第三章随机过程的功率谱密度资料.

合集下载

功率谱密度公式推导

功率谱密度公式推导

功率谱密度公式推导功率谱密度(Power Spectral Density,简称PSD)是指一个信号的功率在频率域上的分布。

它在信号处理、通信系统、噪声分析等领域都有着重要的应用。

在本文中,将对功率谱密度的定义、性质以及推导进行详细讨论。

首先,我们来定义功率谱密度。

假设有一个零均值的随机过程(零均值是为了简化推导),我们用x(t)表示这个随机过程,并假设它的均方值为E[|x(t)|^2] = Rxx(0)。

为了分析这个随机过程在频率域上的特性,我们将其进行傅里叶变换。

傅里叶变换的定义如下:X(f) = ∫(x(t) * e^(-j2πft) dt)其中,X(f)表示信号x(t)在频率f上的复振幅(振幅和相位)。

根据傅里叶变换的定义,我们可以得到信号在频率f上的功率P(f)的定义如下:P(f) = |X(f)|^2根据随机过程的定义,我们知道x(t)是一个随机变量,它的取值在每个时间点上都是随机的。

因此,X(f)也是一个随机变量。

我们只知道X(f)的均方值(即P(f))是一个确定的量,但我们无法准确地知道X(f)在每个时刻上的取值。

为了能够更好地描述X(f)的统计性质,我们可以引入概率密度函数。

假设X(f)的实部和虚部分别为Xr(f)和Xi(f),我们定义X(f)的概率密度函数为fX(x)。

根据概率密度函数的定义,我们可以得到X(f)的均方值为:E[|X(f)|^2] = ∫(|x|^2 * fX(|x|^2) dx)然后,根据功率的定义,我们可以得到:E[|X(f)|^2] = P(f)综上所述,我们可以得到功率谱密度PSD的定义如下:PSD(f) = ∫(|x|^2 * fX(|x|^2) dx)对于一个随机过程来说,我们可以通过计算其自相关函数Rxx(t)来得到其功率谱密度。

自相关函数定义如下:Rxx(t) = E[x(t) * x*(t-τ)]其中,E[•]表示对随机变量取均值的操作,τ表示一个时间延迟。

随机信号分析__2.3功率谱密度

随机信号分析__2.3功率谱密度
S XY () SYX () 2mX mY ()
证明: 因为X(t)与Y(t)不相关,所以
E[ X (t1 )Y (t2 )] mX mY
SXY ( )
RXY
(
)e
j
d
mX mY
e j d
2mX mY () (1 2())
性质6: A RXY (t,t ) S XY ()
T
x(t) y(t)dt]
T
1T
lim[ T 2T
T RXY (t, t)dt]
1
lim
E[
X
* X
(T
,
)
X
Y
(T
,
)]
d
2 T
2T
定义互功率谱密度为:
S XY
()
lim
T
1 2T
E[ X
* X
(T ,) XY
(T ,)]

QXY
1
2
S XY ()d
同理,有:
SYX
()
lim
随机信号分析
2.3 功率谱密度
本节课的整体设计与构思
信号的时域与频域分析:
确定信号 x(t) : 傅立叶变换

x(t) X ()
号 随机信号 X (t):维纳—辛钦定理
RX ( ) SX ()
2.3.1 随机过程的功率谱密度
问题的引入: 1.对于随机信号,是否可以应用频域分
析方法?
2.傅立叶变换能否用于研究随机信号?
三、互谱密度的性质

性质1:SXY ( ) SYX ( ) SY*X ( )
证明:
SXY ( )
RXY
(

功率谱密度

功率谱密度

功率谱密度谱是一种概率统计方法,是对随机变量均方值的量度。

一般用于随机振动分析,连续瞬态响应只能通过概率分布函数进行描述,即出现某水平响应所对应的概率。

功率谱密度是结构在随机动态载荷激励下响应的统计结果,是一条功率谱密度值—频率值的关系曲线,其中功率谱密度可以是位移功率谱密度、速度功率谱密度、加速度功率谱密度、力功率谱密度等形式。

数学上,功率谱密度值—频率值的关系曲线下的面积就是方差,即响应标准偏差的平方值。

谱是个很不严格的东西,常常指信号的Fourier变换,是一个时间平均(time average)概念功率谱的概念是针对功率有限信号的(能量有限信号可用能量谱分析),所表现的是单位频带内信号功率随频率的变换情况。

保留频谱的幅度信息,但是丢掉了相位信息,所以频谱不同的信号其功率谱是可能相同的。

有两个重要区别:1。

功率谱是随机过程的统计平均概念,平稳随机过程的功率谱是一个确定函数;而频谱是随机过程样本的Fourier变换,对于一个随机过程而言,频谱也是一个“随机过程”。

(随机的频域序列)2。

功率概念和幅度概念的差别。

此外,只能对宽平稳的各态历经的二阶矩过程谈功率谱,其存在性取决于二阶局是否存在并且二阶矩的Fourier变换收敛;而频谱的存在性仅仅取决于该随机过程的该样本的Fourier变换是否收敛。

热心网友回答提问者对于答案的评价:谢谢解答。

频谱分析(也称频率分析),是对动态信号在频率域内进行分析,分析的结果是以频率为坐标的各种物理量的谱线和曲线,可得到各种幅值以频率为变量的频谱函数F(ω)。

频谱分析中可求得幅值谱、相位谱、功率谱和各种谱密度等等。

频谱分析过程较为复杂,它是以傅里叶级数和傅里叶积分为基础的。

功率谱是个什么概念?它有单位吗?随机信号是时域无限信号,不具备可积分条件,因此不能直接进行傅氏变换。

一般用具有统计特性的功率谱来作为谱分析的依据。

功率谱与自相关函数是一个傅氏变换对。

功率谱具有单位频率的平均功率量纲。

随机过程的自相关函数与其功率谱密度是傅里叶变换关系

随机过程的自相关函数与其功率谱密度是傅里叶变换关系

随机过程的自相关函数与其功率谱密度是傅里叶变换关系随机过程是一个随时间变化的信号,每个时间点上都有一定的随机性。

我们可以用一个随机变量来描述每个时间点上的取值。

这个随机变量的集合就是一个随机过程。

自相关函数是用来描述随机过程在不同时间点上的相关性的函数。

它表示了随机过程在不同时间点上的取值之间的相关程度。

具体来说,自相关函数R(t1,t2)表示了时刻t1和t2上的信号值之间的相关性。

它的定义如下:R(t1,t2)=E[X(t1)X(t2)]其中,X(t1)和X(t2)是随机过程在时刻t1和t2上的取值,E[.]表示期望操作。

功率谱密度是用来描述随机过程在频域上的特性的函数。

它表示了随机过程在不同频率上的功率分布情况。

具体来说,功率谱密度S(f)表示了随机过程在频率f上的功率。

它的定义如下:S(f)=,F{R(t)},^2其中,R(t)是随机过程的自相关函数,F{.}表示傅里叶变换操作。

自相关函数和功率谱密度之间存在一个重要的关系,即它们通过傅里叶变换相关联。

具体来说,自相关函数是功率谱密度的傅里叶变换的模的平方,而功率谱密度是自相关函数的傅里叶变换的伪谱密度。

这个关系可以用下面的公式表示:R(t1, t2) = ∫S(f)e^(j2πft)df其中,∫表示积分操作,e^(j2πft)是复指数函数,代表了频率f上的旋转。

这个关系的意义是,自相关函数和功率谱密度提供了从时域到频域和从频域到时域的映射。

我们可以通过自相关函数计算功率谱密度,也可以通过功率谱密度计算自相关函数。

总结起来,自相关函数和功率谱密度是通过傅里叶变换相关联的重要概念。

自相关函数描述了随机过程在不同时刻上的相关性,而功率谱密度描述了随机过程在不同频率上的功率分布情况。

它们的傅里叶变换关系提供了从时域到频域和从频域到时域的映射。

这个关系在信号处理和随机过程分析中具有重要的应用价值。

离散时间随机过程的功率谱密度

离散时间随机过程的功率谱密度

其中
B(
z)
C
( (
z z
1 1
)( )(
z z
M M
) )
B(
z
1
)
C
( (
z z
1
1
1
)( )(
z z
1
M
1
) )
1
M
26020/7/19
包含了单位 圆之内的全 部 包零 含点 了和单极位 点 圆之外的全 部零点和极 点6
例 设 RX (m) a m , a 1 ,求SX (z) 和SX ()
1
解 SX (z)
amzm amzm
m
m0
az z (1 a2 )z 1 az z a (z a)(1 az)
(1 a2 )
a1 a
(1 az1)(1 az) (a1 a) (z1 z)
将 z e jT 代人上式,即可求得
SX
()
a 1
a 1 a
a
2 cosT
27020/7/19
)
,则
lim E
N
X (t) Xˆ (t) X (mT )
RX
(t
mTs
)
n
RX
(nTs
mTs
)
sin(ct n ct n
)
0
这说明,[X (t) Xˆ (t)] 正交 X (mT)

合,

(t)
N n
N
X
(nTs
)
sin(ct n ct n
)
[X (t) Xˆ (t)] 正交
13
证明 第一步:
RX ( ) 是确知函数,维纳-辛钦定理:RX ( ) SX () SX () 带宽有限,RX ( ) 是带限确定信号,由香农 采样定理可知

四.随机过程的功率谱密度讲解

四.随机过程的功率谱密度讲解

功率谱密度
SX
()
lim
T
1 2T
E[
XT
()
2]
两个结论
1、
P A E x2 (t)
随机过程的平均功率可以通过对过程的均方值求时间平均得
到。若随机过程广义平稳
P A E x2 (t) E x2 (t)
2、
P 1
2
SX ()d
若随机过程广义平稳
E
x2
(t)
1
2
SX ()d
功率谱密度的性质
1
2
S
X
()e
j
d
对于广义平稳随机过程
RX (t,t ) RX ( ) A RX (t,t ) A RX ( ) RX ( )

SX ()
RX
(
)e
j
d
RX
(
)
1
2
S
X
(
)e
j
d
维纳-辛钦定理
双边带功率谱密度:功率谱密度分布在整个频率轴上, 称为双边带功率谱密度。
单边带功率谱密度:功率谱密度只定义在零和正的频率 轴上,成为单边带功率谱密度。
(3) (三角不等式 ) x y x y ,x, y Rn. 则称 x 为向量x的范数.
在向量空间 Rn(C n )中,设x ( x1 , x2 ,, xn )T 常用的向量x的范数有
1 范数 x 1 x1 x2 xn
2 范数 x 2 ( x1 2 x2 2 xn 2 )12
2
x(t) lim 1 T x(t) 2 dt
2
T 2T T
向量范数
定义1. 对于n维向量空间 Rn中任意一个向量 x,

随机信号分析_第三章_平稳随机过程的谱分析

随机信号分析_第三章_平稳随机过程的谱分析

A RX (t , t ) e j d


说明如果A<RX(t,t+τ)>绝对可积,那自 相关函数的时间平均与功率谱密度是傅 里叶变换对。
对于平稳随机过程,由于: A<RX(t,t+τ)>= A<RX(τ)>= RX(τ) 所以: j S X ( ) RX ( )e d
S X ( ) R X ( )e
0

j
d
0
Ae e


j
d Ae
e
j
d
1 1 A[ ] j j 2 A 2 2
例3.4 P203 设随机相位信号X(t)=Acos(ω0t+θ), 其中A, ω0为常数; θ为随机相位,在(0, 2π)均匀分布。可以计算初其自相关函 数RX(τ)=[A2cos (ω0τ)]/2, 求X(t)的功率谱 密度。 解:引入δ函数。 1 1 j ()e d 2 2
3.2.1 功率谱密度的性质
1. 功率谱密度的非负性。即: SX(ω)>=0 2. 功率谱密度是ω的实函数。即: SX(ω)= SX(ω)
3. 对于实随机过程来讲,功率谱密度是ω 的偶函数。即: SX(ω)= SX(-ω) 4. 功率谱密度可积。即:



S X ( )d
3.2.2 谱分解定理
满足上述条件的x(t)的傅利叶变换为:
Fx ( ) x(t )e


jt
dt
称为x(t)的频谱。为一复数,有 Fx(ω)= Fx(-ω)
Fx(ω)的傅利叶反变换为:
1 x(t ) 2

随机过程的谱密度与功率谱密度

随机过程的谱密度与功率谱密度

随机过程的谱密度与功率谱密度随机过程是在时间上随机变化的过程,它在许多领域中都有广泛的应用。

在研究随机过程时,谱密度和功率谱密度是两个重要的概念。

一、谱密度谱密度是描述随机过程在频域上的性质的一种测量,它用来表示随机过程的频谱特性。

谱密度通常用符号S(f)表示,其中f是频率。

谱密度是随机过程各频率成分的功率平均值,即将随机过程在不同频率上的功率加权平均得到的值。

谱密度越大,表示在该频率上的成分越强。

对于离散随机过程,谱密度可以通过对其自相关函数进行傅里叶变换得到。

而对于连续随机过程,谱密度可以通过对其自相关函数进行傅里叶变换或拉普拉斯变换得到。

谱密度具有一些重要的性质,例如:1. 谱密度是非负的且对称的。

2. 谱密度在频率上的积分等于随机过程的方差。

3. 谱密度函数是随机过程的一种特征,不同的谱密度函数可以表示不同的随机过程。

二、功率谱密度功率谱密度是描述随机过程在频域上能量分布的一种测量,也可以理解为随机过程的平均功率。

功率谱密度通常用符号S(f)表示,其中f 是频率。

与谱密度类似,功率谱密度也可以通过随机过程的自相关函数进行傅里叶变换或拉普拉斯变换得到。

功率谱密度表示随机过程各频率成分的功率分布,即在不同频率上的功率值。

功率谱密度越大,表示在该频率上的功率越强。

功率谱密度具有一些重要的性质,例如:1. 功率谱密度是非负的。

2. 功率谱密度在频率上的积分等于随机过程的总功率。

3. 功率谱密度函数是随机过程的一种特征,不同的功率谱密度函数可以表示不同的随机过程。

三、谱密度与功率谱密度的关系谱密度和功率谱密度之间存在一定的关系。

对于连续随机过程,谱密度和功率谱密度可以通过以下关系进行转换:S(f) = |H(f)|^2 * P(f)其中,S(f)表示谱密度,H(f)表示系统的频率响应函数,P(f)表示功率谱密度。

这个关系说明了谱密度和功率谱密度之间的链接,它们在频域上描述了随机过程的特性。

结论谱密度和功率谱密度是研究随机过程的重要工具,它们在频域上描述了随机过程的特性。

随机过程的功率谱密度

随机过程的功率谱密度

随机过程的功率谱密度⏹连续时间随机过程的功率谱密度⏹随机序列的功率谱密度1. 连续时间随机过程的功率谱密度21()lim ()2X T T G E X T →∞⎧⎫ω=ω⎨⎬⎩⎭()()Tj tT TX X t edt-ω-ω=⎰维纳-辛钦定理: 对于平稳过程有()()X X R G τ↔ω功率谱密度(Power Spectral Density, PSD)的定义:例1:随机相位信号的PSD0()cos()X t A t =ω+Φ其中A 、ω0为常数,Φ在(0,2π)上均匀分布。

自相关函数为20()(/2)cos X R A τ=ωτPSD 为{}200()(/2)()()X G A ω=πδω+ω+δω-ω()X G ωω2(/2)A π2(/2)A π0ω0-ω其中{a i }是均值为零,方差为, 且不相关的随机变量序列。

2iσ()i j ti iX t a eω=∑*()[()()]X R E X t X t τ=+τ*2()i k i ikE a a =σδ()0i E a =解:()*2()i k i j t j tj i ki ikiE a a eeω+τ-ωωτ==σ∑∑∑求X (t )的功率谱密度。

例2:随机过程为1ω2ω()X G ωω2()i j X i iR eωττ=σ∑2()2()X i i iG ω=πσδω-ω∑功率谱密度的性质:(1) 功率谱是非负的实函数、偶函数()()X X G G ω=-ω()0X G ω≥*()()X X G G ω=ω根据自相关函数与功率谱的关系,()()(cos sin )2()cos X X X G R j d R d +∞+∞-∞ω=τωτ-ωττ=τωττ⎰⎰21[()](0)()2X X P E X t R G d +∞-∞===ωωπ⎰平稳随机过程平均功率:22(1)22(1)202022(1)22(1)20()m m m X nn n a a a G c b b b ----ω+ω++ω+ω=ω+ω++ω+(2) 如果功率谱具有有理谱的形式,则可以表示为n >m ;()X G s 零、极点共轭成对j ωσ××××××ooo oS 平面上可能的零、极点位置()()()X X XG G G +-ω=ωω()()()()101()m Xn j j Gc j j +ω+αω+αω=ω+βω+β()()()()101()m Xn j j Gc j j --ω+α-ω+αω=-ω+β-ω+β()()()X X XG s G s G s +-=功率谱密度的分解例3: 已知功率谱为2424()109X G ω+ω=ω+ω+对功率谱进行分解,并求自相关函数。

随机过程的功率谱密度

随机过程的功率谱密度

随机过程的功率谱密度随机过程是一种具有随机变量的序列,其性质随时间变化。

功率谱密度是用来描述随机过程频谱特性的一种工具。

本文将介绍随机过程的基本概念,探讨功率谱密度的定义和计算方法,并讨论其在实际应用中的意义。

一、随机过程的基本概念随机过程是一种随时间变化的随机变量序列。

在随机过程中,每个时间点上的变量都是随机的,可以用数学统计的方法进行描述与分析。

随机过程常用于模拟与分析具有随机性的现象,如通信信号、股票价格等。

二、功率谱密度的定义功率谱密度是描述随机过程频谱特性的一种工具,用于表示随机过程在不同频率上的分布情况。

功率谱密度函数通常用符号S(f)表示,其中f为频率。

三、功率谱密度的计算方法计算功率谱密度可以使用多种方法,常见的有周期图法、自相关函数法和傅里叶变换法等。

下面分别介绍这些方法的基本原理:1. 周期图法周期图法是一种直观的计算功率谱密度的方法。

它通过对随机过程的重复实现进行频率分析,得到信号的谱图。

周期图法的实现过程包括样本采集、周期图的构建和谱估计等步骤。

2. 自相关函数法自相关函数法是一种基于信号的自相关函数计算功率谱密度的方法。

它通过计算随机过程与其自身在不同时间点上的相关性,得到功率谱密度函数。

自相关函数法的实现过程包括自相关函数的计算和功率谱密度的估计等步骤。

3. 傅里叶变换法傅里叶变换法是一种基于信号的傅里叶变换计算功率谱密度的方法。

它通过将时域信号转换到频域,得到信号的频谱分布。

傅里叶变换法的实现过程包括信号的傅里叶变换和功率谱密度的计算等步骤。

四、功率谱密度的实际应用功率谱密度在信号处理、通信系统设计、噪声分析等领域都有重要应用。

以下是一些典型的实际应用场景:1. 信号处理功率谱密度可以用于对信号进行频谱分析和滤波器设计。

通过分析信号的功率谱密度,可以了解信号的频率分布情况,并根据需求设计相应的滤波器,实现信号的去噪、增强等处理。

2. 通信系统设计功率谱密度可以用于对通信系统中的噪声进行分析和优化。

离散时间随机过程的功率谱密度分解

离散时间随机过程的功率谱密度分解

S X z
m
m R ( m ) z X

(e jT ) S X () 式中 z e jT , S X
RX ( m ) 为 S X z 的逆z变换
RX (m)
1
式中,D为在 S X z 的收敛域内环绕z平面原点逆 时针旋转的一条闭合围线。
2018/10/25
10
连续时间 确知信号
S (t )
采样 S (n) S (nT )
c sin(c (t nTs )) s(t ) s(nTs ) c (t nTs ) n

香农采样定理
离散时间 确知信号
S ( n)
2018/10/25
11
连续时间 平稳随机过程
lim 是均方意义下的极限(均方极限):
1 2 f c c
2018/10/25 2
2
平稳离散时间随机过程的功率谱密度
序列 RX (m) 的傅里叶变换存在的充要条件是 满足绝对可和条件:即
m


RX ( m )
定义 X (n) 的功率谱密度为序列 RX (m) 的傅 里叶变换,并记为 S X ( )

2018/10/25
S X ( )
RX (m)
在 m0时
1 2q


q
q
S X ( )e jmT d
q
1 E[ X (n)] RX (0) 2q
S

q
X
( )d
2018/10/25
4
3 谱分解 ① z变换定义
在离散时间系统的分析中,常把广义平稳离 散时间随机过程的功率谱密度定义为 RX ( m )的z变 换,并记为S X z ,即

2.3 平稳随机过程的功率谱

2.3 平稳随机过程的功率谱
X T ( ) X T ( ) X T ( ), 故S X ( ) S X ( )
2
16
例 : 下列函数哪些是功率谱密度的正确表达式? 为什么?
2 cos(3 ) (1) ; (2) ; (3) exp[ ( 1) 2 ] 6 3 2 3 1 2

1 2
1 2 1 d
10

1 1 2 例2.3 2 已知随机电报信号的自相关函数RX ( ) (1 e ) 4 4 求其功率谱密度.
RX () 0, 不满足条件, 可引入函数解决
1 1 2 S X ( ) FT [ RX ( )] FT [ e ] 4 16
1 2 S X ( ) lim E[ X T ( ) ] T 2T
X T ( ) 0, 故S X ( ) 0
2
2、 若X (t )实平稳, 则S X ()是偶函数,即: S X () S X ()
1 2 S X ( ) lim E[ X T ( ) ] T 2T
x(t ), w和X T ()取决于试验的结果, 都带有一定的随机性.
4
样本函数x(t)的平均功率:
1 w lim T 2T

T
T
1 x(t ) dt 2
2
1 2 [Tlim 2T X T ( ) ] d

随机过程X(t)的平均功率:
1 1 2 E[ w] E{ [Tlim 2T X T ( ) ] d} 2 1 1 2 Tlim 2T E[ X T ( ) ] d 2 1 T lim E[ X 2 (t )] dt T 2T T
根据功率谱密度的性质来判断

随机过程的功率谱密度

随机过程的功率谱密度
互协方差函数:
KXY (t1,t2 ) E{[ X (t1) mX (t1)][Y (t2 ) mY (t2 )]}
RXY (t1,t2 ) mX (t1)mY (t2 )
两随机过程的相互关系:
f XY ( x1, , xn , y1, , ym , t1 , tn , t1' , , tm' ) X(t)与Y(t)独立;
600
800
1000
1200
1400
1600
1800
2000
x(t) sin(2f1t) 2sin(2f2t) (t)
平稳随机过程:
GX
(
)

E[lim T
1 2T
XT () 2 ]
0
GX ()

RX
(
)e

j
d


RX ( ) cos d j RX ( ) sin d
2
]2
求相关函数。
二、平稳随机序列的功率谱密度
对于平稳随机序列X(n),其功率谱密度

GX ()
RX (m)e jm
m
傅里叶 变换对
1
RX (m) 2

GX
(
)e
jm
d
RX
(0)

E[ X
2
(n)]

1 2

GX ()d

Z变换形式: GX (z) RX (m)zm m
互相关系数:rXY ( )
KXY ( ) RXY ( ) mX mY
KX (0)KY (0)
XY
例1、设 X (t) sin(0t ) Y (t) cos(0t )

随机信号分析第3章随机信号的频域分析

随机信号分析第3章随机信号的频域分析
2
则其时间平均 P E[ X 2 (t )] R(0) R(0) 所以平稳过程的平均功率: 3、各态历经过程的平均功率 由于各态历经过程X(t)的每个样本函数的时间平均都以概率1 相 同,与 无关,则可推出:
P R(0)
1 P lim T 2T
1 -T X (t, )dt Tlim 2T
5、实随机过程功率谱密度的性质 功率谱密度是随机过程在频域中主要的统计特征。 (1). 功率谱密度为非负值 由定义式3-12
2 | X ( ) | 0 因为 T
GX ( ) 0
1 GX ( ) lim E[| X T ( ) |2 ] T 2T
故而 GX ( ) 0
因为X(t) 平稳 RX ( ),GX ( )是偶函数。
G ( ) 2 R ( ) cosd X X 0 则有: 1 R X ( ) 0 G X ( ) cosd
功率谱密度与自相关函数之间的关系
确定信号: x(t ) X ( j) 随机信号:平稳随机过程的自相关函数
2
E[ X T ( ) ] GX ( ) lim T 2T 1
lim
T
X T ( ) x(t )e
2
T
T
jt
dt
2T
* E[ X T ( ) X T ( )]
T T 1 jt1 E[ X (t1 )e dt1 X (t2 )e jt2 dt2 ] lim T T T 2T 1 T T j ( t 2 t1 ) lim E [ X ( t ) X ( t )] e dt1dt 2 1 2 T 2T T T 1 T T j ( t 2 t1 ) lim R ( t t ) e dt1dt 2 X 2 1 T 2T T T

第三章随机过程的功率谱密度

第三章随机过程的功率谱密度

3.2.2 功率谱密度的性质 1. 功率谱密度为非负实函数,即 证明: 根据功率谱密度定义
2. 功率谱密度函数为 的偶函数,即
证明 : 由功率谱与自相关函数的关系 同理
3. 平稳随机过程的功率谱密度是可积函数,即
证明: 对于平稳随机过程有 平稳随机过程的均方值有限 平稳随机过程的功率谱密度可积,即
,本题中
则自相关函数具有如下形式
显然 因此 所以自相关函数为
§3.3 平稳随机过程的自相关函数时 间和等效功率谱带宽
• 自相关函数反映随机过程在不同时刻的关 联程度。
自相关时间从数量上直 观描述随机过程的在时
间上关联范围。
• 功率谱密度函数描述随机过程的平均功率 沿频率轴的分布。
等效功率带宽从数量上 直观描述随机过程在频
• 由于 和 具有随机性, 、 和 也 具有随机性;
• 为消除单一样本的随机性,采取样本的统计 平均来得到随机过程 和 的互功率。
将时间范围扩展至 ,即

互功 率谱密度

3.4.2 互功率谱的物理意义 设实随机过程 ,它由两随机过程 和 相加: 自相关函数为
对自相关函数取时间平均
则 的功率谱密度为
求 的自相关函数,自相关时间和等效带宽。 解:由自相关函数与功率谱关系有
图 3-17 例3-4
§3.4 联合平稳过程的互功率谱密度
• 自相关函数反映随机过程在不同时刻的关
联程度。
功率谱密度函数
• 互相关函数反映多个随机过程在不同时刻
的关联程度。
互功率谱密度函数
3.4.1 互功率谱
• 随机过程的样本函数不满足傅立叶存在的 绝对可积和能量可积条件。
谱线;
零带宽上有限

功率谱密度

功率谱密度

功率谱密度[编辑本段]简介在物理学中,信号通常是波的形式,例如电磁波、随机振动或者声波。

当波的频谱密度乘以一个适当的系数后将得到每单位频率波携带的功率,这被称为信号的功率谱密度(power spectral density, PSD)或者谱功率分布(spectral power distribu tion, SPD)。

功率谱密度的单位通常用每赫兹的瓦特数(W/Hz)表示,或者使用波长而不是频率,即每纳米的瓦特数(W/nm)来表示。

[编辑本段]详细说明尽管并非一定要为信号或者它的变量赋予一定的物理量纲,下面的讨论中假设信号在时域内变化。

上面能量谱密度的定义要求信号的傅里叶变换必须存在,也就是说信号平方可积或者平方可加。

一个经常更加有用的替换表示是功率谱密度(PSD),它定义了信号或者时间序列的功率如何随频率分布。

这里功率可能是实际物理上的功率,或者更经常便于表示抽象的信号被定义为信号数值的平方,也就是当信号的负载为1欧姆(oh m)时的实际功率。

此瞬时功率(平均功率的中间值)可表示为:由于平均值不为零的信号不是平方可积的,所以在这种情况下就没有傅里叶变换。

幸运的是维纳-辛钦定理(Wiener-Khinchin theorem)提供了一个简单的替换方法,如果信号可以看作是平稳随机过程,那么功率谱密度就是信号自相关函数的傅里叶变换。

信号的功率谱密度当且仅当信号是广义的平稳过程的时候才存在。

如果信号不是平稳过程,那么自相关函数一定是两个变量的函数,这样就不存在功率谱密度,但是可以使用类似的技术估计时变谱密度。

f(t) 的谱密度和f(t) 的自相关组成一个傅里叶变换对(对于功率谱密度和能量谱密度来说,使用着不同的自相关函数定义)。

通常使用傅里叶变换技术估计谱密度,但是也可以使用如Welch法(Welch's method)和最大熵这样的技术。

傅里叶分析的结果之一就是Parseval定理(Parseval's theorem),这个定理表明能量谱密度曲线下的面积等于信号幅度平方下的面积,总的能量是::上面的定理在离散情况下也是成立的。

通原第三章随机过程课后题答案

通原第三章随机过程课后题答案

第三章 随机过程错误!未定义书签。

.设()()()cos 2c Y t X t f t πθ=+,其中()X t 与θ统计独立,()X t 为0均值的平稳随机过程,自相关函数与功率谱密度分别为()X R τ,()X P f 。

(1)若θ在()0,2π均匀分布,求()Y t 的均值、自相关函数和功率谱密度(2)若θ为常数,求()Y t 的均值、自相关函数和功率谱密度 解:无论是(1)还是(2),都有()()()cos 20c E Y t E X t E f t πθ=+=⎡⎤⎡⎤⎡⎤⎣⎦⎣⎦⎣⎦()()()()()()()()()()()()()()()()cos 2cos 22cos 2cos 221cos 2cos 422211cos 2cos 42222Y c c c c c c X c c c X c X c c R E Y t Y t E X t f t X t f t f E X t X t E f t f t f R E f f t f R f R E f t f ττπθτπθπττπθπθπττπτπθπττπττπθπτ=+⎡⎤⎣⎦=++++⎡⎤⎣⎦=++++⎡⎤⎡⎤⎣⎦⎣⎦=+++⎡⎤⎣⎦=+++⎡⎤⎣⎦在(1)的条件下,θ的概率密度函数为[)10,2()2 0 else p θπθπ⎧∈⎪=⎨⎪⎩于是()()201cos 422cos 42202c c c c E f t f f t f d ππθπτπθπτθπ++=++=⎡⎤⎣⎦⎰因此()()1cos 22Y X c R R f ττπτ=()()()()()22cos 224X c j f j f Y Y X c X c R f P f R e d e d P f f P f f πτπττπττττ∞∞---∞-∞==-++=⎰⎰在(2)的条件下()()()()11cos 2cos 42222Y X c X c c R R f R f t f ττπττπθπτ=+++表明()Y t 是循环平稳过程。

随机信号的功率谱密度

随机信号的功率谱密度

1 RX (τ ) = 2π


−∞
S X (ω )e jωτ d ω
功率谱密度性质
1.非负 非负 2.实函数 实函数 3.实随机过程, 3.实随机过程,偶函数 实随机过程 4.可积 可积
S X (ω ) ≥ 0
S X (ω )=S X (-ω )


−∞
S X (ω )dω < ∞
互谱密度性质
0 < P平均 < ∞
功率谱
S X (ω ) = lim
1 2 E[ X T (ω ) ] T →∞ 2T
功率谱函数的关系、 与自相关函数的关系、推导
互谱密度
定义
S XY ω)= lim ( 1 * E X X (T , ω ) X Y (T , ω ) T →∞ 2T
性质
与互相关函数的关系
功率谱估值
周期图法

N 1 lim 平稳随机序列与自相关函数关系为 S(ω)= N →∞ E{ ∑N X (n)e− jwn } X 2 N + 1 n =− 2
S(ω)= ∑ R X (n)e − jwn X
n =− N
N
当 X (n) 为各态历经序列时,可去掉上式 为各态历经序列时, 中的统计均值的计算 1 2 ˆ S X (ω ) = X N (ω ) N
1.对称性 对称性
* * S XY (ω ) = SYX ( −ω ) = SYX (ω ) = S XY (−ω )
2.奇偶性 Re[ S XY (ω )] = Re[ SYX (−ω )] = Re[ SYX (ω )] = Re[ S XY (−ω )] 奇偶性 Im[ S XY (ω )] = Im[ SYX (−ω )] = − Im[ SYX (ω )] = − Im[ S XY (−ω )] 3.正交,互谱密度为零 正交, 正交 4.不相关,且 mX , mY ≠ 0 则有 S XY (ω ) = SYX (ω ) = 2π mX mY δ (ω ) 不相关, 不相关 5. S XY (ω ) ≤ S X (ω ) SY (ω )
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
图3-6 -函数
• 利用 -函数,含有直流分量或周期分量的 平稳随机过程ቤተ መጻሕፍቲ ባይዱ功率谱密度可表示为
图 3-7 直流分量
图 3-8 周期分量
• 若功率谱密度函数为常数,则自相关函数 为 —函数。
图3-9 常功率谱函数
图3-10 自相关函数
例3-1 平稳随机过程 的自相关函数为
求该随机过程的功率谱密度函数。 解:由维纳-辛钦定理,有
图 3-11 例3-1
3.2.4 几种常见的 与
例3-2 已知平稳随机过程 ,具有功率谱密度为
求该过程的自相关函数。
解:由上例可知,若自相关函数具有
的形式,则功率谱密度为
,本题中
则自相关函数具有如下形式
显然 因此 所以自相关函数为
§3.3 平稳随机过程的自相关函数时 间和等效功率谱带宽
• 自相关函数反映随机过程在不同时刻的关 联程度。
第三章 随机过程的功率谱密度
主要内容: • 随机过程的功率谱密度函数 • 平稳随机过程功率谱密度函数的性质 • 功率谱密度函数与自相关函数的关系 • 平稳随机过程的自相关时间和等效功率谱
带宽 • 联合平稳随机过程的互功率谱密度 • 白噪声与色噪声
§3.1 功率谱密度函数
3.1.1 确定信号的频谱和能量谱密度
图 3-18 样本函数及截断函数
截断函数 和 满足傅立叶变换的绝对可 积和能量有限条件,即
傅立叶变换分别为
在时间范围 内, 和 的互功率为 据巴塞伐定理 用 代换 ,则有 互功率也可表示为
图3-15 等效功率带宽
因为 所以
,且
能描述出随机 过程起伏程度
等效功率带宽定义: 通常, 说明了 中起伏的最高频率。
3.3.3 时间带宽乘积
相同的数学期望
相同的方差
0
t
0
t
(a)
图3-16
(b)
和 的样本函数曲线
• 变化缓慢, 变化快, ;
• 起伏频繁程度低, 变化起伏频繁程度 高, 。
• 时间带宽乘积:
常数
例3-3 设随机过程 的自相关函数为
试求该随机过程的自相关时间和等效功率谱 带宽。
解:由自相关函数定义
等效功率谱带宽
例3-4 已知平稳过程 的谱密度为
求 的自相关函数,自相关时间和等效带宽。 解:由自相关函数与功率谱关系有
图 3-17 例3-4
§3.4 联合平稳过程的互功率谱密度
• 自相关函数反映随机过程在不同时刻的关
3. 平稳随机过程的功率谱密度是可积函数,即
证明: 对于平稳随机过程有 平稳随机过程的均方值有限 平稳随机过程的功率谱密度可积,即
4. 功率谱与相关函数 随机过程
平稳随机过程
平稳各经历态过程
偶函 数 非负
可积 图3-4 随机过程及其功率谱密度函数
实数
3.2.3 功率谱 与 平均功率 1. 平均功率是功率谱在频率空间的积分
自相关时间从数量上直 观描述随机过程的在时
间上关联范围。
• 功率谱密度函数描述随机过程的平均功率 沿频率轴的分布。
等效功率带宽从数量上 直观描述随机过程在频
率上分布范围。
3.3.1 自相关时间
相同的数学期望
相同的方差
(a)
图3-12
(b)
和 的样本函数曲线
(a)
图 3-13
(b)
和 的自相关函数
(a)
证明:
平稳各态历经
2.特定频率 上平均功率
3.单边谱密度
与双边谱密度
物理谱密度 函数
4. -函数 • 功率谱密度指单位带宽上平均功率; • 直流与周期平稳随机过程在频率轴有离散
谱线;
零带宽上有限
功率 无限
的功率谱密度
图3-5 周期平稳随机过程及其功率谱密度
• 随机过程的功率谱密度不一定可积,即 • -函数
§3.1 功率谱密度函数
3.1.1 确定信号的频谱和能量谱密度
确定信号 是在
的非周期实函数,
的傅立叶变换存在的充要条件是:
(1). 满足狄利赫利条件
(2). 总能量有限,即
则信号 的傅立叶变换为 傅立叶反变换为
根据巴塞伐(Parseval)定理(总能量的谱表达式) 称为信号的能量谱密度。
3.1.2 随机过程的功率谱密度 • 随机过程的样本函数 不满足傅立叶存在的
(b)
图 3-14 自相关时间
因为
,有
由于 扩展比 要大一些, 因此
k1 能描述相关 程度
自相关时间定义:
通常,当 时,可认为 与 的相关性 已经很弱,实际上已经不相关了。
3.3.2 等效功率谱带宽
相同的数学期望
相同的方差
0
t
0
t
(a)
图3-15
(b)
和 的样本函数曲线
(a)
(b)
图3-15 功率谱
功率谱密度与自相关 函数是傅立叶变换对
证明:由功率谱密度函数定义
在区间 定义 则有
令则
得证。
功率谱密度与自相关函数时间 平均值是傅立叶变换对
3.2.2 功率谱密度的性质 1. 功率谱密度为非负实函数,即 证明: 根据功率谱密度定义
2. 功率谱密度函数为 的偶函数,即
证明 : 由功率谱与自相关函数的关系 同理
• 样本函数在时间区间 的平均功率。 • 由于样本函数是随机过程的任何一个样本函数,
取决于随机试验,平均功率具有随机性。 • 可采用集合平均消除样本函数的随机性,即
两边取极限
若设 上式表示为
称为随机过程 的功率谱密度。 如随机过程是宽平稳过程时,则
§3.2 功率谱密度与自相关函数之 间的关系及其性质
绝对可积和能量可积条件,傅立叶不存在。
图 3-1 样本函数
• 采取截断函数 规范化随机信号,使之满 足傅立叶变换条件。
保留有限区 间的数据
置其它区 间为0
图 3-2 及截断函数
截断函数定义为:
当T为有限值时,截断函数满足傅立叶变换 条件,傅立叶变换为
傅立叶反变换为 由巴塞伐定理得
对上式两边除2T
• 自相关函数是从时间域上描述随机过程统 计特性的重要特征。
• 功率谱密度是从频率域上描述随机过程统 计特性的重要特征。
• 自相关函数 功率谱密度?
自相关函数
?
功率谱密度
time 随机过程
frequency
图3-3 功率谱密度与自相关函数
3.2.1 维纳—辛钦定理 平稳各态历经随机过程 的自相关函数 和功率谱密度 有如下关系:
联程度。
功率谱密度函数
• 互相关函数反映多个随机过程在不同时刻
的关联程度。
互功率谱密度函数
3.4.1 互功率谱
• 随机过程的样本函数不满足傅立叶存在的 绝对可积和能量可积条件。
• 采取截断函数规范化随机信号,使之满足 傅立叶变换条件。
保留有限区 间的数据 置其它 区间为0
保留有限区 间的数据 置其它 区间为0
相关文档
最新文档