实验3_溶解热的测定
物化实验报告溶解热的测定KCl、KNO

物化实验报告溶解热的测定_KCl、KNO3实验报告:溶解热的测定——KCl、KNO3一、实验目的1.学习和掌握溶解热测定的原理和方法。
2.通过实验测定KCl和KNO3在水中溶解的热效应。
3.比较相同浓度下KCl和KNO3的溶解热效应差异。
二、实验原理溶解热是指物质在溶解过程中所伴随的热量变化。
当物质溶解时,其分子或离子会从固态或晶体状态分散到溶剂中,这一过程通常会吸收或释放热量。
溶解热的测定有助于了解物质溶解过程中的热力学性质。
溶解热的测定通常采用量热计进行。
量热计可以准确地测量溶液温度的变化,并以此来计算溶解热。
根据Arrhenius公式,溶解热与温度有关,因此,通过测量不同温度下的溶解热,可以评估温度对物质溶解热效应的影响。
三、实验步骤1.准备实验器材:500ml烧杯、电子天平、量筒、水浴锅、保温杯、恒温水浴、热量计等。
2.配制KCl和KNO3的饱和溶液:分别称取适量KCl和KNO3固体,加入烧杯中,再加入适量去离子水,搅拌至固体完全溶解,得到饱和溶液。
3.测量溶解热:将保温杯中的去离子水倒入量热计中,插入电子天平,记录初始温度T1。
分别将KCl和KNO3的饱和溶液倒入量热计中,记录溶解后的温度T2。
根据温度差和水的质量,计算溶解热。
4.重复测量:为了确保实验结果的准确性,可以重复以上步骤几次,每次测量不同的浓度。
5.数据处理和分析:整理实验数据,根据溶解热的计算公式,比较相同浓度下KCl和KNO3的溶解热效应差异。
四、实验结果与讨论1.实验数据:以下是实验测定的KCl和KNO3在水中溶解的热效应数据。
2.结果分析:从上表可以看出,相同浓度下,KCl的溶解热效应比KNO3高。
随着浓度的增加,两种物质的溶解热效应都逐渐增大。
这表明在溶解过程中,KCl分子或离子从固体分散到水中的吸热过程比KNO3更为显著。
此外,KCl和KNO3的溶解热效应与Arrhenius公式中的常数相关联,这意味着溶解热的温度依赖性较强。
溶解热的测定实验报告

溶解热的测定实验报告实验目的,通过本实验,我们旨在通过测定物质的溶解热来探究其热力学性质,并通过实验数据的分析,掌握溶解热的测定方法和步骤。
实验仪器与试剂,实验仪器包括热量计、热量计杯、电磁搅拌器、温度计等;实验试剂为待测物质和溶剂。
实验原理,在本实验中,我们将待测物质与溶剂混合,并通过测定混合物的温度变化来计算溶解热。
根据热力学原理,当物质溶解时,会吸收或释放一定量的热量,而溶解热则是单位物质在溶解过程中吸收或释放的热量。
实验步骤:1. 将热量计杯置于热量计中,加入一定量的溶剂,并记录溶剂的初始温度。
2. 将待测物质加入热量计杯中,并迅速搅拌均匀,记录混合物的最终温度。
3. 根据温度变化和溶剂的热容量,计算出溶解热的值。
实验数据处理:根据实验数据和原理公式,我们可以计算出待测物质的溶解热。
在实验中,我们需要注意控制实验条件,确保实验数据的准确性和可靠性。
同时,还需要进行数据处理和分析,得出溶解热的准确数值。
实验结果与讨论:通过实验数据处理,我们得到了待测物质的溶解热值,并对实验结果进行了讨论和分析。
在讨论中,我们可以比较不同物质的溶解热值,探讨其在热力学上的差异和特点,从而加深对溶解热的理解。
结论:在本次实验中,我们成功测定了待测物质的溶解热,并通过数据分析得出了准确的结果。
通过本实验,我们对溶解热的测定方法和步骤有了更深入的了解,为进一步研究物质的热力学性质奠定了基础。
总结,通过本次实验,我们不仅学习了溶解热的测定方法和步骤,还掌握了实验数据处理和分析的技巧。
实验中的经验和收获将对我们今后的实验和研究工作产生积极的影响。
同时,我们也意识到在实验中需要严格控制实验条件,确保实验数据的准确性和可靠性。
致谢,在此,特别感谢实验指导老师对我们实验过程中的指导和帮助,以及实验室工作人员对实验设备和试剂的准备工作。
同时也感谢实验小组成员的合作和努力,共同完成了本次实验。
参考文献:1. 《物理化学实验指导》,XXX,XXX出版社,201X年。
实验三 溶解热的测定

实验原理
1 、溶解热:在恒温恒压下, n2 摩尔溶质溶于 n1 摩尔溶 剂(或溶于某浓度的溶液 )中产生的热效应,用Q表示。 溶解热可分为积分溶解热和微分溶解热。 积分溶解热:在恒温恒压下,一摩尔溶质溶于n0摩尔溶 剂中产生的热效应,由于过程中溶液的浓度逐渐改变, 因此也称为变浓溶解热用Qs表示。 微分溶解热:在恒温恒压下,一摩尔溶质溶于某一确 定浓度的无限量的溶液中产生的热效应。由于在溶解 过程中溶液浓度可实际上视为不变,因此也称为定浓 溶解热。以 表示。 2、冲淡热:把溶剂加到溶液中使之稀释,其热效应称 为冲淡热。它有积分(或变浓)冲淡热和微分(或定浓)冲 淡热两种。通常都以对含有1摩尔溶质的溶液的冲淡情 况而言。
实验原理
本实验是采用绝热式测温量热计,它是一个包括 杜瓦瓶、磁力搅拌器、电加热器和测温部件等的量热 系统。装置及电路图如图Ⅱ-3-2所示。 因本实验测定KN03在水中的溶解热是一个吸热过 程,可用电热补偿法,即先测定体系的起始温度T,溶 解过程中体系温度随吸热反应进行而降低,再用电热 补偿法使体系升温至起始温度,根据所消耗电能求出 热效应Q。 Q=I2Rt=UIt 式中,I为通过电阻为R的电热器的电流强度(A); U为电阻丝两端所加电压(V);t为通电时间(s)。 利用电热补偿法,测定KN03在不同浓度水溶液中的 积分溶解热,并通过图解法求出其他三种热效应。
思考题
1.如果反应是放热的,则应如何进行实验? 2.何谓积分溶解热和微分溶解热?我们测的是哪一种?
3.影响本实验结果的因素有哪些?
4.温度和浓度对溶解热有无影响?
实验注意事项
1、实验过程中要求I、V值恒定,故应随时注意调节。 2、实验过程中加热时间与样品是累积的,秒表读数是 累积的,切不可在实验中途将秒表停住。 3、固体KNO3 易吸水,故称量和加样动作应迅速。固 体KNO3在实验前务必研磨成粉状,以确保样品充分溶 解。 4、量热器绝热性能与盖上各孔隙密封程度有关,实验 过程中要注意盖好,减少热损失。
溶解热的测定

实验3 溶解热的测定一、实验目的1.用量热计简单测定硝酸钾在水中的溶解热。
2.掌握贝克曼温度计的调节和使用。
二、实验原理盐类的溶解往往同时进行着两个过程:一是晶格破坏,为吸热过程;二是离子的溶剂化,为放热过程。
溶解热是这两种热效应的总和。
最终是吸热还是放热,则由这两种热效应的相对大小来决定。
本实验在定压、不做非体积功的绝热体系中进行时,体系的总焓保持不变,根据热平衡,即可计算过程所涉及的热效应。
T C C W C W W M H m sol ∆⋅++-=∆][322111)( (3.1)式中: m Sol H ∆为盐在溶液温度和浓度下的积分溶解热,单位:kJ·mo1–1;1W 为溶质的质量,单位:kg ;T ∆为溶解过程的真实温差,单位:K ;2W 为水的质量,单位:kg ;M 为溶质的摩尔质量,单位:kg·mo1–1; 21C C 、分别为溶质和水的比热,单位:11--⋅K kg kJ ;3C 为量热计的热容(指除溶液外,使体系温度升高1℃所需要的热量) ,单位:kJ 。
实验测得W 1、W 2、ΔT 及量热计的热容后,即可按(3.1)式算出熔解热m Sol H ∆。
三、仪器与药品溶解热测量装置一套(如图3.1所示);500ml 量筒一个;KCl(A.R.) ;KNO 3(A.R.)四、实验步骤1.量热计热容的测定:本实验采用氯化钾在水中的溶解热来标定量热计热容3C 。
为此,先在干净的量热计中装入500m1蒸馏水,将与贝克曼温度计接好的传感器插入量热计中,放在磁力搅拌器上,启动搅拌器, 保持60-90转/分钟的搅拌速度,此时,数字显示应在室温附近,至图3.1溶解热测定装配图1.磁力搅拌器;2.搅拌磁子;3.杜瓦瓶;4.漏斗;5.传感器;6.SWC —IIC 数字贝克曼温度仪.温度变化基本稳定后,每分钟准确记录读数一次,连续8次后,打开量热计盖,立即将称量好的10克氯化钾(准确至0.01克)迅速加入量热计中,盖上盖,继续搅拌,每分钟记录一次读数,读取12次即可停止。
3溶解热测定实验报告

华 南 师 范 大 学 实 验 报 告学生姓名 学 号 专 业 化学(师范) 年级、班级 课程名称 物理化学实验实验项目 溶解热的测定实验类型 :□验证□设计□综合 实验时间 年 月 日 实验指导老师 左晓希 实验评分【实验目的】①设计简单量热装置测定某物质在水中的积分溶解焓。
②复习和掌握常用的量热技术与温度测定与校正方法。
③由作图法求出该物质在水中的摩尔稀释焓、微分溶解焓、微分稀释焓。
【实验原理】溶解热,即为一定量的物质溶解于一定量的溶剂中所产生的热效应。
溶解热除了与溶剂量及溶质质量有关外,还与体系所处的温度及压力有关。
溶解热分为积分溶解热和微分溶解热。
积分溶解热即在等温等压条件下,1mol 溶质溶解在一定量的溶剂中形成某指定浓度的溶液时焓变。
也即为此溶解过程的热效应。
它是溶液组成的函数,若形成溶液的浓度趋近于零,积分溶解热也趋近于一定值,称为无限稀释积分溶解热。
积分溶解热是溶解时所产生的热量的总和,可由实验直接测定。
微分溶解热是等温等压下,在大量给定浓度的溶液里加入1mol 溶质时所产生的热效应,它可表示为A pn T B sol n H 、)/(∂∆∂。
因溶液的量很大,所以尽管加入1mol 溶质,浓度仍可视为不变。
微分热难以直接测量。
但可通过实验,用间接的方法求得。
溶解热的测量可通过绝热测温式量热计进行,它是在绝热恒压且不做非体积功的条件下,通过测定量热系统的温度变化,而推算出该系统在等温等压下的热效应。
本实验采用标准物质法进行量热计能当量的标定。
利用1molKCl 溶于200mol 水中的积分溶解热数据进行量热汁的标定。
当上述溶解过程在恒压绝热式量热计中进行时,可设计如下途径:在上述途径中,△H 1为KCl(s)、H 2O(l)及量热计从T 1等压变温至T 2过程的焓变,△H 2则为在T 2温度下,物质的量为n 1 mol 的KCl(s)溶于n 2 mol H 2O(l)中,形成终态溶液的焓变。
物化实验报告溶解热的测定

物化实验报告-溶解热的测定一、实验目的本实验旨在通过科学的测定方法,准确地得到溶解热数据,进一步理解溶解热现象和物质溶解过程中的热力学性质。
二、实验原理溶解热是指一定温度下,一定量的溶剂中溶质溶解时所需的热量。
通过测量溶解热,可以了解溶质和溶剂之间的相互作用、溶解过程的动力学性质等。
溶解热的测定有助于我们深入理解溶解现象和溶液的热力学性质。
本实验采用综合量热法测定溶解热。
综合量热法是一种通过测量热量和温度变化来确定溶解热的实验方法。
在实验过程中,需要精确控制温度变化和溶液浓度等因素,以减小误差。
三、实验步骤1.准备实验器材:恒温水浴、量热计、搅拌器、称量纸、电子天平、保温杯、热水浴、计时器等。
2.配制一定浓度的溶质溶液:用称量纸称取一定质量的溶质,加入热水浴中搅拌均匀,冷却至室温。
3.将量热计和保温杯放入恒温水浴中,确保其处于稳定状态。
4.将配制好的溶质溶液倒入保温杯中,记录初始温度T1。
5.开启搅拌器,将保温杯置于恒温水浴中,记录最终温度T2。
6.测量此过程中溶液的体积变化ΔV,计算溶液的密度ρ=m/ΔV(m为溶质的质量)。
7.根据综合量热法公式计算溶解热ΔH:ΔH = cm(T2-T1) +mΔTc·ΔV/ΔV·m·c·ΔT (c为水的比热容,m为溶质的质量,ΔTc为溶液的密度变化)。
四、实验数据分析通过本次实验,我们得到了一系列溶质的溶解热数据。
从数据中可以看出,不同溶质具有不同的溶解热。
这些数据有助于我们深入理解溶解现象和物质溶解过程中的热力学性质。
溶解热在化学、物理、生物等许多领域都有重要应用,例如化学反应过程的动力学分析、生物大分子的溶液性质研究等。
本实验方法具有较高的精度和可靠性,为后续相关领域的研究提供了有价值的参考数据。
溶解热的测定实验

溶解热的测定一.实验目的1.了解热效应测定的基本原理2.学会使用电热补偿法测定硝酸钾在水中的积分溶解热3.学会用作图法求出硝酸钾在水中的微分溶解热,积分冲淡热和微分冲淡热4.掌握溶解热测定仪的使用二.实验原理溶解热:物质溶解于溶剂过程的热效应,有积分溶解热和微分溶解热两种。
积分溶解热:指定温定压下把 1mol 物质溶解在 nmol 溶剂中时所产生的热效应。
由于在溶解过程中浓度不断改变,因此又称为变浓溶解热,以 Qs 表示。
微分溶解热:指在定温定压下把1mol物质溶解在无限量某一定浓度溶液中所产生的热效应。
在溶解过程中浓度可视为不变,因此又称为定浓溶解热,以表示(定温,定压,定浓状态下,由微小的溶质增量所引起的热量变化)。
冲淡热:又称稀释热。
把溶剂加到溶液中使之稀释,在稀释过程中的热效应称为冲淡热。
它也有积分(或变浓)冲淡热和微分(或定浓)冲淡热两种。
积分冲淡热:在定温定压下把原为含 1mol 溶质和 n01 mol 溶剂的溶液冲淡到含有 n02mol溶剂时的热效应。
它为两浓度的积分溶解热之差。
以 Qd 表示。
微分冲淡热:1mol 溶剂加到某一浓度的无限量溶液中所产生的热效应,以表示(定温,定压,定溶质状态下,由微小溶剂增量所引起的热量变化)。
积分溶解热的大小与浓度有关,而且不具备线性关系。
积分溶解热由实验测定,在测定时可画出一条积分溶解热 Qs 与溶剂浓度 n之间的关系曲线。
其它三种热效应由 Qs~n曲线求得。
溶解过程的焓变为:ΔH = H ' - H = n1ΔH1 + n2ΔH2式中的n1ΔH1 为溶剂在指定浓度溶液中溶质与纯溶质摩尔焓的差,即为微分溶解热。
由于积分溶解热为:(偏微分)。
该切线在纵坐标上的截矩,即为该浓度溶液的微分溶解热。
在两个浓度之间积分溶解热的差值,就是积分冲淡热。
硝酸钾在水中溶解过程是个吸热过程,一定量的硝酸钾溶解在水中会使得水的温度下降。
用一个电热丝对溶液进行加热,在温度回到加入硝酸钾前原来温度值时,这段时间所消耗的电能为:Q = I 2 R t = I V t单位为焦。
物化实验报告-溶解热的测定

物化实验报告-溶解热的测定实验目的:1. 了解溶解现象的性质。
2. 学习测定物质溶解热的方法。
3. 熟悉热量计的使用方法。
实验原理:一般来说,增加溶液中溶质的质量会增加它的浓度,从而使得其解离程度增加。
当一个固体溶质溶解到溶剂中时,其化学反应为:nA+mB →xA+yB溶解热(ΔH)是指在恒定温度下,把1mol的溶质溶解在过量溶剂中所吸收或放出的热量。
根据定义,若1mol溶质在溶液中溶解时,吸收了Q焓,而在一定浓度下,1mol溶质所溶出的热量为ΔHmol。
ΔHmol为溶质消失时(如汲去溶液中净溶质得到一个非常稀的溶液),1mol溶质发生物理化学反应所释放或吸收的热量,可以通过溶解热计测定。
实验器材:1. 热量计(包括绝热箱、内垫热垫、外围水垫、内外盘、挡热器等)2. 量筒3. 试管4. 钳子实验步骤:1. 将热量计绝热箱内置于实验室环境温度为20℃左右的位置,使之保温,待保温至恒温状态后,记录此时热量计绝热箱内压强,一般不超过30kPa。
2. 在保温状态下,将量好的蒸馏水倒入热量计的内/外垫上,令水面与仪器保持同一水平线,测试初始温度T1。
3. 将测量溶解热的固体溶质称量,加入到清水中,搅拌均匀,得到一定浓度的溶液,然后用量筒测出溶液的体积V,并记录溶液的初始温度T2。
4. 将溶解好的溶液加入热量计内垫里的试管中,并令试管位于热量计绝热同心管上。
同时,用铁钳钳住试管的底部部位上提,在试管内储存的溶液与内外垫的水之间留有一段空气隔处,在加入试管前应先用量筒测志近似体积的水并倒入热量计外垫中,以保证水面的一致。
5. 发现热量计稳定在一定温度后,记录此时的温度T3。
6. 用铁钳夹住热量计绝热环上的挡热器,把试管由热量计中取出,快速地放置于夹子中,把存在于夹子中的溶液挂在压强计片上,并快速跳入水碗中溶液确认蒸发残留和释放绝热气体的彻底。
1. 计算水在本次实验中的平均比热容C,方法为:假设溶液体积为V溶,溶解固体所加进的体积为V固,我们又测量了水的比热容c(在25℃下),根据摩尔焓的物理公式:ΔH=mcΔT其中ΔT为水温升高的温度,ΔH为水吸收热量(单位mJ),m为水的质量(单位kg),c为水的比热容(单位J/(kg·℃), V溶为溶液体积(单位L)。
溶解热的测定实验报告

溶解热的测定实验报告实验目的:本实验旨在通过测定溶解热的方法,探究溶解过程中的能量变化,并了解溶解过程中的吸热或放热现象。
实验仪器:热量计、电子天平、恒温槽、烧杯、玻璃棒等。
实验原理:溶解热是指单位物质在吸热或放热下完全溶解所需吸收或放出的热量。
根据热力学第一定律,物质溶解时需要吸收热量应与物质溶解时释放的热量之和相等。
实验中,我们可以通过热量计来测定单位物质溶解时所吸收的热量,从而得到溶解热。
实验步骤:1.首先,在恒温槽中预先调节溶液的温度,使其保持恒定。
2.称取一定质量的物质(例如NaCl)放入烧杯中,并记录其质量。
3.将烧杯放入恒温槽中,使溶液与温度恒定的介质充分接触,等待溶解过程完成。
4.测量热量计中的温度变化,并记录下来。
5.从热量计的示数中计算出所吸收或放出的热量。
实验结果:通过实验测得,以1g的物质溶解过程中吸热量为Q(J),则单位质量物质的溶解热即为ΔH = Q/m (J/g),其中m为物质的质量。
实验讨论:1.根据实验数据,我们可以推断溶解过程中的溶解热是吸热还是放热的。
如果测得的热量为正值,则说明溶解过程为吸热过程;如果热量为负值,则说明溶解过程为放热过程。
2.溶解热与物质之间的相互作用力有关,较强的相互作用力导致溶解热较大的正值,而较弱的相互作用力则导致溶解热为负值。
3.实验中,我们可以选择不同的物质进行测定,比较它们的溶解热大小,从中探究物质溶解过程中的相互作用力的差异。
4.溶解热的测定还可以应用于其他领域,如药物研发、化工工艺等。
了解和掌握物质的溶解热有助于优化工艺和提高效率。
实验结论:通过本实验的测定,我们可以得到不同物质的溶解热,从中了解物质溶解过程中的能量变化。
实验中使用的测定方法能够较准确地获得溶解热的数值,为后续研究和应用提供了基础。
研究溶解热有助于深入了解物质溶解过程中的能量变化与物质特性之间的关系,进一步推动相关领域的发展和创新。
溶解热的测定实验报告

溶解热的测定实验报告溶解热的测定实验报告引言:溶解热是描述物质在溶解过程中吸热或放热的能力,是化学中一个重要的热力学参数。
本实验旨在通过测定溶解过程中吸热或放热的变化,来确定溶解热的大小。
实验步骤:1. 实验前准备:准备好所需的实验器材和试剂,包括量热器、电子天平、试管、溶液A和溶液B。
2. 量取溶液A:使用电子天平准确称取一定质量的溶液A,并记录下质量。
3. 量取溶液B:同样使用电子天平准确称取一定质量的溶液B,并记录下质量。
4. 混合溶液A和溶液B:将溶液A和溶液B倒入量热器中,并迅速搅拌均匀。
5. 记录温度变化:使用温度计记录混合溶液的初始温度,并随着时间的推移,记录下一系列温度变化。
6. 分析数据:根据温度变化曲线,计算出溶解过程中吸热或放热的大小。
实验结果与讨论:根据实验数据,我们可以绘制出溶解过程中温度变化的曲线。
在溶解过程开始时,温度会有所下降,这是因为溶解过程吸热作用的结果。
随着溶解的进行,温度逐渐上升,直至达到最高点。
这是因为溶解过程中吸热作用逐渐被平衡,导致温度升高。
最终,温度趋于稳定,说明溶解过程已经完成。
根据实验数据和温度变化曲线,我们可以计算出溶解热的大小。
溶解热的计算公式为:溶解热 = (溶液A的质量 + 溶液B的质量) × (最终温度 - 初始温度)通过实验数据的处理,我们可以得出溶解热的数值。
这个数值反映了溶解过程中吸热或放热的大小,可以用来比较不同物质的溶解热性质。
实验误差分析:在实验过程中,可能会存在一些误差,影响到实验结果的准确性。
例如,实验时温度计的读数可能存在一定的误差,称取溶液的质量也可能存在一定的误差。
这些误差会对最终计算出的溶解热数值产生一定的影响。
为了减小误差的影响,我们可以采取一些措施。
例如,使用更精确的温度计来测量温度变化;在称取溶液质量时,使用更准确的电子天平,并进行多次称量取平均值。
这些措施可以提高实验数据的准确性,减小误差的影响。
物理化学实验报告 溶解热的测定

物理化学实验报告溶解热的测定
溶解热的测定
溶解热是专指溶质在一定压力下从固体形态转变为液体形态时,其能量所耗费的热量大小,也就是说溶解过程中溶液所吸收或释放的热量。
本次实验以NaCl为溶质,采用盐酸与碳酸钠溶液混合液体的方式,来测定它在溶解过程中的溶解热。
实验环境、设备及试剂
本实验室使用的温度测定设备为“风冷式热量卡尔托热量计”,溶质的试剂为氯化钠。
实验步骤
1、将极为准确的容器(用于测量热量变化的容器)放入温度计中;
2、调整温度计,将温度稳定在25℃;
3、将已称重好的氯化钠放入容器,记录初始温度StartT;
4、将试剂温度均匀上升到150-170℃后,搅拌均匀,等待20秒左右;
5、读取上升后的终止温度EndT;
6、计算溶解热: Q = 60 * EndT - 60 * StartT,单位为J / mol。
实验结果与分析
本次实验的初始温度StartT=25℃,上升后的终止温度EndT=90℃,溶解热Q=60* EndT - 60 *StartT=18000 J/mol,在实验室配置的误差范围内,结果合格。
结论
本次实验中使用盐酸与碳酸钠混合液体的溶液,测定了溶质NaCl的溶解热,结果为18000 J/mol,在实验室配置的误差范围内,结果合格。
溶解热的测定实验报告

溶解热的测定实验报告溶解热的测定实验报告引言:溶解热是指单位物质在溶剂中溶解时释放或吸收的热量。
它是研究溶解过程中能量变化的重要参数之一,对于了解溶解过程的热力学性质具有重要意义。
本实验旨在通过测定溶解热的方法,探究不同物质的溶解过程中的热力学特性。
实验部分:1. 实验原理:溶解热的测定可以通过定容热量计的方法进行。
在实验中,我们使用了恒温水浴槽来保持溶剂和溶质的温度稳定。
通过测量在溶解过程中溶液的温度变化,可以计算出溶解热的值。
2. 实验仪器和试剂:实验仪器:定容热量计、恒温水浴槽、温度计。
试剂:硫酸铜、氯化钠、氯化铵。
3. 实验步骤:(1)将定容热量计清洗干净,并用去离子水冲洗干净。
(2)将一定质量的溶质加入定容热量计中,记录下溶质的质量。
(3)将一定体积的溶剂加入定容热量计中,记录下溶剂的体积。
(4)将定容热量计放入恒温水浴槽中,使溶液温度达到恒定值。
(5)记录下溶液的初始温度。
(6)迅速将溶质加入到溶剂中,同时用玻璃棒搅拌均匀。
(7)记录下溶液的最高温度。
(8)根据实验数据计算出溶解热的值。
结果与讨论:通过实验测得的溶解热值如下:硫酸铜:-36.2 kJ/mol氯化钠:3.9 kJ/mol氯化铵:14.5 kJ/mol根据实验结果可以得出以下结论:1. 硫酸铜的溶解过程是吸热反应,即溶解热为负值。
这是因为在溶解过程中,硫酸铜与水发生了吸热反应,吸收了周围环境的热量。
2. 氯化钠的溶解过程是放热反应,即溶解热为正值。
这是因为在溶解过程中,氯化钠与水发生了放热反应,释放了热量。
3. 氯化铵的溶解过程是放热反应,即溶解热为正值。
这是因为在溶解过程中,氯化铵与水发生了放热反应,释放了热量。
实验中的误差主要来自于以下几个方面:1. 实验仪器的精确度:定容热量计和温度计的精确度会对实验结果产生影响。
在实验中,我们尽量选择精确度较高的仪器,以减小误差。
2. 实验操作的准确性:在实验过程中,对溶质和溶剂的质量和体积的测量需要准确无误,任何误差都会对最终结果产生影响。
溶解热的测定实验报告

溶解热的测定实验报告实验名称:溶解热的测定实验目的:1. 学习并掌握溶解热的测定方法;2. 进一步理解溶解热的概念;3. 测定一种化合物的溶解热,并比较其与理论值的偏差。
实验原理:溶解热是指在恒定压力下,将一摩尔物质溶解在溶剂中时吸收或放出的热量。
溶解热的测定方法有多种,其中较为常用的是恒定温度法。
该方法利用两个等温反应容器,一个装有溶质的溶液,在反应过程中吸收热量,另一个装有纯溶剂,在反应过程中略有温度下降。
通过测量两个容器的温度变化,即可计算出溶解热的大小。
实验器材和试剂:1. 等温反应容器(两个);2. 实验电热器;3. 电器控温仪;4. 温度计;5. 秤;6. 纯净水、硫酸钠等试剂。
实验步骤:1. 准备两个等温反应容器,称量一定质量的溶质(如硫酸钠)和纯溶剂(如纯净水)分别装入两个反应容器中,记录质量。
2. 将两个反应容器放在温度控制仪电热器上,用温度控制仪保持两个容器的温度恒定,并且两个容器的压力相同。
3. 开始实验,先加热纯溶剂容器至一定温度,并记录温度为T1。
4. 同时,将溶质溶液容器中的溶质加入纯溶剂容器中,并将溶液充分搅拌,观察溶质的溶解过程。
5. 实验结束后,记录溶剂容器温度为T2。
6. 计算溶解热的大小,使用以下公式:Q = m × C × ΔT其中,Q为溶解热,m为溶质的质量,C为溶液的比热容,ΔT为溶剂容器温度降低值(T1-T2)。
注意事项:1. 操作时要小心,避免烫伤。
2. 实验过程中要确保两个反应容器的温度和压力相同,以保证测量结果的准确性。
3. 确保使用的溶剂和溶质的纯度,以免影响实验结果。
实验结果:根据实验测得的数据,计算得到溶解热的大小,与理论值进行对比,计算偏差。
实验结论:根据实验结果可以得出溶解热的大小,并与理论值进行比较,判断实验结果的准确性,评估实验的可靠性。
根据实验结果分析可能存在的误差来源,并提出改进方案。
溶解热的测定 实验报告

溶解热的测定实验报告溶解热的测定实验报告引言:溶解热是指单位物质在溶剂中溶解时所吸收或释放的热量。
它是研究溶解过程的重要参数,对于了解溶解动力学和热力学性质具有重要意义。
本实验旨在通过测定溶解过程中的温度变化,来计算溶解热。
实验步骤:1. 实验前准备:准备所需的实验器材和试剂,包括烧杯、温度计、搅拌棒、电子天平、蒸馏水等。
2. 实验操作:a. 将一定质量的溶质加入烧杯中,并记录其质量。
b. 向烧杯中加入一定量的溶剂,并用搅拌棒搅拌均匀。
c. 在溶解过程中,用温度计测量溶液的温度变化,并记录下来。
d. 根据温度变化曲线计算溶解热。
实验结果与数据处理:在实验中,我们选择了无水乙醇作为溶剂,将一定质量的氯化钠溶解其中。
实验过程中,我们记录下了溶液的质量、溶解过程中的温度变化,并绘制了温度变化曲线。
根据实验数据,我们可以使用以下公式计算溶解热(ΔH):ΔH = q / m其中,q为溶解过程中吸收或释放的热量,m为溶质的质量。
通过实验测得的数据和计算,我们得到了氯化钠的溶解热为X kJ/mol。
这个结果与文献值进行对比后,发现两者相差不大,说明实验结果较为准确。
讨论与分析:在实验过程中,我们注意到溶解过程中的温度变化曲线呈现出两个阶段。
在溶解开始时,温度下降较快,后期则趋于平稳。
这是因为溶解过程中吸收了大量的热量,导致温度下降。
随着溶解的进行,溶质与溶剂之间的相互作用力逐渐增强,温度变化逐渐减小,最终趋于稳定。
实验中可能存在的误差主要来自以下几个方面:1. 实验器材的误差:包括温度计的精度、烧杯的热容等。
2. 操作误差:在溶解过程中,温度的测量和记录可能存在一定的误差。
3. 环境误差:实验室环境的温度变化等因素也可能对实验结果产生一定的影响。
为了减小误差,我们可以采取以下措施:1. 使用精确度较高的实验器材和仪器,确保测量的准确性。
2. 在实验过程中,尽量减小外界环境对实验的干扰,例如控制实验室的温度稳定。
实验三 溶解热的测定

实验三溶解热的测定实验目的:1.学习利用热化学方程式来计算溶解热。
2.理解溶解过程中生成的热量与溶质的吸热或放热性质有关。
3.掌握通过计算得出的溶解热的方法。
实验原理:当固体溶质溶解于溶剂中时,如果是放热现象,称为溶解热,溶解热记作 $\Delta H_s^{\theta}$ 。
如果是吸热现象,则称为溶解热(再结晶热),记作 $\DeltaH_c^{\theta}$ 。
在剧烈搅拌下、在保证反应物质量及环境温度恒定的条件下,实验结果表明,在一定限度内,溶解热与溶质的重量(m)、溶液的质量(m(Ls))、环境温度(T)成正比例关系,即:$\Delta H_s^{\theta} = \frac{Q}{m} = \frac{C_pm(Ls)\Delta T}{m}$其中:Q: 热量,单位:焦耳(J);$m$:固体溶质的质量,单位:克(g);$C_p$:水的摩尔热容,单位:$\frac{J}{mol·K}$;$\Delta T$:溶液温度升高量,单位:℃。
实验步骤:1.称重取1.0g 沫菜酸(或钠)标准样品,转移至50mL量瓶中,加入适量的水,用滴定管加入2~3滴苯酚作为指示剂,摇匀溶解。
2.测定电动势(e)和溶液温度(t)。
3.将溶液倒入量热器中,立即快速盖上绝热的盖子,用热计测量溶液的温度变化(ΔT),直到温度稳定,记录数据。
4.将上述步骤1~3重复一次,测得第二组数据。
1.计算出氧化锌标准态生成焓的摩尔热或钠标准态在水溶液中生成焓的摩尔热。
n:以下两种物质产生1 mol 反应热。
氧化锌:Zn + 1/2O2 = ZnO,$\Delta H_m^{\theta}=-622.8kJ/mol$2.计算出固体溶质的溶解热。
其中,$m$ 为沫菜酸(或钠)的质量。
实验注意事项:1.装药和投药要快,能快则快。
2.保护好数据处理部件,严格按操作要求。
3.药品投放及位置要求准确,不能松懈。
实验思考题:1.影响固体溶质溶解热的因素有哪些?2.在本实验中,沫菜酸或钠是放热或吸热过程?请解释原因。
实验三溶解热的测定

实验三溶解热的测定1 实验目的及要求1.了解电热补偿法测定热效应的基本原理。
2.通过用电热补偿法测定硝酸钾在水中的积分溶解热,并用作图法求出硝酸钾在水中的微分冲淡热,积分冲淡热和微分溶解热。
2实验原理1)物质溶解于溶剂过程的热效应称为溶解热。
它有积分溶解热和微分溶解热两种。
前者指在定温定压下把1摩尔溶质溶解在n摩尔的溶剂中时所产生的热效应,由于过程中溶液的浓度逐渐改变,因此也称为变浓溶解热以Q表示。
后者指在定温定压下把1摩尔溶质溶解在无限量的某一定浓度的溶液中所产生的热效应。
由于在溶解过程中溶液浓度可实际上视为不变,因此也称为定浓溶解热,以表示。
把溶剂加到溶液中使之稀释,其热效应称为冲淡热。
它有积分(或变浓)冲淡热和微分(或定浓)冲淡热两种。
通常都以对含有1摩尔溶质的溶液的冲淡情况而言。
前者系指在定温定压下把原为含1摩尔溶质和n01摩尔溶剂的溶液冲淡到含溶剂为n02时的热效应,亦即为某两浓度的积分溶解热之差,以Q d表示。
后者系1摩尔溶剂加到某一浓度的无限量溶液中所产生的热效应,以2)积分溶解热由实验直接测定,其它三种热效应则可通过Q s~n0曲线求得:设纯溶剂、纯溶质的摩尔焓分别为和,溶液中溶剂和溶质的偏摩尔焓分别为和,对于n1摩尔溶剂和n2摩尔溶质所组成的体系而言,在溶剂和溶质未混合前(4.1)当混合成溶液后(4.2)因此溶解过程的热效应为(4.3)式中△H1为溶剂在指定浓度溶液中溶质与纯溶质摩尔焓的差。
即为微分溶解热。
根据积分溶解热的定义:(4.4)所以在Q s~n01图上,不同Q s点的切线斜率为对应于该浓度溶液的微分冲淡热,即该切线在纵坐标的截距OC,即为相应于该浓度溶液的微分溶解热.而在含有1摩尔溶质的溶液中加入溶剂使溶剂量由n02摩尔增至n01摩尔过程的积分冲淡热Q d=(Q s)n01一(Q s)n02= BG—EG。
3)本实验测硝酸钾溶解在水中的溶解热,是一个溶解过程中温度随反应的进行而降低的吸热反应。
实验3_溶解热的测定

实验3_溶解热的测定溶解热的测定1 引⾔1.1 实验⽬的1. 测量硝酸钾在不同浓度⽔溶液的溶解热,求硝酸钾在⽔中溶解过程的各种热效应。
2. 掌握量热装置的基本组合及电热补偿法测定热效应的基本原理。
3. 复习和掌握常⽤的测温技术1.2 实验原理在热化学中,关于溶解过程的热效应,有以下⼏个基本概念溶解热在恒温恒压下,溶质B 溶于溶剂A (或溶于某浓度溶液)中产⽣的热效应,⽤Δsol H 表⽰摩尔积分溶解热在恒温恒压下,1 mol 溶质溶解于⼀定量的溶剂中形成⼀定浓度的溶液,整个过程的热效应,⽤Δsol H m 表⽰:Δsol H m =Δsol HB式中:n B 是溶解于溶剂A 中的溶质B 的物质的量摩尔微分溶解热在恒温恒压下,1 mol 溶质溶于某⼀确定浓度的⽆限量的溶液中产⽣的热效应,以 (Δsol H n B)T,p,n A表⽰,简写为(?Δsol H ?n B)n A稀释热在恒温恒压下,⼀定量的溶剂A 加到某浓度的溶液中使之稀释,所产⽣的热效应摩尔积分稀释热在恒温恒压下,在含有1 mol 溶质的溶液中加⼊⼀定量的溶剂,使之稀释成另⼀浓度的溶液,这个过程产⽣的热效应,以Δdil H m 表⽰:Δdil H m =Δsol H m2?Δsol H m1摩尔微分稀释热在恒温恒压下,1 mol 溶剂加⼊到某⼀浓度⽆限量的溶液中所发⽣的热效应在恒温恒压下,对于指定的溶剂A 和溶质B ,溶解热的⼤⼩取决于A 和B 的物质的量,即Δsol H =f(n A ,n B )取全微分Δsol H =n A (eΔsol H A )n B+n B (eΔsol HB )nA令n 0=n A /n B ,则有Δsol H m =n 0(eΔsol H en A )n B+(eΔsol Hen B )nA所以,⼀旦确定了⼀定浓度区间内摩尔积分溶解热与n 0的关系,溶质B 在该区间的溶解热、摩尔微分溶解热、摩尔积分稀释热等溶解热效应都可以通过计算得到(如图2.1)。
溶解热的测定实验报告

溶解热的测定实验报告一、实验目的1、掌握量热法测定物质溶解热的原理和方法。
2、了解温度和浓度对溶解热的影响。
3、学会使用数字贝克曼温度计和恒温槽等仪器。
二、实验原理溶解热是指在一定温度和压力下,溶质溶解于溶剂中产生的热效应。
溶解热分为积分溶解热和微分溶解热。
积分溶解热是指在定温定压下,把 1 摩尔溶质溶解在一定量的溶剂中所产生的热效应。
微分溶解热是指在定温定压下,在大量溶液中加入 1 摩尔溶质所产生的热效应。
在本实验中,采用绝热式量热法测定硝酸钾在水中的溶解热。
实验时,先测定量热器的热容,然后在量热器中加入已知量的水和一定量的硝酸钾,测量溶解过程中的温度变化,根据温度变化和量热器的热容计算溶解热。
量热器的热容可以通过已知溶解热的物质(如氯化钾)来测定。
三、实验仪器与试剂1、仪器数字贝克曼温度计磁力搅拌器恒温槽量热器电子天平2、试剂硝酸钾(分析纯)氯化钾(分析纯)蒸馏水四、实验步骤1、量热器热容的测定洗净并干燥量热器,用电子天平称取约 25g 氯化钾,放入量热器中。
用量筒量取 200ml 蒸馏水,倒入量热器中,插入搅拌棒,盖好盖子。
将数字贝克曼温度计插入量热器,启动磁力搅拌器,搅拌均匀。
观察温度计示数,待温度稳定后,记录初始温度 T1。
迅速加入氯化钾,同时启动秒表,继续搅拌,观察温度变化。
当温度升至最高点并稳定后,记录终止温度 T2。
根据氯化钾的溶解热(已知)和温度变化,计算量热器的热容 C。
2、硝酸钾溶解热的测定洗净量热器,用电子天平称取约 5g 硝酸钾。
用量筒量取 200ml 蒸馏水,倒入量热器中,插入搅拌棒,盖好盖子。
将数字贝克曼温度计插入量热器,启动磁力搅拌器,搅拌均匀。
观察温度计示数,待温度稳定后,记录初始温度 T3。
迅速加入硝酸钾,同时启动秒表,继续搅拌,观察温度变化。
当温度降至最低点并稳定后,记录终止温度 T4。
五、实验数据记录与处理1、量热器热容的测定|实验序号|氯化钾质量(g)|水的体积(ml)|初始温度T1(℃)|终止温度 T2(℃)||::|::|::|::|::|| 1 | 251 | 200 | 2050 | 2280 |已知氯化钾的溶解热为 1724kJ/mol,根据公式:\C =\frac{m \times \Delta H}{(T2 T1)}\其中,m 为氯化钾的物质的量(mol),\(\Delta H\)为氯化钾的溶解热(kJ/mol),C 为量热器的热容(kJ/℃)。
最新实验3溶解热的测定PPT课件

• 4.实验中应注意那些问题?
参考资料
(1)清华大学化学系物理化学实验编写组编 .物理化学实验.北京:清华大学出版社, 1992
(2)赵莉、薛方渝编. 物理化学学习指导.北 京:中央广播电视大学出版社 ,1997
(3)傅献彩 沈文霞 姚天扬编 .物理化学(第 四版).北京:高等教育出版社,1994
溶解前后温差的校正---雷诺校正法
请思考: 结合燃烧热实验和雷诺校正法示意图,讨论如何进行
溶解前后温差的校正
结果计算 (1)根据公式计算量热计的热容。 (2)根据公式计算1mol的KNO3溶于200mol的
H2O的溶解过程的积分溶解热。
实验评注与拓展
• 本实验采用自组装简单绝热式测温量热计进行了物 质积分溶解热的测量,目的在于让学生了解和掌握 量热装置的基本组合,掌握基本的量热技术、测温 技术以及进行温差校正的雷诺作图法则。
仪器与试剂
1.仪器
广口保温瓶
一个
磁力搅拌器
一台
贝克曼温度计或
数字温差测量仪 一台
1/10℃温度计 一支
容量瓶(200ml) 一个
称量瓶
二个
停表、
一个
放大镜
一个
2.试剂 氯化钾(分析纯) 硝酸钾(分析纯)
自组装简单绝热式量热计装置
1.贝克曼温度计 2.保温瓶 3. 底座 4.铁架台
实验步骤
1.量热计的标定
• 前期温度(时间/分)
KCL_______KNO3 _______
• 溶解时温度变化(时间/分) KCL_______KNO3 _______
• 后期温度
KCL________KNO3 _______
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验3 溶解热的测定坂井优 2013080091 化32 同组实验者:郑少冬 实验日期:2015-11-26 提交报告日期:2012-12-4 带实验老师: 1 引言1.1 实验目的1.测量硝酸钾在不同浓度水溶液的溶解热,求硝酸钾在水中溶解过程的各种热效应。
2.掌握量热装置的基本组合及电热补偿法测定热效应的基本原理。
3.复习和掌握常用的测温技术。
1.2 实验原理 1.2.1 基本实验原理物质溶于溶剂中,一般伴随有热效应的发生。
盐类的溶解通常包含着几个同时进行的过程:晶格的破坏、离子或分子的溶剂化、分子电离(对电解质而言)等。
热效应的大小和符号决定于溶剂及溶质的性质和它们的相对量。
在热化学中,关于溶解过程的热效应,需要了解以下几个基本概念。
溶解热 在恒温恒压下,溶质B 溶于溶剂A(或溶于某浓度溶液)中产生的热效应,用sol H ∆表示。
摩尔积分溶解热 在恒温恒压下,1mol 溶质溶解于一定量的溶剂中形成一定浓度的溶液,整个过程产生的热效应。
用sol m H ∆表示。
sol sol m BHH n ∆∆=(1)式中, B n 为溶解于溶剂A 中的溶质B 的物质的量。
摩尔微分溶解热 在恒温恒压下,1mol 溶质溶于某一确定浓度的无限量的溶液中产生的热效应,以,,()A sol T P n B H n ∂∆∂表示,简写为()A sol n BHn ∂∆∂。
稀释热 在恒温恒压下,一定量的溶剂A 加到某浓度的溶液中使之稀释,所产生的热效应。
摩尔积分稀释热 在恒温恒压下,在含有1mol 溶质的溶液中加入一定量的溶剂,使之稀释成另一浓度的溶液,这个过程产生的热效应,以dil m H ∆表示。
21dil m sol m sol m H H H ∆=∆-∆ (2) 式中,2sol m H ∆、1sol m H ∆为两种浓度的摩尔积分溶解热。
摩尔微分稀释热 在恒温恒压下,1mol 溶剂加入到某一浓度无限量的溶液中所发生的热效应,以,,()B sol T P n A H n ∂∆∂表示,简写为()B sol n AHn ∂∆∂。
在恒温恒压下,对于指定的溶剂A 和溶质B ,溶解热的大小取决于A 和B 的物质的量,即 (,)sol A B H n n ∆=⎰(3) 由(3)式可推导得:,,,,()()B A sol sol sol A T P n B T P n A BH HH n n n n ∂∆∂∆∆=+∂∂ (4) 或 ,,,,()()B A sol sol A sol m T P n T P n B A BH H n H n n n ∂∆∂∆∆=+∂∂ (5) 令0/A B n n n =,(5)改写为:0,,,,()()B A sol sol sol m T P n T P n A BH HH n n n ∂∆∂∆∆=+∂∂ (6) (6)式中的sol m H ∆可由实验测定,0n 由实验中所用的溶质和溶剂的物质的量计算得到。
作出sol m H ∆-0n 曲线,见图2-3-1。
曲线某点(01n )的切线的斜率为该浓度下的摩尔微分稀释热(即AD CD),切线与纵坐标的截距,为该浓度下的摩尔微分溶解热(即OC )。
显然,图中02n 点的摩尔溶解热与01n 点的摩尔溶解热之差为该过程的摩尔积分稀释热(即BE )。
由图2-3-1可见,欲求溶解过程的各种热效应,应当测定各种浓度下的摩尔积分溶解热。
本实验采用累加的方法,先在纯溶剂中加入溶质,测出溶解热,然后在这溶液中再加入溶质,测出热效应,根据先后加入溶质总量可求出0n ,而各次热效应总和即为该浓度下的溶解热。
1.2.2 用简易量热计测溶解焓本实验是采用绝热式测温量热计,它是一个包括杜瓦瓶、搅拌器、电加热器和测温部件等组成的量热系统。
装置及电路图如图2-3-2所示。
因本实验测定KNO 3在水中的溶解热是一个吸热过程,热量的标定可用电热补偿法,即先测定体系的起始温度,溶解过程中体系温度随吸热反应进行而降低,再用电加热法使体系升温至起始温度,根据所消耗电能求出热效应Q 。
再由下式可求算出溶解热2121sol T T H QT T -∆=''- , 2Q I RT = (7)式中,1T 、2T 为加入溶质始末的体系的温度;Q 为使体系从2T '升至1T '时的电热(J );2T '、1T '为电加热始末的体系温度,I 为电流强度(A );R 为加热器电阻(Ω);T 为通电加热时间(S )。
本实验采用热敏电阻测温系统(详见附录温度的测量与控制),(21T T -)为溶解过程校正后的峰高,(21T T ''-)为加热过程校正后的峰高。
2、实验操作2.1 实验药品、仪器型号及实验装置示意图实验仪器:杜瓦瓶(保温瓶)、CJ-2磁力搅拌器、DYY-7转移电泳仪(恒流源)、浸入式加热器、热敏电阻、惠斯通电桥、XWT-204台式自动平衡记录仪、500mL容量瓶、大烧杯、AR1140/C电子天平、研钵。
实验装置示意图如右侧图2所示。
实验药品:KNO3(分子量101.10)2.2 实验条件平均室温:24.0℃2.3 实验操作步骤及操作要点(1)装好仪器,保持仪器装置的绝热性能良好(2) 测量室温,取不少于500mL的去离子水,调整至室温,用500mL容量瓶定容,加入500mL去离子水到保温瓶内,电脑收集数据开始(3) 在天平上称量5gKNO3备用(减量法,硝酸钾研磨至60目以上)(4) 打开搅拌器,待保温瓶内温度基本稳定后,记录约4min。
电源调至恒流,打开电源开始加热,电流调至950mA左右,待基线走至14mV左右停止加热。
待稳定后,加入事先准备好的KNO3固体,待温度稳定后再记录8min左右(5) 打开电源加热,同时计时,待温度升高至对称位置附近时,停止加热,并记录加热时间,之后再记录8min左右(6) 按上述步骤再分别加入6g、7g、8g、8g、7g、6g的硝酸钾固体(7) 测量加热器阻值2.4注意事项1. 注意加热时间,不要使温度过高超过仪器量程2. 加样时要将样品全部加入,不要有黏附3. 去离子水的温度应尽量调整至与室温一致3 结果与讨论3.1原始实验数据加热器阻值R=15.66Ω,电流值I=950mA,ρ(H2O,17℃)=0.9987g/mL3序号1234567KNO3质量(g)5.0212 6.00337.16898.00118.00267.0067 6.0068加热时间(s)139.72163.69183.06183.91180.8483.073.2计算的数据、结果对计算机记录的原始数据进行雷诺图解法校正,得到下表(因为第1组第7组数据失效,因此对第2组~第6组的数据进行处理)表2 实验过程中实际温度变化根据表2中的校正数据,结合与根据表3数据,可以作出图线,图形如下所示图2 -n0图3.3讨论分析3.3.1 误差分析本实验的误差主要出现在以下方面(1)保温瓶内的溶液与外界环境始终存在热交换,尤其在加入药品时,由于KNO3易吸潮,会吸附在称量瓶底,导致加药品时间较长,热交换较多,而这一部分吸收的环境热量在计算中被计入了溶解药品时的热量,导致每一次溶解热的计算偏高(2)由于分析天平为公用,无法保证分析天平在第一次称量和第二次称量时保持同一状态,这一点可以在实验过程中注意天平的使用来消除(3)实际加热与温度变化存在一个滞后,因此即使采用雷诺图解法进行校正,加热时间和采用的初末态温度一定会存在偏差,不可能完全对应(4)加样时我们要打开保温瓶,这会导致部分热量散失,使得测量值偏小。
所以尽量要快加样品。
(5)电流表的电流变化并非突变,从打开电流表到达到950 mA需要几秒钟,此段时间认为电流为950 mA,有一定误差。
4 结论根据表4中数据可以看出,随着KNO3浓度的增大,摩尔积分溶解热不断增大,摩尔微分溶解热不断增大,而摩尔微分稀释热不断减小5 参考文献[1] 《基础物理化学实验》贺德华麻英张连庆编高等教育出版社[2] 《化工原理(上册)》(第三版)蒋维钧戴猷元顾忠君编著清华大学出版社6 附录(思考题)6.1 如何用本装置测定液体的比热?答:方法与本实验类似,不过加入物质由硝酸钾固体变为少量温度低于环境温度的对应液体,待温度稳定后,运用电加热的方法提升温度,再加入质量不同的少量液体,如此多次,计算出每次的热效应。
之后根据每次的热量守恒关系,结合电加热传入的热量,即可计算出液体的比热。
即由Q=I2Rt;Q=cm⊿t两式,其中I 由精密电流表测得,R由万用表测得,t由秒表测得,m由天平测的⊿t由温度计测得,可求得c比热值。
6.2 如果反应是放热的如何进行实验?答:方法与本实验同样类似,不过在每次电加热之前(或之后)需要利用冷却管将反应系统的温度降回室温。
计算方法与本实验相同,不过误差较大。
不易精确控制。
6.3 温度和浓度对溶解热有无影响?如何从实验温度下的溶解热计算其他温度下的溶解热?答:温度和浓度均会对溶解热产生影响。
要计算其他温度下的溶解热,可以利用盖斯定律进行计算。