第六章假设检验

合集下载

第六章 假设检验2006

第六章 假设检验2006

第六章参数假设检验假设检验(test of hypothesis)亦称显著性检验(test of statistical significance),就是先对总体的参数或分布做出某种假设,如假设两个总体均数相等,总体服从正态分布或两总体分布相同等,然后用适当的统计方法计算某检验统计量,根据检验统计量的大小来推断此假设应当被接受或拒绝,它是统计推断的另一重要方面。

假设检验可以分为两类:一类是已知总体分布类型,对其未知总体参数的假设作假设检验,称为参数检验(parametric test),主要讨论总体参数(均值、方差、总体率等)的检验;另一类是对未知总体分布类型的总体假设作假设检验,称为非参数检验(non-parametric test),主要包括总体分布形式的假设检验、随机变量独立性的假设检验等。

本章主要介绍有关总体参数(均值、方差、总体率等)的参数检验问题。

第一节假设检验的基本概念一、假设检验问题及基本原理(一)假设检验问题我们先来看个具体的例子。

例6.1某药厂用自动包装机包装葡萄糖,按规定每袋葡萄糖的标准重量为500克,若已知包装机包装的每袋葡萄糖重量服从正态分布,且按以往标准知总体方差σ2=6.52,某日开工后,为检验包装机工作是否正常,随机抽取6袋葡萄糖,测得其平均重量x=504.5(克),问该日自动包装机包装的平均重量是否还是500克?某日随机抽取的6袋葡萄糖的平均重量x=504.5(克),与标准重量500克相比差4.5克,造成该差异的原因有两种可能:①这日自动包装机工作正常,其包装的总体平均重量μ=500克,此6袋葡萄糖的平均重量这一样本均值与总体均值不同,是随机抽样误差造成的;②这日自动包装机工作不正常,其包装的总体平均重量μ≠500克,故从此总体中随机抽取的6袋葡萄糖的平均重量与标准重量存在实质性差异,而不仅仅是抽样误差造成的。

上述两种可能是相互对立的、互不相容的,究竟哪一种可能是对的,可用假设检验的方法来判断。

第6章假设检验

第6章假设检验

第6章假设检验一项包括了200个家庭的调查显示,每个家庭每天看电视的平均时间为小时,标准差为小时。

据报道,10年前每天每个家庭看电视的平均时间是小时。

取显着性水平,这个调查能否证明“如今每个家庭每天收看电视的平均时间增加了”?详细答案:,=,,拒绝,如今每个家庭每天收看电视的平均时间显着地增加了。

为监测空气质量,某城市环保部门每隔几周对空气烟尘质量进行一次随机测试。

已知该城市过去每立方米空气中悬浮颗粒的平均值是82微克。

在最近一段时间的检测中,每立方米空气中悬浮颗粒的数值如下(单位:微克):根据最近的测量数据,当显着性水平时,能否认为该城市空气中悬浮颗粒的平均值显着低于过去的平均值详细答案:,=,,拒绝,该城市空气中悬浮颗粒的平均值显着低于过去的平均值。

安装在一种联合收割机的金属板的平均重量为25公斤。

对某企业生产的20块金属板进行测量,得到的重量数据如下:假设金属板的重量服从正态分布,在显着性水平下,检验该企业生产的金属板是否符合要求?详细答案:,,,不拒绝,没有证据表明该企业生产的金属板不符合要求。

在对消费者的一项调查表明,17%的人早餐饮料是牛奶。

某城市的牛奶生产商认为,该城市的人早餐饮用牛奶的比例更高。

为验证这一说法,生产商随机抽取550人的一个随机样本,其中115人早餐饮用牛奶。

在显着性水平下,检验该生产商的说法是否属实详细答案:,,,拒绝,该生产商的说法属实。

某生产线是按照两种操作平均装配时间之差为5分钟而设计的,两种装配操作的独立样本产生如下结果:操作A操作B=100=50====对=,检验平均装配时间之差是否等于5分钟。

详细答案:,=,,拒绝,两种装配操作的平均装配时间之差不等于5分钟。

某市场研究机构用一组被调查者样本来给某特定商品的潜在购买力打分。

样本中每个人都分别在看过该产品的新的电视广告之前与之后打分。

潜在购买力的分值为0~10分,分值越高表示潜在购买力越高。

原假设认为“看后”平均得分小于或等于“看前”平均得分,拒绝该假设就表明广告提高了平均潜在购买力得分。

统计学第六章假设检验

统计学第六章假设检验

10
即 z 拒绝域,没有落入接受域,所以没有足够理由接受原假设H0, 同
时,说明该类型电子元件的使用寿命确实有了显著的提高。
第六章 假设检验
1. 正态总体均值的假设检验
(2) 总体方差 2 未知的情形
双侧举例:【例 6-6】某厂用生产线上自动包装的产品重量服从正态
分布,每包标准重量为1000克。现随机抽查9包,测得样本平均重量为
100个该类型的元件,测得平均寿命为102(小时), 给定显著水平α=0.05,
问,该类型的电子元件的使用寿命是否有明显的提高?
解:该检验的假设为右单侧检验 H0: u≤100, H1: u>100
已知 z z0.05 1.645
zˆ x u0 n 100 (102 100 ) 2 1.645
986克,样本标准差是24克。问在α=0.05的显著水平下,能否认为生产线
工作正常? 解:该检验的假设为双侧检验 H0: u=0.5, H1: u≠0.5
已知 t /2 (n 1) t0.025 (9 1) 2.306, 而 tˆ x u 986 1000 1.75 可见 tˆ 1.75 2.306
设H0, 同时,说明该包装机生产正常。
其中 P( Z 1.8) 1 P( Z 1.8) 1 0.9281 0.0719 0.05。
第六章 假设检验
单侧举例:【例 6-4】某电子产品的平均寿命达到5000小时才算合格,
现从一批产品中随机抽出12件进行试验,产品的寿命分别为
5059, 3897, 3631, 5050, 7474, 5077, 4545, 6279, 3532, 2773, 7419, 5116
的显著性水平=0.05,试测算该日生产的螺丝钉的方差是否正常?

第六章--假设检验基础课件

第六章--假设检验基础课件
两样本所属总体方差相等且两总体均为正态分布
H 0 : 1 2H 1 :1 2 ( 单 1 2 或 侧 1 2 )
当H0成立时,检验统计量:
t X1X2 ~t, n1n22
Sc2n 11n12
第六章 假设检验基础
Sc2
n1
1S12 n2 1S22
n1 n2 2
X1 X1 2 X2 X2 2 n1 n2 2
第六章 假设检验基础
55、作出推断结论:当P≤时,结论为 按所取检验水准α拒绝H0,接受H1,差异有 统计学显著性意义。如果P> ,结论为按 所取检验水准α不拒绝H0,差异无统计学显 著性意义。其间的差异是由抽样误差引起
的。
第六章 假设检验基础
1.建立检验假设
原 假 设 H0:0 14.1 备 择 假H设1 :0(单 侧 ) 检 验 水 准: 0.05
第六章 假设检验基础
检验假设为:
H 0 : d 0H 1 :d 0 ( 单 d 0 或 侧 d 0 )
当H0成立时,检验统计量:
td0 ~t, n1
Sd n
第六章 假设检验基础
表6第-1二用节药前t后检患儿验血清中免疫球蛋白IgG(mg/dl)含量
二、序号配对设计资用料药前的t 检验 用药后
n1 20, X1 17.15,S1 1.59,n1 34, X2 16.92,S2 1.42
Sc2
n1
1S12 n2 1S22
n1 n2 2
2011.592 3411.422
20342
2.2 0
t X1 X2 17.1516.92 0.550
Sc2
1 n1
1 n2
2.20 1 1 20 34
得治疗前后舒张压(mmHg)的差值(前–后)如下表。问新药和标准药的疗效

卫生统计学课件_第六章_假设检验

卫生统计学课件_第六章_假设检验
16
公式:t
自由度:对子数 - 1
适用条件:两组配对计量资料。 例题:p. 34, 例8
三、两个小样本均数比较的 t 检验
▲目的:由两个样本均数的差别推断两样本
所代表的总体均数间有无差别。 ▲计算公式及意义: t 统计量: 自由度:n1 + n2 –2
18
▲ 适用条件:
(1)已知/可计算两个样本均数及它们的标准差 ;
38
(2)当不能拒绝
II 类错误的概率 β 值的两个规律:
1. 当样本量一定时, α 愈小, 则 β 愈大,反之…; 2.当 α 一定时, 样本量增加, β 减少.
39
4. 正确理解P值的意义, P值很小时“拒绝H0 ”,P值的
大小不要误解为总体参数间差异的大小; 拒绝H0 只是说 差异不为零。 统计学中的差异显著或不显著,和日常生活中所说的差 异大小概念不同. (不仅区别于均数差异的大小,还区别 于均数变异的大小)
统计推断
用样本信息推论总体特征的过程。
包括:
参数估计: 运用统计学原理,用从样本计算出来的统计
指标量,对总体统计指标量进行估计。
假设检验:又称显著性检验,是指由样本间存在的差
别对样本所代表的总体间是否存在着差别做出判断。
第一节
▲显著性检验;
假设检验
▲科研数据处理的重要工具;
▲某事发生了:
是由于碰巧?还是由于必然的原 因?统计学家运用显著性检验来 处理这类问题。
45
41
是非判断: ( )1.标准误是一种特殊的标准差,其 表示抽样误差的大小。 ( )2.N一定时,测量值的离散程度越 小,用样本均数估计总体均数的抽样误差 就越小。 ( )3.假设检验的目的是要判断两个样 本均数的差别有多大。

第6章假设检验

第6章假设检验

H0: 1000
H1: 1000
27
All rights reserved
南审数统学院
双侧检验和单侧检验(续)
研究的问题
假设
双侧检验 H0 H1 = ≠ 左侧检验 < 右侧检验 >
28
All rights reserved

建立的原假设与备择假设应为 H0: 10 H1: 10
23
All rights reserved
南审数统学院
双侧检验和单侧检验(续)
单侧检验

备择假设具有特定的方向性,并含有符号“>”或 “<”的假设检验,称为单侧检验或单尾检验(onetailed test) 备择假设的方向为“<”,称为左侧检验 备择假设的方向为“>”,称为右侧检验
14
All rights reserved
假设的陈述(续)
南审数统学院

零假设的提出
所假设的总体参数值为研究者认为不对的总 体参数值 实质:科学研究中的保守主义 比如:新的工艺或技术没有造成任何改变, 新药没有任何疗效,变量间没有联系

15
All rights reserved
假设的陈述(续)
24
All rights reserved
南审数统学院
双侧检验和单侧检验(续)
例析:

一项研究表明,采用新技术生产后,将会使产品的 使用寿命明显延长到1500小时以上。检验这一结论 是否成立 研究者总是想证明自己的研究结论(寿命延长) 是正确的 备择假设的方向为“>”(寿命延长) 建立的原假设与备择假设应为 H0: 1500 H1: 1500

第六章 假设检验

第六章 假设检验

,接受 H 1 。表明在
第二节 总体均值的假设检验
(二)总体为非正态分布或分布未知 当总体分布为非正态分布且大样本时,检验的 X 统计量为 Z
0
/
n

在“原假定成立”的条件下,只要样本容量充分 大(一般习惯上要求 n≥30),它近似服从标准正 态分布。 如果标准差σ未知,只需用样本标准差S作为它 的估计量代替式中的 σ即可,这时检验统计量为

检验统计量服从t分布与其服从标准正态分布的检验结论判断方法一致
例6.3 某厂购买了一台新的生产机器,生产零件的长度规定为10厘米。为了 检验机器的性能是否良好,质检员随机抽取了25件产品,测得其平均长度为9.8厘 米,标准差为0.4厘米。假设生产的零件长度服从正态分布,问在显著性水平 =0.05时,该机器的性能是否良好。 2 解:设 X 表示该机器生产零件的长度,则有 X ~ N (, ),样本容量n=25,样本 均值 x =9.8厘米,样本标准差 s 0.4 厘米。根据问题提出的假设为: H0 : 0 =10厘米; H 1 : 0 =10厘米 这是一个双侧检验问题,因为总体服从正态分布但总体方差未知,用检验的小 样本数据检验,故当 H 0 成立时,检验统计量为: x 0
t
s n
规定显著性水平为 =0.05,查表得到临界值 t / 2(24) 2.064 ,所以原假设的否 定域为:t 2.064 。 计算检验统计量的值: t x 0 9.8 10 2.5
s 0.4 n 100
因为 |-2.5|=2.5>2.064,落在否定域,所以否定 H 0 显著性水平 =0.05时,不能说该机器的性能良好。 互动地带 6-11
第Ⅱ类错误,也称取伪错误 本来是非真的,却根据检验统计量的值把它给接受了。 发生这种错误的概率通常用 表示,即 P(接受H 0 / H 0非真) 在样本容量一定时,犯两种错误的风险是彼此消长的。两者要同时得到控制只 有增加样本容量。在样本容量受限时,通常根据研究问题的性质决定重点控制 第一类错误的风险还是控制第二类错误的风险。

第六章假设检验

第六章假设检验
当我们把真实的原假设当成假的加以拒绝, 称为第一类错误,也称弃真错误、α错误,犯 第一类错误的概率就是显著性水平α;当我们 把不真实的原假设当作真的加以接受,称为第 二类错误,也称取伪错误、β错误,犯第二类 错误的概率是不确定的。
α也称为生产者风险:在生产者将产品售给消费者时,通常 要进行产品的质量检验,原假设总是产品是合格的,但是检验 时生产者总是担心把合格品检验为不合格品,也就是第一类错 误α,所以α也称为生产者风险。 β也称为消费者风险:在消费者一方总恐怕把不合格品检验 不出来而当作合格品接受,因而β也称为消费者风险。
(二)未知总体分布及总体方差,大样本 1.检验总体均值的统计量
(三)总体为正态分布、方差未知、小样本 1. 检验统计量
2. 拒绝域的临界值 可以根据双侧检验还是单侧检验来确定拒绝域的 临界值。当为双侧检验,显著性水平a时,临界值 为 ;当为右侧检验时,显著性水平a,监界值 为 ;当为左侧检验时,显著性水平为a,临界值 为- 。
备择假设,常用H1表示。即原假设被否定之 后而采取的逻辑对立假设。
(二)检验统计量
有了两个假设,就要根据数据来对他们进行判 断。数据的代表是作为其函数的统计量,对样 本数据进行加工并用来判断是否接受原假设的统计 量称作检验统计量 统计量最常用的是Z统计量、t统计量。
统计量的选择要根据研究的参数及其估计量 的分布、抽样的方式、总体方差是否已知等多种 因素来确定
第四步:确定决策规则。拒绝或没有拒绝原假设的决 策是建立在由样本数据来进行统计检验并将其与假设 的抽样分布比较。抽样分布被分成两个部分,拒绝域 和非拒绝域。如果原假设是真实的,那么统计检验不 可能落入拒绝域。因此,如果统计检验落入了拒绝域, 我们拒绝原假设;否则,我们不能拒绝它。

《概率论》第六章假设检验

《概率论》第六章假设检验

例1 某服务系统的相应时间服从正态分布,需求 其平均相应时间在0.5秒之内。若16次抽样测试得 到样本平均值为x=0.56秒,样本标准差为s=0.12秒, 该服务系统工作是否正常?(=0.05)
解:H0 : 0.5 n=16 =0.05 t1 1.753 t x 0 0.56 0.5 =2 >1.753 s n 0.12 16
因此否定H0 即该服务系统工作不正常
(二)未知方差2,关于期望的检验
1.检验假设(单边)H0 : 0 H1 : 0
2.选取检验统计量 T X 0 [ t(n 1)] Sn
3.由备选假设确定拒绝域形式,W=(t c)
4.由显著性水平决定临界值c=t (n 1),
2.选取检验统计量 T X 0 [ t(n 1)] Sn
3.由备选假设确定拒绝域形式,W=(t c)
4.由显著性水平决定临界值c=t1 (n 1),
P T t1 (n 1)
5.求出检验统计量的观测值,判断是否在拒绝域中
即:若t t1 (n 1),则否定H0; 若t t1 (n 1),则接受H0.
因此这实际上需要比较第二个正态总体 的期望值是与第一个正态总体期望值相 等还是比它高?
这种作为检验对象的假设称为原假设, 通常用 H0表示。比如, 例2中的待检假设为:H0:Eξ=3140
如何根据样本的信息来判断关于总体分布的 某个设想是否成立,也就是检验假设H0成立 与否的方法是本章要介绍的主要内容。
P T t (n 1)
5.求出检验统计量的观测值,判断是否在拒绝域中
即:若t<t (n 1),则否定H0; 若t>t (n 1),则接受H0.
(二)未知方差2,关于期望的检验

第六章-假设检验(Hypothesis-test)

第六章-假设检验(Hypothesis-test)
Back
二、接受域和拒绝域
假设设定之后,我们需要一个判别标准,判断拒绝或 接受H0。利用“小概率原理”,指发生概率很小的随机 事件,在一次试验中几乎是不可能发生的。如果发生 了,就可以拒绝提出的原假设。
例如:有一个厂商声称其产品的合格品率很高,可以达到 99%,则从一批产品(100件)中随机抽取1件,该件是次品 的概率就非常小,只有1%。
➢ 根据α值和抽样分布,确定临界值。 ➢ 将检验统计量的数值与临界值相比较,做出
是否拒绝H0的判断。 ➢ 或以检验统计量计算p值,确定是否拒绝H0 。
Back
五、p值(p-value)
p值:H0为真时,由样本数据给出的犯第Ⅰ类错误 的概率的精确数值(观察到的显著性水平)。
统计软件给出检验统计量的数值时,一般都给出该
Back
四、假设检验的步骤
Step1:提出原假设 H0 和备择假设 H1
例如:H0:μ=μ0;H1:μ≠μ0
Step2:确定显著性水平α
➢ 是决策中的风险。主观确定。 ➢ α一般取0.05或0.01。
四、假设检验的步骤
Step3:选择检验统计量(Test Statistic)
➢ 假设检验也是从抽样分布出发,借由样本数据 计算检验统计量的数值进行推断。
检验统计量数值的p值。
以Zobs表示Z统计量的观测值: 双侧检验時p值=P(|Z|≥ Zobs)
右侧检验时p值=P(Z≥ Zobs)
p值/2
p值/2
以p值进行假设检验:
α/2
1 -α
α/2
p值>α,接受H0
-1.96
1.96(临界值)
计算的检验统计量数值
p值<α ,拒绝H0
Back

第六章 假设检验

第六章 假设检验
2 2 , 1 2 已知,或大样本情况 6.3.1 2 2 两个总体均服从正态分布、两个总体的方差 1 , 2 已知;或两 个总体分布及方差未知,但大样本情况下,样本均值之差 X 1 X 2 的抽样分布服从或近似服从正态分布,即可采用检验 统计量:
第六章 假设检验 6.2 总体均值的假设检验
【例6-7】某厂采用自动包装机分装产品,假定每包产 品的重量服从正态分布,每包标准重量为1000克。某 日随机抽查9包,测得样本平均重量为986克,样本标 准差为24克。试问在0.05的显著性水平上,能否认为 这天自动包装机工作正常?
第六章 假设检验 6.2 总体均值的假设检验
6.1
第六章 假设检验 假设检验的原理
6.1.2
假设检验的步骤
(三)选取显著性水平,确定原假设的拒绝域和接受域 显著性水平表示原假设为真时拒绝原假设 H 0 的最大概率, 即拒绝原假设所冒的风险,用 表示。 通常取 0.05 或 0.01
6.1
第六章 假设检验 假设检验的原理
第六章 假设检验 6.2 总体均值的假设检验
6.2.3 2未知时小样本情况下总体均值的假设检验
设总体服从正态分布 X ~ N (, 2 ) ,在小样本抽样情况下,利用 t检验法对总体均值的检验,其检验统计量及分布为:
t X ~ t (n 1) s/ n
第六章 假设检验 6.2 总体均值的假设检验
6.1
第六章 假设检验 假设检验的原理
6.1.4
假设检验中的P值
H1 : 0
(2)左侧检验:H 0 : 0
P值= P(Z zc 0 )
H 0 : 0
(3)右侧检验:
H1 : 0

第六章 假设检验

第六章 假设检验

所以有 C0 = 6 × 1.65 + 250 = 因此犯第二类错误的概率是
259.9
X − 270 C0 − 270 β = P{ X ≤ C0 } = P{ } ≤ 6 6 259.9 − 270 = P{z ≤ = −1.68} = φ (−1.68) 6 = 1 − φ (1.68) = 0.0465
y
0.0044
2.61
x
从(1)的计算结果可以看出,在超市提出的假设成立的 )的计算结果可以看出, 情况下,随机抽取的200件产品中,有6件是次品的概率 件产品中, 情况下,随机抽取的 件产品中 件是次品的概率 为0.0044,显然这是一个小概率事件,认为在一次抽查中 ,显然这是一个小概率事件, 不应该发生,现在它发生了, 不应该发生,现在它发生了,我们怀疑超市提出的假设不 应该成立。也就是拒绝这批产品进入超市。 应该成立。也就是拒绝这批产品进入超市。 在这个例子中,超市提出了假设, 在这个例子中,超市提出了假设,通过抽样获得样本数
这两类错误之间的关系是:在样本容量一定时,犯第一类 这两类错误之间的关系是:在样本容量一定时, 错误概率较大时,犯第二类错误地概率较小;反之, 错误概率较大时,犯第二类错误地概率较小;反之,犯第 一类错误概率较小时,犯第二类错误概率较大。 一类错误概率较小时,犯第二类错误概率较大。要想两类 错误的概率都减小,只有增加样本容量。 错误的概率都减小,只有增加样本容量。 5、显著性水平 、 显著性水平:是指人们犯第一类错误概率的最大允许值。 显著性水平:是指人们犯第一类错误概率的最大允许值。 注意:显著性水平是人们根据自己所研究的问题来确定, 注意:显著性水平是人们根据自己所研究的问题来确定, 在经济学和其他社会科学中,常用选择的显著性水平是5% 在经济学和其他社会科学中,常用选择的显著性水平是 或者10%,在卫生和医药统计中,常用选择的显著性水平 或者 ,在卫生和医药统计中, 是1%。在我们经济学中,除非特别声明,一般都以 。在我们经济学中,除非特别声明,一般都以5% 作 为显著性水平。 为显著性水平。 6、临界值和拒绝域 、 拒绝域: 所围城的区域。 拒绝域:拒绝域就是由显著性水平 α 所围城的区域。 临界值:由给定的显著性水平确定的拒绝域的边界值, 临界值:由给定的显著性水平确定的拒绝域的边界值,称 为临界值。 分位点所对应的值。 为临界值。实际上临界值就是 α 分位点所对应的值。

第六章 假设检验

第六章 假设检验

第一步:建立假设 第一步:
H0 : µ = 8000; H1 : µ > 8000
原假设的选取原则: 原假设的选取原则:没有充分理由 不能轻易否定的命题。 不能轻易否定的命题。
对立假设的选取原则:没有把握不 对立假设的选取原则: 能轻易肯定的命题。 能轻易肯定的命题。
第二步:寻找检验统计量 第二步:
2
第三步:给定显著性水平和临界值 第三步:
• 在原假设 H0 为真时,X 应该接近8000。 为真时, 如果 X 远离8000 ,就有理由怀疑原 假设为真。 假设为真。 • 例中,8300与8000之间算近还是算远? 例中, 之间算近还是算远? • 需要定一个界限,记此界限为c。 需要定一个界限,记此界限为c
假设检验是要根据样本的观测值对原假作 出判断,接受原假设或者拒绝。 出判断,接受原假设或者拒绝。 由于样本的随机性,客观情况未知, 由于样本的随机性,客观情况未知,有可 能犯错误。 能犯错误。 例:产品验收,有时面对的整批产品是合 产品验收, 格的,有时面对的整批产品是不合格的。 格的,有时面对的整批产品是不合格的。 拒收了合格率高的产品或者接受了合格率 低的产品都是犯了错误。 低的产品都是犯了错误。
例:餐厅的营业额问题: 餐厅的营业额问题:
H0 : µ = 8000; H1 : µ பைடு நூலகம் 8000
N(µ0 ,σ )
2 0
N(µ,σ )
2
在原假设成立的条件下,新菜单挂出后, 在原假设成立的条件下,新菜单挂出后, 每天营业额仍然服从正态分布
N(8000,640 )
如今获得了一个容量为9的样本, 如今获得了一个容量为9的样本,此时样 服从: 本均值 X 服从: 1 2 N(8000, ×640 ) 9
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
分多一些,也不能让假药混进来。 高考录取宁可放大β值,使不合格的学生混
进来也不能把合格的学生抛弃了
5.和区间估计的关系
在假设检验中接受H0,相当于区间估计 中落在估计区间内
6.假设检验的基本步骤
1.提出原假设和备择假设 2.确定适当的检验统计量 3.规定显著性水平 4.计算检验统计量的值 5.作出统计决策
第六章 假设检验
第一节 假设检验的一般问题 第二节 方差已知条件下总体均值检验 第三节 方差未知条件下总体均值检验
学习目标
了解假设检验的基本思想 掌握假设检验的步骤 对实际问题作假设检验 利用置信区间进行假设检验
第一节 假设检验的一般问题
一、假设检验的步骤及有关概念 二、假设检验的两类错误 三、假设检验的类型
1.提出原假设和备择假设
什么是原假设?( Null Hypothesis) 1. 通常是研究者想收集证据予以反对的假设,又
称“零假设” 2. 如果错误地作出决策会导致一系列后果 3. 总是有等号, 或 4. 表示为 H0
H0: 某一数值 指定为 = 号,即 或 例如, H0: 3190(克)
... 如果这是总 体的真实均值
20
= 50
H0
样本均值
基本思想
小概率事件在一次试验中可以认为是几乎不 可能发生的。为了检验一个假设H0是否成立, 我们先假设H0是成立的,如果根据这个假定, 导致一个小概率事件的发生,从而说明原来 的假设H0是不正确的,因此我们拒绝假设H0, 如果没有由此而导出不合理的结果,我们则 不称能为拒被绝择假H0,设即。接用受H1假表设示H。0,与H0相对的假设
二、假设检验的两类错误
1. 第一类错误(弃真错误)
原假设为真时拒绝原假设 会产生一系列后果 第一类错误的概率为
被称为显著性水平
2. 第二类错误(取伪错误)
原假设为假时接受原假设 第二类错误的概率为(Beta)
错误和 错误的关系
和的关系就像 翘翘板,小就 大, 大就小
你不能同时减 少两类错误!
3.检验的方法
反证法 和一般的反证法不同之处有两点 第一此反证法依赖于概率的大小,改变概率
(检验水平)的大小,可能会改变结论 第二此反证法无论证明的不等式成立不成立
都会有一种判断。
4.检验水平的含义
α为弃真概率 β为存伪概率 α、β不能同时缩小或扩大 只能根据问题的实际意义调整它们 作为药品的合格率,宁可放大α使弃真的部
单侧检验 (原假设与备择假设的确定)
例如,采用新技术生产后,将会使产品的使用寿 命明显延长到1500小时以上
提出原假设和备择假设
什么是备择假设?(Alternative
Hypothesis)
1.通常是研究者想收集证据予以支持的假设
2.总是有不等号: , 或
3.表示为 H1
值H1 : < 某一数值, 某一数值或 某一数
例如, H1 : 3910(克)
<
3910(克),
3910(克)或
2.确定适当的检验统计量
1 - 接受域
置信水平 拒绝域 /2
临界值
H0值 临界值
样本统计量
单侧检验 (原假设与备择假设的确定)
人们进行一项研究,通常是为了得到更有利 于人类或个人的成果,在研究结束之后,研究 人员自然需要寻找充分的证据来证明研究 是否成功
通常将认为研究结果是无效的说法或理论 作为原假设H0,把希望(想要)证明的假设作 为备择假设,或者说,将所研究的假设作 为备择假设H1
一、假设检验的步骤及有关概念
1.统计假设 2.基本思想 3.检验的方法 4.检验水平的含义 5.和区间估计的关系 6.假设检验的基本步骤
1.统计假设
就是对总体的分布类型或分布中某些未知参 数作某种假设,然后由抽取的子样所提供的 信息对假设的正确性进行判断的过程。
总体参数包括总体均值、 比例、方差等 分析之前必需陈述
双侧检验 (显著性水平与拒绝域 )
抽样分布
拒绝域 /2
1 - 接受域
置信水平 拒绝域 /2
临界值
H0值 临界值 样本统计量
双侧检验 (显著性水平与拒绝域 )
抽样分布
拒绝域 /2
1 - 接受域
置信水平 拒绝域 /2
临界值
H0值 临界值
样本统计量
双侧检验 (显著性水平与拒绝域 )
抽样分布
拒绝域 /2
什么检验统计量?
1.用于假设检验问题的统计量
2.选择统计量的方法与参数估计相同,需考虑
总体是正态总体还是非正态总体,是大样本还是小 样本
总体方差已知还是未知
3.检验统计量的基本形式为
z X 0 n
t X 0
S
n
3.规定显著性水平
什么显著性水平?(significant level) 1. 是一个概率值 2. 原假设为真时,拒绝原假设的概率,也就
什么是假设检验? Hypothesis testing
概念
事先对总体参数的数值提出某种假设,然后利用 样本所提供的信息检验假设是否成立的过程。
特点
采用逻辑上的反证法 依据统计上的小概率原理
2.假设检验的基本思想
这个值不像我 们应该得到的 样本均值 ...
抽样分布
... 因此我们拒 绝假设 = 50
三、假设检验的类型
假设 H0 H1
研究的问题 双侧检验 左侧检验 右侧检验
= 0
0
0
≠0
< 0
> 0
双侧检验 (原假设与备择假设的确定)
不论是拒绝H0还是接受H0,我们都必需采 取相应的行动措施
例如,某种零件的尺寸,要求其平均长度 为10厘米,大于或小于10厘米均属于不合 格
建立的原假设与备择假设应为
H0: = 10 H1: 10
双侧检验 (例子)
该企业生产的零件平均长度是4厘米吗? (属于决策中的假设)
提出原假设: H0: = 4 提出备择假设: H1: 4
双侧检验 (显著性水平与拒绝域 )
ቤተ መጻሕፍቲ ባይዱ
抽样分布
拒绝域 /2
1 - 接受域
置信水平 拒绝域 /2
临界值
H0值
样本统计量 临界值
是决策中所面临的风险。 3. 表示为 (alpha)
常用的 值有0.01, 0.05, 0.10
4. 由研究者事先确定
4.计算检验的统计量 作出统计决策
计算检验的统计量
根据给定的显著性水平 ,查表得出相应的
临界值Z 或Z /2
将检验统计量的值与 水平的临界值进行
比较
得出接受或拒绝原假设的结论
相关文档
最新文档