平方根(2)PPT课件

合集下载

2.2 平方根(2)——平方根 课件 2024-2025学年数学北师版八年级上册

2.2  平方根(2)——平方根 课件 2024-2025学年数学北师版八年级上册

3. 下列说法错误的是(
D
)
A . 1的平方根是±1
B . -1是1的平方根
C . 1是1的平方根
D . -1的平方根是1
4. 若一个数的平方根等于它本身,则这个数是(
A. 0
B. 1
C . 0或1
A
)
D . 0或±1
5. 【北师八上 P29习题 T2改编】若一个负数的平方是361,则这个数
是 -19 .
解得x=3或x=-3.
(2)开平方,得x+1=± .
解得x=-1+ 或x=-1- .
( )2与
例4
计算下列各式:
( )2=
64

. = 0.7 ,
. −




−.




π-3.14 .

0.7 ,

5. 计算下列各式:
( . )2= 7.2 ,(- . )2= 7.2 ,
(2)(x+1)2=64.

2
(1)解:方程化为x = .

开平方,得x=±

.



解得x= 或x=- .


(2)解:开平方,得x+1=±8.
解得x=7或x=-9.
9. 已知△ABC的三边长分别为a,b,c,则
−−

2b+2c .

++
+
10. 【拓展题】(1)已知一个正数的两个平方根分别是x和x-6,则这
(2)(-25)2;
(3)15.
(1)解:因为(±0.02)2=0.000 4,所以0.000 4的平方根是±0.02,即±

人教版七年级数学下册第第六章实数第2课 平方根(2)

人教版七年级数学下册第第六章实数第2课 平方根(2)

3. (例2)填空: 1 =___1___, 100 =___1_0__, 10000 =__1_0_0__,0.01=___0_.1__, 0.0001 =_0_._0_1__.
规律总结:被开方数的小数点每移动2k位,它的算术平方根的 小数点就同方向移动____k____位.
4. (1)已知 5 =2.236,不用计算器求 500 =__2_2_._3_6__, 0.0005 =_0_._0_2_2_3_6_.
答:每块地砖的边长为0.3 m.
9.(例5)已知长方形的面积为60 cm2,长与宽的比为3∶2, 求这个长方形的长与宽. 解:设长方形的长为3x cm,则宽为2x cm,则
2x·3x=60, x2=10, x= 10 .
∴长方形的长为3 10 cm,宽为2 10 cm.
10. 小丽想在一块面积为36 cm2的正方形纸片上,沿着边的 方向裁出一块面积为30 cm2的长方形纸片,并且使它的长宽 的比为2∶1.问:小丽能否用这块正方形纸片裁出符合要求 的长方形纸片,为什么? 解:设宽为x cm,则长为2x cm,则
(3)∵268.96<270<272.25,
∴16.4< 270 <16.5.
20. 用一张面积为900 mm2的正方形纸片,能裁出一块面积 为600 mm2,长与宽的比为5∶3的长方形纸片吗?为什么?
解:设长为5x mm,宽为3x mm. 5x·3x=600, x2=40, x= 40 .
∵ 5 40 900 ,∴不能.
(2)若 3 =1.732,则 300 =__1_7_._3_2__, 30000 =__1_7_3_._2__, 0.0003 =_0_.0_1_7__3_2_.
若 a =1 732,则a≈_3_0_0_0__0_0_0.

人教版初中数学七年级下册6.1.3《平方根》课件(共15张PPT)_2

人教版初中数学七年级下册6.1.3《平方根》课件(共15张PPT)_2
0的平方根是( 0 );
负数有平方根吗?
负数( 没有 )平方根.
探究二、平方根的表示方法
ɑ(ɑ≥0)的平方根表示为:
a
aa0
根号 被开方数
读作正、负根号ɑ
则:16的平方根可以写作: 16=±4
3 表示:__3_的__平__方__根_____
请你区别:( ɑ ≥0 )
α, α
aa0
, α分别表示什么意义?
(1)100 (2) 9
16
(3)0.25
解 (1)10210,0100的平方根是10 ;
(2)
3
2
9
,
4 16
9 16
的平方根是
3 4
;
(3)0.520.25, 0.25的平方根是 0.5.
归纳平方根的性质
aa0
正数的平方根有什么特点?
正数的平方根有( 两 )个,它们互为相反数;
0的平方根是多少?
x2
aa0
a
输出入x
输出入a
平方根的定义:
aa0
一般地,如果一个数的平方等于a,那么这 个数叫做a的平方根或二次方根.这就是说,
如果 x2 a,那么x 叫做a的平方根
探究一、平方根与开平方
x2
a
aa0
x2
a
输入x
输出a 输出x
输入a
平方
互为逆 运算
开平方
例题解析
aa0
例4 求下列各数的平方根
aa0
6.1 平方根
(第二课时)
学习目标
aa0
1、掌握平方根的概念与性质. 2、会通过开平方运算求一个非负数的平方根. 3、理解平方与开平方互为逆运算.

平方根(2)课件 2022-2023学年人教版数学七年级下册

平方根(2)课件 2022-2023学年人教版数学七年级下册

C. 6<x<7;
D. 7<x<8.
3、设 n 为正整数,且 n 23 n 1 ,则 n = 4 .
例题讲解
课本 第43页 例3
例1 小丽想用一块面积为400 cm²为的长方形纸片,沿着边
的方向剪出一块面积为300 cm²的长方形纸片,使它的长宽 之比为3:2.她不知能否裁得出来,正在发愁.小明见了说:
根据边长与面积的关系得 3x•2x=300 6x2=300 x2=50
形纸片的长应该大于21 cm. 因为 400 =20. 所以正方形纸 片的边长只有20 cm. 这样, 长方形纸片的长将大于正方形 纸片的边长.
x= 50 .
答:不能同意小明的说法. 小
所以长方形纸片的长为 3 50
丽不能用这块正方形纸片裁出
2
例题讲解 大多数计算器都有 键,用它可以求出一个正有理数的 算术平方根(或其近似值). 例2 用计算器求下列各式 的值. (1) 3136;
(2) 2 (精确到0.001).
用计算器计算算术平方根 下面我们来看引言中提出的问题: 宇宙飞船离开地球进入轨道正常运行的速度要大于第 一宇宙速度v1而小于第二宇宙速度 v2.
“别发愁,一定能用一块面积大的纸片裁出一块面积小的纸
片.”你同意小明的说法吗?小丽能用这块纸片裁出符合要 求的纸片吗?
400 cm² 够长吗? 够宽吗?
300 cm²
例题讲解
课本 第43页 例3
解:设长方形纸片的长为3x cm, 因为50>49,所以 50>7.
宽为2x cm.
由上可知3 50 >21,即长方
算术平方根的规律 (2)利用计算器计算 3 1.732 ,并利用(1)中
发现的规律说出 0.03, 300 , 30000 的近似值,你能根据 3 的值说出 30 是多少吗?

3.3平方根(2)课件(苏科版八上)

3.3平方根(2)课件(苏科版八上)

结论: 当a 0时, ( a ) a
2
探索二:
16 (1) 162 16 ____( 2) (16) 2 ____
2 5 5 (3) 5 _____( 4) (5) _____ 2
结论: 当a 0时, a a,
2
当a 0时, a 2 0, 当a 0时, a a,
练:若 x 3 4 y 3z 0 ,
2

x 2y y 的值
z
注:3种非负数,即绝对值、偶 数次方、算术平方根。几个非 负数的和为零,它们就同时为 零,然后转化为方程(或方程 组)来解。
探索一:
(1)( ( 3)
2 0.01 9 0.01) _______( 2)( 9 ) _____ 2 1 1 _____ 4 4 2
2.双 重 非 负 性 : a 0;a 0; ★
也就是说,非负数的“算术”平方根是非负数。 负数不存在算术平方根,即当 a 0 时, a 无意 义。
3. 是算术平方根的运算符 号。
例4:下列各式中哪些有意义?
哪些无意义?为什么?
5
3
( 3)
2
1 例5:若y x 2005 2005 x ' x 则y _____
36=_ _ 1.44=_ _ 1 2 =_ _ 25=_ _ 4
例2:求下列各式的值(计算)
(1) 324; ( 2) 3 4 ;
2 2
9 9 (3) 1 ; (4) 0.64 1 16 16
2
例3:81 的算术平方根是 ___
探究 a
1. a表示a的算术平方根。
例1:求下列各数的算术平方根

人教版数学平方根公开课PPT

人教版数学平方根公开课PPT


2.该类题目考察学生对文本的理解, 在一定 程度上 是在考 察学生 对这类 题型答 题思路 。因此 一定要 将这些 答题技 巧熟记 于心, 才能自 如运用 。
• • •
3. 结合实际,结合原文,根据知识库 存,发 散思维 ,大胆 想象。 由文章 内容延 伸到现 实生活 ,对现 实生活 中相关 现象进 行解释 。对人 类关注 的环境 问题等 提出解 决的方 法,这 种题考 查的是 学生的 综合能 力,考 查的是 学生对 生活的 关注情 况。 4.做好这类题首先要让学生对所给材 料有准 确的把 握,然 后充分 调动已 有的知 识和经 验再迁 移到文 段中来 。开放 性试题 ,虽然 没有规 定唯一 的答案 ,可以 各抒已 见,但 在答题 时要就 材料内 容来回 答问题 。 5.木质材料由纵向纤维构成,只在纵 向上具 备强度 和韧性 ,横向 容易折 断。榫 卯通过 变换其 受力方 式,使 受力点 作用于 纵向, 避弱就 强。
典型例题
【例1】已知m的两个平方根是a+3与2a-15,求m的值.
解:当a+3与2a-15是同一个数的平方根时, a+3=-(2a-15). 解得a=4,此时m=49.
【例2】一个数的算术平方根为2m+5,平方根为±(m-2)
,求这个数.
解:①2m+5=m-2, 解得m=-7, 2m+5=-9;(舍去) ②2m+5=-(m-2) 解得m=-1, 2m+5=3, 32=9, 故这个数是9.
举一反三
1.如果一个正数的平方根为2a+1和3a-11,则a= ( C )
A. ±1
B. 1
C. 2
D. 9
2. 已知2a-1的平方根是±3,b-1的算术平方根是4,求
a+2b的值.
解:∵2a-1的平方根是±3, ∴2a-1=9. ∴a=5. ∵b-1的算术平方根是4, ∴b-1=16. ∴b=17. ∴a+2b=5+2×17=39.

人教版初一数学 6.6.1 平方根 第2课时PPT课件

人教版初一数学 6.6.1 平方根 第2课时PPT课件

因为1.4142=1.999 396,1.4152=2.002 225,所以1.414< 2<1.415;
……
探究新知
如此进行下去,我们发现它的小数位数无限,且小数部分不循
环,像这样的数我们称为无限不循环小数.
注:这种估算体现了两个方向向中间无限逼近的数学思想,学
生第一次接触,不好理解,教师在讲解时速度要放慢,可能需要讲两
的值不能求出 30的值,因为规律是被开方数扩大到原来的100
倍或缩小到原来的
或缩小到原来的
由此规律求出.
1
时,它的算术平方根才扩大到原来的10倍
100
1
,而3到30是扩大为原来的是10倍,所以不能
10
回顾反思
1.怎样估算一个数的算术平方根的大小范围?
2.怎样用计算器求一个正数的算术平方根?
当堂训练
1.估计 在 ( C )
A. 2~3之间
B. 3~4之间
C. 4~5之间
D. 5~6之间
当堂训练
2.用计算器求下列各式的值:
(1) 1369=
37

10.06
(2) 101.2036=______;
2.24
(4页练习第2题,第47,48页习
题6.1第5,6,7题.
2 dm2的大正方形?
导入新课(创设情境)
如图,把两个小正方形沿对角线剪开,将所得的4个直角三
角形拼在一起,就得到一个面积为2的大正方形.你知道这个大
正方形的边长是多少吗?
解:设大正方形的边长为x dm,则x2=2,由算术平方根的意义可
知x= ,所以大正方形的边长是 dm.
探究新知
学生活动一【一起探究】

人教版数学七年级下册6.1-平方根(2)-课件

人教版数学七年级下册6.1-平方根(2)-课件

(√) (× )
7) (﹣10)2没有平方根
( ×)
8) 如果x2 = a,则 a 一定是正数 ( × )
有一个正数的两个平方根是2m-3和5m,求m的值。
解:由题意得 (2m-3)+(5-m)=0
∴ m=-2
练习:如果 x 2 2 ,求2x+5的算术平方根.
能力提升 (1)3-m有平方根,求m的取值范围 (2)a-4无平方根,求a的取值范围 (3) 3x 5 有意义,求x的取值范围
(2) 0.0036
=-0.06
(4) 25 36
=5+6 =11
判断下面的说法是否正确,如不正确,
说明理由,并加以改正.
1) ﹣3的平方根是 9
( ×)
2) 9的平方根是﹣3
( ×)
3) 3是9的平方根 4) 4的平方根是±2
( √) (√ )
5) ﹣5是25的平方根 6) ﹣1的平方根是±1
如(±5)2=25,则±5是25的平方根,
记作 25= 5
2.认识开平方运算
填空: 求平方
1 1
1
2 2
4
3
9
3
求平方根
1
1 1
4
2 2
9
3
3
两图中的运算有什么关系呢?
求一个数的平方根的运算,叫做开平方。
±3的平方等于9,9的平方根是±3, 所以平方与开平方互为逆运算.
初中所学的六种运算: 加法、减法、乘法、除法、乘方、开方. 对应的运算结果分别为: 和、 差、 积、 商、 幂、 方根.
学习小结:
1、平方根的概念. 2、开平方. 3、平方根的特征. 4、平方根的表示法:
a (a 0)

《平方根》PPT优秀教学课件3

《平方根》PPT优秀教学课件3

0的算术平方根是 0 4、平方运算与开平方运算互为逆运算.
例2 求下列各数的算术平方根: 3是前面学习过的9的算术平方根,
例2 求下列各数的算术平方根:ቤተ መጻሕፍቲ ባይዱ
负数 没有算术平方根 只有非负数才平方根和算术平方根
读作“正、负根号a ”.


结论: 算术平方根的性质
正数有一个算术平方根, 有两个平方根。
0 有一个算术平方根—— 0 , 有一个平方根——0
(4) 62
3.例题解析
例1 求下列各式的值:
(1) 4 ( 2 ) 49 (3) (11)2 81
(4) 62
解:(3)∵ 112 (11)2
(11)2 11
3.例题解析
例1 求下列各式的值:
(1) 4 ( 2 ) 49 (3) (11)2 81
(4) 62
解:(4)∵ 62 62
62 6 a2 a
解:(1)∵
4.归纳数的平方根的特征
正数a的平方根有两个.
解:(负4)∵ 数没, 有平方根.
为什么?
自我检测:相信你是最棒的!
判断下列说法是否正确:
(1)-9的平方根是-3;
(× )
(2)49的平方根是7 ;
(× )
(3)(-2)2的平方根是±2 ;(√ )
(4)-1 是 1的平方根;
(√ )
(5) 16 的平方根是 ±4,16的算术平方根是4.(× )
(1)10; (2) 16 ; (3)0.49; 225
(4) ( 3) 2
(5) 9
解:(3)∵ (0.7)2 0.49
∴ 0.49 的平方根是 0.7
例2 . 求下列各数的平方根:

人教七年级数学下课件(课件)6.1平方根(2)

人教七年级数学下课件(课件)6.1平方根(2)

1.96 2 2.25
因为,1.4,12 1.9881 1.422 2.0614
而,1.9所88以1 .2 2.0164
1.41 2 1.42
因为,1.4,142 1.999396 1.4152 2.002225
而,1.9所99以39.6 2 2.002225
你能将这个问题转化为数学问题吗?
解:设剪出的长方形的两边长分别为3xcm和2xcm,
则有3x∙2x=300,
6x2=300,
x2=50,

x 50
故长方形纸片的长为,3 宽50为cm. 2 50 cm
长方形的长和宽与正方形的边长之间的 大小关系是什么?小丽能用这块纸片裁 出符合要求的纸片吗?
解:设剪出的长方形的两边长分别为3xcm和2xcm,
8. 38介于整数 和6之间,它7 的小数 数部分是。38 6
9. x 7 6的最小值是 __6_____,此时x=__-__7__ .
10.12 m 8有 __最__大_ 值(填最大或最小) 是 ____12__,此时m ___8 .
所以m+n=25
所以m+n的算术平方根是5
1.这节课你有什么收获? 举例说明如何估算算术平方根的大小.
2.你还有什么问题或想法需要和大家交流?
• 1、一个数的算术平方根等于它本身,这个 数是。
• 2、若x²=16,则5-x的算术平方根是。 • 3、若4a+1的算术平方根是5,则a²的算术平
方根是。
探究一、提出问题
能否用两个面积为1的小正方形 拼成一个面积为2的大正方形?
能否用两个面积为1dm2的小正方形 拼成一个面积为2dm2的大正方形?

初中八年级数学课件 平方根(2)

初中八年级数学课件 平方根(2)
求一个数a的平方根的运算,叫做开平方, 其中a叫做被开方数。
2
(1)(
64)2 等于多少?

49 121
等于多少?
(2) 7.2 2 等于多少?
(3)对于正数a, a 2 等于多少?
▪ 练一练: ▪ 求下列各数的平方根:
▪ (1) 181 0.49 4
(162)
25
▪ (3) 2
(4)
▪ (5)8
一般的,如果一个数X的平方等于a, 即X2=a,那么这个数X叫做a的平方 根(也叫做二次方根)。
例3 口答下列各数的平方根: (1)64 (2) 49 (3)0.0004
121
(4) (-25)2 (5)11 (6) 0
(1)一个正数有几个平方根? (2)0 有几个平方根? (3)负数呢?
一个正数有两个平方根,0只有一个 平方根,它是0本身;负数没有平方根
(6)-9
思考:
你能求出下列各式中的未知数x吗? (1) x2=49
(2)(x-1)2=25
本节课你学习了哪些知识?
作业:作业本(1):习题13.1 第3题
第8题 课堂点睛: 2.2平方根(2)
比一比——看谁最聪明?
如图,求左圈和右圈中的“?”表示的数:
x
x2
8 -8
?64
3
4
-3
-1111??4
0.6 ? -0.6?
0
? ?
没有??
?9 16
121 0.36
0
-4
想一想
(1)9的算术平方3根是____,
_-3___的平方也是9。
4
2
(2)平方等于 25的数是____5_ .
平方等于0.64的数是__0_.8_。

平方根2

平方根2

4、一个数x的平方根等于m+1和m-3,则
m= 。x=

检测
若|a-9|+(b-4)²=0,则 a 的平方根是 。
求下列各式中的x:
b
25
(1) x²=16
(2) x²=
49
(3) x²=15
(4) 4x²=81
反思
???????????
预习
算术平方根
; https:///zh/workspace/mongkok/ 共享工作空間 ;
“± 81 ”,读作“正负根号81”
熟记
一个正数有两个平方根,它 们互为相反数;
0只有一个平方根,它是0本 身;
负数没有平方根。 求一个数a的平方根的运算,
叫做开平方.
例题
求下列各数的平方根:
(1)25;
(2)0.81;
(3)15;
(4)(-2)²
(5) 16

81
(6)0

1
(7) 2 4

(9) 9
(8) 10²²
(10) (4)2
格式
(1)∵ (±5)²=25;
∴25的平方根等于±5;
即± 25 = ±5;

练习
1、一个数的平方等于它本身,这个数是 。 一个数的平方根等于它本身,
这个数是 。
2、若3a+1没有平方根,那么a一定 。3、 若4a+1的平方根是±5,则a= 。
例如,2²=4,(-2)²=4,±2叫做4的平方根。
10²=100,(-10)²=100,±10叫做100的平方根
13²=169,(--13)²=169,±13叫做169的平方根。

14.1 平方根 - 第2课时课件(共20张PPT)

14.1 平方根 - 第2课时课件(共20张PPT)
你能说出平方根与算术平方根的区别和联系吗?
思考
归纳总结
平方根与算术平方根的联系和区别:
联系:
1.包含关系:平方根包含算术平方根,算术平方根是平方根的一种.
2.只有非负数才有平方根和算术平方根.
3. 0的平方根是0,算术平方根也是0.
区别:
1.个数不同:一个正数有两个平方根,但只有一个算术平方根.
14.1 平方根第2课时
第十四章 实数
学习目标
1.了解算术平方根的概念,会求一个非负数的算术平方根.2.掌握算术平方根的非负性.3.理解算术平方根与平方根的区别和联系.
学习重难点
会求一个非负数的算术平方根.
难点
重点
理解算术平方根与平方根的区别和联系.
复习回顾
1.定义: 一般地,如果一个数x的平方等于a,即x2=a,那么这个数x就叫做a的平方根,也叫做a的二次方根.2.平方根性质:一个正数有两个平方根,它们互为相反数.0只有一个平方根,是0本身.负数没有平方根.3.求一个数的平方根的运算,叫做开平方.4.对于正数来说,开平方与平方互为逆运算.
A
3.下列说法中不正确的有( )①一个数的算术平方根一定是正数;②100的算术平方根是10;③(3.14-π)2的算术平方根是3.14-π;④a2的算术平方根为a;
⑤算术平方根不可能是负数.A.2个 B.3个C.4个 D.5个
B
归纳小结
同学们再见!
授课老师:
时间:2024年9月15日
2.表示法不同:平方根带±号.
随堂练习
1.下列说法正确的是( )A.因为62=36,所以6是36的算术平方根B.因为(-6)2=36,所以-6是36的算术平方根C.因为(±6)2=36,所以6和-6都是36的算术平方根D.以上说法都不对

北师大版八年级数学上册《平方根(2)》课件

北师大版八年级数学上册《平方根(2)》课件
解:v=18 m,f=2 时,v=16 18×2=16×6=96>60.∴该车超速 了
▪不习惯读书进修的人,常会自满于现状,觉得再没有什么事情需要学习,于是他们不进则退。经验丰富的人读书用两只眼睛,一只眼睛看到纸面上的话,另 一眼睛看到纸的背面。2022年4月11日星期一2022/4/112022/4/112022/4/11 ▪书籍是屹立在时间的汪洋大海中的灯塔。2022年4月2022/4/112022/4/112022/4/114/11/2022 ▪正确的略读可使人用很少的时间接触大量的文献,并挑选出有意义的部分。2022/4/112022/4/11April 11, 2022 ▪书籍是屹立在时间的汪洋大海中的灯塔。
3.正数a有两个平方根,一个是a的算术平方根____,另a一个是______, 它-们互a 为_________.相合反起数来记作“_________”±,读a作“正、负根号 a”. 4 . 求 一 个 数 a 的 平 方 根 的 运 算 , 叫 做 ___开__平__方____ . a 叫 做 ___被__开__方__数____
1.(2 分)(2014·鞍山)4 的平方根是(
A.2
B.±2
C. 2
2.(2 分)下列说法中正确的是( C
A.4 是 8 的算术平方根
B.16 的平方根是 4
C. 6是 6 的平方根
D.-a 没有平方根
B) D.± 2
)
3.(2 分)如果 a(a>0)的平方根是±m,那么( D )
A.a2=±m
谢谢观赏
You made my day平方根
1.一般地,如果一个数x的平方等于a,即x2=a,那么这个数x就叫做a
的___平__方__根___(也叫二次方根).

2.2 平方根(2)课件

2.2 平方根(2)课件
2. 平方根(二)
小测:
求下列各数的算术平方根
361 14 1 11 0.000324 2250000 108
81
289
25
若一个数的算术平方根为m ,则比这个数大2的数的算术
平方根是

回顾 & 思考 ☞
1.什么叫算术平方根?
若一个正数的平方等于 a 则这个数叫做 a 的算术
平方根,表示为a (a 0) . 0的平方根是0,即 0 0 .
(1)一个正数有几个平方根? (2)0 有几个平方根? (3)负数呢?
议一议 (1)一个正数有几个平方根?
(2)0 有几个平方根? (3)负数呢? 1、一个正数有两个平方根,0只有一个平 方根,它是0本身;负数没有平方根.
一个正数有两个平方根,它们又有何关系?
2、一个正数有两个平方根,它们互为相 反数!
乘方有没有逆运算?
9的平方等于多少?
9的平方根等于多少?
求一个数a的平方根的运算,叫做开平方. ( a叫做被开方数)
探索平方与开平方的关系
平方
+1 -1
1
开平方
1
+1 -1
+2 -2
4
+3 -3
9
4
+2 -2
9
+3 -3
平方与开平方互逆运算.
辨析概念
平方根与算术平方根的联系与区别:
联系:1.包含关系:平方根包含算术平方根, 算术平方根是平方根的一种.
定义
求一个数a的平方根的运算, 叫做开平方(extraction of square root)其中a叫做被开方数.
巩固新知
1.求下列各数的平方根和算术平方根:

平方根ppt课件(自制)

平方根ppt课件(自制)
46、活在昨天的人失去过去,活在明 天的人 失去未 来,活 在今天 的人拥 有过去 和未来 。 47、你可以一无所有,但绝不能一无 是处。
48、通过辛勤工作获得财富才是人生 的大快 事。— —巴尔 扎克 49、相信自己能力的人,任何事情都 能够做 到。
50、有了坚定的意志,就等于给双脚 添了一 对翅膀 。—— 乔·贝利 51、每一种挫折或不利的突变,是带 着同样 或较大 的有利 的种子 。—— 爱默生 52、如果你还认为自己还年轻,还可 以蹉跎 岁月的 话,你 终将一 事无成 ,老来 叹息。
解 :设 长 方 形 纸 片 的 长 为 3 x c m ,宽 为 2 x c m . 根 据 边 长 与 面 积 的 关 系 得 :
3x2x300 6x2 300 x2 50
由 算 术 平 方 根 的 定 义 得 : x 5 0 因 此 长 方 形 纸 片 的 长 为 35 0 c m .
因 为 5 0 4 9 ,所 以 5 0 4 9 , 即 5 0 7 .
3、你还有什么问题或想法需要和老师交流? 4、作业: (1)必做 (作业本2 )
(2)选做 阅读课本第180页
心有多大, 舞台就有多大!!!
放飞你的思想,
3、后悔是崇高的理想就像生长在高山 上的鲜 花。如 果要搞 下它, 勤奋才 能是攀 登的绳 索。 44、幸运之神的降临,往往只是因为 你多看 了一眼 ,多想 了一下 ,多走 了一步 。 45、对待生活中的每一天若都像生命 中的最 后一天 去对待 ,人生 定会更 精彩。
52、若不给自己设限,则人生中就没 有限制 你发挥 的藩篱 。 53、希望是厄运的忠实的姐妹。 54、辛勤的蜜蜂永没有时间悲哀。 55、领导的速度决定团队的效率。
56、成功与不成功之间有时距离很短 只要后 者再向 前几步 。 57、任何的限制,都是从自己的内心 开始的 。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

x 7
x 3
x 15 x 6, x 4
3 1 x 2
(3) (x-1)2=25
(4)
(2x-1)2=3
例1. 已知 A.正数
x 有意义,则x一定是
B. 负数 D. 非正数
21 (2) 4 25
121 11 25 5
( D)
C. 非负数 例2.求下列各式的值

练一练:
1、说出下列各数的平方根
4 (1)144 (2)0 (3) 25
( 4)-4
2、说出下列各数开平方的结果。
(1)49 (2)1.69 (3)529 (4)44.81 3、用计算器求下列各数的算术平方根 (1) 529; (2)1225; (3)44.81
判断下列说法是否正确. 1. 2.
16 的平方根是±16.
a 一定是正数.
(×) ( ×) (× ) ( ( ( ( ×) ) × √) √ )
3.a2的算术平方根是a. 4.若 (a) 2 5 , 则a=-5. 5. 9 3 6.-6是(-6)2的平方根. 7.若x2=36,则x= 36 6
4.求x的值
(1) x2=49 ( 2) 2x2-18=0
归纳总结
一个正数有两个平方根,且互为相反数;一个 正数只有一个算术平方根 零的平方根及算术平方根均只有一个,即它本 身 负数既没有平方根,也没有算术平方根 我们用什么符号表示平方根?



a
a
算术平方根呢?
小结
什么是平方根与算术平方根?它们之间有什么关 系?它们的符号分别是什么? 平方根以及算术平方根的性质有哪些?
用计算器求算术平方根
用计算器求下列各数的算术平方根: (1) 529; (2) 1 225; (3) 44.81 (1) 在计算器上依次键入 ,显示 结果为23,所以,529的算术平方根为 529 =23. (2) 在计算器上依次键入 ,显 示结果为____,所以,1225的算术平方根为 1225=_____ (3) 在计算器上依次键入 , 显示结果为____,如果要求精确到0.01,那么 44.81≈___
所以,x 的取值范围是.
x 1
例4.已知a、b满足等式,
a2 b5 0
求a2-12b的算术平方根. 解: 根据非负数 的性质得:
a 2 0 ห้องสมุดไป่ตู้ 5 0
2
a 2 解得 b 5
8 64 4 50 a 12b
练习:
(1)(-5)2的平方根是 ±5 ,算术平方根 是 5 ;
§16.1.1.2平方根(2)
求26的算术平方根 分析:
25 5,36 6
5 26 6
但我们很难找到一个准确的有理数,使 其平方等于26,怎么办?
§16.1.1.2平方根(2)
用计算器求算术平方根的方法:





用计算器求一个非负数的算术平方根,只需直接 按书写顺序按键即可

练习
用计算器计算: (1) (2)
676
27.8784 (3) 4.225 (精确到0.01)
试一试
144的平方根是多少? 144的算术平方根呢? 0的平方根及算术平方根分别是多少? -1的平方根及算术平方根呢?

你能由以上四题归纳出平方根及算术平方根的性 质吗?
(1) 625
23 ( 3) 4 2 36
解: (1)原式=25 (2)原式=
49 13 (3)原式= 1 36 36
7 6
例3. 求使 的取值范围.
x 1 x 1 有意义x
要使式子有意义,必须满足: 解:
x 1 0 x 1 0
x 1 解得 x 1
(2) 16 的平方根是 ±2,算术平方 根是 2 。 (3)若x2=3,则 x= 3,若 x 2 =3,则 x= ±3 ; (4)若(x-1)2=2,则x=
2 1

(5)若一个数的一个平方根为-7,则另一个 平方根为 7 ,这个数是 49 。
(6)若一个正数的两个平方根为2a-6、3a+1, 1 则a= ,这个正数为 ;16 (7)平方根等于本身的数是 0 ,
算术平方根等于它本身的数是 0、1 , 算术平方根和平方根相等的数是 0 ;
《自主与探究学习》 “平方根”部分
相关文档
最新文档