计量经济学:特殊解释变量

合集下载

计量经济学重点知识整理

计量经济学重点知识整理

计量经济学重点知识整理1一般性定义计量经济学是以经济理论和经济数据的事实为依据,运用数学和统计学的方法,通过建立数学模型来研究经济数量关系和规律的一门经济学科。

研究的主体(出发点、归宿、核心):经济现象及数量变化规律研究的工具(手段):模型数学和统计方法必须明确:方法手段要服从研究对象的本质特征(与数学不同),方法是为经济问题服务2注意:计量经济研究的三个方面理论:即说明所研究对象经济行为的经济理论——计量经济研究的基础数据:对所研究对象经济行为观测所得到的信息——计量经济研究的原料或依据方法:模型的方法与估计、检验、分析的方法——计量经济研究的工具与手段三者缺一不可3计量经济学的学科类型●理论计量经济学研究经济计量的理论和方法●应用计量经济学:应用计量经济方法研究某些领域的具体经济问题4区别:●经济理论重在定性分析,并不对经济关系提供数量上的具体度量●计量经济学对经济关系要作出定量的估计,对经济理论提出经验的内容5计量经济学与经济统计学的关系联系:●经济统计侧重于对社会经济现象的描述性计量●经济统计提供的数据是计量经济学据以估计参数、验证经济理论的基本依据●经济现象不能作实验,只能被动地观测客观经济现象变动的既成事实,只能依赖于经济统计数据6计量经济学与数理统计学的关系联系:●数理统计学是计量经济学的方法论基础区别:●数理统计学是在标准假定条件下抽象地研究一般的随机变量的统计规律性;●计量经济学是从经济模型出发,研究模型参数的估计和推断,参数有特定的经济意义,标准假定条件经常不能满足,需要建立一些专门的经济计量方法3、计量经济学的特点:计量经济学的一个重要特点是:它自身并没有固定的经济理论,而是根据其它经济理论,应用计量经济方法将这些理论数量化。

4、计量经济学为什么是一门单独的学科计量经济学是经济理论、数理经济、经济统计与数理统计的混合物。

1、经济理论所作的陈述或假说大多数是定性性质的,计量经济学对大多数经济理论赋予经验内容。

计量经济学名词解释

计量经济学名词解释

计量经济学名词解释1、计量经济学计量经济学是一个分支学科,以揭示经济活动中客观存在的数量关系为内容的分支学科,统计学,经济理论和数学这结合便构成了计量经济学。

2、计量经济学模型揭示经济活动中各个因素之间的定量关系,用随机性的数学方程加以描述。

3、解释变量影响被解释变量的因素或因子,是原因变量,记为“X”.4、被解释变量结果变量称为被解释变量,记为“Y”。

5、结构分析结构分析是对经济现象中变量之间相互关系的研究。

所采用的主要方法是弹性分析、乘数分析与比较静力分析。

6、时间序列数据按照时间先后顺序排列的统计数据,又称为纵向数据。

7、截面数据一批发生在同一时间截面上的调查数据,又称横向数据。

8、平行数据(面板数据)时间序列数据与截面数据的合成体,又称面板数据。

9、回归分析回归分析是研究一个变量关于另一个(些)变量的依赖关系的计算方法和理论。

10、随机误差项被解释变量数值与其条件期望之间的离差,是一个不可观测的随机变量,称为随机误差项,或随机干扰项。

11、最小二乘法通过最小化误差的平方和寻找数据的最佳函数匹配。

12、最佳线性无偏估计量拥有有限样本性质或小样本性质这类性质的估计量,称为最佳线性无偏估计量。

13、拟合优度是SRF对样本观测值的拟合程度,即样本回归直线与观测散点之间的紧密程度。

14、方程显著性检验对所有被解释变量与解释变量之间的线性关系在总体上是否显著成立做出推断的检验。

15、变量显著性检验是对模型中某一个具体的解释变量X与被解释变量Y之间的线性关系在总体上是否显著成立做出判断,换言之,是考察所选择的X在总体上是否对Y有显著的线性影响。

16、最小样本容量是指从最小二乘原理和最大似然原理出发,欲得到参数估计量,不管其质量如何,所要求的样本容量的下限。

17、满足基本要求的样本容量当n≥30或者至少n≥3(k+1)时,才能说满足模型估计的基本要求。

18、需求函数的零阶齐次性当所有商品价格和消费者货币支出总额按照同一比例变动时,需求量保持不变,这就是所谓的消费者无货币幻觉。

计量经济学名词解释及简答

计量经济学名词解释及简答

一、名词解释第一章1、计量经济学:计量经济学是以经济理论和经济数据的事实为依据,运用数学、统计学的方法,借助计算机为辅助工具,通过建立数学模型来研究经济数量关系和规律的一门经济学科。

2、虚拟变量数据:虚拟变量数据是人为构造的,通常取值为1或0的,用来表征政策等定性事实的数据。

3、计量经济学检验:计量经济学检验主要是检验模型是否符合计量经济方法的基本假定。

4、政策评价:政策评价是利用计量经济模型对各种可供选择的政策方案的实施后果进行模拟测算,从而对各种政策方案做出评价第二章1、回归平方和:回归平方和用ESS 表示,是被解释变量的样本估计值与其平均值的离差平方和。

2、拟和优度检验:拟和优度检验指检验模型对样本观测值的拟合程度,用表示,该值越接近1,模型对样本观测值拟合得越好。

3、相关关系:当一个或若干个变量X 取一定数值时,与之相对应的另一个变量Y 的值虽然不确定,但却按某种规律在一定范围内变化,变量之间的这种关系,称为不确定性的统计关系或相关关系,可表示为Y=f(X ,u),其中u 为随机变量。

4、高斯-马尔科夫定理:在古典假定条件下,O LS 估计式是其总体参数的最佳线性无偏估计式。

第三章1、偏回归系数:在多元线性回归模型中,回归系数j (j=1,2,……,k )表示的是当控制其他解释变量不变的条件下,第j 个解释变量的单位变动对被解释变量平均值的影响,这样的回归系数称为偏回归系数。

2、多重可决系数:“回归平方和”与“总离差平方和”的比值,用表示。

3、修正的可决系数:用自由度修正多重可决系数 中的残差平方和与回归平方和。

4、回归方程的显著性检验(F 检验):对模型中被解释变量与所有解释变量之间的线性关系在总体上是否显著做出推断。

5、回归参数的显著性检验(t 检验):当其他解释变量不变时,某个回归系数对应的解释变量是否对被解释变量有显著影响做出推断。

6、无多重共线性假定:假定各解释变量之间不存在线性关系,或者说各解释变量的观测值之间线性无关,在此条件下,解释变量观测值矩阵X 列满秩Rank(X)=k ,此时,方阵X`X 满秩, Rank(X`X)=k从而X`X 可逆,(X`X) 存在。

计量经济学名词解释

计量经济学名词解释

经济变量:经济变量是用来描述经济因素数量水平的指标。

解释变量:解释变量也称自变量,是用来解释作为研究对象的变量(即因变量)为什么变动、如何变动的变量。

它对因变量的变动作出解释,表现为议程所描述的因果关系中的“因”。

被解释变量:被解释变量也称因变量或应变量,是作为研究对象的变量。

它的变动是由解释变量作出解释的,表现为议程所描述的因果关系的果。

内生变量:内生变量是由模型系统内部因素所决定的变量,表现为具有一定概率的随机变量,其数值受模型中其他变量的影响,是模型求解的结果。

外生变量:外生变量是由模型统计之外的因素决定的变量,不受模型内部因素的影响,表现为非随机变量,但影响模型中的内生变量,其数值在模型求解之前就已经确定。

滞后变量:滞后变量是滞后内生变量和滞后外生变量的合称,前期的内生变量称为滞后内生变量;前期的外生变量称为滞后外生变量。

前定变量:通常将外生变量和滞后变量合称为前定变量,即是在模型求解以前已经确定或需要确定的变量。

控制变量:控制变量是为满足描绘和深入研究经济活动的需要,在计量经济模型中人为设置的反映政策要求、决策者意愿、经济系统运行条件和状态等方面的变量,它一般属于外生变量。

计量经济模型:计量经济模型是为了研究分析某个系统中经济变量之间的数量关系而采用的随机代数模型,是以数学形式对客观经济现象所作的描述和概括。

函数关系与相关关系线性回归模型总体回归模型与样本回归模型最小二乘法:在残差满足VPV为最小的条件下解算测量估值或参数估值并进行精度估算的方法。

其中V为残差向量,P为其权矩阵高斯-马尔可夫定理:在给定经典线性回归的假定下,最小二乘估计量是具有最小方差的线性无偏估计量。

回归变差(回归平方和)剩余变差(残差平方和)估计标准误差样本决定系数:将回归平方和与总离差平方和之比称为判定系数其值界于0~1之间,R²越大,残差平方和所占的比重就越小,回归直线与样本数据拟合的越好。

相关系数显著性检验t检验经济预测点预测区间预测拟合优度:指回归直线对观测值的拟合程度残差.偏回归系数:在多元回归分析中,随机因变量对各个自变量的回归系数,表示各自变量对随机变量的影响程度总变量(总离差平方和):用TSS表示。

计量经济学-参考答案

计量经济学-参考答案

一、解释概念:1、多重共线性:是指在多元线性回归模型中,解释变量之间存在的线性关系。

2、SRF:就是样本回归函数。

即是将样本应变量的条件均值表示为解释变量的某种函数。

3、解释变量的边际贡献:在回归模型中新加入一个解释变量所引起的回归平方和或者拟合优度的增加值。

4、一阶偏相关系数:反映一个经济变量与某个经济变量的线性相关程度时,剔除另一个变量对它们的影响的真实相关程度的指标。

5、最小方差准则:在模型参数估计时,应当选择其抽样分布具有最小方差的估计式,该原则就是最佳性准则,或者称为最小方差准则。

6、OLS:普通最小二乘估计。

是利用残差平方和为最小来求解回归模型参数的参数估计方法。

7、偏相关系数:反映一个经济变量与某个经济变量的线性相关程度时,剔除其它变量(部分或者全部变量)对它们的影响的真实相关程度的指标。

8、WLS:加权最小二乘法。

是指估计回归方程参数时,按照残差平方加权求和最小的原则进行的估计方法。

9、U t自相关:即回归模型中随机误差项逐项值之间的相关。

即Cov(U t,U s)≠0 t ≠s。

10、二阶偏相关系数:反映一个经济变量与某个经济变量的线性相关程度时,剔除另两个变量对它们的影响的真实相关程度的指标。

11、技术方程式:根据生产技术关系建立的计量经济模型。

13、零阶偏相关系数:反映一个经济变量与某个经济变量的线性相关程度时,不剔除任何变量对它们的影响的相关程度的指标。

也就是简单相关系数。

14、经验加权法:是根据实际经济问题的特点及经验判断,对滞后经济变量赋予一定的权数,利用这些权数构成各滞后变量的线性组合,以形成新的变量,再用最小二乘法进行参数估计的有限分布滞后模型的修正估计方法。

15、虚拟变量:在计量经济学中,我们把取值为0和1 的人工变量称为虚拟变量,用字母D表示。

(或称为属性变量、双值变量、类型变量、定性变量、二元型变量)16、不完全多重共线性:是指在多元线性回归模型中,解释变量之间存在的近似的线性关系。

(完整版)计量经济学名词解释和简答

(完整版)计量经济学名词解释和简答

(完整版)计量经济学名词解释和简答三、名词解释经济计量学:是经济学、统计学和数学合流⽽构成的⼀门交叉学科。

理论经济计量学:是寻找适当的⽅法,去测度由经济计量模型设定的经济关系式。

应⽤经济化量学:以经济理论和事实为出发点,应⽤计量⽅法,解决经济系统运⾏过程中的理论问题或实践问题。

内⽣变量:具有⼀定概率分布的随机变量,由模型⾃⾝决定,其数值是求解模型的结果。

外⽣变量:是⾮随机变量,在模型体系之外决定,即在模型求解之前已经得到了数值。

随机⽅程:根据经济⾏为构造的函数关系式。

⾮随机⽅程:根据经济学理论或政策、法规⽽构造的经济变量恒等式。

时序数据:指某⼀经济变量在各个时期的数值按时间先后顺序排列所形成的数列。

截⾯数据:指在同⼀时点或时期上,不同统计单位的相同统计指标组成的数据。

回归分析:就是研究被解释变量对解释变量的依赖关系,其⽬的就是通过解释变量的已知或设定值,去估计或预测被解释变量的总体均值。

相关分析:测度两个变量之间的线性关联度的分析⽅法。

总体回归函数:E (Y /X i )是X i 的⼀个线性函数,就是总体回归函数,简称总体回归。

它表明在给定X i 下Y 的分布的总体均值与X i 有函数关系,就是说它给出了Y 的均值是怎样随X 值的变化⽽变化的。

随机误差项:为随机或⾮系统性成份,代表所有可能影响Y ,但⼜未能包括到回归模型中来的被忽略变量的代理变量。

有效估计量:在所有线性⽆偏估计量中具有最⼩⽅差的⽆偏估计量叫做有效估计量。

判定系数:TSS ESS Y Y Y Y R i i=--=∑∑222)()?(,是对回归线拟合优度的度量。

R 2测度了在Y 的总变异中由回归模型解释的那个部分所占的⽐例或百分⽐。

异⽅差:在回归模型中,随机误差项1u ,2u ,…,n u 不具有相同的⽅差,即 ()()≠i j Var u Var u ,当j i ≠时,则称随机误差的⽅差为异⽅差。

异⽅差的补救⽅法:已知时,⽤加权最⼩⼆乘法;未知时,⽤普通最⼩⼆乘法。

《计量经济学》课程教学大纲

《计量经济学》课程教学大纲

《计量经济学》课程教学大纲英文名称:Econometric课程代码:221102004课程类别:专业核心课课程性质:必修开课学期:第四学期总学时:54(讲课:36,实验0,实践18,网络0)总学分:3考核方式:作业先修课程:高等数学、微观经济学、宏观经济学、统计学适用专业:经济学一、课程简介《计量经济学》是经济学专业的一门专业核心课程。

本课程以高等数学、宏微观经济学、统计学为先修课程,系统讲授计量经济学的基础理论、一元和多元线性回归模型、非线性回归模型的线性化、异方差、自相关、多重共线性、模型中特殊的解释变量以及Eviews基础操作等内容,为全国大学生市场调查与分析大赛以及毕业论文作理论与实践兼具的准备。

该课程分别从理论授课、软件学习以及团队实训等三个维度全面提高学生的思想水平、政治觉悟、道德品质及文化素养,重点培养学生经济学专业知识与技能,使其具有较为扎实的专业知识储备、数据分析的能力、实践与创新能力。

二、课程目标及其对毕业要求的支撑总体目标:全面提高学生的政治素养和道德品质,重点培养学生经济统计专业知识与技三、课程内容及要求第一章绪论教学内容:第一节计量经济学的定义与类型1.计量经济学的定义2.计量经济学的类型第二节计量经济学的特征1.经典计量经济学在理论方法方面特征2.经典计量经济学在应用方法方面特征第三节计量经济学的目的及研究问题的步骤1.计量经济学的目的2.计量经济学研究问题的步骤3.Eviews软件介绍学生学习预期成果:1.理解计量经济学的含义2.理解计量经济学的类型与特征3.了解计量经济学的目的及研究问题的步骤4.了解Eviews软件并下载安装成功教学重点:计量经济学的含义;计量经济学研究问题的步骤;Eviews软件介绍。

教学难点:计量经济学的含义;计量经济学研究问题的步骤。

第二章一元线性回归模型教学内容:第一节模型的建立及其假定条件1.回归分析的概念2.一元线性回归模型的介绍3.随机误差项的假定条件第二节一元线性回归模型的参数估计1.普通最小二乘法的概念2.参数估计第三节最小二乘估计量的统计性质1.线性性2.无偏性3.最小方差性第四节用样本可决系数检验回归方程的拟合优度1.总离差平方和的分解2.样本可决系数及相关系数第五节回归系数估计值的显著性检验与置信区间1.随机变量u的方差2.t检验3.置信区间第六节一元线性回归方程的预测1.点预测2.区间预测第七节案例分析1.用Eviews软件研究分析我国城镇居民年人均可支配收入与年人均消费性支出之间的关系学生学习预期成果:1.掌握回归分析的概念2.掌握随机误差项的假定条件3.掌握一元线性回归模型的参数估计4.熟悉最小二乘估计量的统计性质5.掌握用样本可决系数检验回归方程的拟合优度6.掌握回归系数估计值的显著性检验7.掌握Eviews软件的基础操作教学重点:回归分析的概念;随机误差项的假定条件;一元线性回归模型的参数估计;Eviews软件的基础操作。

计量经济学随机解释变量的问题

计量经济学随机解释变量的问题

• 2.分析 • 由于两个变量均含有可以解释被解释量的 信息,而且这些信息不完全相同(二者不 完全相关),那么显然,如果仅用一个, 估计就不会是有效的(注意,利用越多的 信息进行估计,估计就越是有效的) • 于是,一个问题就是,我们应如何综合的 利用这两个变量的信息呢?
• 3.方法 • 我们将以X2i为被解释变量,z1i和z2i为解释变量, 作如下OLS回归: • X2i=α+β1z1i+β2z2i+εi (2 )
Yt e (1 )Yt Yt e 1
该式是由合理预期理论给出的。
容易推得:
C t 0 1 (1 )Yt 1 Yt e 1 t
= 0 1 (1 )Yt (Ct 1 0 t 1 ) t
如果工具变量 z 选取恰当,即有
1 P lim z i i cov( z i , i ) 0 , n 1 P lim z i xi cov( z i , xi ) 0 n ˆ ) P lim( 则有: 1 1
4、几点注解
• 工具变量并没有替代模型中的解释变量,只是 在估计过程中作为“工具”被使用。
合理预期的消费函数模型
合理预期理论认为消费是由对收入的预期所决定 的,或者说消费是有计划的,而这个计划是根据对 收入的预期制定的。于是有:
Ct 0 1Yt e t
C t 1 0 1Yt e 1 t 1
e Y 其中 t 表示 t 期收入预期值。
而预期收入与实际收入之间存在差距,表现为:
四.工具变量法的一种——二阶段最 小二乘法
• • • • 1.方法提出 先看如下一个模型: Yi=a+b1X1i+b2X2i+ui 假定其中的X2变量是随机的,且与u同期 (或对于同一个样本)相关。 • 现在,在用工具变量法时,我们不仅可找 到一个工具变量z1i,而且还可找到另一个 工具变量z2i,且这两个变量不完全相关, 此时我们到底应选哪一个呢?

计量经济学复习笔记(注释)

计量经济学复习笔记(注释)

计量经济学复习笔记CH1导论1、计量经济学:以经济理论和经济数据的事实为依据,运用数学、统计学的方法,通过建立数学模型来研究经济数量关系和规律的一门经济学科。

研究主体是经济现象及其发展变化的规律。

2、运用计量分析研究步骤:模型设定——确定变量和数学关系式估计参数——分析变量间具体的数量关系模型检验——检验所得结论的可靠性模型应用——做经济分析和经济预测3、模型变量:解释变量:表示被解释变量变动原因的变量,也称自变量,回归元。

被解释变量:表示分析研究的对象,变动结果的变量,也成应变量。

内生变量:其数值由模型所决定的变量,是模型求解的结果。

外生变量:其数值由模型意外决定的变量。

外生变量数值的变化能够影响内生变量的变化,而内生变量却不能反过来影响外生变量。

前定内生变量:过去时期的、滞后的或更大范围的内生变量,不受本模型研究范围的内生变量的影响,但能够影响我们所研究的本期的内生变量。

前定变量:前定内生变量和外生变量的总称。

数据:时间序列数据:按照时间先后排列的统计数据。

截面数据:发生在同一时间截面上的调查数据。

面板数据:虚拟变量数据:表征政策,条件等,一般取0或1.4、估计评价统计性质的标准无偏:E(^β)=β 随机变量,变量的函数?有效:最小方差性一致:N趋近无穷时,β估计越来越接近真实值5、检验经济意义检验:所估计的模型与经济理论是否相等统计推断检验:检验参数估计值是否抽样的偶然结果,是否显著计量经济检验:是否符合计量经济方法的基本假定预测检验:将模型预测的结果与经济运行的实际对比CH2 CH3 线性回归模型模型(假设)——估计参数——检验——拟合优度——预测1、模型(线性)(1)关于参数的线性 模型就变量而言是线性的;模型就参数而言是线性的。

Y i =β1+β2lnX i +u i线性影响 随机影响Y i =E (Y i |X i )+u i E (Y i |X i )=f(X i )=β1+β2lnX i引入随机扰动项,(3)古典假设A 零均值假定 E (u i |X i )=0B 同方差假定 Var(u i |X i )=E(u i 2)=σ2C 无自相关假定 Cov(u i ,u j )=0D 随机扰动项与解释变量不相关假定 Cov(u i ,X i )=0E 正态性假定u i ~N(0,σ2)F 无多重共线性假定Rank(X)=k2、估计在古典假设下,经典框架,可以使用OLS方法:OLS 寻找min ∑e i2 ^β1ols = (Y 均值)-^β2(X 均值)^β2ols = ∑x i y i /∑x i 23、性质OLS 回归线性质(数值性质)(1)回归线通过样本均值 (X 均值,Y 均值)(2)估计值^Y i 的均值等于实际值Y i 的均值(3)剩余项e i 的均值为0(4)被解释变量估计值^Y i 与剩余项e i 不相关 Cov(^Y i ,e i )=0(5)解释变量X i 与剩余项e i 不相关 Cov(e i ,X i )=0在古典假设下,OLS 的统计性质是BLUE 统计 最佳线性无偏估计4、检验(1)Z 检验Ho:β2=0 原假设 验证β2是否显著不为0标准化: Z=(^β2-β2)/SE (^β2)~N (0,1) 在方差已知,样本充分大用Z 检验拒绝域在两侧,跟临界值判断,是否β2显著不为0(2)t 检验——回归系数的假设性检验方差未知,用方差估计量代替 ^σ2=∑e i 2/(n-k) 重点记忆t =(^β2-β2)/^SE (^β2)~t (n-2)拒绝域:|t|>=t 2/a (n-2)拒绝,认为对应解释变量对被解释变量有显著影响。

计量经济学名词解释与简答

计量经济学名词解释与简答

1、完全共线性:对于多元线性回归模型,其基本假设之一是解释变量1x ,2x ,…,k x 是相互独立的,如果存在02211=+++ki k i i x c x c x c ,i=1,2,…,n ,其中c 不全为0,即某一个解释变量可以用其他解释变量的线性组合表示,则称为完全共线性。

2、虚假序列相关:由于随机干扰项的序列相关往往是在模型设定中遗漏了重要的解释变量或对模型的函数形式设定有误时而导致的序列相关。

3、残差项:是指对每个样本点,样本观测值与模型估计值之间的差值。

4、多重共线性:在经典回归模型中总是假设解释变量之间是相互独立的。

如果某两个或多个解释变量之间出现了相关性,则称为多重共线性。

5、无偏性:是指参数估计量的均值(期望)等于模型的参数值。

6、工具变量:是在模型估计过程中被作为工具使用,以替代模型中与随机误差项相关的随机解释变量的变量。

7、结构分析:经济学中所说的结构分析是指对经济现象中变量之间关系的研究。

8、虚假回归(伪回归):如果两列时间序列数据表现出一致的变化趋势(非平稳),即它们之间没有任何经济关系,但进行回归也会表现出较高的可决系数。

9、异方差性:即相对于不同的样本点,也就是相对于不同的解释变量观测值,随机干扰项具有不同的方差。

10、计量经济学:它是经济学的一个分支学科,以揭示经济活动中客观存在的数量关系为内容的分支学科。

11、计量经济学模型:揭示经济活动中各种因素之间的定量关系,用随机性的数学方程加以描述。

12、截面数据:是一批发生在同一时间截面上的数据。

13、回归分析:是研究一个变量关于另一个(些)变量的依赖关系的计算方法和理论,其目的在于通过后者的已知和设定值,去估计和(或)预测前者的(总体)均值。

14、随机误差项:观察值围绕它的期望值的离差就是随机误差项。

15、最佳线性无偏估计量(高斯-马尔可夫定理):普通最小二乘估计量具有线性性、无偏性和有效性等优良性质,是最佳线性无偏估计量,这就是著名的高斯-马尔可夫定理。

计量经济学 第四章:计量经济模型中特殊变量

计量经济学 第四章:计量经济模型中特殊变量

TC 0 1D1 2 D2 3TY
◇注意如下问题: 模型中虚拟变量的显著性说明什么? 参数经济意思是什么? D1与D2有四种组合,分别反映什么?
2.一个定性因素有多个属性特征的模型 一个定性因素多属性特征指具有两种以上的属性特 征。如文化程度、年龄阶段、季节因素 ◇一个定性因素有多个属性特征需引入多个虚拟变 量
j 0 j 0 j 0
k
k
k
Yt 0 Z 0t 1Z1t r Z rt t
Z rt j r X t j
j 0 k
◇估计原模型参数转变为估计辅助模型参数
Yt 0 X t 1 X t 1 k X t k t Yt 0 Z 0t 1Z1t r Z rt t
Yt Yt 1 (Yt* Yt 1 )
◆适应性预期模型与部分调整模型经过变化也形成 自回归模型
三、自回归模型的参数估计 1.自回归模型的一般形式及特征 Yt 0 1 X t 2Yt 1 t 自回归模型若不存在自相关,可直接估计参数; 自回归模型若存在自相关,滞后被解释变量与随机 误差项高度相关! t ~ t 1 ~ Yt 1 2.自回归模型的检验——H检验(一阶序列相关)
例4-2,季节性因素影响基础利润水平问题 假设模型设定为:
PF 0 1SL 2 D1 3 D2 4 D3 5 D4
则必然出现虚拟变量的陷阱问题,即解释变量的样 本矩阵是奇异的! 因而需减少一个虚拟变量,则回归模型为:
ˆ 688 18.47 D 114.43D 40.21D 0.038SL PF t 1 2 3 t
虚拟变量多少个呢?若考虑调整基础水平变化: 一个定性若有 m个属性特征,在有常数时,模型应 引入 m-1 个虚拟变量;在无常数时,模型应引入 m 个 虚拟变量。 ◇虚拟变量的数量描述 每一个虚拟变量仍用0或者1表示

计量经济学名词解释论述

计量经济学名词解释论述

1、计量经济学:根据经济理论,和统计观测数据,用随机数学模型的方法,研究经济学定量问题的科学。

1、计量经济学模型:在一定假设条件下,描述经济变量之间数量关系的一个或一组随机数学方程。

2、解释变量:影响研究对象结果的‘因素变量3、被解释变量:作为研究对象的变量。

即因果关系中的‘结果变量’:4、狭义回归分析:用确定性的函数关系,近似的描写(拟合)不确定性的相关关系。

5、相关分析:在相关关系中,测定变量之间联系的密切程度。

6、回归变量:用确定的函数关系,近似的描写(拟合)不确定性的相关关系,并测定变量之间密切的联系程度。

7、经济变量:用来描述经济因素数量水平的指标.8、模型参数:模型中表现经济变量相互依存程度的那些因素,同城是一些相对稳定的量.9、前定变量:在模型中滞后内生变量或更大范围的内生变量与外生变量一起称为前定变量。

10、间序列的平稳性,是指时间序列的统计规律不会随着时间的推移而发生变化11、最小平方法:用使估计的剩余平方和最小的原则确定样本回归函数。

Then β^2 =∑xiyi/∑xi2 ; β^1 =Y(Y 上面加一横)-β^2 X(X 上面加一横) only thus ,can the residue sum of squares 残差平方和RSS=∑(Yi-Yi^)2 Is Least 最小。

(故称最小平方差)12、异方差:定义:若线性回归模型 Yi=β1+β2Xi+ui (i=1、 2……n)中方差Var(ui)= σui2=f(Xi)不等于常数则称此模型具有异方差性13、自相关:若相信回归方程中随机项ut 之间的某个协方差Cov(ut ,ut’)不等于 0 (t 不等于 t’; t’不等于 1,2,…,n)14、多重共线性:等价于完全多重共线性+不完全多重共线性若齐次线性方程组 λ2X2i+λ3X3i+……+λkXki=0 i=1,2,…,n 存在不完全为零的解 λ2,λ3,……λk 则称线性回归模型 Yi=β1+β2X2i+…+βkXki+ui 具有完全多重共性15、不完全多重共线性: 若含随机项 vi 齐次线性方程组 λ2X2i+λ3X3i+…+λkXki+vi=0 存在不完全为零的解λ2,λ3,…λk 则称线性回归模型Y=Xβ+U 存在不完全多重共线性16、结构模型:根据经济理论和行为规律,描述经济变量间关系结构的一组含随机项的方程。

计量经济学-名词解释及简答

计量经济学-名词解释及简答

一、名词解释第一章1、计量经济学:计量经济学是以经济理论和经济数据的事实为依据,运用数学、统计学的方法,借助计算机为辅助工具,通过建立数学模型来研究经济数量关系和规律的一门经济学科。

2、虚拟变量数据:虚拟变量数据是人为构造的,通常取值为1或0的,用来表征政策等定性事实的数据。

3、计量经济学检验:计量经济学检验主要是检验模型是否符合计量经济方法的基本假定。

4、政策评价:政策评价是利用计量经济模型对各种可供选择的政策方案的实施后果进行模拟测算,从而对各种政策方案做出评价第二章1、回归平方和:回归平方和用ESS 表示,是被解释变量的样本估计值与其平均值的离差平方和。

2、拟和优度检验:拟和优度检验指检验模型对样本观测值的拟合程度,用2R 表示,该值越接近1,模型对样本观测值拟合得越好。

3、相关关系:当一个或若干个变量X 取一定数值时,与之相对应的另一个变量Y 的值虽然不确定,但却按某种规律在一定范围内变化,变量之间的这种关系,称为不确定性的统计关系或相关关系,可表示为Y=f(X ,u),其中u 为随机变量。

4、高斯-马尔科夫定理:在古典假定条件下,O LS 估计式是其总体参数的最佳线性无偏估计式。

第三章1、偏回归系数:在多元线性回归模型中,回归系数j (j=1,2,……,k )表示的是当控制其他解释变量不变的条件下,第j 个解释变量的单位变动对被解释变量平均值的影响,这样的回归系数称为偏回归系数。

2、多重可决系数:“回归平方和”与“总离差平方和”的比值,用2R 表示。

3、修正的可决系数:用自由度修正多重可决系数2R 中的残差平方和与回归平方和。

4、回归方程的显著性检验(F 检验):对模型中被解释变量与所有解释变量之间的线性关系在总体上是否显著做出推断。

5、回归参数的显著性检验(t 检验):当其他解释变量不变时,某个回归系数对应的解释变量是否对被解释变量有显著影响做出推断。

6、无多重共线性假定:假定各解释变量之间不存在线性关系,或者说各解释变量的观测值之间线性无关,在此条件下,解释变量观测值矩阵X 列满秩Rank(X)=k ,此时,方阵X`X 满秩, Rank(X`X)=k从而X`X 可逆,(X`X) 存在。

计量经济学期末考试名词解释

计量经济学期末考试名词解释

1. 总体回归函数:在给定解释变量X i 条件下被解释变量Y i 的期望轨迹称为总体回归线,或更一般地称为总体回归曲线。

相应的函数:E(Y 〡X i )=f(X i )称为(双变量)总体回归函数(populationregressionfunction,PRF )2. 样本回归函数:样本散点图近似于一条直线,画一条直线以尽好地拟合该散点图,由于样本取自总体,可以该线近似地代表总体回归线。

该线称为样本回归线。

记样本回归线的函数形式为:i i i X X f Y 10ˆˆ)(ˆββ+==称为样本回归函数(sampleregressionfunction ,SRF )。

3. 随机的总体回归函数:函数 〡 或者在线性假设下, 式称为总体回归函数(方程)PRF 的随机设定形式。

表明被解释变量除了受解释变量的系统性影响外,还受其他因素的随机性影响。

由于方程中引入了随机项,成为计量经济学模型,因此也称为总体回归模型。

4. 线性回归模型:假设1、回归模型是正确设定的。

假设2、解释变量X 是确定性变量,不是随机变量,在重复抽样中取固定值。

假设3、解释变量X 在所抽取的样本中具有变异性,而且随着样本容量的无限增加,解释变量X 的样本方差趋于一个非零的有限常数,即假设4、随机误差项具有零均值、同方差和不序列相关性:E(i )=0i=1,2,…,nVar(i )=2i=1,2,…,nCov(i,j )=0i≠ji,j=1,2,…,n假设5、随机误差项与解释变量X 之间不相关:Cov(X i ,i )=0i=1,2,…,n假设6、服从零均值、同方差、零协方差的正态分布i ~N(0,2)i=1,2,…,n以上假设也称为线性回归模型的经典假设,满足该假设的线性回归模型,也称为经典线性回归模型5. 随机误差项( )和残差项( ):(1)i 为观察值Y i 围绕它的期望值E(Y |X i )的离差,是一个不可观测的随机变量,又称为随机干扰项或随机误差项。

计量经济学 名词解释

计量经济学 名词解释

1内生变量又叫做联合决定变量,它的值是在与模型中其他变量的相互作用、相互影响中确定的。

更具体地说,内生变量受模型中的其他内生变量和前定变量的影响,同时又影响其他内生变量,他们具有一定的概率分布,它们的数值是由模型自身决定的。

2拟合优度是指样本回归直线与样本观测值之间的拟合优度,拟合优度的高低,通常用判定系数2r 表示。

3经济计量学是以数理经济学和数理统计学为理论基础和方法论基础的交叉科学。

它以客观经济系统中具有随机性特征的经济关系为研究对象,用数学模型方法描述具体的经济变量关系,为经济计量分析工作提供专门的指导理论和分析方法。

(任务:以经济学、统计学、数学之间的统一为工具,分析经济中的数量关系)4回归模型中的随机误差项的方差不是常数,即Var(ui)=22σ ,如果回归模型中的随机误差项的方差不是常数,则陈随机误差系那个的方差非齐性或异方差性。

5工具变量是用来解决解释变量与随机误差项相关问题的变量。

工具变量必须具备两个条件:一是与模型中的解释变量高度相关;二是不与随机误差项相关。

6由模型的简化式参数取得结构式参数的解只有一个,称为恰好识别,如果解不只一个,则称为过度识别。

7需求的收入弹性是用来说明收入的相对的变动与由此引起的需求量相对变动之间的关系。

8两种生产要素之间相对价格每变动1%所引起的两种生产要素使用比率变动的百分比,称为这两种生产要素之间的替代弹性。

9联立方程模型就是两个或两个以上相互联系的单一方程构成的经济计量模型,它能够比较全面地反映经济系统的运行过程,因而已成为政策模拟和经济预测的重要依据。

10ηs<ηd 称为蛛网稳定条件,这种蛛网称为收敛性蛛网。

11经济伦理准则是指由经济理论决定的判别标准,即用经济学的原则、定理、规律等准则来判别模型估计结果合理性程度。

12所谓供给导向,在模型中表现为总产量或国民收入是由社会各物质生产部门的总产出或净产出所形成。

13宏观经济计量模型是在总量水平上把握和反映宏观经济主要变量用之间的相互依存关系,并用包含有随机方程的联立方程组来描述宏观经济活动的经济数学模型。

计量经济学(重要名词解释)

计量经济学(重要名词解释)

——名词解释将因变量与一组解释变量和未观测到的扰动联系起来的方程,方程中未知的总体参数决定了各解释变量在其他条件不变下的效应。

与经济分析不同,在进行计量经济分析之前,要明确变量之间的函数形式。

经验分析(Empirical Analysis):在规范的计量分析中,用数据检验理论、估计关系式或评价政策有效性的研究。

确定遗漏变量、测量误差、联立性或其他某种模型误设所导致的可能偏误的过程线性概率模型(LPM)(Linear Probability Model, LPM):响应概率对参数为线性的二值响应模型。

没有一个模型可以通过对参数施加限制条件而被表示成另一个模型的特例的两个(或更多)模型。

有限分布滞后(FDL)模型(Finite Distributed Lag (FDL) Model):允许一个或多个解释变量对因变量有滞后效应的动态模型。

布罗施-戈弗雷检验(Breusch-Godfrey Test):渐近正确的AR(p)序列相关检验,以AR(1)最为流行;该检验考虑到滞后因变量和其他不是严格外生的回归元。

布罗施-帕甘检验(Breusch-Pagan Test)/(BP Test):将OLS 残差的平方对模型中的解释变量做回归的异方差性检验。

若一个模型正确,则另一个非嵌套模型得到的拟合值在该模型是不显著的。

因此,这是相对于非嵌套对立假设而对一个模型的检验。

在模型中包含对立模型的拟合值,并使用对拟合值的t 检验来实现。

回归误差设定检验(RESET)(Regression Specification Error Test, RESET):在多元回归模型中,检验函数形式的一般性方法。

它是对原OLS 估计拟合值的平方、三次方以及可能更高次幂的联合显著性的F 检验。

怀特检验(White Test):异方差的一种检验方法,涉及到做OLS 残差的平方对OLS 拟合值和拟合值的平方的回归。

这种检验方法的最一般的形式是,将OLS 残差的平方对解释变量、解释变量的平方和解释变量之间所有非多余的交互项进行回归。

南开大学计量经济学课件第章特殊解释变量

南开大学计量经济学课件第章特殊解释变量
0 1xt ut yt ( 0 2 ) 1xt ut D0 D 1
(8-2)
D = 1 或 0 表示某种特征的有无。若2 不为零,在平面坐标系里模型(8-2) 表示两个表达式的截距不同。从图 8-1 可以看出对应 D=0 和 D=1 的观测值 明显分为两种类型。
例 8-1 农业产值与耕地面积关系研究(file:5break5) 全国 30 个省级地区(不包括重庆市、港、澳、台)1993 和 1998 年耕地面积(landt,百万公 顷)和农业产值(yt, 百亿元)数据见图。可以看出 Lnyt 和 Lnlandt 之间存在线性关系。可 以建立线性模型。图中代表 1998 年的观测点(黑点)相应位于 1993 年的观测点(圆圈) 之上。不同年份的观测值呈两组特征。可以考虑用虚拟变量区别两个不同年度的产值并建 立模型。定义若数据属于 1993 年,虚拟变量 D 等于 0;若数据属于 1998 年,虚拟变量 D 等于 1,即 D
01.03.2019 计量经济学
8.1.1 测量截距移动 首先考虑用虚拟变量测量截距移动。设有模型, yt = 0 + 1 xt + 2D + ut (8-1) 其中 yt,xt 为定量变量;D 为虚拟变量,表示影响 yt 变化的某种定性因素。 设 D 只含有两个类别。当 D = 0 或 1 时,上述模型可表达为,
10 9 . 8 6L 8n 2 l a tn , d( 1 9 9 3 ) 1 . 6 7 ˆ yt Ln 40 5 . 8 6L 8n 2 l a tn , d( 1 9 9 8 ) 0 . 9 0
8 7 6 5 4 3
LOG(Land)
8
LOG(Y93) LOG(Y98)

模型中的特殊解释变量

模型中的特殊解释变量

当D = 0 或1时,上述模型可表达为,
yt
0 1xt ut (0 2) 1xt
ut
D0 D 1
20
0+2
0
0 0
D= 1
20
40
D= 0
X 60
D = 1或0表示某种特征的有无。反映在数学上是截距不同的两个函数。
若2显著不为零,说明截距不同;若2为零,说明这种分类无显著性
差异。
1 虚拟变量
1
0
0
1995.3 x3
0
0
1
0
1995.4 x4
0
0
0
1
1996.1 x5
1
0
0
0
1996.2 x6
0
1
0
0
1996.3 x7
0
0
1
0
1996.4 x8
0
0
0
1
1997.1 x9
ห้องสมุดไป่ตู้
1
0
0
0
则必然会有,截距项对应的单位向量等于 (D1+ D2+ D3+ D4) 。 这意味着虚拟变量之间存在完全多重共线性。
90 80 70 60 50 40 30
1960
1965
1970
1975 IP
1980
1985
5 时间变量
• 描述趋势的统计模型
– yt = 0 + 1t + et t = 1, 2, …, T – log(yt) = 0 + 1t + et t = 1, 2, …, T
• 若两个时间序列都有时间趋势,即使它们没有关 系,也会在统计上表现出相关性
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档