数,且)()(x f x f --=,当0<x 时有()0f x '<,()0f x ''>,则当0>x 时有( )
(A )0)(,0)(>''<'x f x f . (B )0)(,0)(<''>'x f x f .
(C )0)(,0)(>''>'x f x f . (D )0)(,0)(<''<'x f x f .
(4) 设函数)(x f 连续,且(0)0f '<,则存在0δ>,使得( )
(A )在(0,)δ内单调增加(B )在(,0)δ-内单调减少
(C )对任意的(0,)x δ∈,有()(0)f x f >
(D )对任意的(,0)x δ∈-,有()(0)f x f >
(5)二次型222123123121323(,,)44448f x x x x x x x x x x x x =++-+-的规范型是( ).
(A )222123f z z z =++. (B )222123f z z z =+-.
(C )2212f z z =-. (D )21f z =.
(6)设1211121k A k k ⎛⎫ ⎪=+ ⎪ ⎪⎝⎭
,B 是三阶非零矩阵,且AB O =,则( ).
(A )当1k =时,()1r B = . (B )当3k =-时,()1r B =.
(C )当1k =时,()2r B = . (D )当2k =-时,()2r B =.
(7)设随机变量X 与Y 分别服从12N -(,)和2N (1,)
,且X 与Y 不相关,1k X Y +与2X k Y +也不相关,则( ).
(A )120k k +=. (B )120k k ==.
(C )120k k +≠. (D )120k k +≠.
(8) 设12,,,(2)n X X X n ≥为来自总体(0,1)N 的简单随机样本,X 为样本均值,2S 为样
本方差,则 ( ) (A )~(0,1)nX N . (B )22~()nS n χ.
(C ))1(~)1(--n t S X n . (D )212
2
(1)~(1,1)n i i n X F n X =--∑. 二、填空题(本题共6小题,每小题4分,满分24分,把答案填在题中横线上)
(9)设)(1lim )(2212N n x bx
ax x x f n n n ∈+++=-∞→,若1lim ()x f x → 与1
lim ()x f x →-都存在,那么a =________, ________b =.
(10)2
22222
021
lim cos()xy r x y r e x y dxdy r π→+≤-⎰⎰________=.. (12) 设)()(x f x F 是的一个原函数,且1)0(=F x x f x F 2cos )()(,=,则
dx x f ⎰π
0|)(|________=.
(13)设矩阵2T A E αβ=+,其中,αβ是n 维列向量,且2T αβ=,则1______A
-=. (14)设129,,,X X X 是来自正态总体X 的简单随机样本,
1161()6Y X X =++27891()3
Y X X X =++,922271()2i i S X Y ==-∑
,12)Y Y Z S -=,则统计量Z 服从______.
三、解答题(15-23题,满分94分,解答应写出文字说明,证明过程或演算步骤)
(15)(10分)设()f x 在(,0]-∞上连续,且满足
222
2201()ln(1)12x x tf t x dt x x -=-++⎰
,求()f x 及其极小值.
(16)(10分)设函数()f x 在[,]a b 上连续,在(,)a b 上二阶可导,且()0,()0,()0f a f b f a +'=><.证明:
①在(,)a b 内至少存在一点ξ,使得()0f ξ=;
②在(,)a b 内至少存在一点η,使得()0f η''>.
(17)(10分)求微分方程2
36xy y x '=-的一个解()y y x =,使得曲线()y y x =与直 线1,0x y ==所围成的平面图形绕x 轴旋转一周所得旋转体体积最小.
(18)(10
分)计算1D I d σ=
,区域D
由曲线y =和x 轴围成.
(19)(10分)求幂级数21(1)n
n n n x n ∞
=+-∑的收敛域及和函数.
(20)(11分)设33A ⨯是实对称矩阵,12A =-,A 的三个特征值之和为1,且
102T α=-(,,)是方程组(4)0A E x *-=的一个解向量.
①求矩阵A ;
②求方程组(6)0A E x *
+=的通解.
(21)(11分)设n 阶实对称矩阵A 的秩为r ,且满足2A A =,求 ①二次型T
x Ax 的标准形;
②行列式||2n A A A E ++++ 的值,其中E 为单位矩阵.
(22)(11分)已知随机变量X 与Y 的联合概率分布为 0
10
11/31/3Y X αβ⎛⎫ ⎪ ⎪ ⎪⎝⎭ ①证明X 与Y 不相关的充分必要条件是事件{1}Y =与{1}X Y +=相互独立; ②若X 与Y 不相关,求X 与Y 的边缘分布.
(23)(11分)设总体),1(~θU X ,参数1>θ未知,n X X ,,1 是来自X 的简单随机样本. ①求θ的矩估计和极大似然估计量;
②求上述两个估计量的数学期望.。

相关文档
最新文档