1误差分析与数据处理.ppt
合集下载
分析化学误差及分析数据的统计处理ppt课件
修约规则
保留四位 14.2442 14.24 26.4863 26.49 15.0250 15.02 15.0150 15.02 15.0251 15.03
精选ppt课件
42
运算规则
加减法 按绝对误差大者保留
乘除法 按相对误差大者保留
采用安全数字 先修约? 先计算?
精选ppt课件
Xn - Xn-1 或 X2 -X1
(4) 计算:
QXnXn1 或 QX2X1
XnX1
XnX1
精选ppt课件
35
可疑数据的取舍
(5) 根据测定次数和要求的置信度,(如90%)查表:
测定次数 3 4 8
表1--2
Q90
0.94 0.76 0.47
不同置信度下,舍弃可疑数据的Q值表
Q95
0.98
Q99
2.误差及分析数据的统计处理
1--定量分析中的误差 2--分析结果的数据处理 3--有效数字及其运算规则
精选ppt课件
1
上叶
1—定量分析中的误差
分析过程是测量过程 测量的基本方法是比较 误差的存在不可避免
2
精选ppt课件
误差与准确度
误差—测定值与真值之差 绝对误差:
Exi
相对误差:
Er
0.99
0.85
0.93
0.54
0.63
(6)将Q与QX (如 Q90 )相比, 若Q > QX 舍弃该数据, (过失误差造成) 若Q < QX 舍弃该数据, (偶然误差所致)
当数据较少时 舍去一个后,应补加一个数据。
精选ppt课件
36
平均值与标准值得比较(方法准确度/系统误差)
t 检验法
误差理论与数据处理课件(很实用)
报告审核与修改
对报告进行同行评审或专家审核,根据反馈 进行必要的修改和完善。
06
案例分析与实践
案例一:医学数据处理
总结词
医学数据处理是误差理论应用的重要领域,涉及临床 试验、诊断、治疗等多个方面。
详细描述
医学数据处理中,误差的来源包括测量误差、随机误 差和系统误差等。这些误差可能导致数据失真,影响 医学研究的准确性和可靠性。因此,医学数据处理需 要遵循严格的标准和规范,如临床试验数据管理规范 、医疗器械检测标准等。同时,医学数据处理也需要 采用各种误差处理技术,如数据清洗、数据变换、数 据筛选等,以减小误差对数据的影响。
数据预处理包括数据的排序、筛选、分组和编码等操作,为后续的数据分析提供 准确和一致的数据集。
03
误差的识别与控制
系统误差的识别与控制
系统误差的识别
系统误差通常表现为数据呈现一定的 规律性偏差,可以通过对比实验数据 与理论值、检查实验装置和环境条件 等方式进行识别。
系统误差的控制
控制系统误差的方法包括改进实验装 置、优化实验环境、采用标准仪器和 设备、定期校准和检测等措施,以减 小系统误差对数据的影响。
先滞后关系。
时间序列平稳性
检验时间序列数据的平 稳性,以确定是否适合
进行时间序列分析。
05
实验设计与数据分析
实验设计原则
01
02
03
04
科学性原则
实验设计应基于科学理论和实 践经验,确保实验的合理性和
可行性。
随机性原则
实验对象的分配应随机化,以 减少系统误稳定性和可靠性
案例二:金融数据分析
总结词
金融数据分析中,误差的来源包括数据采集、数据处 理和数据分析等多个环节。
误差ppt第一章
特点与性质
粗大 误差
1.2.2 误差分类
1.系统误差(Systematic Error) 系统误差( 系统误差 ) 定义: 定义:在同一条件下,多次重复测量同一量值时,绝对值 例如: 例如:用天平计量物体质量时,砝码的质量偏差[绝对值和符号保持不
变];用千分表读数时,表盘安装偏心引起的示值误差[按某一确定 规律变化];刻线尺的温度变化引起的示值误差[在条件改变时,按 某一确定规律变化]。 实际估计系统误差常用适当次数的重复测量的算术平均值减去约定真值 来表示,也称为测量器具的偏移 偏畸 偏移或偏畸 偏移 偏畸(Bias)。 由于系统误差具有一定的规律性,因此可以根据其产生原因,采取一定的 技术措施,设法消除或减小;也可以在相同条件下对已知约定真值的标准 器具进行多次重复测量的办法,或者通过多次变化条件下的重复测量的办 法,设法找出其系统误差的规律后,对测量结果进行修正。
1.2.2 误差来源
测量方法误差 由于测量方法的不完善引起的误差,如 采用近似的测量方法、计算公式等原因所 引起的误差,又称为理论误差。
如用均值电压表测量交流电压时,其读数是按 照正弦波的有效值进行刻度,由于计算公式 α = KFU =πU / 2 2 中出现无理数 π 和 2,故 取近似公式 α ≈1.11 ,由此产生的误差即为理论 U 误差。
标准器件误差
设计测量装置 时,由于采用 近似原理所带 来的工作原理 误差 组成设备的 主要零部件 的制造误差 与设备的装 配误差
仪器误差
设备出厂 时校准与 定度所带 来的误差
附件误差
数字式仪 器所特有 的量化误 差
读数分辨 力有限而 造成的读 数误差
1.2.2 误差来源
测量环境误差 指各种环境因素与规定的标准状态不一致而 造成的误差。
误差及分析数据的统计处理优秀课件.ppt
准确度高的前提。 ② 精密度高,准确度不一定高。
x1 x2
x3
x4
二、误差的分类及减免方法 (一)、产生误差的原因
误差产生的原因分为系统误差、随机 误差和过失误差三类。
1. 系统误差 由于某些固定的原因造成的误差称
为系统误差。 特点:重复出现,方向一致,大小
可以估计。
系统误差又称可测误差, 影响准确度。 系统误差又分为: 方法误差、仪器误差、 试剂误差和操作误差。
几次测定所得值: x1 , x2 , … xi … xn
n
... xi
平均 : 值 xx1x2 xni1
n
n
绝对 :偏 d i差 xix
相对:偏 差 drdi10% 0 x
此偏差代表某一个数据的精密度高低,
即其与平均值接近的程度。
(2)平均偏差与相对平均偏差
n
di
平均偏:差 d i1 n
又称不可测误差。 随机误差影响精密度。
3. 过失误差 由于操作者某些失误引起的误差。 如:溶液溅失,读错滴定管、砝码
等。
(二)、误差的减免方法 1.系统误差
系统误差大小的判断:
回收率
x3 x1 x2
100%
x1 x2 x3
原样品测得的含量 加入的量 加入后测得的含量
减免方法: 方法校正、仪器校准、 空白试验、对照试验。
如:原子量的测定常需测几十次,甚至上百次。
3. 过失误差 减免方法:认真操作,舍弃差别特别
大的数据。 若出现过失误差就需重做。
三、公差
生产部门对分析结果允许的误差。
不同含量样品的公差
组分(%)
90 80 40 20
公差(相对平 0.3 0.4 0.6 1.0 均偏差,%)
x1 x2
x3
x4
二、误差的分类及减免方法 (一)、产生误差的原因
误差产生的原因分为系统误差、随机 误差和过失误差三类。
1. 系统误差 由于某些固定的原因造成的误差称
为系统误差。 特点:重复出现,方向一致,大小
可以估计。
系统误差又称可测误差, 影响准确度。 系统误差又分为: 方法误差、仪器误差、 试剂误差和操作误差。
几次测定所得值: x1 , x2 , … xi … xn
n
... xi
平均 : 值 xx1x2 xni1
n
n
绝对 :偏 d i差 xix
相对:偏 差 drdi10% 0 x
此偏差代表某一个数据的精密度高低,
即其与平均值接近的程度。
(2)平均偏差与相对平均偏差
n
di
平均偏:差 d i1 n
又称不可测误差。 随机误差影响精密度。
3. 过失误差 由于操作者某些失误引起的误差。 如:溶液溅失,读错滴定管、砝码
等。
(二)、误差的减免方法 1.系统误差
系统误差大小的判断:
回收率
x3 x1 x2
100%
x1 x2 x3
原样品测得的含量 加入的量 加入后测得的含量
减免方法: 方法校正、仪器校准、 空白试验、对照试验。
如:原子量的测定常需测几十次,甚至上百次。
3. 过失误差 减免方法:认真操作,舍弃差别特别
大的数据。 若出现过失误差就需重做。
三、公差
生产部门对分析结果允许的误差。
不同含量样品的公差
组分(%)
90 80 40 20
公差(相对平 0.3 0.4 0.6 1.0 均偏差,%)
误差分析与数据处理ppt课件.ppt
(4)缓变误差: 是指数值上随时间缓慢变化的误差,一般它是由零部件的
老化、机械零件内应力变化引起的。由于它有不平稳随机 过程的特点,误差值在单调缓慢变化,因此不能象对系统 误差那样引进一次修正量即能校正,又不能象对一般随机 误差那样按平稳随机过程的特点来处理,因而常需不断进 行校正,测量准确度与对仪器仪表的校正周期有关。
1) 直间接测量:从一个或几个直接测
或量具就可直接得到被测量 量结果按一定的函数关系计算出来
值的测量;
的过程,称为间接测量。
➢例如:用直尺测量长度;
以表计时间;
天平称质量;
M
安培表测电流。
d
V hd 2
h
4
M V
4M
d 2h
1
2)等精度测量和非等精度测量
2
1.2真值、代表值与误差
1.2.1真值
指在某一时刻和某一位置的某个物理量客观存在的真实值。严 格地讲,真值是无法测得的,只能测得真值的近似值。实际应 用中真值是指测量次数无限多时的平均值作为真值。
➢理论真值:理论上证明过的某些已知的固定量值,如三角 形之和为180º。
➢约定真值:国际计量组织通过决议规定的某些计量单位的 量值,如规定铂铱合金的国际千克原器为1kg的质量单位。 光在真空中1s时间内传播距离的1/299792485为1米。
仪器
天平不等臂
6
➢系统误差的分类
1)按系统误差产生的原因分 ➢设备误差:由于测量仪器、工具的不准确或安装不正确造成的,如 仪器的零位不准,空行程、不水平、不垂直、导线的影响等。 ➢环境误差:由于测量环境条件变化的影响,如温度、压力、外电磁 场的影响。 ➢人员误差:由测量人员自身造成的,如读数的偏大、偏小、测量的 超前或滞后等。 ➢方法误差:由于测量方法不完善,计算公式的近似简化引起的。
老化、机械零件内应力变化引起的。由于它有不平稳随机 过程的特点,误差值在单调缓慢变化,因此不能象对系统 误差那样引进一次修正量即能校正,又不能象对一般随机 误差那样按平稳随机过程的特点来处理,因而常需不断进 行校正,测量准确度与对仪器仪表的校正周期有关。
1) 直间接测量:从一个或几个直接测
或量具就可直接得到被测量 量结果按一定的函数关系计算出来
值的测量;
的过程,称为间接测量。
➢例如:用直尺测量长度;
以表计时间;
天平称质量;
M
安培表测电流。
d
V hd 2
h
4
M V
4M
d 2h
1
2)等精度测量和非等精度测量
2
1.2真值、代表值与误差
1.2.1真值
指在某一时刻和某一位置的某个物理量客观存在的真实值。严 格地讲,真值是无法测得的,只能测得真值的近似值。实际应 用中真值是指测量次数无限多时的平均值作为真值。
➢理论真值:理论上证明过的某些已知的固定量值,如三角 形之和为180º。
➢约定真值:国际计量组织通过决议规定的某些计量单位的 量值,如规定铂铱合金的国际千克原器为1kg的质量单位。 光在真空中1s时间内传播距离的1/299792485为1米。
仪器
天平不等臂
6
➢系统误差的分类
1)按系统误差产生的原因分 ➢设备误差:由于测量仪器、工具的不准确或安装不正确造成的,如 仪器的零位不准,空行程、不水平、不垂直、导线的影响等。 ➢环境误差:由于测量环境条件变化的影响,如温度、压力、外电磁 场的影响。 ➢人员误差:由测量人员自身造成的,如读数的偏大、偏小、测量的 超前或滞后等。 ➢方法误差:由于测量方法不完善,计算公式的近似简化引起的。
误差理论与数据处理-第一章误差的基本概念ppt课件.ppt
病原体侵 入机体 ,消弱 机体防 御机能 ,破坏 机体内 环境的 相对稳 定性, 且在一 定部位 生长繁 殖,引 起不同 程度的 病理生 理过程
第二节 测量误差的定义及基本概念
一、测量误差
定义
δ=x-a
测量误差
被测量 的真值
测量结果
病原体侵 入机体 ,消弱 机体防 御机能 ,破坏 机体内 环境的 相对稳 定性, 且在一 定部位 生长繁 殖,引 起不同 程度的 病理生 理过程
根据测量条件是否发生变化分类
等权测量
指在测量过程中,测量仪器、测量方法、测量条 件和操作人员都保持不变。因此,对同一被测量进 行的多次测量结果可认为具有相同的信赖程度,应 按同等原则对待。
不等权测量
指测量过程中测量仪器、测量方法、测量条件或 操作人员某一因素或某几因素发生变化,使得测量结 果的信赖程度不同。对不等权测量的数据应按不等权 原则进行处理。
δ≤2.5%×[0.1-(-0.1)]=0.005(MPa) 引用误差专用于仪器仪表误差的描述。
病原体侵 入机体 ,消弱 机体防 御机能 ,破坏 机体内 环境的 相对稳 定性, 且在一 定部位 生长繁 殖,引 起不同 程度的 病理生 理过程
第三节 测量误差的来源
为了减小测量误差,提高测量准确度,就必须了解误差 来源。而误差来源是多方面的,在测量过程中,几乎所有 因素都将引入测量误差。
测量方法误差
病原体侵 入机体 ,消弱 机体防 御机能 ,破坏 机体内 环境的 相对稳 定性, 且在一 定部位 生长繁 殖,引 起不同 程度的 病理生 理过程
按测量结果的获取方式分类
直接测量
指被测量与该标准量直接进行比较的 测量,指该被测量的测量结果可以直接 由测量仪器输出得到,而不再需要经过
误差理论与数据处理课件(全)
个数K 46 41 33 21 16 13 5 2 0 177
+△ 频率K/n 0.128 0.115 0.092 0.059 0.045 0.036 0.014 0.006
0 0.495
(K/n)/d△ 0.640 0.575 0.460 0.295 0.225 0.180 0.070 0.030 0
(四)复杂规律变化的系统误差
(一)实验对比法 (二)残余误差观测法
(五)计算数据比较法
(一)从产生误差根源上消除系统误差 (二)用修正方法消除系统误差 (三)不变系统误差消除法 1。替代法 2。抵消发 3。交换法
一、粗大误差产生的原因 (1)测量人员的主观原因 (2)客观外界条件的原因
第一节:研究误差的意义 1、始终存在着误差 意义:
1)正确认识误差的性质,分析误差产生 的原因,以消除和减少误差。
2)正确处理测量和实验数据 3)正确组织实验过程
由于误差的存在,使测量数据之间产生矛 盾。
( )实际 180
( )理论 180
测量仪器:i角误差、2c误差 观测者:人的分辨力限制 外界条件:温度、气压、大气折光等
……
2.40~2.60 >2.60
和
个数K 40 34 31 25 20 16 …… 1 0 210
—△ 频率K/n 0.095 0.081 0.074 0.059 0.048 0.038
(4)( AT )1 ( A1)T
(5)对称矩阵的逆仍为对称矩阵。
(6)对角矩阵的逆仍为对角矩阵且:
A1 (diag (a11, a22,ann ))1 diag( 1 , 1 1 )
a11 a22 ann
(1)伴随矩阵法:
设Aij为A的第i行j列元素aij的代数余子式,则由 n*n个代数余子式构成的矩阵为A的伴随矩阵 的转置矩阵A*称为A的伴随矩阵。
第2章 1误差和分析数据处理
RSD S 100% x
例题:2-3
有两组测定数据如下: d1 d2 d3 d4 d5 d6 d7 d8 d9 d10 d平
甲组 0.1 0.4 0.0 -0.3 0.2 -0.2 -0.3 0.2 -0.4 0.3 0.24 乙组 -0.1 -0.2 0.9 0.0 0.1 0.1 0.0 0.1 -0.7 -0 .2 0.24
(1)偶然误差特点
同一条件下进行重复测量时,偶然误差 的大小、方向均以不固定的方式出现。
偶然误差服从正态分布规律。大误差出 现的几率小,小误差出现的几率大;
绝对值相等的误差出现的几率相等,当 测定次数达到一定数值时,偶然误差可 相互抵消。
(三)过失
• 在实际操作中,由于分析工作者的大意 或违反操作规程等所造成的结果错误称 为“过失”。
3.标准偏差
对于少量测定次数(n≤20)的测量 值,其标准偏差指各绝对偏差(di) 的平方和与测量次数减一的比值的开 方。其数学表达式为。
n
(xi x)2
S i1 n 1
4.相对标准偏差(变异系数)
相对标准偏差(RSD):指标准偏 差(S)占平均值 x 的百分比。
其数学表达式为
• 在正常情况下不会发生过失,是仪器失 灵、试剂被污染、试的意外损失等原 因造成的。
• 一旦察觉到过失的发生,应停止正在进 行的步骤,重新开始实验。
二、精密度与偏差
(precision and deviation)
• (一)精密度 • 在相同条件下,多次测定结果相互吻
合的程度。精密度的高低用偏差表示。 • 分析结果的偏差越小,其精密度越高,
问哪一组精密度好?
S甲=0.29 S乙=0.40 • 可见甲组数据精密度好
例题:2-3
有两组测定数据如下: d1 d2 d3 d4 d5 d6 d7 d8 d9 d10 d平
甲组 0.1 0.4 0.0 -0.3 0.2 -0.2 -0.3 0.2 -0.4 0.3 0.24 乙组 -0.1 -0.2 0.9 0.0 0.1 0.1 0.0 0.1 -0.7 -0 .2 0.24
(1)偶然误差特点
同一条件下进行重复测量时,偶然误差 的大小、方向均以不固定的方式出现。
偶然误差服从正态分布规律。大误差出 现的几率小,小误差出现的几率大;
绝对值相等的误差出现的几率相等,当 测定次数达到一定数值时,偶然误差可 相互抵消。
(三)过失
• 在实际操作中,由于分析工作者的大意 或违反操作规程等所造成的结果错误称 为“过失”。
3.标准偏差
对于少量测定次数(n≤20)的测量 值,其标准偏差指各绝对偏差(di) 的平方和与测量次数减一的比值的开 方。其数学表达式为。
n
(xi x)2
S i1 n 1
4.相对标准偏差(变异系数)
相对标准偏差(RSD):指标准偏 差(S)占平均值 x 的百分比。
其数学表达式为
• 在正常情况下不会发生过失,是仪器失 灵、试剂被污染、试的意外损失等原 因造成的。
• 一旦察觉到过失的发生,应停止正在进 行的步骤,重新开始实验。
二、精密度与偏差
(precision and deviation)
• (一)精密度 • 在相同条件下,多次测定结果相互吻
合的程度。精密度的高低用偏差表示。 • 分析结果的偏差越小,其精密度越高,
问哪一组精密度好?
S甲=0.29 S乙=0.40 • 可见甲组数据精密度好
第1章误差理论与数据处理绪论PPT课件
20
误差的来源
▪ 测量装置误差 计量器具误差、测量仪器误差
▪ 测量方法误差 原理性误差
▪ 测量环境误差 温度、湿度、压力等因素引起
▪ 测量人员误差
21
误差分析的目的及意义
▪ 从测量结果的角度分析: 明确测量结果的质量,对测量结果进行评价 寻求误差补偿的措施,提高测量结果的水平
▪ 从系统分析的角度着手 分析误差传递的特点,对传递过程进行探索 评价系统的总体性能,寻求改善性能的方法
绪论
钱政 北京航空航天大学仪器科学与光电工程学院
1
几点说明
▪ 考试形式? – 闭卷考试
▪ 成绩比例? – 20%的作业;80%卷面成绩
▪ 答疑安排? – 日常答疑——新主楼B座702房间,82339267 – 考前不安排答疑
▪ 参考教材? – 测试误差分析与数据处理(北航出版社)
2
几个问题
▪ 为什么学习这门课程? – 误差分析与数据处理的作用?
14
组合形式单位
▪ 两个或两个以上的单位用乘、除的形式组合而成 的新单位
由基本单位构成,如加速度单位,“米每二次方 秒(m/s2)”;
由辅助单位和基本单位构成,如角速度单位“弧 度每秒(rad/s)”;
由专门名称的导出单位和基本单位构成,如压力 单位“牛顿每平方米(N/m2)”;
由一个单位作分母,而分子为1构成;如线膨胀 系数单位“每摄氏度(1/℃)”;
总和
测量结果=测量数值× 测量单位 ▪ 完整的测量过程包括:被测量、测量单位、测量
方法、测量精度
8
测量与测试
▪ 测试的概念 – 带有试验性质的测量
▪ 测试的目的 – 获取被测对象的信息
▪ 测试的过程 – 借助专门的设备、仪器或测试系统,通过适当的 实验方法与必需的信号分析及数据处理,由测得 信号获取与研究对象有关信息量值的过程。
误差的来源
▪ 测量装置误差 计量器具误差、测量仪器误差
▪ 测量方法误差 原理性误差
▪ 测量环境误差 温度、湿度、压力等因素引起
▪ 测量人员误差
21
误差分析的目的及意义
▪ 从测量结果的角度分析: 明确测量结果的质量,对测量结果进行评价 寻求误差补偿的措施,提高测量结果的水平
▪ 从系统分析的角度着手 分析误差传递的特点,对传递过程进行探索 评价系统的总体性能,寻求改善性能的方法
绪论
钱政 北京航空航天大学仪器科学与光电工程学院
1
几点说明
▪ 考试形式? – 闭卷考试
▪ 成绩比例? – 20%的作业;80%卷面成绩
▪ 答疑安排? – 日常答疑——新主楼B座702房间,82339267 – 考前不安排答疑
▪ 参考教材? – 测试误差分析与数据处理(北航出版社)
2
几个问题
▪ 为什么学习这门课程? – 误差分析与数据处理的作用?
14
组合形式单位
▪ 两个或两个以上的单位用乘、除的形式组合而成 的新单位
由基本单位构成,如加速度单位,“米每二次方 秒(m/s2)”;
由辅助单位和基本单位构成,如角速度单位“弧 度每秒(rad/s)”;
由专门名称的导出单位和基本单位构成,如压力 单位“牛顿每平方米(N/m2)”;
由一个单位作分母,而分子为1构成;如线膨胀 系数单位“每摄氏度(1/℃)”;
总和
测量结果=测量数值× 测量单位 ▪ 完整的测量过程包括:被测量、测量单位、测量
方法、测量精度
8
测量与测试
▪ 测试的概念 – 带有试验性质的测量
▪ 测试的目的 – 获取被测对象的信息
▪ 测试的过程 – 借助专门的设备、仪器或测试系统,通过适当的 实验方法与必需的信号分析及数据处理,由测得 信号获取与研究对象有关信息量值的过程。
01第一章误差理论与数据处理01
e物质的量
Luminous
L
intensity发光强度
Second秒
s
Metre米
m
Kilogram千克 kg
Ampere安培 A
- in terms of the period of the Cs hyperfine transition铯原子超精细跃迁的周期
- distance travelled by light in 1/299792548 of a second 光在1/299 792 458 秒的时间内运动的距离
a second 光在 1/299 792 458 秒时间内运 动的距离
- in terms of the mass of the international
prototype K 国际原器的质量, K
- in terms of the force between wires carrying
current带电导线之间的力
Quantity symbol 量 符号
Base unit symbol 基本单位 符号
Proposed new definition 建议新定义
Time时间
t
Length长度
x
Mass质量
m
Electric
i
current 电流
Thermodynamic T temperature热力学温度
Amount
笔式记录仪 光线示波器 磁带记录仪 电子示波器 半导体存储器 显示器 磁卡
数据处理器 频谱分析仪
FFT 实时信号分析仪 计算机
被测对象 传感器
中间变换 测量装置
显示及 记录装置
实验结果 处理装置
9
四、测量方法分类
Luminous
L
intensity发光强度
Second秒
s
Metre米
m
Kilogram千克 kg
Ampere安培 A
- in terms of the period of the Cs hyperfine transition铯原子超精细跃迁的周期
- distance travelled by light in 1/299792548 of a second 光在1/299 792 458 秒的时间内运动的距离
a second 光在 1/299 792 458 秒时间内运 动的距离
- in terms of the mass of the international
prototype K 国际原器的质量, K
- in terms of the force between wires carrying
current带电导线之间的力
Quantity symbol 量 符号
Base unit symbol 基本单位 符号
Proposed new definition 建议新定义
Time时间
t
Length长度
x
Mass质量
m
Electric
i
current 电流
Thermodynamic T temperature热力学温度
Amount
笔式记录仪 光线示波器 磁带记录仪 电子示波器 半导体存储器 显示器 磁卡
数据处理器 频谱分析仪
FFT 实时信号分析仪 计算机
被测对象 传感器
中间变换 测量装置
显示及 记录装置
实验结果 处理装置
9
四、测量方法分类
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
9
(2)随机误差(偶然误差)
➢定义: 在同一条件下,对同一量进行多次测量时,如果没有系统误差,测 量结果仍会出现一些无规律的起伏,这种偶然的,不确定的偏离叫做随机 误差。 凡是由未被发现和无法控制的因素产生的误差均为随机误差。其特 点是数值大小和方向均带有随机性和不定性。
➢产生原因:随机误差是由于人的感官灵敏程度和仪器精密程度有限以及 实验中难以确定的因素而引起的。
8
➢发现系统误差的简单方法
通过观察偏差发现系统误差
1)将观测值依次排列,如偏差的大小有规则地向一个方向变化,即前面 为负号,后面为正号,且符号为(一一一一一十++十+)或相反(+ 十++十一一一一一),则说明该组观测值含有累进的系统误差。如中 间有微小波动,则说明有随机误差的影响。
2)将观测值依次排列,如偏差符号作有规律交替变化,则测量中含有周期 性误差。如中间有微小波动,则说明有随机误差的影响。
➢理论真值:理论上证明过的某些已知的固定量值,如三角 形之和为180º。
➢约定真值:国际计量组织通过决议规定的某些计量单位的 量值,如规定铂铱合金的国际千克原器为1kg的质量单位。 光在真空中1s时间内传播距离的1/299792485为1米。
➢相对真值:高一级标准器(核对仪表)与低一级标准器或 一般仪器相比误差小得多,认为前者是后者的相对真值。
2)按系统误差的性质分 ➢固定误差:测量过程中符号和数值大小都不变,如仪器的零点误差。 ➢累进误差:在测量过程中,随某个因素(如时间、长度)而递增或递 减,就像用不准确的尺子测量大距离。 ➢周期性误差:误差的数值与符号呈周期性的变化,如辊轴偏心等。 ➢变化规律复杂的误差:需要用公式或曲线表示其变化规律的误差,如 光线示波器振动子的圆弧误差。
(4)缓变误差: 是指数值上随时间缓慢变化的误差,一般它是由零部件的
老化、机械零件内应力变化引起的。由于它有不平稳随机 过程的特点,误差值在单调缓慢变化,因此不能象对系统 误差那样引进一次修正量即能校正,又不能象对一般随机 误差那样按平稳随机过程的特点来处理,因而常需不断进 行校正,测量准确度与对仪器仪表的校正周期有关。
在不同测量的条件下,对某一物理量进行多次测量,所 得的测量值的精确程度不能认为是相同的,称作非等精度测量。
3
1.2真值、代表值与误差
1.2.1真值
指在某一时刻和某一位置的某个物理量客观存在的真实值。严 格地讲,真值是无法测得的,只能测得真值的近似值。实际应 用中真值是指测量次数无限多时的平均值作为真值。
的规律变化,测量结果都大于真值或都小于真值。 并且为其它的物理 量(如温度等)的函数,这种带有系统性和方向性的误差称为系统误差。
➢ 产生原因:仪器,理论推导,实验方法,操作,环境等。
仪器
天平不等臂
7
➢系统误差的分类
1)按系统误差产生的原因分 ➢设备误差:由于测量仪器、工具的不准确或安装不正确造成的,如 仪器的零位不准,空行程、不水平、不垂直、导线的影响等。 ➢环境误差:由于测量环境条件变化的影响,如温度、压力、外电磁 场的影响。 ➢人员误差:由测量人员自身造成的,如读数的偏大、偏小、测量的 超前或滞后等。 ➢方法误差:由于测量方法不完善,计算公式的近似简化引起的。
5
1.2.3误差及误差分类
按误差的数值表达式分(2种): ➢绝对误差 测量值与真值之差称为绝对误差。 ➢相对误差 绝对误差与真值之比值为相对误差。
按误差的性质和产生的原因分(4种): ➢系统误差 ➢随机误差 ➢过失误差 ➢缓变误差
任 何 测 量 结 果 都 有 误 差!
6
(1)系统误差 ➢ 定义:在一定条件下,对同一物理量进行多次测量时,其误差按一定
4
1.2.2代表值
简单的说,就是通过测量和数据处理,认为能够代表真值的数据。 ➢ 中位值
将所测量的数值按其大小顺序排列,位于正中间的数值叫做中位值。 ➢ 平均值
设x1,x2……xn代表各次观测值,n代表观测次数,则 算数平均值:
平方平均值(均方根平均值)
几何平均值
冶金试验中,常用算数平均值作为代表值
3)在某一测量条件时,测量偏差基本上保持相同符号。当变为另一测量条 件时偏差均变号,则表明测量中含有随测量条件改变而变化的固定误差。
4)按测量次序,若观测值前半部分偏差之和与后半部分偏差之和的差值明 显不为零,则该测量中含有累进误差。
5)若测量条件改变前偏差之和与改变后偏差之和的差值显然不为零,则该 测量中含有随条件而变化的固定误差。
s 小
f(x)
温度忽高忽低
气流飘忽不定
m-s m m+s x
电压漂移起伏
10
➢随机误差的特征
① 正态性:绝对值小的误差出现的概 f(δ) 率高,绝对值大的误差出现的概率低, 绝对值很大的误差出现的概率近于零
② 对称性:绝对值相等的正负误差出 现的概率相等
③ 有界性:在一定的测量条件下,随 机误差的绝对值有一定的界限,超过 此界限的误差概率等于零。
值的测量;
的过程,称为间接测量。
➢例如:用直尺测量长度;
以表计时间;
天平称质量;
M
安培表测电流。
d
h
X
2
2)等精度测量和非等精度测量
➢等精度测量:
在相同的条件下,对某一物理量 进行多次测量得到的一
组测量值
称作等精度测量。
相同的条件:指同一时间地点、同一人、相同的测量仪器和 测量环境等条件。
➢ 非等精度测量:
④ 抵偿性:正号的随机误差之和与负 号的随机误差之和的绝对值相等,互 相抵消。
δ
f ()
1
2
e-2s2
2s
式中的 s 是一个与实验条件有关的常数,称之为正态分布的 标准误差。±s 是曲线两个拐点的横坐标位置。
11
(3)过失误差 它是一种显然与事实不符的误差,主要是由于操作人员的
粗心大意、操作错误等引起的。如测量、记录或计算的错误 等。此类误差无规律可循,含有过失误差的测量数据只能舍 弃不用,无法修正。只要加强操作人员的责任心,过失误差 是可以避免的。一般要进行舍弃。
第一章 误差分析与数据处理
1.1测量及其分类
1)按测量的方式分:
➢直接测量 ➢间接测量
2)按测量条件分
➢等精度测量 ➢不等精度测量
3)按测量过程的状态分 ➢静态测量 ➢动态测量
X1、X2、X3、Xn
1
1) 直接测量和间接测量
➢ 直接测量: 凡是使用仪器 ➢间接测量:从一个或几个直接测
或量具就可直接得到被测量 量结果按一定的函数关系计算出来
(2)随机误差(偶然误差)
➢定义: 在同一条件下,对同一量进行多次测量时,如果没有系统误差,测 量结果仍会出现一些无规律的起伏,这种偶然的,不确定的偏离叫做随机 误差。 凡是由未被发现和无法控制的因素产生的误差均为随机误差。其特 点是数值大小和方向均带有随机性和不定性。
➢产生原因:随机误差是由于人的感官灵敏程度和仪器精密程度有限以及 实验中难以确定的因素而引起的。
8
➢发现系统误差的简单方法
通过观察偏差发现系统误差
1)将观测值依次排列,如偏差的大小有规则地向一个方向变化,即前面 为负号,后面为正号,且符号为(一一一一一十++十+)或相反(+ 十++十一一一一一),则说明该组观测值含有累进的系统误差。如中 间有微小波动,则说明有随机误差的影响。
2)将观测值依次排列,如偏差符号作有规律交替变化,则测量中含有周期 性误差。如中间有微小波动,则说明有随机误差的影响。
➢理论真值:理论上证明过的某些已知的固定量值,如三角 形之和为180º。
➢约定真值:国际计量组织通过决议规定的某些计量单位的 量值,如规定铂铱合金的国际千克原器为1kg的质量单位。 光在真空中1s时间内传播距离的1/299792485为1米。
➢相对真值:高一级标准器(核对仪表)与低一级标准器或 一般仪器相比误差小得多,认为前者是后者的相对真值。
2)按系统误差的性质分 ➢固定误差:测量过程中符号和数值大小都不变,如仪器的零点误差。 ➢累进误差:在测量过程中,随某个因素(如时间、长度)而递增或递 减,就像用不准确的尺子测量大距离。 ➢周期性误差:误差的数值与符号呈周期性的变化,如辊轴偏心等。 ➢变化规律复杂的误差:需要用公式或曲线表示其变化规律的误差,如 光线示波器振动子的圆弧误差。
(4)缓变误差: 是指数值上随时间缓慢变化的误差,一般它是由零部件的
老化、机械零件内应力变化引起的。由于它有不平稳随机 过程的特点,误差值在单调缓慢变化,因此不能象对系统 误差那样引进一次修正量即能校正,又不能象对一般随机 误差那样按平稳随机过程的特点来处理,因而常需不断进 行校正,测量准确度与对仪器仪表的校正周期有关。
在不同测量的条件下,对某一物理量进行多次测量,所 得的测量值的精确程度不能认为是相同的,称作非等精度测量。
3
1.2真值、代表值与误差
1.2.1真值
指在某一时刻和某一位置的某个物理量客观存在的真实值。严 格地讲,真值是无法测得的,只能测得真值的近似值。实际应 用中真值是指测量次数无限多时的平均值作为真值。
的规律变化,测量结果都大于真值或都小于真值。 并且为其它的物理 量(如温度等)的函数,这种带有系统性和方向性的误差称为系统误差。
➢ 产生原因:仪器,理论推导,实验方法,操作,环境等。
仪器
天平不等臂
7
➢系统误差的分类
1)按系统误差产生的原因分 ➢设备误差:由于测量仪器、工具的不准确或安装不正确造成的,如 仪器的零位不准,空行程、不水平、不垂直、导线的影响等。 ➢环境误差:由于测量环境条件变化的影响,如温度、压力、外电磁 场的影响。 ➢人员误差:由测量人员自身造成的,如读数的偏大、偏小、测量的 超前或滞后等。 ➢方法误差:由于测量方法不完善,计算公式的近似简化引起的。
5
1.2.3误差及误差分类
按误差的数值表达式分(2种): ➢绝对误差 测量值与真值之差称为绝对误差。 ➢相对误差 绝对误差与真值之比值为相对误差。
按误差的性质和产生的原因分(4种): ➢系统误差 ➢随机误差 ➢过失误差 ➢缓变误差
任 何 测 量 结 果 都 有 误 差!
6
(1)系统误差 ➢ 定义:在一定条件下,对同一物理量进行多次测量时,其误差按一定
4
1.2.2代表值
简单的说,就是通过测量和数据处理,认为能够代表真值的数据。 ➢ 中位值
将所测量的数值按其大小顺序排列,位于正中间的数值叫做中位值。 ➢ 平均值
设x1,x2……xn代表各次观测值,n代表观测次数,则 算数平均值:
平方平均值(均方根平均值)
几何平均值
冶金试验中,常用算数平均值作为代表值
3)在某一测量条件时,测量偏差基本上保持相同符号。当变为另一测量条 件时偏差均变号,则表明测量中含有随测量条件改变而变化的固定误差。
4)按测量次序,若观测值前半部分偏差之和与后半部分偏差之和的差值明 显不为零,则该测量中含有累进误差。
5)若测量条件改变前偏差之和与改变后偏差之和的差值显然不为零,则该 测量中含有随条件而变化的固定误差。
s 小
f(x)
温度忽高忽低
气流飘忽不定
m-s m m+s x
电压漂移起伏
10
➢随机误差的特征
① 正态性:绝对值小的误差出现的概 f(δ) 率高,绝对值大的误差出现的概率低, 绝对值很大的误差出现的概率近于零
② 对称性:绝对值相等的正负误差出 现的概率相等
③ 有界性:在一定的测量条件下,随 机误差的绝对值有一定的界限,超过 此界限的误差概率等于零。
值的测量;
的过程,称为间接测量。
➢例如:用直尺测量长度;
以表计时间;
天平称质量;
M
安培表测电流。
d
h
X
2
2)等精度测量和非等精度测量
➢等精度测量:
在相同的条件下,对某一物理量 进行多次测量得到的一
组测量值
称作等精度测量。
相同的条件:指同一时间地点、同一人、相同的测量仪器和 测量环境等条件。
➢ 非等精度测量:
④ 抵偿性:正号的随机误差之和与负 号的随机误差之和的绝对值相等,互 相抵消。
δ
f ()
1
2
e-2s2
2s
式中的 s 是一个与实验条件有关的常数,称之为正态分布的 标准误差。±s 是曲线两个拐点的横坐标位置。
11
(3)过失误差 它是一种显然与事实不符的误差,主要是由于操作人员的
粗心大意、操作错误等引起的。如测量、记录或计算的错误 等。此类误差无规律可循,含有过失误差的测量数据只能舍 弃不用,无法修正。只要加强操作人员的责任心,过失误差 是可以避免的。一般要进行舍弃。
第一章 误差分析与数据处理
1.1测量及其分类
1)按测量的方式分:
➢直接测量 ➢间接测量
2)按测量条件分
➢等精度测量 ➢不等精度测量
3)按测量过程的状态分 ➢静态测量 ➢动态测量
X1、X2、X3、Xn
1
1) 直接测量和间接测量
➢ 直接测量: 凡是使用仪器 ➢间接测量:从一个或几个直接测
或量具就可直接得到被测量 量结果按一定的函数关系计算出来