全差分套筒式运算放大器设计
全差分套筒式共源共栅放大器及其共模反馈电路解读
一 毕业设计(论文)进展情况运算放大器是许多模拟系统和混合数字信号系统中的一个完整部分,也是构成这些系统的基本单元. 因而设计高性能的运算放大器可以使系统的总体性能得到提高。
一、两级运算放大器分析两级CMOS 运算放大器的设计V DDV SSM1M2M3M4M5M6M7M8VnC LC cvoutvin1vin2irefxy3I d5两级CMOS 运算放大器1、基本目标参照《CMOS 模拟集成电路设计第二版》p223.例6.3-1设计一个CMOS 两级放大器,满足以下指标:5000/(74)v A V V db = 2.5DD V V = 2.5SS V V =-5GB MHz = 10L C pF = 10/SR V s μ>out V V ±范围=2 1~2ICMR V =- 2diss P mW ≤ 相位裕度:60为什么要使用两级放大器,两级放大器的优点:单级放大器输出对管产生的小信号电流直接流过输出阻抗,因此单级电路增益被抑制在输出对管的跨导与输出阻抗的乘积。
在单级放大器中,增益是与输出摆幅是相矛盾的。
要想得到大的增益我们可以采用共源共栅结构来极大地提高输出阻抗的值,但是共源共栅结构中堆叠的MOS 管不可避免地减少了输出电压的范围。
因为多一层管子就要至少多增加一个管子的过驱动电压。
这样在共源共栅结构的增益与输出电压范围相矛盾。
为了缓解这种矛盾引进了两级运放,在两极运放中将这两点各在不同级实现。
如本文讨论的两级运放,大的增益靠第一级与第二级相级联而组成,而大的输出电压范围靠第二级这个共源放大器来获得。
典型的无缓冲CMOS 运算放大器特性 边界条件要求工艺规范 见表2、3电源电压 %105.2±±V电源电流 100Μa 工作温度范围0~70°特性要求增益 dB 70≥增益带宽 ≥5MHz建立时间 s μ1≤ 摆率 s /5μV ≥ICMR ≥V 5.1± CMRR ≥60dB PSRR ≥60dB 输出摆幅 ≥V 5.1±输出电阻 无,仅用于容性负载失调 mV 10±≤噪声 ≤100Hz nV (1kHz 时) 版图面积≤50002)(最小沟道长度⨯ 表1 典型的无缓冲CMOS 运算放大器特性2、两级放大电路的电路分析图1中有多个电流镜结构,M5,M8组成电流镜,流过M1的电流与流过M2电流1,23,45/2d d d I I I ==,同时M3,M4组成电流镜结构,如果M3和M4管对称,那么相同的结构使得在x ,y 两点的电压在Vin 的共模输入范围内不随着Vin 的变化而变化,为第二极放大器提供了恒定的电压和电流。
全差分运算放大器设计概要
全差分运算放大器设计概要全差分运算放大器是一种常见的电子电路,它可以将输入信号的差分放大,并在输出端提供差分信号。
全差分运算放大器广泛应用于模拟与数字信号处理中,如低噪声放大器、滤波器和交叉耦合放大器等领域。
本文将介绍全差分运算放大器的设计概要,包括电路结构、设计要点和性能指标等。
[图片]该电路由两个共模反馈放大器组成,其中一个作为正放大器,另一个作为负放大器。
输入信号通过差分输入端口加到两个反馈放大器上,经过放大后,在输出端口提供差分信号。
为了保证优良的性能,必须对电路的参数进行适当的设计和调整。
首先,需要确定全差分运算放大器的增益要求。
增益是指输出信号与输入信号之间的比例关系。
在不同的应用中,增益要求可能不同。
根据增益要求,可以选择合适的放大器型号和电路拓扑结构。
其次,需要选择适当的放大器元件。
放大器元件包括晶体管、电阻、电容等。
选择合适的元件是设计成功的关键。
晶体管的选择要考虑其增益、噪声系数、带宽等指标。
电阻和电容的选择要考虑其阻值、容值、精度等因素。
然后,需要确定电路的偏置方案。
全差分运算放大器需要提供适当的偏置电压,以确保电路能够正常工作。
偏置电压的选择要考虑元件的工作状态和参数的稳定性。
常见的偏置方案包括电流镜偏置、电流源偏置等。
设计完成后,需要对电路进行性能测试和优化。
性能测试包括增益、带宽、噪声系数、非线性失真等指标的测试。
根据测试结果,可以进行相应的电路优化,以满足设计要求。
最后,需要对电路进行可靠性分析。
可靠性分析是为了确保电路在长时间工作过程中不会出现故障。
可靠性分析包括温度分析、电路重要参数的敏感度分析等。
全差分运算放大器设计的关键在于电路的结构和元件的选择。
合理的电路结构和适当的元件选择可以使电路具有较高的增益、宽带和低噪声等性能。
此外,还需要注意电路的偏置方案和可靠性分析,以确保电路的正常工作和长时间可靠性。
总之,全差分运算放大器是一种重要的电子电路,具有广泛的应用前景。
一种高增益CMOS全差分运算放大器的设计
邮局订阅号:82-946360元/年技术创新电子设计《PLC 技术应用200例》您的论文得到两院院士关注一种高增益CMOS 全差分运算放大器的设计Design of a High-gain CMOS Fully Differential Operational Amplifier(江南大学)李杨先顾晓峰浦寿杰LI Yang-xian GU Xiao-feng PU Shou-jie摘要:设计了一种用在高精度音频Σ-ΔA/D 转换器中的高增益CMOS 全差分运算放大器。
该运算放大器采用了套筒式共源共栅结构和开关电容共模反馈电路。
通过分析和优化电路性能参数,实现了高增益和低功耗。
采用SMIC 0.35μm CMOS 工艺,经Spectre 仿真验证,电路在3.3V 电源电压和2.6pF 负载电容条件下,单位增益带宽为110MHz,开环直流电压增益达76dB,功耗为1.4mW 。
关键词:运算放大器;套筒式共源共栅;高增益;A/D 转换器中图分类号:TN402文献标识码:AAbstract:A high -gain CMOS fully differential operational amplifier has been designed for the application to high -resolution audio Σ-ΔA/D converters.The telescopic cascade structure and the switched capacitor common -mode feedback circuit were adopted in this operational amplifier.High gain and low power dissipation were achieved by analyzing and optimizing the circuit parameters.The Spectre simulation using SMIC 0.35μm CMOS process shows that,with 3.3V power voltage and 2.6pF capacitor load,the circuit has a unity-gain bandwidth of 110MHz,an open-loop gain of 76dB and a power dissipation of 1.4mW.Key words:Operational amplifier;Telescopic cascade;High-gain;A/D converter文章编号:1008-0570(2009)10-2-0207-031引言运算放大器作为模拟系统和混合信号系统中的一个重要电路单元,广泛应用于数/模与模/数转换器、有源滤波器、波形发生器和视频放大器等各种电路中。
2009-06全差分运算放大器_167602514
nd d
fnd=2GBW; PM=63: Butterworth fnd=3GBW; PM=72: Bessel fnd=4GBW; PM=76: RR
高等模拟集成电路 第二部分
清华大学电子工程系 李国林 李冬梅
2009秋季学期
3
As
A0 s 1 d s s 1 1 nd 1 nd 2
14
越小越好,但又不可能为零,小到什么程度为宜呢?
高等模拟集成电路 第二部分 清华大学电子工程系 李国林 李冬梅 2009秋季学期
kg m1 2GBWCL k g m 2 2GBWCL k
v
in
g m1 ro1
g m2 2f T
v1 C n1
1
fT GBW
功耗由谁决定?
稳定性裕量越大(越大),功耗越大 GBW越大,功耗越大 负载电容越大,功耗越大
GBW受限于工艺(fT)
而不是负载电容
GBW
g m1 2Cc
g m1 2
k
CL
FOM
GBW C L GBW C L 1 1 530 MHzpF mA VGS VTH VGS VTH ID VGS VTH gm 2 2 k 2 2
高等模拟集成电路 第二部分
As
4.1 极点配置方案:双极点运放
A0 s s 1 1 d nd
根据稳定性分析,双极点运放在单位反 馈应用下稳定且能获得优良低通特性的 条件是,第二个极点fnd是增益带宽积 GBW(=A0fd)的倍
全差分运算放大器设计说明
全差分运算放大器设计岳生生(6)一、设计指标以上华0.6um CMOS 工艺设计一个全差分运算放大器,设计指标如下:✧直流增益:>80dB✧单位增益带宽:>50MHz✧负载电容:=5pF✧相位裕量:>60度✧增益裕量:>12dB✧差分压摆率:>200V/us✧共模电压:2.5V (VDD=5V)✧差分输入摆幅:>±4V二、运放结构选择运算放大器的结构重要有三种:(a )简单两级运放,two-stage 。
如图2所示;(b )折叠共源共栅,folded-cascode 。
如图3所示;(c )共源共栅,telescopic 。
如图1的前级所示。
本次设计的运算放大器的设计指标要求差分输出幅度为±4V ,即输出端的所有NMOS 管的,DSAT NV之和小于0.5V ,输出端的所有PMOS管的,DSAT PV之和也必须小于0.5V 。
对于单级的折叠共源共栅和直接共源共栅两种结构,都比较难达到该要求,因此我们采用两级运算放大器结构。
另外,简单的两级运放的直流增益比较小,因此我们采用共源共栅的输入级结构。
考虑到折叠共源共栅输入级结构的功耗比较大,故我们选择直接共源共栅的输入级,最后选择如图1所示的运放结构。
两级运算放大器设计必须保证运放的稳定性,我们用Miller 补偿或Cascode 补偿技术来进行零极点补偿。
三、性能指标分析1、 差分直流增益 (Adm>80db)该运算放大器存在两级:(1)、Cascode 级增大直流增益(M1-M8);(2)、共源放大器(M9-M12) 第一级增益1351113571135135753()m m m o o o o o m m m m o o o o m m g g gg ggG A R r r r r g g r r r r=-=-=-+P第二级增益92291129911()m o o o m m o o gg G AR r r gg=-=-=-+P整个运算放大器的增益:4135912135753911(80)10m m m m overallo o o o m m o o dB g g g gAA A g g g gr r r r ==≥++2、 差分压摆率 (>200V/us )转换速率(slew rate )是大信号输入时,电流输出的最大驱动能力。
全差分运算放大器设计
全差分运算放大器设计全差分运放(Fully-Differential Amplifier,简称FDA)是一种特殊的运放,它具有两个差动输入和两个差动输出。
全差分运放具有许多优点,包括良好的共模抑制和电源抑制比,适用于高精度传感器信号放大、功率放大和模拟信号处理等领域。
在这篇文章中,我将介绍全差分运放的设计原理和步骤。
首先,我们需要确定设计的要求和规范。
这包括增益要求、带宽要求、电源电压和输入输出电阻等参数。
根据这些要求,我们可以选择合适的运放器件和电路拓扑。
全差分运放的常见电路拓扑有两级差分放大器、共射共源放大器和增益交换放大器等。
在这里,我们以两级差分放大器为例进行设计。
第一步是选择运放器件。
我们需要根据设计要求选择适合的运放器件,可以根据其增益带宽积、供电电压范围和失调电流等参数进行选择。
一般来说,我们可以选择低失调电流、高增益带宽积和低电压噪声的器件。
第二步是确定电路拓扑。
在两级差分放大器中,第一级是差分放大器,第二级是共射共源放大器。
差分放大器的作用是提供高输入阻抗和共模抑制比,共射共源放大器的作用是提供电流放大和驱动能力。
由于这两级放大器要分别满足不同的要求,我们可以选择不同的放大倍数和器件参数来优化电路性能。
第三步是确定偏置电路。
偏置电路的作用是提供恒定的工作电流,这可以通过电流源和电阻网络来实现。
偏置电流的选择要根据运放器件的要求和特点,可以使用恒流源或电流反馈等方法来实现。
第四步是确定反馈电路。
反馈电路的作用是控制放大倍数和增益稳定性,可以使用电阻、电容或者电流源等元件来实现。
选择适当的反馈方式可以减小失调电压和非线性,提高性能。
第五步是进行电路仿真和优化。
通过电路仿真,我们可以验证设计的性能和满足要求。
优化可以通过调整电路参数和进行迭代仿真来实现,以达到设计要求。
第六步是进行电路布局和线路板设计。
在设计布局时,要注意分离放大器电路和干扰源,减少电源和信号线的串扰。
线路板设计要保证差分信号走线的对称性和阻抗匹配,以提高传输性能。
全差分套筒式共源共栅放大器及其共模反馈电路
一毕业设计(论文)进展情况60为什么要使用两级放大器,两级放大器的优点:单级放大器输出对管产生的小信号电流直接流过输出阻抗,因此单级电路增益被抑制在输出对管的跨导与输出阻抗的乘积。
在单级放大器中,增益是与输出摆幅是相矛盾的。
GB GB GB ()()()p p z的相位裕量,所以2.2 10LC因此由补偿电容最小值即可以得到2m112'1g (/)(/)2/12N W L W L K I ==≅ 用负ICMR 公式计算5Dsat V 由式(12)我们可以得到下式15(min)IC SS GS Dsat V V V V =++如果5DS V 的值小于100mv ,可能要求相当大的5(/)W L ,如果5Dsat V 小于0,则ICMR 的设计要求则可能太过苛刻,因此,我们可以减小5I 或者增大5(/)W L 来解决这个问题,我们为了留一定的余度我们(min)IC V 等于-1.1V 为下限值进行计算152511(min)Dsat IC TN SS I V V V V β=---()则可以得到的5Dsat V 进而推出555'2552(/)()Dsat S W L K V ==(I )11/1≅即有58(/)(/)11/1W L W L =≅为了得到60°的相位裕量,6m g 的值近似起码是输入级跨导1m g 的10倍(allen 书p.211例6.2-1),我们设us g g m m 9421016==,为了达到第一级电流镜负载(M3和M4)的正确镜像,要求46SG SG V V =,图中x ,y 点电位相同我们可以得到6644(/)(/)64/1m m gW L W L g ==进而由6662(/)m Pd g K W L I '=我们可以得到直流电流 22m6m667''6666g g 113.72(/)2d d I I A K W L K S μ==== 同样由电流镜原理,我们可以得到7755(/)(/)32/1d d IW L W L I ==3、仿真和测量 (1)DC 分析图2 VOUT 、M5管电流、M7管电流、Vx 与Vy 与输入共模电压变化的关系图4 测量共模输入范围的电路图图5 运放的输入共模电压范围从图中可以得到输入共模范围满足设计指标(-1V~2V)(3)测量输出电压范围在单位增益结构中,传输曲线的线性收到ICMR 限制。
全差分增益提高运算放大器的分析与设计
第28卷 第2期2005年6月电 子 器 件Chinese Journal of Elect ron Devices Vol.28 No.2J un.2005Analysis and Design of Fully Differential G ain 2Boosted OpampW A N G J i n 1,Q I U Yu 2li n 1,T I A N Ze21.I nstit ute of Microelect ronic of Chinese A cadem y of S ciences ,Bei j ing 100029,China;2.Depart ment of Elect ronic Science ,N ort hwestern Universit y ,X i ’an 710069,ChinaAbstract :The gain 2boosting technology is presented and analyzed.Wit h gain 2boosting ,a f ully differential gain 2boo sted telescopic cascode opamp is propo saled and designed.The main opamp is a f ully differential telescopic opamp and has a switched capacitor CM FB circuit.The boo sting opamp is a f ully differential fol 2ded cascode opamp and has a co ntinuous time CM FB circuit.The opamp is designed in SM IC 0.35μmixed 2signal CMOS p rocess wit h 3.3V power supply and achieved a dc gain of 129dB wit h a 161M Hz unity gain f requency.K ey w ords :f ully differential ,gain 2boo sted ;opamp EEACC :1220全差分增益提高运算放大器的分析与设计王 晋1,仇玉林1,田 泽21.中国科学院微电子研究所,北京,100029;2.西北大学电子科学系,西安,710069收稿日期:2004212203作者简介:王 晋(19732)男,博士研究生,主要从事模拟集成电路和混合集成电路设计,wangjin0215@ ;仇玉林(19422)男,研究员、博士生导师,wangjin0215@摘 要:通过增益提高技术,一个全差分增益提高套筒式共源共栅运算放大器被提出和设计。
全差分运算放大器设计
全差分运算放大器设计岳生生(200403020126)一、设计指标以上华0.6um CMOS 工艺设计一个全差分运算放大器,设计指标如下:✧直流增益:>80dB✧单位增益带宽:>50MHz✧负载电容:=5pF✧相位裕量:>60度✧增益裕量:>12dB✧差分压摆率:>200V/us✧共模电压:2.5V (VDD=5V)✧差分输入摆幅:>±4V二、运放结构选择运算放大器的结构重要有三种:(a )简单两级运放,two-stage 。
如图2所示;(b )折叠共源共栅,folded-cascode 。
如图3所示;(c )共源共栅,telescopic 。
如图1的前级所示。
本次设计的运算放大器的设计指标要求差分输出幅度为±4V ,即输出端的所有NMOS 管的,DSAT NV之和小于0.5V ,输出端的所有PMOS管的,DSAT PV之和也必须小于0.5V 。
对于单级的折叠共源共栅和直接共源共栅两种结构,都比较难达到该要求,因此我们采用两级运算放大器结构。
另外,简单的两级运放的直流增益比较小,因此我们采用共源共栅的输入级结构。
考虑到折叠共源共栅输入级结构的功耗比较大,故我们选择直接共源共栅的输入级,最后选择如图1所示的运放结构。
两级运算放大器设计必须保证运放的稳定性,我们用Miller 补偿或Cascode 补偿技术来进行零极点补偿。
三、性能指标分析1、 差分直流增益 (Adm>80db)该运算放大器存在两级:(1)、Cascode 级增大直流增益(M1-M8);(2)、共源放大器(M9-M12) 第一级增益1351113571135135753()m m m o o o o o m m m m o o o o m m g g gg gg G A R r rr r g g r r r r=-=-=-+第二级增益92291129911()m o o o m m o o gg G AR r rgg=-=-=-+整个运算放大器的增益:4135912135753911(80)10m m m m overallo o o o m m o o dB g g g gAA A g g g gr r r r ==≥++2、 差分压摆率 (>200V/us )转换速率(slew rate )是大信号输入时,电流输出的最大驱动能力。
全差分CMOS运算放大器的设计
全差分CMOS运算放大器的设计全差分CMOS运算放大器(Fully Differential CMOS Operational Amplifier)是一种常用于模拟、混合信号和通信电路中的放大器。
全差分运算放大器结合了差分放大器和普通运算放大器的优点,具有更好的共模抑制、抗干扰能力和更高的增益。
1.设计差动放大器:差动放大器是全差分CMOS运算放大器的核心部分,其一般由两个输入差分对和一个负载电阻组成。
在设计差动放大器时,首先需要确定放大器的增益、带宽和功耗等要求。
然后,选择适当的晶体管尺寸和偏置电流来满足这些要求。
2.设计电流镜:电流镜主要用于稳定差动放大器的工作点。
常用的电流镜电路有P型电流镜和N型电流镜。
在设计电流镜时,需要考虑放大器的输入阻抗、输出阻抗和功耗。
3.设计共模反馈电路:共模反馈电路主要用于提高全差分CMOS运算放大器的共模抑制比。
在设计共模反馈电路时,需要确定合适的电压分压比例和电容值,以及选择合适的晶体管尺寸和偏置电流。
4.偏置电流源设计:5.电源设计:6.输入和输出接口设计:7.稳定性分析和优化:在设计全差分CMOS运算放大器时,还需要进行稳定性分析和优化。
常用的稳定性分析技术有迭代法、校正法和频率响应法。
稳定性优化技术有补偿电容法、极点分布法和增益调整法。
8.仿真和验证:最后,设计完成的全差分CMOS运算放大器需要进行仿真和验证。
常用的仿真和验证工具有SPICE软件、电路仿真器和实验测量仪器。
通过仿真和验证,可以评估放大器的性能和电路的可靠性。
最后,需要注意的是,在进行全差分CMOS运算放大器的设计时,应遵循设计规范和标准,如功耗规范、电压规范和噪声规范,以确保设计的可靠性和一致性。
同时,应密切关注工艺制程、温度变化等因素对电路性能的影响,并进行相应的校准和补偿。
最完整的全差分运算放大器设计
最完整的全差分运算放大器设计全差分运算放大器是一种特殊的运算放大器,它采用了差模输入和差模输出的电路结构,能够获得更高的共模抑制比和更好的抗干扰能力。
在本文中,我们将详细介绍全差分运算放大器的设计步骤和关键考虑因素。
首先,我们需要确定设计的目标和规格。
这包括放大器的增益、带宽、输入和输出阻抗等参数。
在设计全差分运算放大器时,通常需要考虑放大器的直流特性和交流特性。
接下来,我们将详细介绍全差分运算放大器的设计步骤。
1.选择工作点:为了实现差模输入和差模输出,我们需要选择适当的工作点。
一个常用的方法是将输入差模信号的平均值调整到放大器的线性工作区域,这可以通过调整偏置电流源和电阻来实现。
2.设计输入级:输入级通常采用差模对称结构,包括差模差分放大电路和公模放大电路。
在设计差模差分放大电路时,需要选择合适的晶体管,并确定电流增益。
公模放大电路的设计要考虑与差模放大电路的匹配。
3.设计输出级:输出级通常采用差模共源结构。
在设计输出级时,需要确定合适的负载电阻和电流源,并考虑稳定性和功率消耗等因素。
4.频率补偿:全差分运算放大器的频率响应通常需要进行补偿。
一种常用的方法是使用频率补偿电容和电阻,以提高放大器的带宽和稳定性。
5.抑制共模信号:全差分运算放大器的一个重要特性是能够抑制共模信号。
为了实现更好的共模抑制比,我们可以采用一些技术,如共模反馈、差模共源结构等。
在设计全差分运算放大器时,需要考虑一些关键因素。
首先是热噪声和干扰的抑制。
由于全差分运算放大器的输入端采用了差模输入,它能够抑制共模干扰和热噪声。
其次是功耗的控制,尽量减小功耗,提高能效。
还要注意防止震荡和保证放大器的稳定性。
综上所述,全差分运算放大器设计需要考虑许多因素,包括放大器的增益、带宽、输入和输出阻抗等参数。
在设计过程中,需要选择合适的工作点、设计合适的输入级和输出级、实施频率补偿,并考虑共模抑制和稳定性等因素。
通过合理的设计和优化,我们可以获得一个高性能的全差分运算放大器。
全差分放大器设计
对于全差分放大器,一般可以得到更大的swing (由于差分信号),同时可以实现对共模干扰、噪声以及偶数阶的非线性的抑制;但其需要有两个匹配的反馈网络,以及共模反馈电路顺便提一下,对于全差分的折叠共源共栅(folded cascode)放大器,需要注意转换速率(正向与负向)对输入对差分对的尾电流源和cascode电流源的考虑非主极点的位置–输入对管的drain节点(注意全差分没有镜像极点的问题..),如果考虑PMOS输入的结构,将会折叠到n管的cascode,从而减小此节点阻抗,提高此非主极点的频率;但是P输入结构亦有其问题,如直流增益和cmfb电路的速度(考虑cmfb控制的为cascode的pmos电流源)关于共模反馈CMFB从反馈环路来看,共模的稳定问题来源于闭环的共模增益:由于输入差分对的尾电流源的local-feedback,通常共模增益较小,导致运放无法控制其输出共模点;通过CMFB共模反馈电路,可以提高共模反馈环路的增益,以稳定共模信号。
设计CMFB需考虑补偿以减小环路的稳定时间(settling time)和提高稳定性。
从性能上,我们希望共模反馈的单位增益带宽足够大,但由于cmfb的环路相较于差模通路可能有更多高频极点,故此在一定的功耗要求下其UGB一般比较难做的高,有书中提到可以将其设计为差模UGB 的1/3一般共模反馈的方法是控制放大器的电流源,这里如果是folded-cascode的结构,可以考虑用cmfb控制cascode的电流源而不是输入差分对的电流源—-因其在共模环路中有较少的节点–>更容易补偿等..(另一种考虑是控制尾电流源可能导致共模增益的问题)另外,对于cmfb控制的尾电流源,常见将尾电流源分为两半,其中之一由cmfb控制,另一半接恒定偏置电流;这种结构的具体分析可见Gray书12.4.2节的内容,简单来说,single-stage的opamp中控制尾电流源的cmfb结构,其UGB主要为gmt/CL, 其中gmt为尾电流源的跨导,这里拆分尾电流源来减半cmc共模控制的部分,这样UGB减小,即缩减带宽来提升共模反馈环路的相位裕度,当然cmfb的增益相应也减小了;另外恒定偏置部分也可帮助共模电压的初始建立,减小cmfb大的扰动。
全差分套筒式共源共栅放大器及其共模反馈电路解读
一 毕业设计(论文)进展情况运算放大器是许多模拟系统和混合数字信号系统中的一个完整部分,也是构成这些系统的基本单元. 因而设计高性能的运算放大器可以使系统的总体性能得到提高。
一、两级运算放大器分析两级CMOS 运算放大器的设计V DDV SSM1M2M3M4M5M6M7M8VnC LC cvoutvin1vin2irefxy3I d5两级CMOS 运算放大器1、基本目标参照《CMOS 模拟集成电路设计第二版》p223.例6.3-1设计一个CMOS 两级放大器,满足以下指标:5000/(74)v A V V db = 2.5DD V V = 2.5SS V V =-5GB MHz = 10L C pF = 10/SR V s μ>out V V ±范围=2 1~2ICMR V =- 2diss P mW ≤ 相位裕度:60为什么要使用两级放大器,两级放大器的优点:单级放大器输出对管产生的小信号电流直接流过输出阻抗,因此单级电路增益被抑制在输出对管的跨导与输出阻抗的乘积。
在单级放大器中,增益是与输出摆幅是相矛盾的。
要想得到大的增益我们可以采用共源共栅结构来极大地提高输出阻抗的值,但是共源共栅结构中堆叠的MOS 管不可避免地减少了输出电压的范围。
因为多一层管子就要至少多增加一个管子的过驱动电压。
这样在共源共栅结构的增益与输出电压范围相矛盾。
为了缓解这种矛盾引进了两级运放,在两极运放中将这两点各在不同级实现。
如本文讨论的两级运放,大的增益靠第一级与第二级相级联而组成,而大的输出电压范围靠第二级这个共源放大器来获得。
典型的无缓冲CMOS 运算放大器特性 边界条件要求工艺规范 见表2、3电源电压 %105.2±±V电源电流 100Μa 工作温度范围0~70°特性要求增益 dB 70≥增益带宽 ≥5MHz建立时间 s μ1≤ 摆率 s /5μV ≥ICMR ≥V 5.1± CMRR ≥60dB PSRR ≥60dB 输出摆幅 ≥V 5.1±输出电阻 无,仅用于容性负载失调 mV 10±≤噪声 ≤100Hz nV (1kHz 时) 版图面积≤50002)(最小沟道长度⨯ 表1 典型的无缓冲CMOS 运算放大器特性2、两级放大电路的电路分析图1中有多个电流镜结构,M5,M8组成电流镜,流过M1的电流与流过M2电流1,23,45/2d d d I I I ==,同时M3,M4组成电流镜结构,如果M3和M4管对称,那么相同的结构使得在x ,y 两点的电压在Vin 的共模输入范围内不随着Vin 的变化而变化,为第二极放大器提供了恒定的电压和电流。
全差分运算放大器结构框图解析 常见的全差分运算放大器电路分析
全差分运算放大器结构框图解析常见的全差分运算放大器电路分析全差分(运算放大器)就是一种具有差分输入,差分输出结构的运算(放大器)。
(差分放大器)相对于单端输出的放大器具有如下一些优势。
首先,由于随着CMOS 工艺尺寸不断缩小,从0.5μm 减小至0.35μm,0.18μm,90nm,(芯片)的(供电)电压也不断减小从5V降到3.5V,1.8V,1.2V甚至更低。
在如此低的供电电压的情况下,单端输出的运算放大器很难能理想地工作,为了保证电路能够得到足够大的(信号)摆幅,我们需要采用全差分的运算放大器结构。
其次,全差分运算放大器能够有效抑制电路的共模信号,并且能够减小电路的偶次谐波失真。
但是为了得到这些性能,全差分运算放大器需要一个共模反馈环路来控制输出的共模电平。
理想情况下,这个共模反馈控制环路会使得输出的共模电平稳定在VDD/2。
所以,一个全差分放大器通常由主放大器和共模反馈环路两部分组成,它在现代的(电路设计)中应用非常广泛。
1.全差分运算放大器结构框图共模反馈的基本思想就是由一个共模采样电路取得电路的输出共模信号,然后把共模信号与一个参考信号相比较,将比较后的误差信号放大后再输入主放大器以调节输出共模电压。
对于输入的差分信号来说,共模反馈环路不会对交流信号产生影响,相当于说共模环路对于交流是开路的。
所以,电路的差分增益和相位就由主放大器决定。
但是,对于输入的共模信号,共模反馈环路决定了输出的共模电平,这时,共模环路的增益和相位就会对电路的输出共模电平的精度和稳定性产生影响。
全差分放大器在应用中的一种电路形式,差分输出的信号摆幅vO1-vO2 为单端信号vO1(vO2)摆幅的两倍,所以在输出端可以有较大的输出动态范围,相对于单端输出提高了处理信号的幅度能力。
2. 常见的全差分运算放大器电路(a)是普通的全差分放大器电路,通常作为一个放大器的输入级部分。
图7-3(b)是折叠式全差分运算放大器电路,它的增益会比较大,可以达到60~70dB,但同时会消耗比较大的功耗,因为它有四条支路需要(电流)。
0.6μm CMOS工艺全差分运算放大器的设计
0.6μm CMOS工艺全差分运算放大器的设计运算放大器是数据采样电路中的关键部分,如流水线模数转换器等。
在此类设计中,速度和精度是两个重要因素,而这两方面的因素都是由运放的各种性能来决定的。
本文设计的带共模反馈的两级高增益运算放大器结构分两级,第一级为套筒式运算放大器,用以达到高增益的目的;第二级采用共源级电路结构,以增大输出摆幅。
另外还引入了共模反馈以提高共模抑制比。
该方案不仅从理论上可满足高增益、高共模抑制比的要求,而且通过了软件仿真验证。
结果显示,该结构的直流增益可达到80 dB,相位裕度达到80°,增益带宽为74 MHz。
1 运放结构通常所用的运算放大器的结构基本有三种,即简单两级运放、折叠共源共栅和套筒式共源共栅。
其中两级结构有大的输出摆幅,但是频率特性比较差,一般用米勒补偿,可使得相位裕度变小,因而电路的稳定性会变差;套筒式的共源共栅结构,虽然频率特性较好,又因为它只有两条主支路,所以功耗比较小。
但是这些都是以减小输入范围和输出摆幅为代价的。
因此,为了缓解套筒式结构对输入电压范围的限制,本文提出了折叠式运算放大器结构的思路。
折叠式结构比套筒式结构有更大的输入共模电平范围,但却以减小增益和带宽,增大噪声和功耗为代价的。
考虑到折叠共源共栅输入级结构的功耗比较大,因此,本文选择套筒式共源共栅结构作为输入级,最后选择了如图1所示的全差分结构的两级运放结构。
1.1 主运放结构全差分运算放大电路对环境噪声具有更强的抑制能力。
而套筒式结构则具有高增益、低功耗以及频率特性好等特点。
因此,第一级放大结构(即M0~M8)采用套筒式全差分放大器结构作为输入级。
第二级(即M9~M11)为共源结构,以改善套筒式结构输出摆幅小的缺点,同时相应提高运算放大器的开环增益。
但是,随着级数的增加,必然会增加电路的零极点,这对系统稳定性的要求更高。
因此,必须引入补偿电容C3来补偿额外的极点,使电路的相位裕度能满足要求,并使性能稳定。
一种具有高增益和超带宽的全差分跨导运算放大器
0中国集成电路设计♦China lntegrated Circult一种具有高增益和超带宽的全差分跨导运算放大器罗杨贵1,曾以成1,邓欢2,唐金波21.湘潭大学物理与光电工程学院;2.湖南毂梁微电子有限公司摘要:基于GSMC0.18um CM OS工艺,设计了一种应用于12位ADC的全差分运算放大器。
为了提高增益,在套筒式共源共栅结构上运用了增益提高技术。
为了提高输入跨导,采用隔离效果更好的深N阱CMOS作为输入端,从而提升增益带宽。
为了降低功耗,利用单端放大器作为辅助运放。
整体电路结构简单优化。
仿真结果表明,运算放大器直流开环增益大于100dB,单位增益带宽大于800M H z,相位裕度大于70毅,完全满足目标ADC的性能要求,是一种新型且质量较高的运放,也可应用于其它场合。
关键词:增益提高;套筒式共源共栅;高增益带宽;深N阱中图分类号:TN432文献标识码:AA Fully Differential Transconductance Operational Amplifierwith high Gain and ultra GBWLUO Yang-gui,ZENG YirCheng1,DENG Huan2,TANG Jn-bo21.SchoolofPhysicsand Opibe]ectronics,X iangtan University;2.H unan Greai-Leo M icroe]ectronicsCO.LTDAbstract:Based on theGM SC0.18um CM OS process,a fuUy differentialoperationalam plifierlbr12-bitADC is designed.In orderto increase the gain,a gain-enhancing technique is used on the te]escopic cascode structure.In order to increase input transconductance,the deep N-W elltansistorwith better isolation function was used as the input,thereby to enhance the gain bandwidth.In order to reduce power consumption,a single-ended amplifier is used as an auxiliary operational amplifier.The overall circuit structure is simple and optimized.The simulation results show that the operational amplifier DC open-loop gain is greater than100dB,the unity gain bandwidth is greater than800MHz, and the phase margin is greater than70毅,which fully meets the performance requirements of ADC.It is a new and high-quality operational amplifier that can also be applied to other applications.Keywords:Gain enhancement;Telescopic cascode;High gain bandwidth;Deep N_well0引言模数转换器作为连接模拟信号与数字信号的桥梁,越来越显示出其重要性。
一种增益增强型套筒式运算放大器的设计
中 图 分 类 号 :T 0 N4 1 文 献 标 识 码 :A
De in o a n-b o t d t l s o c o r to l a l ir sg f a g i o s e ee c pi pe a i na mp i e f
OT a c iv 0 % s t n c u a y wi i s A c n a h e e 0. l et g a c r c t n 4 n ,whc es t e e i n g as q i e 1 i h ih me t h d sg o l u t w l . e
Ap ia in o It r t d Ci ui pl t f neg a e r t c o c s
一
种增益增强型套筒式运算放大器 的设计
蔡 坤 明 , 杞 鑫 。陶 吉 利 , 扣 宝 何 , 丁 (. 江 大 学 宁 波 理 工 学 院 , 江 宁 波 35 1 ; 1浙 浙 12 1 2 浙 江 大 学 微 电 子 与 光 电 子 研 究 所 , 江 杭 州 30 2 ) . 浙 10 7
2Ist eo colc oisad O t l t nc,Z ei g U i rt, n zo 10 7 C ia . tu fMir et nc n po e r i n it e r e c o s hj n nv s y Hagh u 30 2 , hn ) a ei
Ab t c :A u l i e e t l tl s o i O A s d n ih s e d ADC wa d sg e sr t a f l d f r ni ee c p c T u e i a h g p e y f a s e in d.F o rm t e ADC ’ d sg p c i ain, h s e in s e i c t f o
全差分套筒式共源共栅放大器及其共模反馈电路的研究
全差分套筒式共源共栅放大器及其共模反馈电路的研究全差分套筒式共源共栅放大器是一种常用的放大器电路,可以用于增强信号的幅度和增加输出功率。
它具有高增益、低噪声和较大的输出功率等优点,被广泛应用于通信器材、音频放大器和高速数据传输等领域。
本文将详细介绍全差分套筒式共源共栅放大器的原理、特点以及常见的共模反馈电路。
全差分套筒式共源共栅放大器的原理是在输入端同时接入两个信号,一个信号经过源极耦合电容输入到栅极,另一个信号则经过栅极调制放大输出。
这种设计使得差模信号增益大,共模信号增益小,从而提高了放大器的性能。
同时,采用套筒式结构可以提供较大的输出功率,使得放大器在输出端有更大的动态范围。
全差分套筒式共源共栅放大器的特点有以下几个方面。
首先,由于共源共栅结构的存在,放大器具有较高的输入阻抗和输出阻抗,可以有效地减少信号传输的损耗。
其次,通过差模信号和共模信号的分离处理,放大器具有较低的噪声和失真。
此外,套筒式结构能够提供较大的输出功率,适合于高功率放大应用。
为了进一步提高放大器的性能,常常采用共模反馈电路。
共模反馈电路可以抑制共模干扰,提高放大器的共模抑制比,减少信号传输中的干扰和噪声。
一种常见的共模反馈电路是通过电阻和电容网络将共模信号的反馈接入到放大器的源极,通过控制源极电流的差异,来实现共模信号的抑制。
这种反馈电路能够有效地提高放大器的共模抑制比,提供更清晰的信号输出。
总之,全差分套筒式共源共栅放大器是一种具有高增益、低噪声和较大输出功率的放大器电路。
通过合理设计和优化,可以实现更好的性能和应用效果。
而共模反馈电路则进一步提高了放大器的性能,减少了信号传输中的干扰和噪声。
通过研究全差分套筒式共源共栅放大器及其共模反馈电路,可以更好地应用于实际的工程设计和应用中。
全差分套筒式共源共栅放大器及其共模反馈电路的研究
论文题目:全差分套筒式共源共栅放大器设计及其共模反馈电路的研究摘要随着便携式消费电子产品及各式各样智能设备的普及,如手机、智能手环、平板等。
性能卓越的运算放大器是这些产品必不可少的组成部分。
精确度高即为直流增益大(偏置处于微小的电流下,器件的尺寸长),速度高即为高单位增益带宽及单极点特性(偏置在大电流下,器件的尺寸短)。
因此需要在参数中权衡、择优选取。
一般来说,只有一级的运算放大器,如套筒式运算放大器,频率响应快,增益低;两级运放增益高,单位增益带宽不佳。
在综合考虑以上因素后,设计一种全差分套筒式共源共栅放大器及其共模反馈电路的结构。
在保证增益情况的优良情况下,使运放的频率响应具有单极点特性以此优化单位增益带宽。
本文最初先简明扼要的阐述了MOS器件的基本工作原理,随后详尽分析、讲解了几种常见的运算放大电路结构,如基本的差动输入-差动输出结构、折叠式结构及套筒式结构,同时对其共模负反馈电路进行研究。
将纷繁复杂的整体电路结构拆先分解为单一的电路模块,一步步进行设计、仿真、验证分析,再选择恰当的部分进行级联。
经过电路仿真验证,放大器增益为64.46dB大于60dB,单位增益带宽为126.4MHz 大于100MHz,连续型共模负反馈电路直流增益下降3.07dB小于5dB,离散型时钟频率为9.3MHz大于5MHz,从而完成所有电路设计参数指标,该电路设计可以正常工作。
关键词:套筒式;全差分;共源共栅;共模反馈AbstractAs portable consumer electronic products and a variety of the popularity of smart devices, such as mobile phone, smart hand ring, tablet, etc.The excellent performance of operational amplifier is the indispensable part of the product.High precision is the dc gain large (bias in the tiny electrical flow, the size of the device), high speed is the unit gain bandwidth and unipolar point features (the offset in the big power flow, the size of the short).So it is necessary to weigh in the parameter selection and merit.In general speaking, only the level of operational amplifiers, such as sleeve operational amplifiers, frequency response is fast, low gain;Two stage operational amplifier gain high, unit gain bandwidth.After considering the above factors, to design a fully-differential sharing sleeve source gate amplifier and the structure of common mode feedback circuit.In guarantee gain excellent cases, the frequency response of the op-amp single pole characteristics in order to optimize unit gain bandwidth.This article first brief first expounds the basic working principle of MOS devices, then detailed analysis and interpretation of several common operational amplifier circuit structure, such as basic differential input and differential output structure, folding structure and sleeve structure, at the same time to research the common-mode feedbackcircuit.Dismantle the whole circuit structure complicated, first broken down into a single circuit module, the design, simulation and verification analysis step by step, and then choose the right part of the cascade.Through the circuit simulation, amplifier gain of 64.46 dB greater than 60 dB, unit gain bandwidth of 126.4 MHz is more than 100 MHz, continuous common-mode feedback circuit dc gain fell 3.07 dB less than 5 dB, discrete clock frequency of 9.3 MHz is more than 5 MHz, thus completing all circuit design parameters, the circuit design can work normally.Keywords: Telescopic、Full differential、Cascode、CMFB目录摘要 (I)Abstract (III)第1章引言 (1)第2章MOS器件与运算放大器简介 (6)2.1 MOS器件的工作原理及参数 (6)2.1.1 MOSFET的结构 (6)2.1.2 MOSFET的输出特性 (8)2.1.3 4种类型MOSFET 的特性曲线小结 (10)2.2运算放大器的性能参数指标 (11)2.3典型运放对比 (14)2.4本章小结 (16)第3章运算放大器的设计 (17)3.1运算放大器的基本结构 (17)3.2两级运算放大器的设计方法 (18)3.3 全差动运算放大器 (21)3.4 套筒式共源共栅运算放大器结构 (26)3.5 折叠式共源共栅运放算放大器结构 (33)3.6 共模负反馈电路 (36)3.6.1 连续型共模负反馈电路 (36)3.6.2 离散型共模负反馈电路 (39)第4章运算放大器的仿真 (41)4.1 电路设计的目标 (41)4.1.1 任务书指标 (41)4.1.2 选取的电路结构 (42)4.2具体的设计 (43)4.2.1确定偏置电压 (43)4.2.2晶体管的设计 (43)4.2.3共模反馈结构 (44)4.2.4偏置电路 (45)4.3电路性能仿真 (46)4.3.1电路的总体结构 (46)4.3.2仿真结果 (47)第5章总结 ......................................................................................... 错误!未定义书签。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
全差分套筒式运算放大器设计
1、设计内容
本设计基于经典的全差分套筒式结构设计了一个高增益运算放大器,采用镜像电流源作为偏置。
为了获得更大的输出摆幅及差模增益,电路采用了共模反馈及二级放大电路。
本设计所用到的器件均采用SMIC 0.18µm的工艺库。
2、设计要求及工艺参数
本设计要实现的各项指标和相关的工艺参数如表1和表2所示:
3、放大器设计
3.1 全差分套筒式放大器拓扑结构与实际电路
图1 全差分套筒式放大器拓扑结构
图2 最终电路图
3.2 设计过程
在图1中,Mb1和M9组成的恒流源为差放提供恒流源偏置,且M1,M2完全一样,即两管子所有参数均相同。
Mb2、M7和M8构成了镜像电流源,M5、M6和M7、M8构成了共源共栅电流源,M1、M2、M3、M4构成了共源共栅结构,可以显著提高输出阻抗,提高放大倍数(把M3的输出阻抗提高至原来的(gm3 + gmb3)ro2倍。
但同时降低了输出电压摆幅。
为了提高摆幅,控制增益,在套筒式差分放大器输出端增加二级放大。
本设计中功率上限为10mW,可以给一级放大电路分配3mA的电流。
设计要求摆幅为3V,所以图1中M1、M3、M5、M9的过驱动电压之和不大于1.8-3/2=0.3V。
我们可以平均分配每个管子的过驱动电压。
根据漏电计算流公式(1)(考虑沟道长度调制效应),可以计算出每个管子的宽长比。
I D=1
2μn C ox W
L
(V GS−V TH)2(1+λV DS)(1)
其中,C ox等于ε/t ox,μn和t ox可以从工艺库中查找。
4、仿真结果
经过调试优化之后的仿真结果如以下各图所示:
图3 增益及相位裕度
从图中可以看出,本设计的低频增益达到了74.25dB,达到了预期要求。
3dB 带宽为35kHz左右,比较小,可见设计还有改进的余地。
当CL为2pF时,相位裕度:
PM=180°+∠βH(ω)=180°−125.5°=54.5°
电源电压为1.8V时,输出摆幅如下图所示,达到了3V。
整个电路的直流功耗为5.43mW。
图6 直流功耗
5、小结
本次设计初步实现了放大器的基本功能,但也有很多缺陷。
由于对套筒式差分放大器的理解不够深刻,导致初期仿真时一直出不来结果。
经老师点拨才知道要实现高增益差动电路必须加共模反馈。
在设计中发现,自己算出的MOS管的宽长比在实际仿真时有很大的误差,导致放大倍数非常小,自己设计反馈电路后,虽然增益达到了600-700,但出现了振荡效应。
后来参考了一些文献,采用了文献中的成功案例。
但带宽仍然不高,
我们会在下面的进一步学习中改进。