全国大学生数学建模大赛国家一等奖论文A题

合集下载

2021年国赛数学建模A题优秀论文

2021年国赛数学建模A题优秀论文

2021年国赛数学建模A题优秀论文本文基于FAST的工作原理,通过机理分析、坐标変换、非线性最小二乘优化等方法,建立了反射面板谟节优化模型・并利用BFGS 算法、蒙特卡洛积分算法等算法,对不同条件下反射光线吸收比率进行了研究。

问题一中,首先基于固定的仰角观测目标S、圆心C和焦点P・利用旋转抛物面的中心对祢性,选取焦距作为自由度控制变量,构建在极坐标系下开口竖直向上的二维抛物线方程.得到不同偏转角度下原点到抛物线的距离.进而导出三维下的旋转掀物面方程。

其次,以焦距为决策变量,将口径300米的拋物面作为积分域•将理想抛物面到原点的距离与基准球面半径差值平方作为被积函数进行积分作为最小化目标函数.建立了确定理想抛物面的优化模型。

最后,使用二分法求得目标函数导函数在定义区间上的零点.得到理想抛物面焦距的精确值为280.854,误差平方积分的最小偵为10.112o此时对应理想抛物面的解析式为z=Q+#)2/561.708300.841,问题二中,首先利用球坐标下不同轴线方向抛物面的旋转不变性.在原坐标系和问题一的坐标系之间建立了双向可逆的变换关系.得到了不同方位角下理想抛物面到原点的距离。

其次.以主索节点的工作坐标和促动器的伸缩长度为决策变量:.以积分域覆盖的主索节点到原点的距离与理想抛物面到原点的距厲之差的平方和为最小化目标函数.分别考虑下拉索长度固定、相邻节点的距离变化幅度不超过0.07%.促动器的伸缩范围在±0.6m为约束条件.建立反射面板调节优化模型。

最后,使用拉格朗日乗子法和BFGS算法进行求解.得到误差平方在抛物面口径上的积分的最小值为5.1353X109.理想抛物线的顶点坐标为(-49.392,-36.943,-294.450).调节后反射面300米口径内的主索节点编号、位置坐标、各促动器的伸缩量等结果见文件result.xlsxe问题三中,首先通过旋转变换.将反肘问题的倾斜入射光线转化为垂直入射光线。

数学建模全国赛07年A题一等奖论文

数学建模全国赛07年A题一等奖论文

关于中国人口增长趋势的研究【摘要】本文从中国的实际情况和人口增长的特点出发,针对中国未来人口的老龄化、出生人口性别比以及乡村人口城镇化等,提出了Logistic、灰色预测、动态模拟等方法进行建模预测。

首先,本文建立了Logistic阻滞增长模型,在最简单的假设下,依照中国人口的历史数据,运用线形最小二乘法对其进行拟合,对2007至2020年的人口数目进行了预测,得出在2015年时,中国人口有13.59亿。

在此模型中,由于并没有考虑人口的年龄、出生人数男女比例等因素,只是粗略的进行了预测,所以只对中短期人口做了预测,理论上很好,实用性不强,有一定的局限性。

然后,为了减少人口的出生和死亡这些随机事件对预测的影响,本文建立了GM(1,1) 灰色预测模型,对2007至2050年的人口数目进行了预测,同时还用1990至2005年的人口数据对模型进行了误差检验,结果表明,此模型的精度较高,适合中长期的预测,得出2030年时,中国人口有14.135亿。

与阻滞增长模型相同,本模型也没有考虑年龄一类的因素,只是做出了人口总数的预测,没有进一步深入。

为了对人口结构、男女比例、人口老龄化等作深入研究,本文利用动态模拟的方法建立模型三,并对数据作了如下处理:取平均消除异常值、对死亡率拟合、求出2001年市镇乡男女各年龄人口数目、城镇化水平拟合。

在此基础上,预测出人口的峰值,适婚年龄的男女数量的差值,人口老龄化程度,城镇化水平,人口抚养比以及我国“人口红利”时期。

在模型求解的过程中,还对政府部门提出了一些有针对性的建议。

此模型可以对未来人口做出细致的预测,但是需要处理的数据量较大,并且对初始数据的准确性要求较高。

接着,我们对对模型三进行了改进,考虑人为因素的作用,加入控制因子,使得所预测的结果更具有实际意义。

在灵敏度分析中,首先针对死亡率发展因子θ进行了灵敏度分析,发现人口数量对于θ的灵敏度并不高,然后对男女出生比例进行灵敏度分析得出其灵敏度系数为0.8850,最后对妇女生育率进行了灵敏度分析,发现在生育率在由低到高的变化过程中,其灵敏度在不断增大。

全国大学生数学建模优秀论文(A题) 国家一等奖

全国大学生数学建模优秀论文(A题) 国家一等奖

地下储油罐的变位分析与罐容表标定摘要加油站地下储油罐在使用一段时间后,由于地基变形等原因会发生纵向倾斜及横向偏转,导致与之配套的“油位计量管理系统”受到影响,必须重新标定罐容表。

本文即针对储油罐的变位时罐容表标定的问题建立了相应的数学模型。

首先从简单的小椭圆型储油罐入手,研究变位对罐容表的影响。

在无变位、纵向变位的情况下分别建立空间直角坐标系,在忽略罐壁厚度等细微影响下,运用积分的方法求出储油量和测量油位高度的关系。

将计算结果与实际测量数据在同一个坐标系中作图,经计算得误差均保持在3.5%以内。

纵向变位中,要分三种情况来进行求解,然后将三段的结果综合在一起与变位前作比较,可以得到变位对罐容表的影响。

通过计算,具体列表给出了罐体变位后油位高度间隔为1cm 的罐容表标定值。

进一步考虑实际储油罐,两端为球冠体顶。

把储油罐分成中间的圆柱体和两边的球冠体分别求解。

中间的圆柱体求解类似于第一问,要分为三种情况。

在计算球冠内储油量时为简化计算,将其内油面看做垂直于圆柱底面。

根据几何关系,可以得到如下几个变量之间的关系:测量的油位高度0h 实际的油位高度h 计算体积所需的高度H于是得到罐内储油量与油位高度及变位参数(纵向倾斜角度α和横向偏转角度β )之间的一般关系。

再利用附表2中的数据列方程组寻找α与β最准确的取值。

αβ一、问题重述通常加油站都有若干个储存燃油的地下储油罐,并且一般都有与之配套的“油位计量管理系统”,采用流量计和油位计来测量进/出油量与罐内油位高度等数据,通过预先标定的罐容表(即罐内油位高度与储油量的对应关系)进行实时计算,以得到罐内油位高度和储油量的变化情况。

许多储油罐在使用一段时间后,由于地基变形等原因,使罐体的位置会发生纵向倾斜和横向偏转等变化(以下称为变位),从而导致罐容表发生改变。

按照有关规定,需要定期对罐容表进行重新标定。

题目给出了一种典型的储油罐尺寸及形状示意图,其主体为圆柱体,两端为球冠体。

数学建模优秀优秀论文A题

数学建模优秀优秀论文A题

承诺书我们仔细阅读了中国大学生数学建模竞赛的竞赛规则•我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮件、网上咨询等)与队外的任何人(包括指导教师)研究、讨论与赛题有关的问题。

我们知道,抄袭别人的成果是违反竞赛规则的,如果引用别人的成果或其他公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。

我们郑重承诺,严格遵守竞赛规则,以保证竞赛的公正、公平性。

如有违反竞赛规则的行为,我们将受到严肃处理。

我们参赛选择的题号是(从A/B/C/D中选择一项填写):_________________________________ 我们的参赛报名号为(如果赛区设置报名号的话):_______________________________________ 所属学校(请填写完整的全名):________________________________________________________ 参赛队员(打印并签名):1. _______________________________________________2. ____________________________________________3. ____________________________________________指导教师或指导教师组负责人(打印并签名):____________________________日期:—年—月—日赛区评阅编号(由赛区组委会评阅前进行编号):编号专用页赛区评阅编号(由赛区组委会评阅前进行编号):赛区评阅记录(可供赛区评阅时使用):全国统一编号(由赛区组委会送交全国前编号):全国评阅编号(由全国组委会评阅前进行编号):基于系统综合评价的城市表层土壤重金属污染分析摘要本文针对城市表层土壤重金属污染问题,首先对各重金属元素进行分析,然后对各种重金属元素的基本数据进行统计分析及无量纲化处理,再对各金属元素进行相关性分析,最后针对各个问题建立模型并求解。

2015年全国大学生数学建模比赛A题一等奖论文

2015年全国大学生数学建模比赛A题一等奖论文

太阳影子定位问题摘要目前,如何确定视频的拍摄地点和拍摄日期是电脑视觉的热点研究问题,是视频数据分析的重要方面,有重要的研究意义。

本文通过建立数学模型,给出了通过分析视频中物体的太阳影子变化,确定视频拍摄的地点和日期的方法。

对于问题一,建立空间三维直角坐标系和球面坐标系对直杆投影和地球进行数学抽象,引入地方时、北京时间、太阳赤纬、杆长、太阳高度角等五个参数,建立了太阳光下物体影子的长度变化综合模型。

求解过程中,利用问题所给的数据,得到太阳赤纬等变量,将太阳赤纬等参量代入模型,求得了北京地区的9:00至15:00的影子长度变化曲线,当12:09时,影子长度最短;并分析出影长随这些参数的变化规律,利用控制变量法思想,总结了五个参数与影子长度的关系。

最后进行模型检验,将该模型运用于东京、西藏两地,得到了这两座城市的影长变化规律曲线,发现变化规律符合实际两地实际情况。

对于问题二,为了消除不同直角坐标系带来的影响,将实际坐标转换为二次曲线的极坐标,建立了极坐标下基于多层优化搜索算法的空间匹配优化模型。

求解时,先将未知点的直角坐标系的点转换为极坐标,然后设计了多层优化搜索算法,通过多次不同精度的搜索,最后得出实际观测点的经纬度为东经E115︒北纬N25︒。

同时对模型进行验证,实地测量了现居住地的某个时间段的值,通过模型二来求解出现居住地的经纬度,分析了误差产生的原因:大气层的折射和拟合误差。

对于问题三,将极坐标转换后的基本模型转换为优化模型,建立了基于遗传算法的时空匹配优化模型。

将目标函数作为个体的适应度函数,将经度纬度及日期作为待求解变量,用遗传算法进行求解,得到可能的经度纬度及其日期:北纬20度,东经114度,5月21日;北纬20度,东经114度,7月24日;东经94.5度,北纬33.8度,6月19日。

最后,将遗传算法与多层优化搜索算法进行比照分析,得出遗传算法的求解效率和求解精度均优于多层次搜索算法。

对于问题四,首先将视频材料以1min为间隔进行采样得到41帧〔静态图片〕,将这些静止图片先利用matlab进行处理,后进行阀值归一化处理,得到这些帧的灰度值矩阵。

2022年全国大学生数学建模竞赛A题

2022年全国大学生数学建模竞赛A题

2022年全国大学生数学建模竞赛A题(请先阅读“全国大学生数学建模竞赛论文格式规范”)A题系泊系统的设计近浅海观测网的传输节点由浮标系统、系泊系统和水声通讯系统组成(如图1所示)。

某型传输节点的浮标系统可简化为底面直径2m、高2m的圆柱体,浮标的质量为1000kg。

系泊系统由钢管、钢桶、重物球、电焊锚链和特制的抗拖移锚组成。

锚的质量为600kg,锚链选用无档普通链环,近浅海观测网的常用型号及其参数在附表中列出。

钢管共4节,每节长度1m,直径为50mm,每节钢管的质量为10kg。

要求锚链末端与锚的链接处的切线方向与海床的夹角不超过16度错误!未找到引用源。

,否则锚会被拖行,致使节点移位丢失。

水声通讯系统安装在一个长1m、外径30cm的密封圆柱形钢桶内,设备和钢桶总质量为100kg。

钢桶上接第4节钢管,下接电焊锚链。

钢桶竖直时,水声通讯设备的工作效果最佳。

若钢桶倾斜,则影响设备的工作效果。

钢桶的倾斜角度(钢桶与竖直线的夹角)超过5度时,设备的工作效果较差。

为了控制钢桶的倾斜角度,钢桶与电焊锚链链接处可悬挂重物球。

图1传输节点示意图(仅为结构模块示意图,未考虑尺寸比例)系泊系统的设计问题就是确定锚链的型号、长度和重物球的质量,使得浮标的吃水深度和游动区域及钢桶的倾斜角度尽可能小。

问题1某型传输节点选用II型电焊锚链22.05m,选用的重物球的质量为1200kg。

现将该型传输节点布放在水深18m、海床平坦、海水密度为1.025某103kg/m3的海域。

若海水静止,分别计算海面风速为12m/和24m/时钢桶和各节钢管的倾斜角度、锚链形状、浮标的吃水深度和游动区域。

问题2在问题1的假设下,计算海面风速为36m/时钢桶和各节钢管的倾斜角度、锚链形状和浮标的游动区域。

请调节重物球的质量,使得钢桶的倾斜角度不超过5度,锚链在锚点与海床的夹角不超过16度。

问题3由于潮汐等因素的影响,布放海域的实测水深介于16m~20m之间。

2017全国大学生数学建模比赛a题国一优秀论文doc

2017全国大学生数学建模比赛a题国一优秀论文doc

2017全国大学生数学建模比赛a题国一优秀论文.doc2017全国大学生数学建模比赛a题国一优秀论文.doc制动器试验台的控制方法分析摘要汽车制动性能的检测是机动车安全技术检验的重要内容之一,制动器的设计也成为车辆设计中重要的环节,在车辆设计阶段需要在制动试验台上对路试制动情况进行模拟,本文主要对制动试验台上的一系列问题进行了研究。

对问题1,我们利用能量守恒定律,把车辆平动时具有的动能等效地转化为试验台上飞轮和主轴等机构转动时具有的转动动能,以此求得等效的转动惯量为。

对问题2,根据刚体转动知识建立了飞轮转动的积分模型,求得3个飞轮的转动惯量,进而可以组合成8种机械惯量。

由电动机补偿惯量的范围及问题1等效的转动惯量,可以计算出需要电动机补偿的惯量为,或,考虑节能时,取补偿惯量为。

对问题3,由机械动力学知识建立刚体转动的微分模型,可以得到电动机驱动电流依赖于可观测量(主轴的扭矩)的数学模型表达式为,代入已知数据可以计算出驱动电流为。

对问题4,通过固定机械惯量与路试时的转动惯量进行比较,确定电惯量的补偿量,进而确立了混合惯量模拟方法,建立微分方程模型,求出主轴扭矩为恒定值,又对实验的数据与理论值进行比较,用隔项逐差法分析了相对误差的大小分别为,可以得知该控制方法是切实可行的。

对问题5,我们可以根据自动控制原理建立单闭环反馈系统,通过传感器检测出主轴的扭矩,通过线性关系建立差分模型,可依据前一时间段观测到的瞬时扭矩,求出前段时间的电流值,并可预测出本时段驱动电流的值。

将能量误差等效为预测电流值与理论值的相对误差,利用问题4的数据,分析处理得到的相对误差为,此控制方法比较合理。

对问题6,我们分析了上个模型在实际模拟时要受到转速的影响,可在模型5的系统上再加上一个转速反馈,建立双闭环反馈系统,反应了转速与扭矩的关系(常数),可预测出下段时间的电流。

由问题4求出扭矩和转速的相对误差的倒数的比重等效为预测的电流、的权重,对其加权求和后计算出与其理论值的相对误差为,此系统的控制方法较问题5更加合理一些。

全国数学建模大赛A题获奖论文

全国数学建模大赛A题获奖论文

全国数学建模大赛A题获奖论文城市表层土壤重金属污染分析摘要本文旨在对城市土壤地质环境的重金属污染状况进行分析,建立模型对金属污染物的分布特点、污染程度、传播特征以及污染源的确定进行有效的描述、评价和定位。

对于重金属空间分布问题,首先基于克里金插值法,应用Surfer 8软件对各数据点的分布情况进行模拟,得到了直观的重金属污染空间分布图形;随后,分别用内梅罗综合污染指数以及模糊评价标准和模型对城区内不同区域重金属的污染程度进行了评判。

对于金属污染的主要原因分析问题,基于因子分析法、问题一的结果和对各个金属污染物的来源分析等因素,判断出金属污染的主要原因有:工业生产、汽车尾气排放、石油加工并推测该区域是镍矿富集区。

随后讨论了污染源之间的相互关系和不同金属的污染贡献率。

针对污染源位置确定问题,我们建立了两个模型:模型一以流程图的形式出现,基于污染传播的一般规律建立模型,求取污染源范围,模型作用更倾向于确定污染源的位置;模型二基于最小二乘法原理,建立了拟合二次曲面方程,在有效确定污染源的同时也反映了其传播特征,模型更加清楚,理论性也更强。

在研究城市地质环境的演变模式问题中,我们对针对污染源位置确定问题所建模型的优缺点进行了评价,同时建立了考虑了时间,地域环境和传播媒介的污染物传播模型,从而反映了地质的演变。

综上所述,本文模型的特点是从简单的模型建立起,强更准确的数学模型发展,逐步达到目标期望。

关键词:重金属污染,克里金插值最小二乘法因子分析流程图一、问题重述问题背景随着城市经济的快速发展和城市人口的不断增加,人类活动对城市环境质量的影响日显突出。

对城市土壤地质环境异常的查证,以及如何应用查证获得的海量数据资料开展城市环境质量评价,研究人类活动影响下城市地质环境的演变模式,日益成为人们关注的焦点。

评价和研究城市土壤重金属污染程度,讨论土壤中重金属的空间分布,研究城市土壤重金属污染特征、污染来源以及在环境中迁移、转化机理,并对城市环境污染治理和城市进一步的发展规划提出科学建议,不仅有利于城市生态环境良性发展,有利于人类与自然和谐,也有利于人类社会健康和城市可持续发展[1]。

国赛数学建模A题优秀论文之欧阳法创编

国赛数学建模A题优秀论文之欧阳法创编

葡萄酒的评价模型海军航空工程学院(烟台) 史成巍许志鹏王鑫指导教师司守奎专家点评:本文格式基本规范,表达较清晰。

解决问题一方法适当,结论正确;问题二以相关系数筛选出与葡萄酒质量相关性较大的理化指标与葡萄酒质量一起作为评估葡萄质量的评价指标,进行聚类分析,思路简明,结论较合理。

问题三进行理化指标的相关性分析,切入准确,但对结果的说明不够充分。

不足之处是在问题二到问题四中没有充分考虑芳香类物质的使用,问题四中对如何判定“葡萄和葡萄酒的理化指标是否能用来评价葡萄酒”时方法略有不妥,导致结论不当。

点评人:济南大学数学科学学院许振宇副教授摘要:本文主要针对葡萄酒的评价问题建立了相关数学模型。

在对两组评酒员的评价是否存在显著性差异的问题中,首先验证了两组评酒员的评价结果服从正态分布,并通过方差分析法对两组评酒员的评价结果进行了分析,发现两组评酒员对于红葡萄酒和白葡萄酒的评价结果均存在显著性差异,由于第二组评酒员的评分方差更小,故评价结果均衡度更好,其结果可信度更大。

在对酿酒葡萄进行分级的问题中,首先以相关系数衡量葡萄理化指标与葡萄酒质量的相似性程度,然2021.03.09 欧阳法创编后筛选出与葡萄酒质量相关性较大的理化指标与葡萄酒质量一起作为评估葡萄质量的评价指标,利用筛选出的评价指标对酿酒葡萄进行聚类分析,将红葡萄和白葡萄均分成了四类。

最后以每类中对应葡萄酒质量评分的均值作为该类葡萄的分数,从而定出四类的级别,以对应国家葡萄酒的四级分类标准。

在分析酿酒葡萄与葡萄酒的理化指标间的联系问题中,本文采用偏最小二乘回归分析法对指标间的联系进行了分析计算,发现葡萄酒中的某些理化指标与葡萄的某些理化指标存在较强的相关性,比如白葡萄中的总糖和还原糖对白葡萄酒中顺式白藜芦醇苷和顺式白藜芦醇以及反式白藜芦醇的影响较大。

在判断葡萄与葡萄酒的理化指标与葡萄酒的质量间关系的问题中,首先对葡萄和葡萄酒的理化指标与葡萄酒的质量进行了相关性分析,发现某些理化指标与葡萄酒的质量相关性很大。

数学建模全国赛07年A题一等奖论文

数学建模全国赛07年A题一等奖论文
1
数函 ztrepmoC
拟模态动
测预色灰
型模 citsigoL�字键关
。议建了出提府政给况情口人的国我对针�析 分性理合了行进型模对也时同�点缺优的型模个各了出指别特�价评了行进型模对文本�后最
。大增断不在度敏灵其 �中程过化变的高到低由在率育生在现发 �析分度敏灵了行进率育生女妇对后最 �0588.0 为数系度敏灵其出得析分度敏灵行进 例比生出女男对后然�高不并度敏灵的 θ 于 对量数口人现发�析分度敏灵了行进 θ 子因展发率亡死对针先首�中析分度敏灵在 。义意际实有具更果结的测预所得使 �子因制控入加�用作的素因为人虑考�进改了行进三型模对对们我�着接。高较求要性 确准的据数始初对且并�大较量据数的理处要需是但�测预的致细出做口人来未对以可 型模此。议建的性对针有些一了出提门部府政对还�中程过的解求型模在。期时”利红 口人“ 国我及以比养抚口人�平水化镇城�度程化龄老口人�值差的量数女男的龄年 婚适�值峰的口人出测预�上础基此在。合拟平水化镇城、目数口人龄年各女男乡镇市 年1002出求、合拟率亡死对、值常异除消均平取�理处下如了作据数对并�三型模立建 法方的拟模态动用利文本�究研入深作等化龄老口人、例比女男、构结口人对了为 。入深步一进有没�测预的数总口人了出做是只�素因的类一 龄年虑考有没也型模本�同相型模长增滞阻与。亿 531.41 有口人国中�时年 0302 出得 �测预的期长中合适�高较度精的型模此�明表果结�验检差误了行进型模对据数口人 的年 5002 至 0991 用还时同�测预了行进目数口人的年 0502 至 7002 对�型模测预色灰 )1,1(MG 了立建文本 �响影的测预对件事机随些这亡死和生出的口人少减了为 �后然 。性限局的定一有�强不性用实�好很上论 理�测预了做口人期短中对只以所�测预了行进的略粗是只�素因等例比女男数人生出 、龄年的口人虑考有没并于由�中型模此在。亿 95.31 有口人国中�时年 5102 在出得 �测预了行进目数口人的年 0202 至 7002 对 �合拟行进其对法乘二小最形线用运 �据数史 历的口人国中照依�下设假的单简最在�型模长增滞阻 citsigoL 了立建文本�先首 。测预模建 行进法方等拟模态动、测预色灰、citsigoL 了出提�等化镇城口人村乡及以比别性口人 生出、化龄老的口人来未国中对针�发出点特的长增口人和况情际实的国中从文本

2010年全国大学生数学建模竞赛A题全国一等奖论文

2010年全国大学生数学建模竞赛A题全国一等奖论文

4012.74L V12 abL1
Ⅴ:当油面在图五中⑤线以下,即 H 0 mm 时,由于显示油面高度为 0 ,所以只能得到 此时储油罐内燃油体积的上限,此上限可在第Ⅰ种情况中得到。得
§2
问题分析
储油罐是根据无变位情况下油面高度 H 与燃油体积 V 的关系进行标定的, 若要实现 储油罐的变位识别和罐容表标定,就需要建立燃油体积 V 与油面高度 H 的数学模型。 问题一: 若要探究发生纵向变位对罐容表的影响,应首先建立无变位和发生纵向变位时,罐 容表标定值与油面高度 H 分别满足的关系。由变量 H 计算发生纵向变位后的实际燃油 体积,将其与罐容表的标定值进行比较,分析变位对罐容表的影响。由此,需要分别建 立无变位情况下和发生纵向变位情况下,储油罐内燃油体积 V 与油面测量高度 H 的模 型。利用几何知识和微积分的理论,可以很容易建立无变位情况下的模型。对于发生纵 向变位,可以用微元分析法,分情况计算储油罐内的实际燃油体积。得出模型后,对模 型计算所得数据与题目所给数据进行比较,分析误差,加以改进。 问题二: 问题二要求对这种两边是球冠体, 中间为柱体的实际储油罐建立燃油体积 V 与油面 测量高度 H 的数学模型。 由于这种储油罐的形状比椭圆型储油罐复杂, 而且又发生了 、
的纵向倾斜和横向偏转,处理起来比较麻烦。可以将这种实际储油罐分为左球冠、中
间圆柱体和右球冠三个部分,对油面测量高度为 H 的情况下,分别计算三个部分内燃油 的体积,然后将其求和即为储油罐内燃油体积。可以采用微元法分别建立三部分内燃油 体积与油面测量高度 H 的模型,不过要考虑 H 取不同范围内的值时,体积求解方法可 能不同。如果积分形式过于复杂,可以考虑采用积分的数值算法,用和逼近。考虑到模 型建立时,参数 和 是未知的,可以用回归分析的方法,求得使理论计算值与实际值

数学建模全国赛 A题一等奖论文

数学建模全国赛 A题一等奖论文
关于中国人口增长趋势的研究
【摘要】
本文从中国的实际情况和人口增长的特点出发�针对中国未来人口的老龄化、出生 人口性别比以及乡村人口城镇化等�提出了 Logistic、灰色预测、动态模拟等方法进行 建模型�在最简单的假设下�依照中国人口的历 史数据�运用线形最小二乘法对其进行拟合�对 2007 至 2020 年的人口数目进行了预测� 得出在 2015 年时�中国人口有 13.59 亿。在此模型中�由于并没有考虑人口的年龄、 出生人数男女比例等因素�只是粗略的进行了预测�所以只对中短期人口做了预测�理 论上很好�实用性不强�有一定的局限性。
在灵敏度分析中�首先针对死亡率发展因子 θ 进行了灵敏度分析�发现人口数量对 于 θ 的灵敏度并不高�然后对男女出生比例进行灵敏度分析得出其灵敏度系数为 0.8850�最后对妇女生育率进行了灵敏度分析�发现在生育率在由低到高的变化过程中� 其灵敏度在不断增大。
最后�本文对模型进行了评价�特别指出了各个模型的优缺点�同时也对模型进行了合理性分 析�针对我国的人口情况给政府提出了建议。
为了对人口结构、男女比例、人口老龄化等作深入研究�本文利用动态模拟的方法 建立模型三�并对数据作了如下处理�取平均消除异常值、对死亡率拟合、求出2001年 市镇乡男女各年龄人口数目、城镇化水平拟合。在此基础上�预测出人口的峰值�适婚 年龄的男女数量的差值�人口老龄化程度�城镇化水平�人口抚养比以及我国 “人口 红利”时期。在模型求解的过程中�还对政府部门提出了一些有针对性的建议。此模型 可以对未来人口做出细致的预测�但是需要处理的数据量较大�并且对初始数据的准确 性要求较高。接着�我们对对模型三进行了改进�考虑人为因素的作用�加入控制因子� 使得所预测的结果更具有实际意义。
根据附录 2 的数据进行建模�同时要参考中国的实际情况以及人口增长的上述特点� 对中国人口增长的中短期和长期的趋势做出预测�比如未来的人口数目、性别比例、人 口结构等�特别要指出模型的优点和不足。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
海床情况进行求解。
=
− − ( − 1)′
, = 1, 2, · · ·, 210

当逐渐增大,锚链受到的竖直向下方向的合力与支持力之差先逐渐接近于0,
再等于0,直至小于0。当合力小于0时,锚链以海床接触,此时海床提供向上的支持
力,其大小与′ 相等。因此可将小于0 的值都作零处理,故锚链接触海床时,
对于问题二,首先考虑第一个子问题,将风速36/直接代入问题一的模型中,
得出此条件下的吃水深度为0.723,各钢管倾斜角度(度)依次为8.960、9.014、9.068
、9.123,钢桶倾斜角(度)为9.179,锚链链接处的切线方向与海床的夹角(度)为18.414,
游动区域半径为18.80。发现此条件下,水声通讯系统设备的工作效果较差,且锚被
计与应用对海上科学发展有重要意义。
1.2 问题的提出
已知某近浅海传输节点(如图1所示),将浮标视作底面直径2为、高为2、质量
为1000的圆柱体,锚的质量为600,钢管共4节,每节长度为1,直径为50,
每节钢管的质量为10。水声通讯系统安装在一个长为1、外径为30的密封圆
柱形钢桶内,设备和钢桶总质量为100。
Step1: 遍历求解
令吃水深度ℎ的初始值为0.1,以0.0005为单位逐步增加至2。( 浮标高度为2,
完全浸没时吃水深度ℎ则为2 ),记录对应的数据,选取水下物体竖直方向高度和
与海域水深最接近的组别,进一步进行计算,结果如下表所示(具体程序见附录):
表 1: 不同风速的相关结果表
以风速24/的情况为例,绘制游动区域图:
题意的变量临界值。以水深16、系统各部分递推关系式和钢桶与竖直方向夹角小
于5°为约束条件,将多目标优化转化为单目标优化。通过调节决策变量中锚链的型
号和长度,设定重物球重力的范围,对所有吃水深度的可取值进行遍历,判断对应
的钢管倾斜角度、海水深度是否小于临界值,小于则取其作为可行情况,否则重新
设定锚链的型号和长度,继续运算。最终设计出几种可行的系泊系统方案,并对其
为1.120、1.127、1.135、1.142,钢桶倾斜角(度)为1.150,游动区域为半径14.34的旋
转面,24/ 时吃水深度为0.7015/,第1-4根钢管的倾斜角(度)依次为4.258、4.285、
4.313、4.341,钢桶倾斜角(度)为4.370,游动区域为半径17.46的旋转面。
的内错角,所以相等。
∙ 钢管和钢桶的受力分析
图 3: 受力分析图
其中,2 为第一根钢管对第二根钢管的拉力。
对受力分析图进行进一步地分析,建立如下函数关系式:

⎨ = ′ = ( )2 ℎ
1
2

1 = 1
(5)


⎨ 2 = + 1 − − 1
立直角坐标系,对传输节点进行先整体后局部的受力分析,得出系泊系统各部分的
递推公式,建立递推-校正的反演模型,得到相关相关方程组。
为求解此方程组,将题目所给的水深18作为约束条件,给吃水深度赋以初始
值,遍历所有可能的吃水深度值,记录对应的水下物体竖直方向的高度总和,取
与18 最接近时所对应的吃水深度为最优解,推导得相应的倾斜角、游动区域等。
2.2 问题二的分析
问题二的第一个子问题要求在问题一的基础上,将风速设定为36/。因此,先
将其直接代入问题一的模型中,求得此条件下的吃水深度、各钢管倾斜角度、锚链
形状等。此时,发现钢桶倾斜角和锚与锚链链接处的切线方向与海床的夹角均不符
合题目要求,即水声通讯系统设备的工作效果较差,且锚被拖行,因此无法求解游动

(12)
式中为锚链长度,ℎ 为链环长度,′ 为单节链环的重力。
其中,
= + 4 + +
= + 4 + +
=
(13)
由此,可计算出 和
(3) 游动区域的计算
定义:在海平面上半径为的旋转面。
=
钢桶与水平方向的夹角。
∙ 锚的受力分析
6
图 4: 受力分析图
其中, 为摩擦力, ′ 为锚链对锚水平方向的拉力。
图 5: 受力分析图
其中, 为钢桶和重物球及以上各物体的浮力和,为钢桶和重物球及以上
各物体的重力和, 为锚链对钢桶的拉力,即锚的拉力、锚链的重力和浮力的合
力。
其中,设重力球的质量为 ,密度为 ,重力球的浮力 计算如下:
拖行。随后考虑第二个子问题,对重物球重量进行调整,以钢桶倾斜角最小和吃水
深度最小为目标函数,以水深18、系统各部分递推关系式和钢桶倾斜角小于5度为
约束条件,以重物球重量、吃水深度为决策变量,建立多目标优化模型,再将其转
化为单目标优化。之后,通过分层递进法求出达到要求角度的重物球重力临界值,
求得重物球重力最小为2011。最后对可能存在的缺失值通过代入法进行了添补。


⎩ =
(6)
此外,可得到:
1
1
根据反三角关系,得:
2 = 2
(7)
由此可推导得
+
+1 =

∑︁
− −
=1

∑︁
=1


, = 1, 2, 3, 4
(8)
其中,当=1,2,3时, 为第 + 1根钢管与水平方向的夹角;当=4 时, 为
区域。
之后,对于第二个子问题,考虑调整重物球的重量,以使倾斜角度满足题目要
求。首先分析重物球对各个角度的影响,发现重物球越重角度越小。据此设立重物
球重力范围,在满足系统各部分递推关系式和钢桶与竖直方向夹角小于5度的条件
下,将多目标优化模型转化为单目标优化模型。然后遍历所有吃水深度的可取值,
寻找可行的情况,再通过分层递进法求出恰好达到要求角度的重物球重力临界值。
度可达1.5/、风速可达36/。考虑风力、水流力和水深,请设计系泊系统,分析
不同情况下钢桶、钢管的倾斜角度、锚链形状、浮标的吃水深度和游动区域。
2
二、问题分析
2.1 问题一的分析
问题一要求计算不同海面风速时钢桶和各节钢管的倾斜角度、锚链形状、浮标
的吃水深度和游动区域。要解决此问题,首先对题目中所给出的传输节点示意图建
系统各部分递推关系式和钢桶倾斜角小于5度为约束条件,以重物球重量、吃水深
度和锚链长度为决策变量,以风速36/、海水速度1.5/ 为初始条件,得出不同
锚链类型和长度的最优解。最后,选取4组可行解,并对所得系泊系统进行分析。
最后,对模型作出了客观的评价及推广。
关键词: 反演算法;多目标优化;遍历算法;递推公式;系泊系统。
8
图 6: 游动区域旋转面图
图表分析 由表可见,风速为24/时的吃水深度大于12/时的,且游动区域
半径也较12/时的大,切合人们实际生活经验。
Step2: 异常数据的处理
在上述操作中,发现部分负值,不符合预期情况,如表所示:
表 2: 异常数据表
经分析,认为异常数据为部分锚链接触海床而产生的,因此,下面将锚链接触
5.1.1 问题一模型的建立
(1) 模型的准备
假设吃水深度已知,并令其为ℎ,浮标质量为 ,浮标直径为 ,浮标高度为,
海水密度为。
浮标重力
=
浮标所受浮力
=
(︀ )︀2

2
(1)
(2)
结合近海风荷载公式,得到风力
= 0.625 2 = 0.625( − ℎ) 2
1
一、问题的重述
1.1 问题的背景
为满足海上资源开发利用的需要,海上作业平台、浮游码头及海上浮桥的应用
日渐增加,这些海上漂浮结构物的海上定位需要锚泊系统的约束来实现。
锚泊系统在在海洋海岸工程中的形式多样,应用十分广泛。其中,近浅海观测
网的传输节点由浮标系统、系泊系统和水声通讯系统组成,浮筒式单点系泊系的设
图 1: 传输节点示意图
锚链与锚的链接处的切线方向与海床的夹角不超过16度,否则锚会被拖动。钢
桶竖直时,水声通讯的效果最佳。为了控制钢桶的倾斜角度,链接处可悬挂重物球。
要求通过数学建模来完成以下任务:
(1) 某传输节点选用22.05的II型锚链和1200的重物球,布于深18m、海床平
坦、密度为1.025×103/3 的海域。若海水静止,计算海面风速为12/和24/
=


(9)
=
(10)
式中 取钢的密度,查阅文献的为7.85/3 。
=


⎨ − −
= ′



⎩ −
=

− − ( − 1)′
, = 1, 2, · · ·, 210

7
(11)

为0。
Step3: 优化绘图
型。 再将未知量吃水深度ℎ设为已知量,以题目所给水深18为约束条件,通过
遍历算法运算出结果。接着对异常数据进行作零处理,分析锚链与海床接触的情
况,推导得出钢管倾角、锚链形状等。最后通过系统是否受力平衡对结果进行检
验。结果显示风速为12/时吃水深度为0.6870,第1-4根钢管的倾斜角(度)依次
对于问题三,考虑到安全因素,将系统设定为处于较极端环境下,即水深、风
速、海水速度分别设为16,36/,1.5/。在风速与水流速度同向的情况下,采
用控制变量法对钢桶倾斜角和锚链末端与锚链接处的切线方向与海床的夹角随风
速、海水深度、海水速度影响的变化规律进行分析。从而可以确定使角度满足题意
的变量临界值。然后,以钢桶倾斜角最小和吃水深度最小为目标函数,以水深16、
相关文档
最新文档