00023高等数学工本00023
2019年10月全国自考高等数学工本00023真题试题(含详解)
2019年10月全国自考高等数学(工本)00023试题及其详解一、单项选择题:本大题共5小题。
每小题3分。
共l5分。
在每小题列出的备选项中只有一项是最符合题目要求的,请将其选出。
1.在空间直角坐标系中,点(0,0,2)-在A.x 轴上B.y 轴上C.z 轴上D.Oxy 平面上解:答案是C2.函数(,)f x y =(0,0)处A.连续B.间断C.偏导数存在D.可微解:答案是B.3.已知cos cos sin sin x ydx x ydy -是某个函数(,)u x y 的全微分,则(,)u x y =A. sin cos y xB. sin sin x yC. sin cos x y -D. sin cos x y 解:D 选项,d(sinxcosy)=cosxcosydx-sinxsinydy.答案是D.4.下列微分方程中,属于一阶线性非齐次微分方程的是A.3()ydy x y dx =+B.2(2)xdy x y dx =+C.sin 19dy x y dx -=D.29dy xy dx+= 解:B 选项,对2(2)xdy x y dx =+y x =.答案是B. 5.下列无穷级数中,绝对收敛的无穷级数是 A. 11(1)3n n n -∞=-∑ B. 1(1)2n n n ∞=-∑ C. 1(1)n n n ∞=-∑ D. 1(1)21n n n n ∞=-+∑ 解:答案是A.二、填空题:本大题共5空,每空2分,共10分。
6.与向量{2,0,α=同方向的单位向量是 .解:{1=,0,222αα=⎨⎪⎪⎩⎭.答案是22⎨⎪⎪⎩⎭. 7.设函数22(,)f x y x y x y +-=+,则(,)f x y = .解:令u=x+y,v=x-y,则2222(,).222u v u v u v f u v +-+⎛⎫⎛⎫=+= ⎪ ⎪⎝⎭⎝⎭ 所以(,)f x y =222x y +.答案是222x y +.8.设积分区域22:9D x y +≤,则二重积分22()D f x y dxdy +⎰⎰在极坐标下的二次积分为 .解:答案是23200()d f r rdr πθ⎰⎰. 9.微分方程(1)612y x y y '''+-+=的特解*y = .解:简化微分方程,令0y ''=,则(1)612x y y '-+=,解得 y=6611121dx dx x x e e C x ---⎡⎤⎰⎰+⎢⎥-⎣⎦⎰=6661161212(1)1(1)dx dx x x e e C x C x x ---⎡⎤⎰⎰⎡⎤+=-+⎢⎥⎣⎦--⎣⎦⎰=62(1)C x +-. 因为0y ''=,所以C=0.故取特解*y =2.答案是2. 10.设函数()f x 是周期为2π的周期函数,傅里叶级数为11(1)sin 2n n nx n π-∞=-+∑,,则()f x 的傅里叶系数0a = .解:0a =π.答案是π.三、计算题:本大题共l2小题,每小题5分,共60分。
2010年1月自学考试00023高等数学(工本)真题试卷及参考答案
2010年1月高等教育自学考试全国统一命题考试高等数学(工本)试题课程代码:00023一、单项选择题(本大题共5小题,每小题3分,共15分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。
错选、多选或未选均无分。
1.在空间直角坐标系中,方程x 2+y 2=2的图形是( )A.圆B.球面C.圆柱面D.旋转抛物面2.设函数f(x+y,x-y)=xy2y x 22−,则f(x,y)=( ) A.22y x xy − B.22y x xy 2− C. 22y x xy 4− D. )y x (2xy 22− 3.设积分区域Ω:x 2+y 2+z 2≤1,三重积分I=⎰⎰⎰Ω+dxdydz )1z (,则( ) A.I<0B.I=0C.I>0D.I 与z 有关4.微分方程0y 2y 3y =+'−''的通解y=( )A.C 1e -x +C 2e 2xB. C 1e -x +C 2e -2xC. C 1e x +C 2e -2xD. C 1e x +C 2e 2x5.下列无穷级数中发散的无穷级数是( ) A.∑∞=+1n 221n 3n B. ∑∞=+−1n n 1n )1( C. ∑∞=−−3n 1n n ln )1( D. ∑∞=+1n 1n n 32 二、填空题(本大题共5小题,每小题2分,共10分)请在每小题的空格中填上正确答案。
错填、不填均无分。
6. 设函数z=u+v, 而u=x+y, v=xy ,则xz ∂∂=___________. 7. 设区域D :|x|≤1,0≤y ≤1,则二重积分⎰⎰+D 2dxdy )x sin x 1(的值等于___________. 8. 设λ是正常数,并且xy λdx+x λydy 是其个函数u(x,y)的全微分,则λ=___________.9. 微分方程3y y 2y =+'+''的一个特解为y*=___________.10. 函数f(x)=sin x 展开成x 的幂级数为___________.三、计算题(本大题共12小题,每小题5分,共60分)11.求过点P (4,-1,2)并且与直线L :⎩⎨⎧−=−−=−+1z y x 7z y x 平行的直线方程. 12.设函数z=)x ,x y (f ,其中f 是可微函数,求yz ,x z ∂∂∂∂. 13.已知函数z=e 3y (x 2+2y-x),求y x z 2∂∂∂. 14.求函数f(x,y,z)=xyz-x 2-y 2+3z 在点(-1,-1, 2)处的梯度.15.求曲面z=4-x 2-y 2上平行于平面2x+2y+z-7=0的切平面方程.16.计算二重积分I=⎰⎰+D dxdy )y 2x (,其中D 是由坐标轴和直线x+y=4所围成的区域. 17.计算三重积分I=⎰⎰⎰Ω++dxdydz )z y x(222,其中积分区域Ω:x 2+y 2+z 2≤1.18.计算对弧长的曲线积分⎰+Lds )y 2x 3(,其中L 是连接点(1,0)和(0,1)的直线段. 19.计算对坐标的曲线积分⎰+L xdy ydx ,其中L 是椭圆1b y a x 2222=+的逆时针方向. 20.求微分方程(1+x 2)dy+(1+y 2)dx=0的通解.21.求幂级数∑∞=+1n n 32x 1n n 的收敛半径和收敛区间. 22.设函数f(x)=x+1,x ∈[)ππ−,的傅里叶级数展开式为∑∞=++1n n n 0)nx sin b nx cos a(2a 求系数a 5 .四、综合题(本大题共3小题,每小题5分,共15分)23.求由四个平面x=0, y=0, x=1, y=1所构成的柱面和平面z=0及x+y+z=7所围成的立体的体积.24.设无穷级数∑∞=1n 2n a 和∑∞=1n 2n b 均收敛,证明无穷级数∑∞=1n n n b a 是绝对收敛.25.设曲线y=y(x)在其上任意点(x,y )处的切线斜率为yx 1+,且过点(-1,0),求该曲线的方程.。
高等数学工本00023历年真题题型解题方法总结10201
高等数学工本00023历年真题题型解题方法总结201110201高等数学(工本)考试考题解题方法总结代码:00023一、选择题共5小题,共15分,每题3分1、考点:向量夹角,假设向量a = {a1,a2, a3},b ={b1,b2,b3}解题方法:cos a = a ·b / |a| ·|b|;2、考点:函数性质,函数的代替法运用推理顺序:可导(偏导数)→连续→可微解决方法:f(0, 0) = 0,所以f(x,y)在(0,0)点连续Fx(x0,y0) = Fy(x0,y0)=0,则点F(x0,,y0)是函数驻点3、考点:求面积积分、交换积分顺序解决方法:通过图解特殊点得出变量的定义域4、考点:微分方程:y’+ P(x)*y =Q(x)与y’’+p(x)*y’+ q(x)*y= f(x)通解与特解(无常数C)解题方法:公式法与特征根法(f(x)=0,两个根的关系对应方程通解)微分方程分为:一阶方程(可分离变量方程、齐次方程、一阶线性微分方程)二阶方程5、考点:无穷级数收敛性∑Un解题方法:无穷级数性质:∑ C*Un =C*∑Un; ∑Un和∑ Vn都收敛,那么∑ (Un+Vn)收敛等;正项级数的审敛法:∑Un和∑ Vn都是正项级数比较审敛法,0≤Un≤Vn,互相同时收敛;比较审敛法的极限,lim Un / Vn = L(0比值审敛法和根值审敛法p = lim Un+1 / Un和p = n√Un当P当p> 1时,级数发散;当p = 1时,级数可能收敛或发散;特殊级数:等比数列总和∑a*q’n-1当|q|当||q|〉1时,该级数发散;P级数∑ 1/N的p次方当P > 1时,该级数收敛;当P 二、填空题共5小题,共10,每题2分6、考点:向量简单运算假设向量a={a1,a2,a3},b= {b1,b2,b3}解题方法:a·b= a1·b2 + a2·b2 + a3·b3a xb= (a2·b3–a3·b2)·i–(a1·b3 –a3·b1)·j +(a 1·b2- a2·b1)·k7、考点:设区域,求积分I=f(x)8、考点:求二重积分I=f (x)9、考点:微分方程的通解10、考点:傅里叶级数的和函数三、计算题共12小题,共60分,每题5分11、考点:求F(x,y,z)曲面切点法线方程(垂直的直线方程)解题方法:曲线一次方程一般式Ax+ By + Cz+D=0曲面法向量为{A, B,C},法线方程(x–x0)/A=(y-y0)/B = (z—z0)/C点的切面方程A(x-x0)+ B(y –y0)+ C(z-z0)=0二次曲面方程切点F(x0,y0,z0)的法向量{Fx(x0,y0,z0),Fy(x0,y0,z0),Fz(x0,y0,z0)}12、考点:微分方程的求导与积分13、考点:求导数xz ∂∂。
2023年4月高等数学(00023)试卷参考答案
2023年4月高等教育自学考试全国统一命题考试高等数学(工本)试题答案(课程代码00023)一、单项选择题:本大题共10小题,每小题3分,共30分1.B2.C3.B4.A5.D6.D7.A8.D9.C10.C二、计算题:本大题共10小题,每小题6分,共60分11.解:由题意可得设平面方程为1x y za a a++= 将点(),-321,带入上述平面方程可得a =2,故平面方程为20x y z ++-=12.解:由题意可得取所求直线的方向向量为{}3,0,1n =-则所求的直线方程为x y z --+==-12330113.解:令(),,F x y z x y z =++-2222315 ,则()()()()()()()2,2,12,2,12,2,1,,2,4,64,8,622,4,3x y z nF F F x y z ====切平面方程为()()()2242310243150x y z x y z -+-+-=⇒++-=14.解:由题意可得grad u u u u i j k y zi xyz j xy k x y z∂∂∂=++=++∂∂∂222 所以有()(),,,,grad u y zi xyz j xy ki j k =++=++221111112215.解:令(),,F x y z x y z xyz =++-3333,则有2233,33x z F x yz F z xy =-=-则有x z F z x yz yz x x F z xy z xy∂--=-=-=∂--22223333 16.解:积分区域为():,D θπr ≤≤≤≤0202极坐标,则πDπd θr dr ==⎰⎰222016317解:曲线::,L x y ds =-→==222,则LI y ds π-===⎰⎰2222418解:由意义可知()(),,,xy xy P x y ye xy y Q x y xe x xy =++=++22,由格林公式可得()()()xy xy L D DQ P I ye xy y dx xe x xy dy dxdy y dxdy x y ⎛⎫∂∂=+++++=-=- ⎪∂∂⎝⎭⎰⎰⎰⎰⎰221 其中区域:,D y y x -≤≤≤≤2111关于x 轴对称,则()yDDy dxdy dxdy dy dx --=-=-=-⎰⎰⎰⎰⎰⎰211141319解:该级数nn ∞=∑013为几何级数,且其公比q =<113,故该级数收敛。
2019年10月全国自考高等数学工本00023真题试题(含详解)
2019年10月全国自考高等数学(工本)00023试题及其详解一、单项选择题:本大题共5小题。
每小题3分。
共l5分。
在每小题列出的备选项中只有一项是最符合题目要求的,请将其选出。
1.在空间直角坐标系中,点(0,0,2)-在A.x 轴上B.y 轴上C.z 轴上D.Oxy 平面上解:答案是C2.函数(,)f x y =(0,0)处A.连续B.间断C.偏导数存在D.可微解:答案是B.3.已知cos cos sin sin x ydx x ydy -是某个函数(,)u x y 的全微分,则(,)u x y =A. sin cos y xB. sin sin x yC. sin cos x y -D. sin cos x y 解:D 选项,d(sinxcosy)=cosxcosydx-sinxsinydy.答案是D.4.下列微分方程中,属于一阶线性非齐次微分方程的是A.3()ydy x y dx =+B.2(2)xdy x y dx =+C.sin 19dy x y dx -=D.29dy xy dx += 解:B 选项,对2(2)xdy x y dx =+变形,得2dy y x dx x-=.答案是B. 5.下列无穷级数中,绝对收敛的无穷级数是 A. 11(1)3n n n -∞=-∑ B. 1(1)2n n n ∞=-∑ C. 1(1)n n n ∞=-∑ D. 1(1)21n n n n ∞=-+∑ 解:答案是A.二、填空题:本大题共5空,每空2分,共10分。
6.与向量{2,0,α=同方向的单位向量是 .解:{1=,0,222αα=⎨⎪⎪⎩⎭.答案是22⎨⎪⎪⎩⎭. 7.设函数22(,)f x y x y x y +-=+,则(,)f x y = .解:令u=x+y,v=x-y,则2222(,).222u v u v u v f u v +-+⎛⎫⎛⎫=+= ⎪ ⎪⎝⎭⎝⎭ 所以(,)f x y =222x y +.答案是222x y +.8.设积分区域22:9D x y +≤,则二重积分22()D f x y dxdy +⎰⎰在极坐标下的二次积分为 .解:答案是23200()d f r rdr πθ⎰⎰. 9.微分方程(1)612y x y y '''+-+=的特解*y = .解:简化微分方程,令0y ''=,则(1)612x y y '-+=,解得 y=6611121dx dx x x e e C x ---⎡⎤⎰⎰+⎢⎥-⎣⎦⎰=6661161212(1)1(1)dx dx x x e e C x C x x ---⎡⎤⎰⎰⎡⎤+=-+⎢⎥⎣⎦--⎣⎦⎰=62(1)C x +-. 因为0y ''=,所以C=0.故取特解*y =2.答案是2. 10.设函数()f x 是周期为2π的周期函数,傅里叶级数为11(1)sin 2n n nx n π-∞=-+∑,,则()f x 的傅里叶系数0a = .解:0a =π.答案是π.三、计算题:本大题共l2小题,每小题5分,共60分。
00023高等数学(工本) 笔记
高等数学是大学阶段数学的重要学科,是理工科学生必修的一门课程。
它不仅是理工科学生的必修课,也是数学专业学生的基础课,其内容包括微积分、复变函数、常微分方程、泛函分析等。
它为学生提供了深刻的数学基础,培养了学生的数学思维和分析解决问题的能力。
以下将对高等数学做一个全面的评估,并撰写一篇深入、广泛的文章。
一、微积分微积分是高等数学中的重要组成部分,涉及到导数、积分、微分方程等内容。
在微积分中,我们学习了函数的极限、导数、微分、积分等内容,在实际运用中常常用于求解函数的极值、曲线的切线方程、定积分的应用等。
二、复变函数复变函数是高等数学中的一门重要课程,其内容包括复数、解析函数、留数定理等。
复变函数的概念和方法对数学、物理、工程等领域具有重要的应用价值,是现代科学技术发展中的重要工具。
三、常微分方程常微分方程是高等数学中的一门重要课程,其内容包括一阶微分方程、高阶微分方程、微分方程的解法等。
常微分方程在科学技术发展中有着广泛的应用,例如在物理学、化学、生物学等领域都有着重要的应用。
四、泛函分析泛函分析是高等数学中的一门重要课程,其内容包括巴拿赫空间、希尔伯特空间、算子理论等。
泛函分析在数学、物理、工程等领域都有着广泛的应用,是数学的重要分支之一。
通过以上论述,我们可以看出高等数学在提升学生的数学素养、提高学生的分析问题的能力方面起着至关重要的作用。
它在实际的科学、技术领域中也有着广泛的应用,对于培养学生的科学技术素养有着重要的作用。
在我个人看来,高等数学是一门非常重要的学科,它不仅有着深厚的理论基础,同时也有着广泛的应用价值。
通过学习高等数学,可以培养学生的抽象思维能力和解决实际问题的能力,帮助学生更好地理解和应用数学知识。
我认为高等数学是大学阶段不可或缺的一门重要学科。
高等数学是一门具有深刻理论基础和广泛应用价值的学科,对于培养学生的数学思维和解决问题的能力有着重要的作用。
通过学习高等数学,可以帮助学生更好地理解和应用数学知识,为他们未来的学习和工作打下坚实的数学基础。
自考00023《高等数学(工本)》考点押题版
1. a b a x bx a y b y a z bz
2. a b 的充要条件是: a b 0
3. cos( ab)
ab ab
2:向量的向量积{一级重点}{选择、计算} 公式:
i
1. a b a x
j ay by
k a z (a y bz a z b y )i (a z bx a x bz ) j (a x b y a y bx )k bz
2
1
dx
r2 ( )
r1 ( )
rdr
z 2 ( r , )
z1 ( r , )
f (r cos , r sin , z )dz
x r cos sin 3. 利用球面坐标计算: 为 y r sin sin y r cos
z z u z v x u x v x
z z u z v y u y v y
2. 设 z f (u, v), u ( x, y ), v ( x, y )
dz z du z dv dx u dx v dx
3. 设 F ( x, y, z ) 0
f ( x, y)dxdy, 曲面 : z
D
f ( x, y )
2. 设 V 为 的体积: V dv
3. 设 为曲面 z f ( x, y )
曲面的面积为 S
1 f x2 f y2 d
第四章 曲线积分与曲面积分
1:两类曲线积分的计算{一类重点}{计算题} 公式: 1. 对弧长的曲线积分计算: {1}若 L: y f ( x), a x b ,则
成人自考00023《高等数学(工本)》考点
成人自考00023《高等数学(工本)》考点成人自考00023《高等数学(工本)》的考点主要包括以下内容:1. 函数与极限:函数的概念、函数的性质、函数的极限、无穷小与无穷大、极限存在准则、函数的连续性等。
2. 导数与微分:导数的定义、导数的运算法则、高阶导数、隐函数与参数方程的导数、微分的定义、微分的运算法则、微分中值定理等。
3. 微分中值定理与导数的应用:罗尔定理、拉格朗日中值定理、柯西中值定理、洛必达法则、泰勒公式、函数的单调性与极值、函数的凹凸性与拐点等。
4. 不定积分与定积分:不定积分的概念与性质、基本积分表、换元积分法、分部积分法、定积分的概念与性质、定积分的计算方法、定积分的应用等。
5. 微分方程:微分方程的基本概念、一阶微分方程的解法、高阶线性微分方程的解法、常系数线性微分方程的解法、变系数线性微分方程的解法等。
6. 无穷级数:数列极限的概念与性质、数列极限存在准则、无穷级数的概念与性质、正项级数的审敛法、交错级数的审敛法、幂级数的收敛半径等。
7. 空间解析几何:空间直线的方程与位置关系、平面的方程与位置关系、空间曲线的方程与位置关系、空间曲面的方程与位置关系、空间直线与平面的位置关系等。
8. 多元函数微分学:偏导数与全微分、多元函数的极值与条件极值、隐函数与参数方程的偏导数、多元函数的泰勒公式等。
9. 重积分与曲线积分:二重积分的概念与性质、二重积分的计算方法、三重积分的概念与性质、三重积分的计算方法、曲线积分的概念与性质、曲线积分的计算方法等。
以上是成人自考00023《高等数学(工本)》的主要考点,考生在备考过程中应重点掌握这些内容,并进行大量的练习和习题的解析,以提高自己的理解和应用能力。
00023自考高等数学(工本)
00023自考高等数学(工本) D则常数c=______.7.函数z =224y x --ln(x 2+y 2-1)的定义域为______. 8.二次积分I =⎰⎰--21011d d y x f ( x, y )y ,交换积分次序后I =______.9.已知y =sin2x +ce x 是微分方程y ''+4y =0的解,则常数c =______. 10.幂级数∑∞=+013n nn x 的收敛半径R =______.三、计算题(本大题共12小题,每小题5分,共60分)11.将直线⎩⎨⎧=-++=++0432023z y x z y x 化为参数式和对称式方程.12.设方程f ( x + y + z, x, x + y )=0确定函数z = z( x, y ),其中f 为可微函数,求xz∂∂和y z ∂∂.13.求曲面z = 2y + ln y x 在点(1,1,2)处的切平面方程.14.求函数z = x2 - y2在点(2,3)处,沿从点A (2,3)到点B(3,3+3)的方向l的导数.15.计算二重积分()⎰⎰+Dy xxy ddsin32,其中积分区域D是由y = | x |和y = 1所围成.16.计算三重积分I=⎰⎰⎰Ωzyxxy ddd,其中积分区域Ω是由x2+y2=4及平面z = 0,z = 2所围的在第一卦限内的区域.17.计算对弧长的曲线积分I=⎰Ldsy2,其中L为圆周x2+y2=9的左半圆.18.计算对坐标的曲线积分I =⎰-++Lyy x x x y d )1(d )1(22,其中L 是平面区域D :x 2 + y 2 ≤4的正向边界.19.验证y 1 = e x ,y 2 = x 都是微分方程(1 – x )y ''+y x '-y = 0的解,并写出该微分方程的通解。
20.求微分方程x ye xy=+1d d 的通解.21.设α为任意实数,判断无穷级数∑∞=1n 2)sin(n n α的敛散性,若收敛,是绝对收敛还是条件收敛?22.设函数f ( x )=x 2cos x 的马克劳林级数为∑∞=0n nn x a ,求系数a 6.四、综合题(本大题共3小题,每小题5分,共15分)23.设函数z=ln(x +y ),证明2x xz ∂∂+2y y z ∂∂=1.24.求函数f ( x, y )=3+14y +32x -8xy -2y 2-10x 2的极值.25.将函数f ( x )=322--x x x 展开为x 的幂级数.自考高等数学(工本)历年真题(2010-2016)齐全,请@上传者“GeDa4012”11。
00023高等数学(工本)
00023 高等数学(工本)引言高等数学是一门基础性的数学课程,它的内容和方法贯穿于各个学科的研究中。
本文档将介绍高等数学的一些基本概念和方法,帮助读者更好地理解和应用高等数学知识。
一、函数与极限1.1 函数的概念函数是数学领域中一种基本的数学对象,它描述了输入和输出之间的关系。
函数可以用多种方式表示,包括数学表达式、图形或者数据集合等。
1.2 极限的定义极限是高等数学中一个重要的概念,它描述了函数在某个点附近的行为。
通过极限的概念,可以研究函数的连续性、导数和积分等重要性质。
二、微积分2.1 导数与微分导数和微分是微积分的基本概念,它们描述了函数在某个点处的变化率。
通过导数和微分,可以研究函数的最值、拐点和曲线的切线等问题。
2.2 积分与不定积分积分是微积分中的另一个重要概念,它描述了函数在某个区间上的累积效应。
通过积分,可以求解曲线下的面积、求解物理学中的平均值等问题。
三、级数3.1 数项级数数项级数是一种特殊的数列,它的每一项都是一个数。
通过对数项级数的求和,可以研究级数的收敛性和发散性,以及求解级数的和的问题。
3.2 函数项级数函数项级数是一种特殊的函数序列,它的每一项都是一个函数。
通过对函数项级数的求和,可以研究函数项级数的收敛性和发散性,以及求解函数项级数的和的问题。
四、微分方程微分方程是描述变量之间关系的方程,它是自然科学和工程技术中一种常见的数学模型。
通过求解微分方程,可以预测和分析各种现象和问题,如物体的运动、电路的行为等。
结论高等数学是一门基础性的数学课程,它具有广泛的应用领域和深远的影响。
本文档介绍了高等数学的一些基本概念和方法,希望能够帮助读者更好地理解和应用高等数学知识。
参考文献1.Stewart, J. (2008). Calculus: Early Transcendentals.Cengage Learning.2.Cao, W. (2013). 微积分学教程. 北京大学出版社.以上文档使用Markdown格式编写,方便阅读和编辑。
高等数学(工本)00023历年试题及参考答案
高等数学(工本)历年试题及参考答案 自学考试高等数学(工本)试题一、单项选择题(本大题共5小题,每小题3分,共15分) 1.在空间直角坐标系下,方程2x 2+3y 2=6表示的图形为( ) A .椭圆 B .柱面 C .旋转抛物面D .球面2.极限021lim →→y x arcsin(x +y 2)=( )A .6πB .3π C .2π D .π3.设积分区域22:y x Ω+≤R 2,0≤z ≤1,则三重积分⎰⎰⎰=+Ωdxdydz y xf )(22( )A .⎰⎰⎰π200102)(Rdz r f drd θ B .⎰⎰⎰π20012)(Rdz r f rdrd θC .⎰⎰⎰+π20122)(Rrdz y x f dr d θD .⎰⎰⎰π102)(Rdz r f rdrd θ4.以y =sin 3x 为特解的微分方程为( ) A .0=+''y y B .0=-''y y C .09=+''y y D .09=-''y y5.设正项级数∑∞=1n nu收敛,则下列无穷级数中一定发散的是( )A .∑∞=+1100n nuB .∑∞=++11)(n n n u uC .∑∞=1)3(n nuD .∑∞=+1)1(n nu二、填空题(本大题共5小题,每小题2分,共10分)请在每小题的空格中填上正确答案。
错填、不填均无分。
6.向量a ={1,1,2}与x 轴的夹角=α__________. 7.设函数22),(y x xy y x f -=,则=)1,(x yf __________.8.设∑是上半球面z =221y x --的上侧,则对坐标的曲面积分⎰⎰∑=dxdy y 3__________.9.微分方程x y y sin 3='+'''的阶数是__________.10.设)(x f 是周期为2π的函数,)(x f 在[)ππ,-上的表达式为[)[)⎪⎩⎪⎨⎧∈-∈=.π,0,23sin .0,π,0)(x x x x f )(x S 是)(x f 的傅里叶级数的和函数,则S (0) =__________.三、计算题(本大题共12小题,每小题5分,共60分)11.设平面π过点P 1(1,2,-1)和点P 2(-5,2,7),且平行于y 轴,求平面π的方程. 12.设函数22ln y x z +=,求yx z∂∂∂2.13.设函数232y x e z -=,求全微分dz .14.设函数)2,(22xy y x f z -=,其中f (u , v )具有一阶连续偏导数,求xz ∂∂和y z ∂∂. 15.求曲面x 2+y 2+2z 2=23在点(1,2,3)处的切平面方程. 16.计算二重积分⎰⎰+D dxdy y x )sin(22,其中积分区域D :x 2+y 2≤a 2.17.计算三重积分⎰⎰⎰Ωzdxdydz ,其中Ω是由曲面z =x 2+y 2,z =0及x 2+y 2=1所围区域.18.计算对弧长的曲线积分⎰Cds x 2,其中C 是圆周x 2+y 2=4的上半圆.19.计算对坐标的曲线积分⎰+-+-Cdy y x dx y )21()31(,其中C 为区域D :| x |≤1,| y |≤1 的正向边界曲线.20.求微分方程02=-+-dy e dx e y x y x 的通解. 21.判断无穷级数∑∞=--+1212)1(1n n n 的敛散性. 22.将函数51)(+=x x f 展开为x +1的幂级数. 四、综合题(本大题共3小题,每小题5分,共15分)23.设函数)(x yz ϕ=,其中)(u ϕ为可微函数.证明:0=∂∂+∂∂y zy x z x24.设曲线y =y (x )在其上点(x , y )处的切线斜率为xyx -24,且曲线过点(1,1),求该曲线的方程. 25.证明:无穷级数∑∞=-=++-+121)122(n n n n .全国2011年1月自学考试高等数学(工本)试题一、单项选择题(本大题共5小题。
成人自考00023《高等数学(工本)》考点
第一章空间解析几何与向量代数考点一:空间直角坐标系1.空间直角坐标系建立过空间定点O作三条垂直的数轴,以O为原点,具有相同单位长度,三条数轴分别为x轴、y轴、z轴,统称坐标轴。
三条坐标轴的任意两条都可确定一个平面,称为坐标面。
分别是x和y确定的Oxy平面,y和z确定的Oyz平面,x和z确定的Oxz平面。
三个相互垂直的坐标面把空间分为八个部分,每一部分称为一个卦象。
2.空间中两点间的距离公式设空间两点(),(),他们两点之间的距离为:||==。
特别地,点P(x,y,z)到原点O(0,0,0)的距离|OP|=。
考点二:向量代数1.向量的概念由数值决定大小的量,如:质量,温度,面积,密度等,称之为标量(数量)。
有大小还有方向,如:力,加速度,速度等,称之为向量。
空间中以A为起点,B为终点的线段称为有向线段,记为,简记为,将向量的长度记为||或||,称为向量的模。
如果向量的模为零,称为零向量。
定义1:如果两个向量与的长度相等且方向相同,则称这两个向量是相等的向量,记作=。
一个向量在空间中平移到任何位置而得到的向量与原向量相等,称为自由向量。
将若干个向量起点平移到同一个点后,它们的起点和终点都位于同一直线上,则称向量是共线的;起点和终点都位于同一个平面上,则称这些向量是共面的。
不论长度大小,两向量与的方向相反或相同,称与平行,记为。
2.向量的加法平行四边形法则:给定两个向量与,平移到同一个O点,设它们终点为A和B,则=,=,以,为邻边构造一个平行四边形OBCA。
以O为起点C为终点的向量=称为向量与的和,记为+=,即+=。
三角形法则:给定两个向量与,将平移,使其起点平移到的终点,此时的终点与用平行四边形法则确定的点C重合,从而=,于是与的和为+=。
零向量起点与终点重合,对于任何向量,三角形法则可得+0=。
向量加法的逆运算称为向量减法。
给定向量与,如存在使得=,则称是向量与的差,记为-=。
设=,=,有三角形法则可知=+,于是-=。
自考本科00023高等数学(工本)01月考试真题及答案
1月高等教育自学考试全国统一命题考试高等数学(工本)试题课程代码:0023一、单项选择题(本大题共20小题,每小题2分,共40分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。
错选、多选或未选均无分。
1.函数f(x)=cos2x +sin 4x 的周期为( ) A.2π B.πC.2πD.4π 2.极限=+∞→arctgx lim x ( ) A.-2π B.0 C.2π D.+∞ 3. 极限=---+++∞→)1x 2x 1x 3x (lim 22x ( )A.0B.21C. 25D.∞4.函数f(x)= x x 1x 1lim n2n2n +-+∞→的间断点个数是( ) A.1B.2C.3D.4 5.设函数f(x)=x 1x 1+-,则=')0(f ( ) A.-2B.0C.1D.26.曲线y=ctgx 在点(1,4π)处的法线方程为( ) A.y-1=-2(x-4π) B.y-1=21(x-4π) C. y-1=-21(x-4π) D. y-1=2 (x-4π) 7.下列结论正确的是( )A.点(0,0)不是曲线y=3x 3的拐点B.点(0,0)是曲线y=3x 3的拐点C.x=0是函数y=3x 3的极大值点D. x=0是函数y=3x 3的极小值点8.函数f(x)=cos πx2的一个原函数是( ) A.ππ-x2sin 2B.ππ-x2sin 2 C.ππx2sin 2 D.ππx2sin 29.已知f(x)=dt t 13x 32⎰+,则)2(f '=( ) A.-62 B.-3C.3D.6210.下列广义积分发散的是( ) A.⎰+∞∞-+dx x 112 B.⎰+∞∞-dx x 1C. ⎰-a 022dx x a 1D. ⎰+∞12dx x 111.过点(3,-2,-1)并且平行于xoz 坐标面的平面方程为( )A.x-3=0B.z-1=0C.y+2=0D.y-2=012.设有平面p:x-2y+z-1=0和直线L:26z 11y 11x --=+=-,则p 与L 的夹角为() A.6πB.4πC.3πD.2π13.设函数f(x-y,x+y)=x 2-y 2,则=∂∂)y ,x (f y ( )A.-2yB.x-yC.x+yD.x14.设函数u=(z y)x ,则du|(1,1,1)=( )A.dx+dy+dzB.dx+dyC.dx-dy+dzD.dy-dz15.设积分区域B :x 2+y 2≤4,则二重积分⎰⎰σ+B 22d )y x (f 在极坐标下的累积分为()A.⎰⎰πρρρθ20202d )(f dB.⎰⎰πρρθ20202d )(f dC.⎰⎰πρρρθ20402d )(f d D.⎰⎰πρρθ20402d )(f d 16.设积分区域G 是由坐标面和平面x+2y+3z=6所围成的,则三重积分⎰⎰⎰=Gdv ( ) A.6B.12C.18D.36 17.微分方程0x 3y )y (y y 2=-+''+'''的阶数是( )A.1B.2C.3D.418.微分方程x sin y =''的通解为y=( )A.sinx+C 1x+C 2B.sinx+C 1+C 2C.-sinx+C 1x+C 2D.-sinx+C 1+C 2 19.下列绝对收敛的级数是( ) A.∑∞=--1n nn 1n 23)1( B.∑∞=--1n 1n n )1( C.∑∞=--1n 51n n )1( D.∑∞=--1n n 21)1( 20.幂级数1+x++++n 2x !n 1x !21的收敛半径R=( ) A.0B.1C.2D.+∞二、填空题(本大题共10小题,每小题2分,共20分)请在每小题的空格中填上正确答案。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高等数学(工本)模拟试题
一、单项选择题
1.124
3'2''+=++x y x y x xy 就是 阶微分方程。
(A)1; (B)2; (C)3; (D)4。
2、 下列平面方程中,方程( )过y 轴;
(A ) 1=++z y x ; (B ) 0=++z y x ; (C ) 0=+z x ; (D ) 1=+z x . 3.空间曲线⎩⎨⎧=-+=5
,222z y x z 在xOy 面上的投影方程为( );
(A )72
2=+y x ; (B )⎩⎨⎧==+5722z y x ; (C ) ⎩⎨⎧==+0
722z y x ; (D )⎩⎨⎧=-+=0222z y x z
4、 设22),(y
x xy y x f +=,则下列式中正确的就是( ); )A ( ),(,y x f x y x f =⎪⎭
⎫ ⎝⎛; )B (),(),(y x f y x y x f =-+; )C ( ),(),(y x f x y f =; )D ( ),(),(y x f y x f =-.
5.设e cos x
z y =,则=∂∂∂y x z 2( ); )A (e sin x y ; )B ( e e sin x x y +;)C ( e cos x y -; )D ( e sin x y -.
6、 若∑∞=+1)4(n n n x a
在2-=x 处收敛,则它在2=x 处( );
(A)发散; (B)条件收敛; (C)绝对收敛; (D)不能判断.
7、幂函数n n n x ∑∞=1!1的收敛区间就是 ( )
(a) (-∞,+∞), (b) (-∞,0),
(c) (0,+∞), (d) [0,+∞],
8、比较I=σd y x D ⎰⎰+2)(与J=σd y x D ⎰⎰+3)(的大小,其中
D:1)1()(2
2=-++y y x , 则
( )
(a)I=J, (b)I >J,(c)I ≤J, (d) 无法比较、
9、方程( )就是可分离变量的微分方程
(a)()()0x y x x y y e e dx e e dy ++-++= , ( b) y y x '-= (c) 1dx dy y x
+= , ( d) ()()22220x xy dx y xy dy -+-= 10、若常数项级数∑∞=1
n n a 收敛,n S 就是此级数的部分与,则必有( )
(a) ∑∞=1n n a
(b) 0lim =∞
→n n S (c) n S 有极限 (d) n S 就是单调的、 11、函数()22,y x y x f +=在点()0,0处 ( )
(a) 连续、偏导数不存在 (b) 连续、偏导数存在
(c) 连续且可微 (d) 不连续、偏导数不存在
12、设(),21y x Z -=()232,Y X Z y x Z -=-=,则( )
(a)1Z 与2Z 就是相同的函数, (b)1Z 与3Z 就是相同的函数,
(c)2Z 与3Z 就是相同的函数, (d)其中任意两个都不就是相同的函数。
二、填空题
1.函数x
y x y z 2222-+=的间断处就是 、 2.设x xy z )1(+=,则y
z ∂∂= 、 3.幂级数n n x
n !0∑∞=的收敛半径就是 、
4、 已知xy x y x x f +=+2),(,则=∂∂x
f ; 5、 设∑∞=1n n n x a
的收敛半径为R ,则∑∞
=1
2n n n x a 的收敛半径为 ; 6.改变二次积分
⎰⎰2010),(x dy y x f dx 的积分次序得 ;
三、计算题
1.}}{{1,2,2,21,1==b a ,,求b a ⋅及b a ⨯、、
2.由,e e xy y =+ 求
0=x dx dy . 3. 43e
y x xy z xy +=,求z d 、 4.(),cos ⎰⎰+D
dxdy y x x y y x D ===,,0:
π所围成的区域. 5.计算曲线积分⎰L x xy d , 其中L 为抛物线x y =2 上从点)1,1(-A 到点)1,1(B 的一段弧、
6、 求x xy y x sin lim 2
0→→、 7、已知 z xy e xy cos =,求y
z x z ∂∂∂∂,、 8、已知43e y x xy z xy +=,求z d 、、
9、已知()y x y x f 23,+=,求)],(,[y x f xy f 、
10、计算
⎰⎰+D y x σd e 6,其中D 由xOy 面上的直线2,1==y y 及2,1=-=x x 所围成、
四、综合题
1.求522++=y x z 在约束条件x y -=1下的极值、
2、计算曲线积分
⎰L x xy d , 其中L 为抛物线x y =2上从点)1,1(-A 到点)1,1(B 的一段弧、
3、某工厂要用钢板制作一个容积为1003m 的有盖长方体容器,若不计钢板的厚度,怎样制作材料最省?
4、求幂级数
∑∞=+-0)1()1(n n n x n 的与函数、。