不等式知识点总结
(完整版)不等式知识结构及知识点
o 不等式知识结构及知识点总结一.知识结构二.知识点1、不等式的基本性质①(对称性)②(传递性)③(可加性)a b b a >⇔>,a b b c a c >>⇒>a b a c b c>⇔+>+(同向可加性) (异向可减性)d b c a d c b a +>+⇒>>,db c a d c b a ->-⇒<>,④(可积性) bc ac c b a >⇒>>0,bc ac c b a <⇒<>0,⑤(同向正数可乘性) (异向正数可除性)0,0a b c d ac bd >>>>⇒>0,0a b a b c d c d>><<⇒>⑥(平方法则) ⑦(开方法则)0(,1)n n a b a b n N n >>⇒>∈>且0,1)a b n N n >>⇒>∈>且⑧(倒数法则)ba b a b a b a 110;110>⇒<<<⇒>>2、几个重要不等式①,(当且仅当时取号).变形公式:()222a b ab a b R +≥∈,a b =""=o 22.2a b ab +≤②(基本不等式),(当且仅当时取到等号).2a b+≥()a b R +∈,a b =变形公式:用基本不等式求最值时(积定和最小,和定a b +≥2.2a b ab +⎛⎫≤ ⎪⎝⎭积最大),要注意满足三个条件“一正、二定、三相等”.③(三个正数的算术—几何平均不等式)(当且仅当3a b c ++()a b c R +∈、、时取到等号).a b c ==④(当且仅当时取到等号).()222a b c ab bc ca a b R ++≥++∈,a b c ==⑤(当且仅当时取到等号).3333(0,0,0)a b c abc a b c ++≥>>>a b c ==⑥(当仅当a=b 时取等号)(当仅当a=b 0,2b aab a b>+≥若则0,2b aab a b<+-若则时取等号)⑦其中规律:小于1同加则变大,大于ban b n a m a m b a b <++<<++<1(000)a b m n >>>>,,1同加则变小.⑧ 220;a x a x a x a x a >>⇔>⇔<->当时,或22.x a x a a x a <⇔<⇔-<<⑨绝对值三角不等式.a b a b a b -≤±≤+3、几个著名不等式①平均不等式:,(当且1122a b a b --+≤≤+()a b R +∈,仅当时取号).(即调和平均几何平均算术平均平方平均).a b =""=≤≤≤ 变形公式: 222;22a b a b ab ++⎛⎫≤≤⎪⎝⎭222().2a b a b ++≥②幂平均不等式:222212121...(...).n n a a a a a a n+++≥++++≥1122(,,,).x y x y R ∈④二维形式的柯西不等式当且仅当22222()()()(,,,).a b c d ac bd a b c d R ++≥+∈时,等号成立.ad bc =⑤三维形式的柯西不等式:2222222123123112233()()().a a a b b b a b a b a b ++++≥++⑥一般形式的柯西不等式:2222221212(...)(...)n n a a a b b b ++++++o r21122(...).n n a b a b a b ≥+++⑦向量形式的柯西不等式:设是两个向量,则当且仅当是零向量,或存在实数,使,αβ ,αβαβ⋅≤ βk 时,等号成立.k αβ=⑧排序不等式(排序原理):设为两组实数.是的任一排列,1212...,...n n a a a b b b ≤≤≤≤≤≤12,,...,n c c c 12,,...,n b b b 则(反序和乱序和12111122......n n n n n a b a b a b a c a c a c -+++≤+++1122....n n a b a b a b ≤+++≤顺序和)≤当且仅当或时,反序和等于顺序和.12...n a a a ===12...n b b b ===⑨琴生不等式:(特例:凸函数、凹函数)若定义在某区间上的函数,对于定义域中任()f x 意两点有则称f(x)为凸(或1212,(),x x x x ≠12121212()()()()()().2222x x f x f x x x f x f x f f ++++≤≥或凹)函数.4、不等式证明的几种常用方法常用方法有:比较法(作差,作商法)、综合法、分析法;其它方法有:换元法、反证法、放缩法、构造法,函数单调性法,数学归纳法等.常见不等式的放缩方法:①舍去或加上一些项,如22131((;242a a ++>+②将分子或分母放大(缩小),如211,(1)k k k <-211,(1)k k k >+==<等.*,1)k N k >∈>5、一元二次不等式的解法求一元二次不等式解集的步骤:20(0)ax bx c ++><或2(0,40)a b ac ≠∆=->一化:化二次项前的系数为正数.二判:判断对应方程的根.三求:求对应方程的根.四画:画出对应函数的图象.五解集:根据图象写出不等式的解集.规律:当二次项系数为正时,小于取中间,大于取两边.6、高次不等式的解法:穿根法.分解因式,把根标在数轴上,从右上方依次往下穿(奇穿偶切),结合原式不等号的方向,写出不等式的解集.7、分式不等式的解法:先移项通分标准化,则()0()()0()()()0()0()0()f x f x g x g x f x g x f x g x g x >⇔⋅>⋅≥⎧≥⇔⎨≠⎩(时同理)<≤“或”规律:把分式不等式等价转化为整式不等式求解.8、无理不等式的解法:转化为有理不等式求解2()0(0)()f x a a f x a ≥⎧>>⇔⎨>⎩2()0(0)()f x a a f x a≥⎧<>⇔⎨<⎩2()0()0()()0()0()[()]f x f x g x g x g x f x g x >⎧≥⎧⎪>⇔≥⎨⎨<⎩⎪>⎩或2()0()()0()[()]f x g x g x f x g x ≥⎧⎪⇔>⎨⎪<⎩()0()0()()f x g x f x g x ≥⎧⎪⇔≥⎨⎪>⎩规律:把无理不等式等价转化为有理不等式,诀窍在于从“小”的一边分析求解.9、指数不等式的解法:⑴当时,⑵当时,1a >()()()()f x g x aa f x g x >⇔>01a <<()()()()f xg x a a f x g x >⇔<规律:根据指数函数的性质转化.10、对数不等式的解法⑴当时, ⑵当时,1a >()0log ()log ()()0()()a af x f xg x g x f x g x >⎧⎪>⇔>⎨⎪>⎩01a <<()0log ()log ()()0.()()a a f x f x g x g x f x g x >⎧⎪>⇔>⎨⎪<⎩规律:根据对数函数的性质转化.11、含绝对值不等式的解法:⑴定义法:⑵平方法:(0).(0)a a a a a ≥⎧=⎨-<⎩22()()()().f xg x f x g x ≤⇔≤⑶同解变形法,其同解定理有:①②(0);x a a x a a ≤⇔-≤≤≥(0);x a x a x a a ≥⇔≥≤-≥或③④()()()()()(()0)f x g x g x f x g x g x ≤⇔-≤≤≥()()()()()()(()0)f xg x f x g x f x g x g x ≥⇔≥≤-≥或规律:关键是去掉绝对值的符号.12、含有两个(或两个以上)绝对值的不等式的解法:规律:找零点、划区间、分段讨论去绝对值、每段中取交集,最后取各段的并集.13、含参数的不等式的解法解形如且含参数的不等式时,要对参数进行分类讨论,分类讨论的标20ax bx c ++>准有:⑴讨论与0的大小;⑵讨论与0的大小;⑶讨论两根的大小.a ∆14、恒成立问题⑴不等式的解集是全体实数(或恒成立)的条件是:①当时20ax bx c ++>0a =②当时 ⑵不等式的解集是全0,0;b c ⇒=>0a ≠00.a >⎧⇒⎨∆<⎩20ax bx c ++<体实数(或恒成立)的条件是:①当时②当时0a =0,0;b c ⇒=<0a ≠00.a <⎧⇒⎨∆<⎩⑶恒成立恒成立()f x a <max ();f x a ⇔<()f x a ≤max ();f x a ⇔≤⑷恒成立恒成立()f x a >min ();f x a ⇔>()f x a ≥min ().f x a ⇔≥15、线性规划问题⑴二元一次不等式所表示的平面区域的判断:法一:取点定域法:由于直线的同一侧的所有点的坐标代入0Ax By C ++=后所得的实数的符号相同.所以,在实际判断时,往往只需在直线某一侧任取Ax By C ++一特殊点(如原点),由的正负即可判断出或00(,)x y 00Ax By C ++0Ax By C ++>(表示直线哪一侧的平面区域.0)<即:直线定边界,分清虚实;选点定区域,常选原点.法二:根据或,观察的符号与不等式开口的符号,若同号,0Ax By C ++>(0)<B 或表示直线上方的区域;若异号,则表示直线上方的区域.即:同0Ax By C ++>(0)<号上方,异号下方.⑵二元一次不等式组所表示的平面区域: 不等式组表示的平面区域是各个不等式所表示的平面区域的公共部分.⑶利用线性规划求目标函数为常数)的最值:z Ax By =+(,A B 法一:角点法:如果目标函数 (即为公共区域中点的横坐标和纵坐标)的最值存在,z Ax By =+x y 、则这些最值都在该公共区域的边界角点处取得,将这些角点的坐标代入目标函数,得到一组对应值,最大的那个数为目标函数的最大值,最小的那个数为目标函数的最小值z z z 法二:画——移——定——求:第一步,在平面直角坐标系中画出可行域;第二步,作直线 ,平移直0:0l Ax By +=线(据可行域,将直线平行移动)确定最优解;第三步,求出最优解;第四步,0l 0l (,)x y 将最优解代入目标函数即可求出最大值或最小值 .(,)x y z Ax By =+第二步中最优解的确定方法:利用的几何意义:,为直线的纵截距.z A z y x B B =-+zB①若则使目标函数所表示直线的纵截距最大的角点处,取得最0,B >z Ax By =+z 大值,使直线的纵截距最小的角点处,取得最小值;z ②若则使目标函数所表示直线的纵截距最大的角点处,取得最0,B <z Ax By =+z 小值,使直线的纵截距最小的角点处,取得最大值.z ⑷常见的目标函数的类型:①“截距”型: ②“斜率”型:或;z Ax By =+yz x =;y b z x a-=-③“距离”型:或 或22z x y =+z =22()()z x a y b =-+-z =在求该“三型”的目标函数的最值时,可结合线性规划与代数式的几何意义求解,从而使问题简单化.16. 利用均值不等式:()a b ab a b R a b ab ab a b 222222+≥∈+≥≤+⎛⎝ ⎫⎭⎪+,;;求最值时,你是否注值?(一正、意到“,”且“等号成立”时的条件,积或和其中之一为定a b R ab a b ∈++()()二定、三相等)注意如下结论:()a b a b ab aba ba b R 22222+≥+≥≥+∈+, 当且仅当时等号成立。
高考不等式知识点汇总
高考不等式知识点汇总不等式是高考数学中的重要知识点,是解决数学问题中常用的一种工具。
它不仅涉及到基本的不等式性质,还包括不等式的求解、图像表示以及应用等方面。
下面将对高考中常见的不等式知识点进行汇总。
一、不等式的基本性质1. 不等式的传递性:若a < b,且b < c,则有a < c。
传递性是不等式推导中常用的重要性质。
2. 不等式的加减性:若a < b,则有a±c < b±c,其中c为实数。
加减性运算是在不等式两边同时加减一个数时成立的性质。
3. 不等式的倍乘性:若a < b,且c > 0,则有ac < bc;若a < b,且c < 0,则有ac > bc。
倍乘性是在不等式两边同时乘以一个正数或负数时成立的性质。
二、不等式的求解1. 一元一次不等式:例如ax + b < c或ax + b > c,其中a、b、c 为已知实数,x为未知数。
求解一元一次不等式时,可以采用移项和分段讨论等方法。
2. 一元二次不等式:例如ax^2 + bx + c < 0或ax^2 + bx + c > 0,其中a、b、c为已知实数,x为未知数。
求解一元二次不等式时,可以利用函数图像、判别式、因式分解等方法来进行求解。
3. 绝对值不等式:例如|ax + b| < c或|ax + b| > c,其中a、b、c为已知实数,x为未知数。
求解绝对值不等式时,可以利用绝对值的性质,将其转化为对应的复合不等式进行求解。
三、不等式的图像表示1. 不等式的区间表示:例如a < x < b或a ≤ x ≤ b,其中a、b为已知实数,x为未知数。
不等式的区间表示可以通过画数轴,标示出解集所在的区间。
2. 不等式的图像表示:例如y < ax + b或y > ax + b,其中a、b 为已知实数,x、y为未知数。
不等式知识点
不等式知识点1.不等式的性质⑴(对称性或反身性)a b b a >⇔<;⑵(传递性)a b b c a c >>⇒>,;⑶(可加性)a b a c b c >+>+⇒,此法则又称为移项法则;(同向可相加)a b c d a c b d ⇒>>+>+,⑷(可乘性)0a b c ac bc ⇒>>>,; 0a b c ac bc ⇒><<,.(正数同向可相乘)00a b c d ac bd ⇒>>>>>,⑸(乘方法则)00n n a b n N a b >>∈⇔>>() ⑹(开方法则)0,20a b n N n >>∈⇔>>(≥) ⑺(倒数法则)110a b ab a b⇒>><, 掌握不等式的性质,应注意:条件与结论间的对应关系,是“⇒”符号还是“⇔”符号;运用不等式性质的关键是不等号方向的把握,条件与不等号方向是紧密相连的。
2. 重要不等式1.基本不等式:0,0a b >>,则2b a +≥ab (当且仅当a =b 时取“=”号) 注:该不等式可推出(不等式链):当a 、b 为正数时,222)11112a b ab a b a b a b++++其中,亦可写作? (当且仅当a = b 时取“=”号)即:平方平均数≥算术平均数≥几何平均数≥调和平均数推广:①()a b c ab bc ca a b R 222++≥++∈,,当且仅当时取等号。
a b c == ② 000a b m n >>>>,,,则1b b m a n a a a m b n b++<<<<++ ③ 基本不等式的推广:若0(1,2,,)i a i n >=L12n a a a n+++L 当且仅当12n a a a ===L 时取“=”号; ④ 若0t >,则12t t +≥;若0t <,则12t t +≤- ;⑤ 2(0,0)a b a b b a+≥>>,当且仅当a b =时取得等号。
高中不等式知识点总结
高中不等式知识点总结摘要:一、不等式的基本概念1.不等式的定义2.不等式的符号表示二、不等式的基本性质1.对称性2.传递性3.可加性4.乘法原则三、常见不等式的解法1.作差比较法2.作商比较法3.韦达定理四、实际应用1.生活中的应用2.数学中的应用正文:一、不等式的基本概念不等式是数学中的一种基本概念,用于表示两个数的大小关系。
不等式的定义很简单,就是一个比较式,用符号">"或"<"来表示大小关系。
例如,x > y表示x大于y,x < y表示x小于y。
二、不等式的基本性质不等式有许多基本性质,这里我们介绍四个常见的性质。
1.对称性:如果x > y,则y < x。
这就是说,不等式两边同时改变符号,不等式的方向不会改变。
2.传递性:如果x > y,且y > z,则x > z。
这就是说,如果一个数大于另一个数,而另一个数又大于第三个数,那么第一个数一定大于第三个数。
3.可加性:如果x > y,且a > 0,则x + a > y + a。
这就是说,如果一个数大于另一个数,而加上的一个正数,那么第一个数一定大于第二个数。
4.乘法原则:如果x > y,且m > 0,则x * m > y * m。
这就是说,如果一个数大于另一个数,而乘上的一个正数,那么第一个数一定大于第二个数。
三、常见不等式的解法有许多方法可以解不等式,这里我们介绍三种常用的方法。
1.作差比较法:如果x > y,则x - y > 0。
我们可以通过作差来比较两个数的大小。
2.作商比较法:如果x > y,则x / y > 1。
我们可以通过作商来比较两个数的大小。
3.韦达定理:如果x > y,则(x + y) / 2 > (x - y) / 2。
我们可以通过韦达定理来比较两个数的大小。
完整版)高中数学不等式知识点总结
完整版)高中数学不等式知识点总结1、不等式的基本性质不等式有以下基本性质:①对称性:a>b等价于b<a。
②传递性:a>b。
b>c则a>c。
③可加性:a>b等价于a+c>b+c,其中c为任意实数。
同向可加性:a>b,c>d,则a+c>b+d。
异向可减性:a>b,cb-d。
④可积性:a>b,c>0则ac>bc,a>b,c<0则ac<bc。
⑤同向正数可乘性:a>b>0,c>d>0则ac>bd。
异向正数可除性:a>b>0,0bc。
a>b>0,则a^n>b^n,其中n为正整数且n>1.⑦开方法则:a>b>0,则√a>√b。
⑧倒数法则:a>b>0,则1/a<1/b。
2、几个重要不等式以下是几个重要的不等式:a/b+b/a>=2,当且仅当a=b时取等号。
a^2+b^2>=2ab,当且仅当a=b时取等号。
a+b/2>=√ab,当且仅当a=b时取等号。
a+b+c/3>=∛abc,当且仅当a=b=c时取等号。
a^2+b^2+c^2>=ab+bc+ca,当且仅当a=b=c时取等号。
a+b+c>=3√abc,当且仅当a=b=c时取等号。
a/b+b/c+c/a>=3,当且仅当a=b=c时取等号。
a-b|<=|a-c|+|c-b|,对任意实数a,b,c成立。
3、几个著名不等式以下是几个著名的不等式:a-b|<=√(a^2+b^2),对任意实数a,b成立。
a+b)/2<=√(a^2+b^2),对任意实数a,b成立。
a+b/2<=√(a^2+1)√(b^2+1),对任意实数a,b成立。
a+b)/2<=√(a^2-ab+b^2),对任意实数a,b成立。
a+b)/2>=√ab,对任意正实数a,b成立。
不等式知识点总结
不等式知识点总结一、不等式的基本概念。
1. 不等式的定义。
- 用不等号(>、≥、<、≤、≠)表示不等关系的式子叫做不等式。
例如:3x + 2>5,x - 1≤slant2x等。
2. 不等式的解与解集。
- 不等式的解:使不等式成立的未知数的值叫做不等式的解。
例如对于不等式x+1 > 0,x = 1是它的一个解,因为1 + 1>0成立。
- 不等式的解集:一个含有未知数的不等式的所有解,组成这个不等式的解集。
例如不等式x - 2>0的解集是x>2,这表示所有大于2的数都是这个不等式的解。
3. 解不等式。
- 求不等式解集的过程叫做解不等式。
例如解不等式2x+3 < 7,通过移项可得2x<7 - 3,即2x<4,再两边同时除以2得到x < 2,这个过程就是解不等式。
二、不等式的基本性质。
1. 性质1(对称性)- 如果a>b,那么b < a;如果b < a,那么a>b。
例如5>3,那么3 < 5。
2. 性质2(传递性)- 如果a>b,b>c,那么a>c。
例如7>5,5>3,那么7>3。
3. 性质3(加法法则)- 如果a>b,那么a + c>b + c。
例如3>1,那么3+2>1 + 2,即5>3。
- 推论:如果a>b,c>d,那么a + c>b + d。
例如4>2,3>1,那么4 + 3>2+1,即7>3。
4. 性质4(乘法法则)- 如果a>b,c>0,那么ac>bc;如果a>b,c < 0,那么ac < bc。
例如2>1,当c = 3时,2×3>1×3,即6>3;当c=-1时,2×(-1)<1×(-1),即-2 < - 1。
不等式知识点总结
不等式知识点
7.绝对值的定义
8.绝对值的性质
a,(a 0)
a
0, (a
0)
a, (a 0)
a 0
a
b
a
b
a
b
a b
a
n
an
a b ab a b
a1
a2
an
ห้องสมุดไป่ตู้
a1
a2
an
不等式知识点
9.绝对值的解法
x a,(a 0) a x a
x
a, (a
a
b
a
0
a 0
a 1 2 a
a 1 2 a
不等式知识点
4.公式
a2b 2 2
ab 2
ab a 1 2b 1
5.重要结论
a 3 b 3 c 3 3 a( b a ,b ,c c , 0 )
a b c3 3ab (a ,b c ,c ,0 )
不等式知识点
6.证明不等式的主要方法 •(1)比较法:
lo gaf (x)
logag(x)
fg((fxx())x) 00
g(x) (0
a
1)
f(x) g(x)
不等式知识点
11.不等式的分类(按所连接的解析式类型分类)
一次不等式
整式不等
式
二次
不等
式
不 等 式
代数不等式
有理不等式 无理不等式
分式不等
式
高次不等式
0)
x
a, 或x
a
公式法
f(x) g(x) f(x) g(x)
a b ab
f(x) g(x),或f(x) g(x) f(x) g(x)
高中不等式知识点总结
高中不等式知识点总结一、知识点1.不等式性质比较大小方法:(1)作差比较法(2)作商比较法不等式的基本性质①对称性:a > bb > a②传递性: a > b, b > ca > c③可加性: a > b a + c > b + c④可积性: a > b, c > 0ac > bc;a > b, c < 0ac < bc;⑤加法法则: a > b, c > d a + c > b + d⑥乘法法则:a > b > 0, c > d > 0 ac > bd⑦乘方法则:a > b > 0, an > bn (n∈N)⑧开方法则:a > b > 0,2.算术平均数与几何平均数定理:(1)如果a、b∈R,那么a2 + b2 ≥2ab(当且仅当a=b时等号)(2)如果a、b∈R+,那么(当且仅当a=b时等号)推广:如果为实数,则重要结论1)如果积xy是定值P,那么当x=y时,和x+y有最小值2;(2)如果和x+y是定值S,那么当x=y时,和xy有最大值S2/4。
3.证明不等式的常用方法:比较法:比较法是最基本、最重要的方法。
当不等式的两边的差能分解因式或能配成平方和的形式,则选择作差比较法;当不等式的两边都是正数且它们的商能与1比较大小,则选择作商比较法;碰到绝对值或根式,我们还可以考虑作平方差。
综合法:以已知或已证明的不等式为基础,根据不等式的性质推导出待证明的不等式。
平均不等式常用于综合法的标度。
分析方法:不等式两边的关系不够清晰。
通过寻找不等式成立的充分条件,对待证明的不等式进行逐步转化,直到找到一个容易证明或已知成立的结论。
4.不等式的解法(1) 不等式的有关概念同解不等式:如果两个不等式有相同的解集,那么这两个不等式称为同解不等式。
同解变形:当一个不等式转化为另一个不等式时,如果这两个不等式是同解不等式,那么这种变形称为同解变形。
高中不等式知识点总结
高中不等式知识点总结摘要:一、高中不等式的基本概念二、高中不等式的性质1.对称性2.传递性3.可加性4.可积性三、高中不等式的比较大小方法1.作差比较法2.作商比较法四、高中不等式的应用1.解不等式2.不等式的证明正文:一、高中不等式的基本概念不等式是数学中一种表示大小关系的方式,它用符号">"、"<"或">="、"<="连接。
在高中数学中,我们主要学习如何运用不等式的性质来比较大小和解决实际问题。
二、高中不等式的性质高中不等式具有以下基本性质:1.对称性:如果a>b,那么b<a;如果a<b,那么b>a。
这意味着不等式的方向可以随意改变,大小关系不变。
2.传递性:如果a>b,且b>c,那么a>c。
这意味着如果一个数大于另一个数,那么这两个数中的较大的数必定也大于第三个数。
3.可加性:如果a>b,且c>d,那么a+c>b+d。
这意味着两个不等式相加,不等号的方向不变。
4.可积性:如果a>b,且c>d,那么ac>bd。
这意味着两个不等式相乘,不等号的方向不变。
三、高中不等式的比较大小方法在高中数学中,我们通常运用以下两种方法来比较大小:1.作差比较法:比较两个数的大小,可以先将它们相减,如果差值大于0,那么被减数大于减数;如果差值小于0,那么被减数小于减数。
2.作商比较法:比较两个数的大小,可以先将它们相除,如果商大于1,那么被除数大于除数;如果商小于1,那么被除数小于除数。
四、高中不等式的应用高中不等式在实际应用中十分广泛,主要包括解不等式和证明不等式。
1.解不等式:解不等式是求解不等式所表示的数学问题的过程,通常需要运用不等式的性质,将不等式转化为等式,从而求得解集。
2.不等式的证明:不等式的证明是运用不等式的性质和已知条件,论证某个不等式是否成立的过程。
不等式知识点总结
不 等 式1、 不等式的性质是证明不等式和解不等式的基础。
不等式的基本性质有: 1对称性:a>b ⇔b<a ;2传递性:若a>b ,b>c ,则a>c ; 3可加性:a>b ⇒a+c>b+c ;4可乘性:a>b ,当c>0时,ac>bc ;当c<0时,ac<bc 。
5同向相加:若a>b ,c>d ,则a+c>b+d ; 6异向相减:b a >,d c <d b c a ->-⇒. 7正数同向相乘:若a>b>0,c>d>0,则ac>bd 。
8乘方法则:若a>b>0,n ∈N+,则n nb a >;9开方法则:若a>b>0,n ∈N+,则n n b a >;10倒数法则:若ab>0,a>b ,则b1a 1<。
2、绝对值不等式(1)|x |<a (a >0)的解集为:{x |-a <x <a}; |x |>a (a >0)的解集为:{x |x >a 或x <-a}。
(2)|b ||a ||b a |||b ||a ||+≤±≤-3、不等式的证明:(1) 常用方法:比较法,公式法,分析法,反证法,换元法,放缩法; (2) 在不等式证明过程中,应注重与不等式的运算性质联合使用; (3) 证明不等式的过程中,放大或缩小应适度。
4、一元二次不等式ax 2+box>0(a>0)解法.: 一元二次不等式的解集其实就和二次项系数、二次方程的根以及不等号有关,因而可以总结解一元二次不等式的一般步骤:先把二次项系数化成正数,再解对应二次方程,最后根据方程的根的情况,结合不等号的方向写出解集(可称为“三步曲”法).一元二次方程的解的讨论0>∆0=∆ 0<∆二次函数c bx ax y ++=2(0>a)的图象一元二次方程()的根002>=++a c bx ax有两相异实根)(,2121x x x x <有两相等实根abx x 221-==无实根的解集)0(02>>++a c bx ax {}21x x x x x ><或⎭⎬⎫⎩⎨⎧-≠a b x x 2R 的解集)0(02><++a c bx ax {}21x x x x <<∅∅5、整式不等式的解法根轴法(零点分段法)①将不等式化为a 0(x-x 1)(x-x 2)…(x-x m )>0(<0)形式,并将各因式x 的系数化“+”;(为了统一方便) ②求根,并在数轴上表示出来;③由右上方穿线,经过数轴上表示各根的点(为什么?);④若不等式(x 的系数化“+”后)是“>0”,则找“线”在x 轴上方的区间;若不等式是“<0”,则找“线”在x 轴下方的区间.+-+-x 1x 2x 3x m-3x m-2xm-1x mx(自右向左正负相间) 6、分式不等式的解法 (1)标准化:移项通分化为)()(x g x f >0(或)()(x g x f <0);)()(x g x f ≥0(或)()(x g x f ≤0)的形式, (2)转化为整式不等式(组)⎩⎨⎧≠≥⇔≥>⇔>0)(0)()(0)()(;0)()(0)()(x g x g x f x g x f x g x f x g x f7、含绝对值不等式的解法 (1)公式法:c b ax <+,与)0(>>+c c b ax 型的不等式的解法.(2)定义法:用“零点分区间法”分类讨论.(3)几何法:根据绝对值的几何意义用数形结合思想方法解题. (1)ax a a a x <<-⇔><)0(;(2)ax a x a a x >-<⇔>>或)0(;(3)ax f a a a x f <<-⇔><)()0()(;(4)a x f a x f a a x f >-<⇔>>)()()0()(或;(5))()()()()(x g x f x g x g x f <<-⇔<;(6))()()()()()(x g x f x g x f x g x f >-<⇔>或;(7)ax b b x a a b b x a -≤≤-≤≤⇔>>≤≤或)0(;(8)⎪⎩⎪⎨⎧≠<⇔⎩⎨⎧≠<⇔><0)(])([)(0)()()()0()()(22x g x g a x f x g x g a x f a a x g x f 。
初中不等式重要知识点总结
初中不等式重要知识点总结一、不等式的基本概念1. 不等式的定义不等式是指两个不同实数之间的大小关系,用不等号表示的式子称为不等式。
例如:a >b,a、b为实数。
不等式包括开区间不等式和闭区间不等式。
开区间不等式:a > b(>表示大于,不包括a);闭区间不等式:a ≥ b(≥表示大于等于,包括a)。
2. 不等式的解集不等式的解集是所有满足不等式条件的实数构成的集合。
例如:不等式2x > 6的解集为{x | x > 3}。
3. 不等式的性质不等式与等式一样,具有传递性、对称性和反对称性。
传递性:若a > b,b > c,则a >c;对称性:若a > b,则-b < -a;反对称性:若a > b,且b > a,则a = b。
另外,对于不等式,还有加减法原理和乘除法原理。
加减法原理:不等式两边都加(减)同一个实数,不等式号的方向不变;乘除法原理:不等式两边都乘(除)同一个正数,不等式号的方向不变,都乘(除)同一个负数,不等式号的方向改变。
二、一元一次不等式1. 一元一次不等式的书写一元一次不等式是指形如ax + b > 0或ax + b < 0的不等式,其中a和b是常数,x是未知数。
一元一次不等式中,a不等于0。
2. 一元一次不等式的解法解一元一次不等式,主要有以下几种方法:(1)图解法:将不等式转化为方程,利用函数的图像找出满足不等式条件的实数解。
(2)试数法:通过代入试数的方式,找出满足不等式条件的实数解。
(3)分析法:通过移项整理和求解,找出满足不等式条件的实数解。
三、一元一次不等式组1. 一元一次不等式组的定义一元一次不等式组是由若干个一元一次不等式构成的集合。
2. 一元一次不等式组的解法解一元一次不等式组,主要有以下几种方法:(1)图解法:将不等式转化为方程,找出满足所有不等式条件的实数解,画出其图像,并找出图像的交集部分。
(2)试数法:通过代入试数的方式,找出满足所有不等式条件的实数解。
不等式知识点总结
不等式知识点总结在数学中,不等式是一种重要的概念,它与等于不同,代表的是一种数值之间的大小关系。
不等式在代数、几何、最优化等学科中都有广泛的应用。
本文将围绕不等式的定义、性质、解法以及应用展开讨论。
一、不等式的定义与性质不等式是一种数学陈述,表明两个数或量的大小关系。
通常表示为a<b或a>b,其中a、b是实数或一次式。
不等式分为严格不等式和非严格不等式。
严格不等式表示的是不相等的关系,用符号<或>表示;非严格不等式表示的是相等或不相等的关系,用符号≤或≥表示。
不等式的性质主要表现在传递性、乘法和加法性质等方面。
首先是传递性,即如果a<b,b<c,那么a<c。
其次是乘法和加法性质,即如果a<b,c>0,则ac<bc;如果a<b,c<0,则ac>bc;如果a<b,c≠0,则a+c<b+c。
此外,不等式的性质还包括对称性和倒置性,即如果a<b,那么b>a或-b<-a。
二、不等式的解法解不等式的关键在于确定数轴上的区间,即确定不等式的解集。
不等式的解集可以用区间表示,常见的区间包括开区间、闭区间、半开半闭区间等。
解不等式的方法主要有两种:代入法和图像法。
代入法是通过代入不等式中的数值,判断不等式是否成立。
图像法是通过将不等式表示为函数的图像,确定函数在数轴上的取值范围,得到解集。
以一元一次不等式为例,如2x-3>5,我们可以通过代入法解决。
首先将等式转化为2x-3=5,求得x=4。
然后代入x=4,判断2x-3与5的大小关系,发现2x-3=5>5,所以不等式成立。
解集为x>4。
三、不等式的应用不等式在数学的各个分支中都有广泛的应用。
在代数中,不等式常用于求解方程的范围。
例如解实数不等式|x-2|<3,我们可以通过分情况讨论得到解集为-1<x<5。
在几何中,不等式可用于证明定理、计算面积与体积等。
不等式知识点归纳
不等式知识点归纳1.不等式的基本性质不等式的性质可分为单向性质和双向性质两类.在解不等式时,只能用双向性质; 在证明不等式时,既可用单向性质,也可用双向性质. (1)a b b a <⇔>对称性 (2)c a c b b a >⇒>>,传递性(3)c b c a b a+>+⇒>加法单调性(4)d b c a d c b a +>+⇒>>,同向不等式相加 (5)d b c a d c b a->-⇒<>,(异向不等式相减)(6)bc ac c b a >⇒>>0,. 或 c b c a >(乘法单调性)(7)bc ac c b a <⇒<>0, 或 c bca <(8)bd ac d c b a>⇒>>>>0,0(同向不等式相乘)(9)0,0a ba b c d c d>><<⇒>(异向不等式相除) 11(10),0a b ab a b >>⇒<(倒数关系)(11))1,(0>∈>⇒>>n Z n b a b a n n且平方法则(12))1,(0>∈>⇒>>n Z n b a b an n 且开方法则倒数性质①a>b,ab>0.11b a <⇒②a<0<b.11b a <⇒③a>b>0,0<c<d.d b c a >⇒ ④0<a<x<b 或a<x<b<0.a x b 111<<⇒ 有关分数的性质:若a>b>0,m>0,则①真分数的性质: ②假分数的性质:).(;0>--->++<m b m a mb a b m a m b a b ).(;0>---<++>m b m b m a b a m b m a b a比例的几个性质①比例基本性质:;②反比定理:;③更比定理:;④合比定理;;⑤分比定理:;⑥合分比定理:;⑦分合比定理:;⑧等比定理:若,,则.①,则.【说明】:(,糖水的浓度问题).【拓展】:.②,,则;2.比较大小:分类讨论1.作差比较法;2.作商比较法(常用于指数式或均为正数的两式).(1)作差法步骤:作差——变形——判断差的符号.作商法的步骤:作商——变形——判断商与1的大小.(2)两种方法的关键是变形.常用的变形技巧有因式分解、配方、有理化等,也可以等价转化为易于比较大小的两个代数式来达到目的. 1.比较法(1)作差比较法①理论依据:a >b ⇔a -b >0;a <b ⇔a -b <0.②证明步骤:作差→变形→判断符号→得出结论.(2)作商比较法①理论依据:b >0,ab >1⇒a >b ;b <0,ab >1⇒a <b .②证明步骤:作商→变形→判断与1的大小关系→得出结论.2.平方法、开方法、倒数法等3.用同向不等式求差的范围.c b y xd a cy d bx a d y c b x a -<-<-⇒⎩⎨⎧-<-<-<<⇒⎩⎨⎧<<<<4.倒数关系在不等式中的作用..110;110b a b a ab b a b a ab >⇒⎩⎨⎧<><⇒⎩⎨⎧>>5.不等式的解法: 注意“系数化正”附:化归方法在不等式中的具体运用:(1)异向化同向;(2)负数化正数;(3)减式化加式;(4)除式化乘式;(5)多项化少项;(6)高次化低次.注:1.求不等式的解集、定义域及值域时,结果一定要用集合或区间表示,不能用不等式表示. 2.两个不等式相乘时,必须注意同向同正时才能相乘,即同向同正可乘;同时要注意“同号可倒”即a>b>o,a<b<o.解不等式应遵守的原则:1.凡是x的系数为负数的因式首先要[ 即标准式]2.分式不等式不能两边同乘上公分母而约去分母,只能移项通分。
完整版)不等式知识点归纳大全
完整版)不等式知识点归纳大全不等式》知识点总结一、解不等式1.解不等式时,最终需要用集合的形式表示解集。
不等式解集的端点值通常是不等式对应方程的根或不等式有意义范围的端点值。
2.解分式不等式f(x)。
a(a≠0)的一般思路是移项通分,分子分母分解因式,使x的系数变为正值,标根及奇穿过偶弹回。
3.含有两个绝对值的不等式需要分类讨论、平方转化或换元转化去绝对值。
4.解含参不等式时,常常需要分类等价转化。
按参数讨论时,最后需按参数取值分别说明其解集;按未知数讨论时,最后需要求并集。
二、利用重要不等式求函数的最值1.在利用重要不等式a+b≥2ab以及变式ab≤(a+b)²求函数的最值时,需要注意a、b∈R⁺(或a、b非负),且“等号成立”时的条件是积ab或和a+b其中之一应是定值(一正二定三等四同时)。
2.常用的不等式有:a、2(a²+b²+c²)≥ab+bc+ca(当且仅当a=b=c时,取等号);b、a+b+c≥√(3(ab+bc+ca))(当且仅当a=b=c时,取等号)。
三、含立方的几个重要不等式1.对于正数a、b、c,有a³+b³+c³≥3abc(当且仅当a=b=c 时,取等号)。
2.对于正数a、b、c,有(a+b+c)³≥27abc(当且仅当a=b=c 时,取等号)。
四、最值定理1.积定和最小:当x、y>0,且x+y≥2xy时,若积xy=P (定值),则当x=y时和x+y有最小值2P。
2.和定积最大:当x、y>0,且x+y≥2xy时,若和x+y=S (定值),则当x=y时积xy有最大值S²/4.3.已知a、b、x、y∈R,且ax+by=1,有x/y+y/x的最小值为(a+b+√(a²+b²))/2.4.对于已知x>0、y>0、x+2y+2xy=8的等式,x+2y的最小值为4,最大值为8.注:删除了一些明显有问题的段落,并对每段话进行了小幅度的改写。
(完整版)不等式知识点归纳大全
《不等式》知识点归纳一.(1)解不等式是求不等式的解集,最后务必有集合的形式表示;不等式解集的端点值往往是不等式对应方程的根或不等式有意义范围的端点值.(2)解分式不等式()()()0≠>a a x g x f 的一般解题思路是什么?(移项通分,分子分母分解因式,x 的系数变为正值,标根及奇穿过偶弹回);(3)含有两个绝对值的不等式如何去绝对值?(一般是分类讨论、平方转化或换元转化);(4)解含参不等式常分类等价转化,必要时需分类讨论.注意:按参数讨论,最后按参数取值分别说明其解集,但若按未知数讨论,最后应求并集.二、 利用重要不等式ab b a 2≥+ 以及变式2()2a b ab +≤等求函数的最值时,务必注意a ,b +∈R (或a ,b 非负),且“等号成立”时的条件是积ab 或和a +b 其中之一应是定值(一正二定三等四同时).三、.2211a b a b+≥≥≥+(根据目标不等式左右的运算结构选用) a 、b 、c ∈R ,222a b c ab bc ca ++≥++(当且仅当a b c ==时,取等号)四、含立方的几个重要不等式(a 、b 、c 为正数):(,);五、最值定理(积定和最小) ①,则当时和有最小值(和定积最大)②若和,则当是积有最大值. 【推广】:③已知,,,,+∈R y x b a 若1=+by ax ,则有则y x 11+的最小值为:3333a b c abc++≥0ab c ++>等式即可成立时取等或0=++==c b a c b a 3a b c ++⇒3()3a b c abc ++≤3333a b c ++≤,0,x y x y >+≥由()xy P =定值x y =x y +,0,x y x y >+≥由()x y S +=定值x y =xy 214s 21111()()by ax ax by a b a b xy x y x y +=++=+++++=+≥④等式到不等式的转化:已知x >0,y >0,x +2y +2xy =8,则x +2y 的最小值是________. 4)2()2(82)2(822y x y x y x y x xy +≤+-=⋅⇒+-=即0)42)(82(08)2(4)2(2≥-+++⇒≥-+++y x y x y x y x 解得4282≥+-≤+y x y x (舍)或故x +2y 的最小值是4 如果求xy 的最大值,则xy xy y x y x xy 22282)2(82≥-=+⇒+-=, 然后解关于xy 的一元二次不等式,求xy 的范围,进而得到xy 的最大值六、比较大小的方法和证明不等式的方法主要有:差比较法、商比较法、函数性质法、综合法、分析法和放缩法(注意:对“整式、分式、绝对值不等式”的放缩途径, “配方、函数单调性等”对放缩的影响).七、含绝对值不等式的性质:a b 、同号或有0⇔||||||a b a b +=+≥||||||||a b a b -=-;a b 、异号或有0⇔||||||a b a b -=+≥||||||||a b a b -=+.八、不等式中的函数思想不等式恒成立问题“含参不等式恒成立问题”把不等式、函数、三角、几何等内容有机地结合起来,其以覆盖知识点多,综合性强,解法灵活等特点而倍受高考、竞赛命题者的青睐。
不等式知识点归纳
不等式知识点归纳不等式是数学中的一种常见表达方式,用于比较两个数量的大小关系。
它是数学分析、代数和几何中的重要概念之一,有着广泛的应用。
本文将介绍不等式的基本概念、性质、解法以及常见类型的练习题,帮助读者全面了解和掌握不等式知识。
一、不等式的基本概念不等式是将两个数或者表达式进行比较的一种数学符号表达方法。
通常使用不等号(<, >, ≤, ≥)表示大小关系。
其中,< 表示严格小于,> 表示严格大于,≤ 表示小于等于,≥ 表示大于等于。
例如,a < b 表示 a 小于 b,a > b 表示 a 大于 b,a ≤ b 表示 a 小于等于 b,a ≥ b 表示 a 大于等于b。
二、不等式的性质1. 传递性:如果 a < b,b < c,则可以推出 a < c;如果a > b,b > c,则可以推出 a > c。
2. 加减性:如果 a < b,则 a ± c < b ± c;如果 a > b,则 a ± c > b ± c。
其中,c 是常数。
3. 乘除性:如果 a < b,且 c > 0 或 c < 0,则 ac < bc;如果 a < b,且 c < 0 或 c > 0,则 ac > bc。
注意,当 c = 0 时,乘除性不成立。
4. 倒数性:如果 a < b,且 c < 0 或 c > 0,则 1/a > 1/b;如果 a < b,且 c > 0 或 c < 0,则 1/a < 1/b。
注意,当a 或b 为0时,倒数性不成立。
三、不等式的解法解一个不等式,就是找出使得不等式成立的数的范围。
常见的解不等式的方法有以下几种。
1. 加减法:将不等式中的项移项,使得不等式变为一个与变量 x 有关的代数式 f(x),然后通过分析 f(x) 的符号变化来确定不等式的解集。
高中数学不等式知识点总结
弹性学制数学讲义不等式(4课时)★知识梳理1、不等式的基本性质①(对称性)a b b a >⇔>②(传递性),a b b c a c >>⇒>③(可加性)a b a c b c >⇔+>+(同向可加性)d b c a d c b a +>+⇒>>,(异向可减性)d b c a d c b a ->-⇒<>,④(可积性)bc ac c b a >⇒>>0,bc ac c b a <⇒<>0,⑤(同向正数可乘性)0,0a b c d ac bd >>>>⇒> (异向正数可除性)0,0a b a b c d c d >><<⇒>⑥(平方法则)0(,1)n n a b a b n N n >>⇒>∈>且⑦(开方法则)0,1)a b n N n >>∈>且 ⑧(倒数法则)b a b a b a b a 110;110>⇒<<<⇒>>2、几个重要不等式①()222a b ab a b R +≥∈,,(当且仅当a b =时取""=号). 变形公式:22.2a b ab +≤②(基本不等式)2a b +≥()a b R +∈,,(当且仅当a b =时取到等号).变形公式:a b +≥2.2a b ab +⎛⎫≤ ⎪⎝⎭ 用基本不等式求最值时(积定和最小,和定积最大),要注意满足三个条件“一正、二定、三相等”.③(三个正数的算术—几何平均不等式)3a b c ++≥()a b c R +∈、、(当且仅当a b c ==时取到等号).④()222a b c ab bc ca a b R ++≥++∈,(当且仅当a b c ==时取到等号).⑤3333(0,0,0)a b c abc a b c ++≥>>>(当且仅当a b c ==时取到等号). ⑥0,2baab a b >+≥若则(当仅当a=b 时取等号)0,2b aab a b <+≤-若则(当仅当a=b 时取等号) ⑦b an b n a m a mb a b<++<<++<1,(其中000)a b m n >>>>,,规律:小于1同加则变大,大于1同加则变小. ⑧220;a x a x a x a x a >>⇔>⇔<->当时,或22.x a x a a x a <⇔<⇔-<< ⑨绝对值三角不等式.a b a b a b -≤±≤+3、几个著名不等式①平均不等式:1122a b a b --+≤≤+,,a b R +∈(,当且仅当a b =时取""=号).(即调和平均≤几何平均≤算术平均≤平方平均).变形公式:222;22a b a b ab ++⎛⎫≤≤ ⎪⎝⎭ 222().2a b a b ++≥ ②幂平均不等式:222212121...(...).n n a a a a a a n +++≥+++③二维形式的三角不等式:≥1122(,,,).x y x y R ∈④二维形式的柯西不等式:22222()()()(,,,).a b c d ac bd a b c d R ++≥+∈当且仅当ad bc =时,等号成立. ⑤三维形式的柯西不等式:2222222123123112233()()().a a ab b b a b a b a b ++++≥++⑥一般形式的柯西不等式: 2222221212(...)(...)n n a a a b b b ++++++21122(...).n n a b a b a b ≥+++ ⑦向量形式的柯西不等式:设,αβ是两个向量,则,αβαβ⋅≤当且仅当β是零向量,或存在实数k ,使k αβ=时,等号成立.⑧排序不等式(排序原理):设1212...,...n n a a a b b b ≤≤≤≤≤≤为两组实数.12,,...,n c c c 是12,,...,n b b b 的任一排列,则12111122......n n n n n a b a b a b a c a c a c -+++≤+++1122....n n a b a b a b ≤+++(反序和≤乱序和≤顺序和),当且仅当12...n a a a ===或12...n b b b ===时,反序和等于顺序和.⑨琴生不等式:(特例:凸函数、凹函数)若定义在某区间上的函数()f x ,对于定义域中任意两点1212,(),x x x x ≠有12121212()()()()()().2222x x f x f x x x f x f x f f ++++≤≥或则称f(x)为凸(或凹)函数.4、不等式证明的几种常用方法常用方法有:比较法(作差,作商法)、综合法、分析法;其它方法有:换元法、反证法、放缩法、构造法,函数单调性法,数学归纳法等. 常见不等式的放缩方法: ①舍去或加上一些项,如22131()();242a a ++>+ ②将分子或分母放大(缩小), 如211,(1)kk k <- 211,(1)k k k >+=⇒<*,1)k N k >∈>等.5、一元二次不等式的解法求一元二次不等式20(0)ax bx c ++><或 2(0,40)a b ac ≠∆=->解集的步骤:一化:化二次项前的系数为正数.二判:判断对应方程的根.三求:求对应方程的根.四画:画出对应函数的图象.五解集:根据图象写出不等式的解集.规律:当二次项系数为正时,小于取中间,大于取两边.6、高次不等式的解法:穿根法.分解因式,把根标在数轴上,从右上方依次往下穿(奇穿偶切),结合原式不等号的方向,写出不等式的解集.7、分式不等式的解法:先移项通分标准化,则()0()()0()()()0()0()0()f x f x g x g x f x g x f x g x g x >⇔⋅>⋅≥⎧≥⇔⎨≠⎩ (<≤“或”时同理)规律:把分式不等式等价转化为整式不等式求解.8、无理不等式的解法:转化为有理不等式求解2()0(0)()f x a a f x a ≥⎧>>⇔⎨>⎩2()0(0)()f x a a f x a ≥⎧<>⇔⎨<⎩⑶2()0()0()()0()0()[()]f x f x g x g x g x f x g x >⎧≥⎧⎪>⇔≥⎨⎨<⎩⎪>⎩或⑷2()0()()0()[()]f x g x g x f x g x ≥⎧⎪<⇔>⎨⎪<⎩⑸()0()0()()f x g x f x g x ≥⎧⎪>⇔≥⎨⎪>⎩ 规律:把无理不等式等价转化为有理不等式,诀窍在于从“小”的一边分析求解.9、指数不等式的解法:⑴当1a >时,()()()()f x g x a a f x g x >⇔>⑵当01a <<时,()()()()f x g x a a f x g x >⇔< 规律:根据指数函数的性质转化.10、对数不等式的解法⑴当1a >时, ()0log ()log ()()0()()a a f x f x g x g x f x g x >⎧⎪>⇔>⎨⎪>⎩⑵当01a <<时, ()0log ()log ()()0.()()a a f x f x g x g x f x g x >⎧⎪>⇔>⎨⎪<⎩规律:根据对数函数的性质转化.11、含绝对值不等式的解法:⑴定义法:(0).(0)a a a a a ≥⎧=⎨-<⎩ ⑵平方法:22()()()().f x g x f x g x ≤⇔≤⑶同解变形法,其同解定理有: ①(0);x a a x a a ≤⇔-≤≤≥ ②(0);x a x a x a a ≥⇔≥≤-≥或 ③()()()()()(()0)f xg x g x f x g x g x ≤⇔-≤≤≥ ④()()()()()()(()0)f x g x f x g x f x g x g x ≥⇔≥≤-≥或规律:关键是去掉绝对值的符号.12、含有两个(或两个以上)绝对值的不等式的解法:规律:找零点、划区间、分段讨论去绝对值、每段中取交集,最后取各段的并集.13、含参数的不等式的解法解形如20ax bx c ++>且含参数的不等式时,要对参数进行分类讨论,分类讨论的标准有: ⑴讨论a 与0的大小;⑵讨论∆与0的大小;⑶讨论两根的大小.14、恒成立问题⑴不等式20ax bx c ++>的解集是全体实数(或恒成立)的条件是:①当0a =时 0,0;b c ⇒=> ②当0a ≠时00.a >⎧⇒⎨∆<⎩ ⑵不等式20ax bx c ++<的解集是全体实数(或恒成立)的条件是:①当0a =时0,0;b c ⇒=< ②当0a ≠时00.a <⎧⇒⎨∆<⎩⑶()f x a <恒成立max ();f x a ⇔<()f x a ≤恒成立max ();f x a ⇔≤⑷()f x a >恒成立min ();f x a ⇔>()f x a ≥恒成立min ().f x a ⇔≥15、线性规划问题常见的目标函数的类型:①“截距”型:;z Ax By =+ ②“斜率”型:y z x =或;y b z x a -=-③“距离”型:22z x y =+或z =22()()z x a y b =-+-或z =在求该“三型”的目标函数的最值时,可结合线性规划与代数式的几何意义求解,从而使问题简单化.。
基本不等式知识点
基本不等式知识点1.不等式的性质:不等式具有与等式类似的运算性质,例如可以进行加减乘除运算,并且可以对不等式的两边同时进行相同的运算。
但需要注意的是,当不等式两边同时乘或除以负数时,不等号的方向会发生改变。
2.加法不等式:对于实数a、b和c,若a<b,则a+c<b+c。
即不等式两边同时加上相同的数,不等式的关系保持不变。
3.减法不等式:对于实数a、b和c,若a<b,则a-c<b-c。
即不等式两边同时减去相同的数,不等式的关系保持不变。
4.乘法不等式:对于实数a、b和正数c,若a<b且c>0,则a·c<b·c。
即不等式两边同时乘以正数,不等式的关系保持不变。
需要注意,当c为负数时,不等号的方向会发生改变。
5.除法不等式:对于实数a、b和正数c,若a<b且c>0,则a/c<b/c。
即不等式两边同时除以正数,不等式的关系保持不变。
需要注意,当c为负数时,不等号的方向会发生改变。
6.平方不等式:对于实数a和正实数b,若a>b,则a²>b²。
即不等式两边同时取平方,不等式的关系保持不变。
7.绝对值不等式:对于任意实数a和正实数b,若,a,<b,则-b<a<b。
即如果一个实数的绝对值小于一个正实数,则这个实数的取值范围在-b和b之间。
8.基本不等式的应用:基本不等式可以应用于各类数学问题的解决,例如求解方程组、解决最值问题等。
这些应用需要根据具体问题,结合基本不等式的性质,并运用合适的不等式进行推导。
以上是基本不等式的主要知识点。
通过掌握这些知识点,我们能够更好地理解不等式的性质,并有效地运用于解决实际问题。
在学习和应用过程中,我们可以通过大量的练习,加深对基本不等式的理解和掌握,提高解决问题的能力。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
期末复习之不等式知识点
2
3
1) (x – 2)(ax – 2)>0
(2)x2–(a+a2)x+a3>0;
(3)2x2 +ax +2 > 0;
注: 解形如ax2+bx+c>0的不等式时分类讨论的标准有:
1、讨论a与0的大小;
2、讨论⊿与0的大小;
3、讨论两根的大小;运用的数学思想:
1、分类讨论的思想;
2、数形结合的思想;
3、等与不等的化归思想(4)含参不等式恒成立的问题:
例1.已知关于x的不等式
在(–2,0)上恒成立,求实数a的取值范围.
⎪
⎪
⎩
⎪⎪
⎨
⎧
⎩
⎨
⎧
≠
≤
⋅
⇔
≤
>
⋅
⇔
>
)x(g
)x(g
)x(f
)x(g
)x(f
)x(g
)x(f
)x(g
)x(f
22
(3)210
x a x a
+-+-<
⎪
⎩
⎪
⎨
⎧
用图象
分离参数后用最值
函数
、
、
、
3
2
1
例2.关于x 的不等式
对所有实数x ∈R 都成立,求a 的取值范围.
4
第一步:在平面直角坐标系中作出可行域;
第二步:在可行域内找到最优解所对应的点;
第三步:解方程的最优解,从而求出目标函数的最大值或最小值。
5
(1),a b R ∈⇒222a b ab +≥(当且仅当a =b 时取“=”号).
(2),a b R +∈⇒2
a b +≥当且仅当a =b 时取“=”号). (3),a b R +∈⇒22a b ab +⎛⎫≤ ⎪⎝⎭
(当且仅当a =b 时取“=”号). 总结:已知y x ,都是正数,则有
(1)如果积xy 是定值p ,那么当且仅当y x =时和y x +有最小值p 2; (2)如果和y x +是定值s ,那么当且仅当y x =时积xy 有最大值24
1s . (3)用均值不等式求最值时,若不正,则要加负号,若不定,则要凑定值,若不等,则求导考虑单调性。
)1(log 22++-=ax ax y y z x
=z ax by =+22y x z +=。