数学方差分析及回归分析
第九章 复习-方差分析及回归分析
s
n j X . j nቤተ መጻሕፍቲ ባይዱ X ij nX 0
j 1 i 1
因此得知SA的自由度是 s -1.
由(1.3),(1.6)及Xij的独立性得知
X ~ N ( , / n)
2
s j 1
(1.14)
E ( S A ) E[ n j X .2j nX 2 ]
j 1
s
(1.13) 可以计算 E( S E ) (n s) 2. SA的统计特性. 它是s个变量 n j ( X . j X )
2
的平方和,且仅有一个线性约束条件:
j 1 s j 1
s
nj
nj ( X. j X ) nj ( X. j X )
j 1 s nj
i 1
( X ij X . j ) 2 / 2 ~ 2 (n j 1)
i 1
nj
(1.11)中各项独立,根据 分布的可加性,得 s
2
S E / 2 ~ 2 ( ( n j 1))
j 1
即S E / 2 ~ 2 ( n s ),
n n j (1.12)
j
Xij - μj可以看成是随机误差. 记为Xij - μj =εij ,
则Xij 可以写为
Xij = μj +εij
εij ~N(0, ζ2),各ε
ij独立
(1.1)
i=1,2,…,nj , j=1,2,…,s
(1.1)称为单因素方差分析的数学模型.
方差分析的任务
X i1 ~ N (1 , 2 ), X i 2 ~ N (2 , 2 ),..., X is ~ N ( s , 2 ) I. 检验s个总体
假设检验-方差分析及回归分析
1.645 时,拒绝 H0。
率有显著提高,此时犯(第一类)错误的 5% 。 概率不会超过
若取 0.005 , 查表得
z 0.005 2.57 , 仍有 z 3.125 2.57 , 所以在显著性水平 0.005 下
也拒绝 H0,从而可断定犯错误的概率 不会超过 0.5% 。
( n1 1) s ( n2 1) s , n1 n2 2
2 1 2 2
若 t t ( n1 n 2 2) ,则拒绝 H0
2
右边检验
H 0 : 1 2 0 , H 1 : 1 2 0
若 t t ( n1 n 2 2 ) ,则拒绝 H0
第八章 假设检验
第九章 方差分析及回归分析
第八章 假设检验
§1 假设检验
§2 正态总体均值的假设检验
§3 正态总体方差的假设检验
§5 分布拟合检验
§1 假设检验 实际推断原理 概率很小的事件在一
次试验中实际上可认为是不会发生的。本章 的内容,一是已知总体的分布类型,而对包 含的未知参数作某些假设,二是未知总体的 分布类型,而对总体的分布作出假设。 所谓假设检验就是提出假设后,根据实 际推断原理作出接受还是拒绝的判断。
2
均未知。 2 2 2 2 H0 : 1 2 , H1 : 1 2
s 检验统计量 F , s
若 F F ( n1 1, n 2 1)
2
2 1 2 2
或 F F1 ( n1 1, n 2 1) ,
2
则拒绝 H0。
若
2 2
F1 ( n1 1, n2 1) F F ( n1 1, n2 1) ,
品检中常用的数学模型分析
品检中常用的数学模型分析在品质控制中,数学模型是评估和分析产品或过程的质量的重要工具之一。
数学模型可以帮助品质控制人员了解产品或过程中的潜在问题,并为制定改进措施提供依据。
本文将介绍品质控制中常用的数学模型分析方法,包括统计过程控制、回归分析、方差分析和贝叶斯网络分析。
统计过程控制(SPC)是品质控制中最常用的数学模型分析方法之一。
它通过收集和分析产品或过程的数据,确定其稳定性和可靠性。
SPC通常使用控制图来监控过程的变化。
控制图是一种图形化工具,可以帮助品质控制人员识别出过程中的特殊原因变异,并及时采取相应的措施进行调整。
常见的控制图包括X-Bar图、R 图和P图等。
X-Bar图用于监控过程的平均值,R图用于监控过程的变异性,而P 图则用于监控过程的不良率。
通过分析控制图上的点的分布情况,品质控制人员可以判断过程是否处于控制状态,进而采取相应的控制措施。
回归分析是一种用于研究变量之间关系的数学模型分析方法。
在品质控制中,回归分析可以帮助确定影响产品质量的因素,并建立预测模型。
通过收集产品或过程的数据并进行回归分析,可以找到与产品质量相关的变量,并建立预测模型,从而预测产品或过程的质量状况。
回归分析可以采用线性回归、非线性回归或多元回归等方法进行。
通常,品质控制人员会选择最合适的回归模型,并通过相关系数和回归系数等指标评估模型的拟合度和预测准确性。
方差分析(ANOVA)是一种用于比较多个样本均值是否相等的数学模型分析方法。
在品质控制中,方差分析可以用于确定不同因素对产品质量产生的影响,并找出最重要的因素。
方差分析基于平方和、均方和和F值等统计指标来评估样本均值的差异性。
通过进行方差分析,品质控制人员可以确定最佳因素组合,从而优化产品的质量。
方差分析还可以用于分析不同分组之间的差异,进一步确定改进策略。
贝叶斯网络是一种用于建立概率推断模型的数学模型分析方法。
在品质控制中,贝叶斯网络可以用于分析不同因素之间的依赖关系,并预测产品或过程的质量。
第9章-方差分析与线性回归
Xij X E
s nj
ST s
n
E
j
j 1
i 1
X ij X
j1 i1
s nj
X ij2 nX
j1 i1
X ij 2
2
2
s nj
X
EE(X
)j
s11ninj1jEs1Xinj1ijjE21(Xiinj1)X
1 n
s
nj ( j )
j 1
s nj
E( Xij2 ) nE( X 2 )
X12 X 22
As : N s , 2
X1s X 2s
X n11
X n2 2
X nss
每个总体相互独立. 因此, 可写成如 下的 数学模型:
ij
~
X ij j ij N (0, 2 ), 各ij独立
i 1, 2, , nj,j 1, 2, , s
方差分析的目的就是要比较因素A 的r 个水平下试验指标理论均值的 差异, 问题可归结为比较这r个总体 的均值差异.
i
ij (0, 2 ),各ij独立
1, 2, , nj,j 1, 2, , s
n11 n22 ... nss 0
假设等价于 H0 :1 2 s 0
H1 :1,2,
,
不全为零。
s
为给出上面的检验,主要采用的方法是平方和 分解。即
假设数据总的差异用总离差平方和 ST 分解为
第九章 回归分析和方差分析
关键词: 单因素试验 一元线性回归
方差分析(Analysis of variance, 简 称:ANOVA),是由英国统计学家费歇尔 (Fisher)在20世纪20年代提出的,可用于推 断两个或两个以上总体均值是否有差异 的显著性检验.
方差分析与回归分析
以及浓度和温度的交互作用对产量无显著性影响,也就是说为
了提高产量必须控制好浓度。
2 、双因素无重复试验的方差分析 在双因素试验中,对每一对水平组合只做一次试验,即不 重复实验,得到
上一页 下一页 返回
上一页 下一页 返回
总平方和 误差平方和
例9.3 某化工企业为了提高产量,选了三种不同浓度、四种不同 温度做试验。在同一浓度与温度组合下各做两次试验,其数据如
下表所示,在显著性水平α=0.05下不同浓度和不同温度以及它们
间的交叉作用对产量有无显著性影响?
B A
A1 A2 A3
B1
14,10 9,7 5,11
B2
11,11 10,8 13,14
检验温度对该化工产品的得率是否有显著影响。
解: 计算各个水平下的样本均值,得
上一页 下一页 返回
计算 ST=106.4, SA=68.4, SE =38.0
单因素试验的方差分析表:
方差来源 平方和 自由度 F值 临界值
显著性
因素A 误差
总计
68.4 4 38.0 10
106.4 14
4.5 F0.05(4,10)=3.48 ※ 4.5 F0.01(4,10)=5.99
变量Y服从正态分布
,即Y的概率密度为
其中
,而 是不依赖于x的常数。
上一页 下一页 返回
在n次独立试验中得到观测值(x1,y1),(x2,y2),… (xn,yn),利用极大似然估计法估计未知参数a1, a2,… ak,时,
有似然函数
似然函数L取得极大值,上式指数中的平方和
取最小值。
即为了使观测值(xi , yi)(i=1,2,…,n)出现的可能性最大,应当选 择参数a1,a2,…,ak,使得观测值yi与相应的函数值
方差分析与回归分析
方差分析与回归分析在统计学中,方差分析(ANOVA)和回归分析(Regression Analysis)都是常见的统计分析方法。
它们广泛应用于数据分析和实证研究中,有助于揭示变量之间的关系和影响。
本文将对方差分析和回归分析进行介绍和比较,让读者更好地理解它们的应用和区别。
一、方差分析方差分析是一种统计方法,用于比较两个或更多组别的均值是否存在显著差异。
它通过计算组内变异和组间变异的比值来判断不同组别间的差异是否具有统计显著性。
在方差分析中,通常有三种不同的情形:单因素方差分析、双因素方差分析和多因素方差分析。
单因素方差分析适用于只有一个自变量的情况。
例如,我们想要比较不同教育水平对收入的影响,可以将教育水平作为自变量分为高中、本科和研究生三个组别,然后进行方差分析来检验组别之间的收入差异是否显著。
双因素方差分析适用于有两个自变量的情况。
例如,我们想要比较不同教育水平和不同工作经验对收入的影响,可以将教育水平和工作经验作为自变量,进行方差分析来研究其对收入的影响程度和相互作用效应。
多因素方差分析适用于有多个自变量的情况。
例如,我们想要比较不同教育水平、工作经验和职位对收入的影响,可以将教育水平、工作经验和职位作为自变量,进行方差分析来探究它们对收入的联合影响。
方差分析的基本原理是计算组内变异和组间变异之间的比值,即F 值。
通过与临界F值比较,可以确定差异是否显著。
方差分析的结果通常会报告组间平均差异的显著性水平,以及可能存在的交互作用。
二、回归分析回归分析是一种统计方法,用于研究自变量与因变量之间的关系。
它通过建立一个数学模型来描述自变量对因变量的影响程度和方向。
回归分析分为简单线性回归和多元线性回归两种类型。
简单线性回归适用于只有一个自变量和一个因变量的情况。
例如,我们想要研究体重与身高之间的关系,可以将身高作为自变量、体重作为因变量,通过拟合一条直线来描述二者之间的关系。
多元线性回归适用于有多个自变量和一个因变量的情况。
统计学中的ANOVA与线性回归的比较与选择
统计学中的ANOVA与线性回归的比较与选择统计学是一门与数理逻辑相结合的学科,旨在通过收集和分析数据来解释现象,预测未来,以及做出合理的决策。
ANOVA(方差分析)和线性回归是统计学中常见的两种数据分析方法。
本文将对这两种方法进行比较,并讨论在不同情境下如何选择适合的方法。
一、ANOVA(方差分析)方差分析是一种用于比较两个或多个组之间差异的统计方法。
它的主要目的是确定组之间是否存在显著差异,特别是在处理离散型因变量和一个或多个分类自变量的情况下。
方差分析通过计算组间差异所占总差异的比例来评估差异的显著性。
在进行ANOVA分析时,需要满足以下假设:1. 观测值之间是独立的。
2. 每个组内的观测值是来自正态分布的。
3. 方差齐性:每个组的观测值具有相同的方差。
ANOVA方法的计算复杂度较高,需要进行多个参数的估计和显著性检验。
它的结果可以得出组之间的差异是否显著,但并不能提供具体解释这种差异的原因。
二、线性回归线性回归是一种用于建立自变量和因变量之间线性关系的统计方法。
它可以帮助我们了解自变量对于因变量的影响程度,并进行预测。
线性回归可以处理连续型因变量,并适用于一个或多个连续型或离散型自变量。
在线性回归中,我们假设因变量与自变量之间存在线性关系,并使用最小二乘法来估计回归方程的参数。
通过评估回归方程的显著性以及各个自变量的系数,我们可以判断自变量对于因变量的影响是否显著。
然而,线性回归方法也有其局限性。
它假设因变量与自变量之间存在线性关系,但在实际情况中,线性关系并不总是存在。
此外,线性回归还要求各项观测值之间相互独立,误差项为常数方差,以及误差项服从正态分布。
三、比较与选择在选择ANOVA还是线性回归方法时,需要考虑以下几个因素:1. 因变量的类型:如果因变量是离散型变量,可以考虑使用ANOVA方法。
如果是连续型变量,可以考虑使用线性回归方法。
2. 自变量的类型:如果自变量是分类变量,可以使用ANOVA方法进行比较。
方差分析和回归分析
方差分析和回归分析方差分析和回归分析是统计学中常用的两种数据分析方法。
它们分别用于比较多个样本之间的差异以及建立变量之间的函数关系。
本文将对方差分析和回归分析进行介绍和比较。
一、方差分析方差分析(Analysis of Variance,简称ANOVA)是一种用于比较多个样本均值是否存在差异的统计方法。
方差分析通过比较组间和组内的方差来判断样本均值是否存在显著差异。
方差分析需要满足一些基本假设,如正态分布假设和方差齐性假设。
方差分析可以分为单因素方差分析和多因素方差分析。
单因素方差分析是指只有一个自变量(因素)对因变量产生影响的情况。
多因素方差分析则包含两个或两个以上自变量对因变量的影响,可以用于分析多个因素交互作用的效应。
方差分析的步骤包括建立假设、计算各组均值和方差、计算F值和判断显著性等。
通过方差分析可以得到组间显著性差异的结论,并进一步通过事后多重比较方法确定具体哪些组之间存在显著差异。
二、回归分析回归分析(Regression Analysis)是一种用于分析自变量和因变量之间关系的统计方法。
回归分析通过建立一种数学模型,描述自变量对因变量的影响程度和方向。
回归分析可用于预测、解释和探索自变量与因变量之间的关系。
回归分析可以分为线性回归和非线性回归。
线性回归是指自变量和因变量之间存在线性关系的情况,可以用一条直线进行拟合。
非线性回归则考虑了自变量和因变量之间的非线性关系,需要采用曲线或其他函数来进行拟合。
回归分析的步骤包括建立模型、估计参数、检验模型的显著性、预测等。
回归模型的好坏可以通过拟合优度、回归系数显著性以及残差分析等指标进行评估。
三、方差分析与回归分析的比较方差分析和回归分析都是常用的统计方法,但它们有一些区别。
主要区别包括:1. 目的不同:方差分析用于比较多个样本之间的差异,判断样本均值是否存在显著差异;回归分析则用于建立自变量和因变量之间的函数关系,预测和解释因变量。
2. 自变量个数不同:方差分析一般只有一个自变量(因素),用于比较不同组别之间的差异;回归分析可以包含一个或多个自变量,用于描述自变量对因变量的影响关系。
方差分析回归分析
案例二:不同地区教育水平的方差分析
总结词
通过比较不同地区的教育水平,了解各 地区教育发展的差异,为政府制定教育 政策提供科学依据。
VS
详细描述
收集不同地区的教育水平数据,包括学校 数量、教师质量、学生成绩等。利用方差 分析方法,分析各地区教育水平是否存在 显著差异,并探究影响教育水平的因素。 根据分析结果,提出针对性的教育政策建 议,促进教育公平和发展。
应用范围
方差分析主要应用于实验设计、质量控制等领域,而回归 分析则广泛应用于预测、建模和决策等领域。
04
方差分析的实际应用案例
案例一:不同品牌电视销量的方差分析
总结词
通过对比不同品牌电视的销量,分析品牌、型号、价格等因素对销量的影响,有助于企业了解市场需 求和竞争态势。
详细描述
选取市场上不同品牌、型号、价格的电视,收集其销量数据。利用方差分析方法,分析各品牌电视销 量是否存在显著差异,并进一步探究价格、功能等变量对销量的影响。根据分析结果,为企业制定营 销策略提供依据。
05
回归分析的实际应用案例
案例一:预测股票价格与成交量的回归分析
总结词
股票价格与成交量之间存在一定的相 关性,通过回归分析可以预测股票价 格的走势。
详细描述
通过收集历史股票数据,分析股票价 格与成交量之间的相关性,建立回归 模型。利用该模型,可以预测未来股 票价格的走势,为投资者提供决策依 据。
详细描述
方差分析在许多领域都有广泛的应用,如心理学、社会科学、生物统计学和经济学等。它可以用于比较不同组数 据的均值差异,探索因子对因变量的影响,以及处理分类变量和连续变量的关系。通过方差分析,研究者可以更 好地理解数据结构和关系,为进一步的数据分析和解释提供依据。
回归分析和方差分析的原理与应用
回归分析和方差分析的原理与应用回归分析和方差分析是数据分析中常用的方法,它们可以帮助解决许多实际问题。
在本文中,我们将探讨回归分析和方差分析的原理和应用。
一、回归分析的原理与应用回归分析是一种用来研究变量之间关系的方法。
它可以帮助我们预测一个变量如何随着其他变量的变化而变化。
回归分析的基本原理是寻找一个数学函数,将多个自变量和一个因变量联系起来。
回归分析可以在市场研究、医疗研究和金融分析等领域中得到广泛应用。
例如,在市场研究中,回归分析可以帮助分析产品的销售情况与促销活动之间的关系。
在医疗研究中,回归分析可用于预测患者疾病的风险因素。
在金融分析中,回归分析可以用来预测股票价格的变化。
二、方差分析的原理与应用方差分析是用来比较两个或更多组数据平均值之间差异的一种方法。
它可以帮助我们确定差异是否由于随机误差引起,还是由于其他因素所引起的。
方差分析可以用于许多实际问题中,如比较不同城市的空气质量,确定不同教学方法对学生成绩的影响等。
在这些应用中,方差分析可以帮助我们确定哪些因素对结果有显著影响,从而指导我们做出正确的决策。
三、回归分析和方差分析的应用案例回归分析和方差分析可以共同应用于许多实际问题中。
例如,在一项市场研究中,我们可以用回归分析来探索某种产品的销售情况与其价格之间的关系。
然后,我们可以使用方差分析来确定是否有其他因素,如促销活动或竞争产品,对销售情况产生显著影响。
在另一个实例中,我们可以使用回归分析来探索一个患者的体重、血糖和胆固醇水平之间的关系。
然后,我们可以使用方差分析来确定是否有其他因素,如年龄、性别或药物使用,对这些因素之间的关系产生显著影响。
四、结论回归分析和方差分析是解决实际问题中常用的方法。
回归分析可以帮助我们预测一个变量如何随着其他变量的变化而变化,而方差分析则可以帮助我们确定数据的差异是否由于随机误差引起,还是由于其他因素所引起的。
在实际问题中,我们可以将这两种方法组合起来,并根据结果做出正确的决策。
方差分析与回归分析
方差分析与回归分析方差分析与回归分析是统计学中常用的两种分析方法,用来研究变量之间的关系和影响。
本文将分别介绍方差分析和回归分析的基本原理、应用场景以及相关注意事项。
**方差分析**方差分析(ANOVA)是一种用来比较两个或多个总体均值是否相等的统计方法。
它主要用于处理两个或多个组之间的变量差异性比较。
方差分析将总体方差分为组间方差和组内方差,通过比较组间方差与组内方差的大小来判断组间均值是否存在显著差异。
方差分析的应用场景包括但不限于医学研究、实验设计、市场调研等领域。
通过方差分析,研究者可以判断不同组之间是否存在显著差异,从而得出结论或制定决策。
在进行方差分析时,需要注意一些问题。
首先,要确保各组数据符合方差分析的假设,如正态性和方差齐性。
其次,要选择适当的方差分析方法,如单因素方差分析、多因素方差分析等。
最后,要正确解读方差分析结果,避免误解导致错误结论。
**回归分析**回归分析是一种用来研究自变量与因变量之间关系的统计方法。
通过构建回归方程,可以预测因变量在给定自变量条件下的取值。
回归分析主要包括线性回归和非线性回归两种方法,用于描述自变量与因变量之间的相关性和影响程度。
回归分析的应用领域广泛,包括经济学、社会学、医学等。
通过回归分析,研究者可以探究变量之间的复杂关系,找出影响因变量的主要因素,并进行预测和控制。
在进行回归分析时,需要考虑一些重要问题。
首先,要选择适当的回归模型,如线性回归、多元回归等。
其次,要检验回归方程的拟合度和显著性,确保模型的准确性和可靠性。
最后,要谨慎解释回归系数和预测结果,避免过度解读和误导性结论。
综上所述,方差分析与回归分析是统计学中常用的两种分析方法,分别用于比较组间差异和探究变量关系。
通过正确应用这两种方法,可以帮助研究者得出准确的结论和有效的决策,推动学术研究和实践应用的发展。
统计学中的方差分析和回归分析
统计学中的方差分析和回归分析统计学是一门研究数据分析的学科,其中两种常见的分析方法是方差分析和回归分析。
这两种方法都用于研究变量之间的关系,而在实际应用中,它们经常被用来预测未来的趋势和结果。
本文将介绍方差分析和回归分析的基础知识和应用。
一、方差分析方差分析是一种用于分析实验数据的统计工具,它用来确定不同因素之间的差异是否显著。
在实践中,它通常被用来比较两个或多个样本之间的差异,而这些样本可能受到某些因素的影响。
例如,假设一个制药公司想要比较三种不同的药物的疗效,那么它可以在不同的药物组中进行实验,并测量不同药物的疗效水平。
使用方差分析,公司可以确定哪种药物的疗效最好,并是否有任何其他因素(如年龄、性别等)对疗效的影响。
二、回归分析回归分析是一种用于研究变量之间关系的统计工具。
通常,它用来建立一个数学模型来描述变量之间的关系,以便预测未来的趋势和结果。
回归分析可以用来预测一个变量(称为因变量)受一个或多个其他变量(称为自变量)的影响程度。
例如,假设一家保险公司想要预测其客户的寿命,那么它可以使用回归分析来确定哪些因素(如年龄、性别、吸烟情况等)对客户寿命的影响最大,并建立一个数学模型来预测寿命。
三、方差分析和回归分析的区别尽管方差分析和回归分析都用于研究变量之间的关系,但它们之间存在一些重要的区别。
首先,方差分析通常用来比较两个或多个样本之间的差异,而回归分析则用于建立变量之间的数学模型。
其次,方差分析通常用来确定不同因素之间的差异是否显著,而回归分析则用来预测变量之间的关系并进行预测。
最后,方差分析可以用来确定哪些因素最影响一个变量,而回归分析可用来量化这些影响,以及据此进行预测。
四、总体结论方差分析和回归分析是统计学中两个重要的分析工具,它们都用于研究变量之间的关系,而在实际应用中,它们经常被用来预测未来的趋势和结果。
方差分析通常用来比较两个或多个样本之间的差异,而回归分析则用于建立变量之间的数学模型和预测。
第九章方差分析及回归分析
解:2 SE /(n r) 0.000016
1 x1 0.242, 2 x2 0.256, 3 x3 0.262 x 0.253
1 x1 x 0.011, 2 x2 x 0.003
2019/11/8
1
例1 设有三台机器,用于生产规格相同的铝 合金薄板。取样,测量薄板的厚度精确至千 分之一厘米。得结果如下表所示。
铝合金板的厚度
机器1
机器2
机器3
0.236
0.257
0.258
0.238
0.253
0.264
0.248
0.255
0.259
0.245
0.254
0.267
0.243
0.261
SE ( X i1 X1)2
( X is X s )2
i 1
i 1
nj
(Xij X j )2 / 2 ~ 2 (nj 1)
i1
由 2分布的可加性知
s
SE / 2 ~ 2 ( (nj 1)) j 1
SE / 2 ~ 2(n s)
因F0.05(2,12) 3.89 32.92,
故在水平0.05下拒绝H0 , 认为各台机器生产的 薄板厚度有显著差异。
2019/11/8
23
(五)未知参数的估计
不管H0是否为真,ˆ 2
SE nr
是
2的无偏估计。
拒绝还是接受H0,需要作出两总体N (i , 2)和N (k , 2),
( Xij Xi.)( Xi. X )
i1 j1
i1
回归分析方差分析
分别对b0,b1,…,bn求导,并令其一阶导数为0,可 求出各个系数
二、回归方程得数学模型
估计标准误差 就是估计y与对应观测值之间得离差平方和
SST Lyy ( yi yi )2
^
^
( yi yi )2 ( yi y)2
• ⑦“Influence Statistics” 统计量得影响。 “DfBeta(s)”删除一个特定得观测值所引起得回归系数得 变化。 “Standardized DfBeta(s)”标准化得DfBeta值 。 “DiFit” 删除一个特定得观测值所引起得预测值得变 化。“Standardized DiFit”标准化得DiFit值。 “Covariance ratio”删除一个观测值后得协方差矩阵得行 列式和带有全部观测值得协方差矩阵得行列式得比率。
Leverage values: 杠杆值。 • ③“Prediction Intervals”预测区间选项:
Mean: 区间得中心位置。 Individual: 观测量上限和下限得预测区间。
• ④“Save to New File”保存为新文件: 选中“Coefficient statistics”项将回归系数保存到指定得 文件中。
Unstandardized 非标准化预测值。在当前数据 文件中新添加一个以字符“PRE_”开头命名得变 量,存放根据回归模型拟合得预测值。 Standardized 标准化预测值。 Adjusted 调整 后预测值。S、E、 of mean predictions 预测 值得标准误。
• ②“Distances”距离栏选项: • Mahalanobis: 距离。 Cook’s”: Cook距离。
方差分析与回归分析
方差分析与回归分析方差分析(Analysis of Variance,缩写为ANOVA)与回归分析(Regression Analysis)是统计学中常用的两种数据分析方法。
它们在不同领域的研究中有着重要的应用,用于探究变量之间的关系以及预测、解释和验证数据。
一、方差分析方差分析是一种用于比较两个或多个样本均值是否差异显著的统计方法。
它通过计算各组之间的离散程度来揭示变量之间的关系。
方差分析常用于实验设计和实验结果的分析,可以帮助研究人员确定各因素的影响程度。
在方差分析中,我们首先将数据进行分组,然后计算每个组的方差。
通过比较各组之间的方差,我们可以判断其是否有显著差异。
方差分析根据研究设计的不同,可以分为单因素方差分析和多因素方差分析。
单因素方差分析适用于只有一个自变量(因素)的情况,而多因素方差分析则适用于多个自变量(因素)的情况。
方差分析的结果一般通过计算F值来判断各组之间的差异是否显著。
如果F值大于临界值,则可以拒绝原假设,认为各组之间存在显著差异。
反之,如果F值小于临界值,则无法拒绝原假设,即各组均值没有显著差异。
二、回归分析回归分析是一种用于研究变量之间关系的统计方法。
它根据自变量(独立变量)与因变量(依赖变量)之间的相关性,建立一个预测模型来预测或解释因变量的变化。
在回归分析中,我们首先收集自变量和因变量的数据,然后通过建立数学模型来描述它们之间的关系。
常用的回归模型包括线性回归、多项式回归、逻辑回归等。
通过回归分析,我们可以估计自变量对于因变量的影响程度,并根据模型进行预测和解释。
在回归分析中,我们通常使用R方(R-squared)来衡量模型的拟合程度。
R方的取值范围在0到1之间,越接近1表示模型的拟合效果越好。
此外,回归分析还可以通过计算标准误差、系数显著性、残差分析等指标来评估模型的质量。
结论方差分析与回归分析是统计学中常用的两种数据分析方法。
方差分析适用于比较多个样本均值的差异性,而回归分析用于研究变量之间的关系和预测。
方差分析与回归分析
第八章 方差分析与回归分析一、教材说明本章内容包括:方差分析,多重比较,方差齐性检验,一元线性回归,一元非线性回归.主要讲述方差分析和一元线性回归两节内容.1、教学目的与教学要求(1)了解方差分析的统计模型,掌握平方和的分解,熟悉检验方法和参数估计,会解决简单的实际问题.(2)了解效应差的置信区间的求法,了解多重比较问题,掌握重复数相等与不相等场合的方法,会解决简单的实际问题.(3)熟练掌握Hartley 检验,Bartlett 检验以及修正的Bartlett 检验三种检验方法,会解决简单的实际问题.(4)理解变量间的两类关系,认识一元线性和非线性回归模型,熟悉回归系数的估计方法,熟练掌握回归方程的显著性检验.能用R 软件来进行回归分析,会解决简单的实际问题.2、本章的重点与难点本章的重点是平方和的分解,检验方法和参数估计、重复数相等与不相等场合的方法、检验方法的掌握,回归系数的估计方法,回归方程的显著性检验,难点是检验方法和参数估计,重复数相等与不相等场合的方法. 实际问题的检验,回归方程的显著性检验.二、教学内容本章共分方差分析,多重比较,方差齐性检验,一元线性回归,一元非线性回归等5节来讲述本章的基本内容.§8.1 方差分析教学目的:了解方差分析的统计模型,掌握平方和的分解,熟悉检验方法和参数估计,会解决简单的实际问题.教学重点:平方和的分解,检验方法和参数估计 教学难点:检验方法和参数估计教学内容:本节包括方差分析问题的提出,单因子方差分析的统计模型,平方和分解,检验方法,参数估计,重复数不等情形.8.1.1 问题的提出在实际工作中经常会遇到多个总体均值的比较问题,处理这类问题通常采用方差分析方法.例8.1.18.1.2 单因子方差分析的统计模型在例8.1.1中,我们只考察一个因子,称为单因子试验.记因子为A ,设其有r 个水平,记为1r A ,,A ,在每一水平下考察的指标可看做一个总体,故有r 个总体,假定(1)每一总体均为正态总体,记为2i i N(,)μσ,i 1,2,,r =;(2)各总体方差相同,即222212r σσσσ====(3)每一总体中抽取的样本相互独立,即诸数据ij y 都相互独立 在这三个基本假定下,要检验的假设是012112::,,,rr H H μμμμμμ===↔⋯不全相等 (8.1.1)如果0H 成立,因子A 的r 个水平均值相同,称因子A 的r 个水平间没有显著差异,简称因子A 不显著;反之,若0H 不成立,因子A 的r 个水平均值不全相同,称因子A 的r 个水平间有显著差异,简称因子A 显著.在每一水平下各作m 次独立重复试验,若记第i 个水平下第j 次重复的实验结果为ij y ,得到r m ⨯个实验结果:ij y ,=1,2,,=1,2,,.i r j m在水平A i 下的实验结果ij y 与该水平下的均值i μ的差距ij ij =y -i εμ称为随机误差.于是有ij ij y =+i εμ, (8.1.2)该式称为实验结果ij y 的数据结构式.把三个假定用于数据结构式就得到单因子方差分析的统计模型:ij ij 2ij y =+,=1,2,,=1,2,,;(0,)i i r j m N εμεσ⎧⎪⎨⎪⎩诸相互独立,且都服从 (8.1.3) 称诸i μ的平均1=111=(++)=rr i i r r μμμμ∑为总均值,第i 水平下均值i μ与总均值的差=-i i a μμ称为因子A 的第i 水平的主效应,简称为A i 的主效应.则有=1=0,=+.ri i i i a a μμ∑统计模型(8.1.3)可改写为ij ij =12ijy =+a +,=1,2,,=1,2,,;=0;(0,)i r i i i r j m a N μεεσ⎧⎪⎪⎨⎪⎪⎩∑诸相互独立,且都服从 假设(8.1.1)可改写为012112:=0:,,,0r r H a a a H a a a ===↔⋯不全为.8.1.3 平方和分解一 实验数据在单因子方差分析中可将实验数据列成如下表格形式因子水平 试验数据 和 平均1A 11y 12y 1m y 1T 1y2A 21y 22y 2m y 2T 2yr A r1y r2y rm y r T yr合计 T y 二 组内偏差与组间偏差ij ij y -=(y -)+(-)i i y y y y ,记=1i =1i =1=1111=,==m r r mi i j i i j j jm r n εεεεε∑∑∑∑,ij y -i y 称为组内偏差,-i y y 称为组间偏差.三 偏差平方和及其自由度 在统计学中,把k 个数据1,,k y y 分别对其均值1=(++)/k y y y k 的偏差平方和2=1=(-)ki i Q y y ∑称为k 个数据的偏差平方和,简称平方和.由于=1(-)=0kii y y ∑,说明在Q 中独立的偏差只有-1k 个,称为该平方和的自由度,记为f ,=-1.Q f k四 总平方和分解公式各ij y 间总的差异大小可用总偏差平方和T S 表示为211(),=-1r mT ij T i j S y y f n ===-∑∑. (8.1.3)仅由随机误差引起的数据间差异可用组内偏差平方和,也称误差偏差平方和,记为e S ,211(),=r(m-1)=n-r.r me ij e i i j S y yf ===-∑∑ (8.1.4)由效应不同引起的数据差异可用组间偏差平方和表示,也称为因子A 的偏差平方和,记为A S ,21(),=-1.rA A ii S myy f r ==-∑ (8.1.5)定理8.1.1 在上述符号下,总平方和T S 可分解为因子平方和.A S 与误差平方和e S 之和,其自由度也有相应分解公式:S =,=+.T A e T A e S S f f f + (8.1.6)称为总平方和分解式.8.1.4 检验方法为了度量一组数据的离散程度,称/Q MS Q f =为均方和.由均方和的概念,得到/A A A MS S f =,/e e e MS S f =,用/A e F MS MS =作为检验的统计量,为给出检验拒绝域,需要如下定理:定理8.1.2 在单因子方差分析模型及前述符号下,有(1)22~-),es n r χσ(从而2()=(-)e E S n r σ(2) 22=1()=(-1)+rA i i E S r maσ∑,若0H 成立,则有22~(1)AS r χσ-(3)A S 与e S 相互独立. 由定理8.1.2知/(,)A eA e F MS MS F f f = ,从而可得检验的拒绝域为1{(,)}A e W F F f f α-=≥.将上述结果列成表格,称为方差分析表来源 平方和 自由度 均方和 F 比因子 A S 1A f r =- /A A A MS S f = /A e F MS MS = 误差 e S -e f n r = /e e e MS S f = 总和 T S 1T f n =-若1(,)A e F F f f α->,则可以认为因子A 显著,即诸正态均值间有显著差异;若1<(,)A e F F f f α-,则说明因子A 不显著,即保留原假设0H . 常用偏差平方和的计算公式:2211rmT ij i j T S y n ===-∑∑2211r A i i T S T m n ==-∑e T A S S S =-例8.1.28.1.5 参数估计在检验结果为显著时,可进一步求出总均值μ,各主效应i a 和误差方差2σ的估计. 一 点估计总均值μ的估计为ˆy μ=; 各水平均值i μ的估计ˆ,1,2,,i i y i r μ==; 主效应i a 的估计ˆ,1,2,,i i ay y i r =-=误差方差2σ的估计2ˆ/e e e MS S f σ== 二 置信区间由定理8.1.2知 222~N(,/m),~),ei i e s y μσχσ(f 且两者独立,~t ),i i e f (由此给出A i 的水平均值i μ的1α-的置信区间是1/2ˆ()i e y t f ασ-±. 例8.1.3单因子试验的数据分析可以知道如下三个结果 因子A 是否显著 试验误差方差2σ的估计诸水平均值i μ的点估计与区间估计(此项在因子A 不显著时无需进行)8.1.6 重复数不等情形1. 数据设因子A 有r 个水平1r A ,,A ,并且第r 个水平i A 下重复进行i m 次试验,可得如下数据:因子水平 重复数 试验数据 和 平均1A 1m 11y 12y 11m y 1T 1y2A 2m 21y 22y 22m y 2T 2yr A r m r1y r2y r rm y r T ry合计 nTy2. 基本假定、平方和分解、方差分析和判断准则都和前面一样,只是因子A 的平方和A S 的计算公式略有不同:记1ri i n m ==∑,则221ri A i iT T S m n ==-∑ 3. 数据结构式及参数估计式基本同前,需要注意下面两点:(1)总均值11ri i i m n μμ==∑;(2)主效应约束条件为10ri ii m a==∑类似于8.1.8 有ij ij =12ijy =+a +,=1,2,,=1,2,,;=0;(0,)i r i i i i r j m m a N μεεσ⎧⎪⎪⎨⎪⎪⎩∑诸相互独立,且都服从 4 各平方和的计算记1,=im i i ij i j i T T y y m ==∑,=11,=im r ij i j TT y y n ==∑∑则2211,=-1,im rT ij T i j T S y f n n ===-∑∑221,=-1,ri A A i iT T S f r m n ==-∑,=-e T A e S S S f n r =-.例8.1.4 略§8.2 多重比较教学目的:了解效应差的置信区间的求法,了解多重比较问题,掌握重复数相等与不相等场合的方法,能用R 软件来进行多重比较,会解决简单的实际问题。
第9章方差分析与一元回归分析
第九章 方差分析与一元线性回归分析
[系统(条件)误差]:
概率统计
在方差分析中,凡是由于试验因素的变异而引起的 试验结果的差异,称为“系统误差”或“条件误差”.
[随机(试验)误差]:
在试验中,当我们把所有能控制的试验条件都控 制在固定的状态下,进行多次重复试验,所得的的试 验结果也不会完全一致,仍存在一定程度的差异.
r ni
ST
( Xij X )2
i1 j1
r ni
SE
( Xij Xi )2
i1 j1
r ni
r
SA
( Xi X )2 ni (Xi X )2
i1 j1
i1
ST反映了样本的总变动幅度. SE反映了为从r个总体中选取一个容量为ni的样本所进行的 重复试验而产生的误差. S A反映了从各不同水平总体中取出的各个样本之间的差异.
r i1
1 ni
(
ni j 1
X ij
)2
1 n
(
r i1
ni
Xij )2
j 1
概率统计
第九章 方差分析与一元线性回归分析
概率统计
(3) 若令Y aX b (a 0),有Y aX b SY2 a2SX2
Y
1 n
n i 1
Yi
1 n
n i 1
(aX i
b)
1 n
n
aX i
i 1
第九章 方差分析与一元线性回归分析
教学要求
1.掌握单因素试验的方差分析 2.掌握一元线性回归分析 学时 4- 6
概率统计
第九章 方差分析与一元线性回归分析
第一节、方差分析
一、方差分析的基本原理 二、单因素方差分析的方法 三、单因素方差分析的步骤 四、双因素方差分析的方法
方差分析及回归分析ppt60页课件
设因素有S个水平,在水平Aj (j=1,2,…,s)下,进行nj (nj≥2)次独立试验,结果如下:
水平 观察结果
A1
A2
…
As
X11 X21 …
X11 X21 …
… … …
X11 X21 …
样本总和 样本均值 总体均值
T.1 X.1 μ 1
T.2 X.2 μ 2
… … …
160
180
60
80
100
40
设Y关于x的回归函数为μ(x)。利用样本来估计μ(x)的问题称为求Y关于x的回归问题。 若μ(x)是线性函数μ(x)=a+bx,此时的估计问题称为求一元线性回归问题。 一元线性回归模型: 设Y~N(a+bx, σ2 )其中a,b, σ2是未知参数,记 ε = Y-(a+bx),则 Y= a+bx + ε, ε ~N(0, σ2 ) (1) 称上式为一元线性回归模型。 称a+bx为x的线性函数,而ε ~N(0, σ2 )是随机误差。
SE称为误差平方和, SA表示Aj水平下的样本均值与数据总平均的差异,叫做效应平方和,他是由水平Aj的效应的差异以及随机误差引起的。
(1,8)
则得 ST=SE+SA ,
(1,9)
(1,10)
(三) SE,SA的统计特性 1、SE的统计特性
由于 是总体 的nj-1倍, 所以 由于独立,(1,11)中各式独立,根据 分布的可加性,得
(1,14)
(1,15)
可以证明SE,SA的是相互独立的,且H0当为真时 (四)假设检验问题的拒绝域 由(1,15)式,当H0为真时 所以SA /(s-1)是σ2的无偏估计,而当当H1为真时, 这时 而由于
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
j 1, 2,L , s
s
误差平方和 SE
nj
2
Xij X• j
j1 i1
性质1:ST SA SE
s
证明: ST
nj
2
s
Xij X
nj
2
Xij X• j X• j X
j1 i1
j1 i1
s nj
2
s nj
2
s nj
Xij X• j
X•j X 2
设第j组有n j 只老鼠寿命分别为
Xij i 1, 2,..., nj j 1, 2, 3 这是一个典型的最简单分组试验方案。 分组的依据为药物:a,b,无。
通常,分组的依据称为“因素”,因素的不同 状态称为因素的“水平”。此例因素(药物) 有三个水平:a,b,无。 只有一个因子,按因子的不同水平来分组的试验 称为“单因素试验”。在试验中,对试验对象所 观测记录的变量称为“响应变量”(例中的寿命)
药物x 1 2 3 4 5
治愈所需天数y 5,8,7,7,10,8 4,6,6,3,5,6 6,4,4,5,4,3 7,4,6,6,3,5 9,3,5,7,7,6
A1 : N 1, 2 A2 : N 2, 2 L As : N s , 2
X11
X12
L
X1s
X 21
X 22
L
X 2s
M
M
L
M
X n11
X n2 2
L
X nss
检验假设 H0 : 1 2 ... s H1 : 1, 2,..., s不全相等。
记
1 n
s
njj
j 1
s
— —总平均, 其中 nj
H1
: 1, 2 ,L
,
不全为零。
s
(二)平方和分解
s
定义:总偏差平方和 ST
nj
2
Xij X
j1 i1
1 s nj
1s
X
n
j 1
i1
X ij
n
nj X• j
j 1
效应平方和 SA
s
nj
X•j X
2
s
nj
X•
2 j
nX
2
j 1
j 1
X• j
1 nj
nj
X ij ,
i 1
s j 1
nj i1
[
2
(
j
)2
]
2
n[ n
2]
s
s
s
n 2 n 2 2
nj j
nj j2 2 n 2
n
j
2 j
n
1
2
j 1
j 1
j 1
E(SE )
s
E
nj
X ij X • j
2
s
(nj 1) 2 (n s) 2
j1 i1
s
j1
E(SA ) E(ST SE )
Xij X• j X• j X
j1 i1
j1 i1
j1 i1
SA SE
s nj
s
nj
Xij X• j X• j X X• j X
Xij X• j 0
j1 i1
j 1
i 1
从而,检验拒绝域的形式为:SA c. SE
s
性质2:E ST
n
j
2 j
n
1
2
j 1 s
第九章 方差分析及回归分析
单因素试验的方差分析 双因素试验的方差分析 一元线性回归 多元线性回归
§1 单因素试验的方差分析
(一)单因素试验
例 假设某药物研究者为检验a,b两种化学物质 的抗癌效果,要做动物试验。通常的作法如下 所述:他将一些患有某种癌的白鼠随机地分成 三组。其中两组分别注射a,b两种化学物质,而 第三组则不作处理,作为对照。记第一组:注 射a物质,第二组:注射b物质,第三组:不做 处理。经过一段时间观察后,他得到寿命数据
nj i1
X ij2
T••2 n
SA
s
nj
X•
2 j
nX
2
j 1
T s 2 •j
n j1 j
T••2 n
SE ST SA
例1 设有5种治疗荨麻疹的药,要比较它们的疗 效。假设将30个病人分成5组,每组6人,令同组 病人使用一种药,并记录病人从使用药物开始到 痊愈所需时间,得到下面的记录:(=0.05)
一般地,对一个单因素试验,假设因素有s(s>2)
个水平,n个对象参与了试验。假定对应于因素
第j个水平的组中有 n j 个试验对象,响应变量数
据为 X1j , X2 j ,L , Xnj j,j 1,2,L , s。
通常假定 ij
~
X ij j ij
N
(0,
2
),
各
独立
ij
i 1, 2,L , nj,j 1, 2,L , s
E(X )
1 n
s j 1
nj i 1
E( Xij )
E SA
n
j
2 j
s
1
2
j 1
ESE n s 2
1 n
s
nj ( j )
j 1
证明:E ST
s nj E j1 i1
Xij X
2
E
s j 1
nj i 1
X ij2
nX
2
s j 1
nj i1
E( Xij2 ) nE( X 2 )
2
Xij X• j
2 ~ 2 (nj 1), j 1,..., s.
i1
nj
由于各Xij相互独立,所以
Xij X• j 2,j 1,..., s相互独立,
i1
由 2分布可加性,SE
2
~
2
s
(nj 1) ,即 2 n s。
j1
由性质2,E
SA
s 1
1
s 1
s
n
j
2 j
j 1
2
,
E
SE n
s
2
当H
0成立时,E
SA
s 1
2;当H1成立时,E
SA
s 1
2
.
由此,对H0 :1 2 L
s 0, H1 :1,2,L
,
不全为零。
s
在给定水平时,检验拒绝域为 F
SA SE
(s 1) (n s)
F (s 1, n s)
单因素试验方差分析表
方差 来源 因素A 误差
nj2 j Nhomakorabeas
1
2
j 1
性质3
(1)
S
A与S
相互独立;
E
(2) SE ~ 2 (n s);
2
(3)当H
为真时,S
0
从而,当H0为真时,F
A 2
~
SA
SE
(s (n
2 (s 1)。
1) ~ F (s s)
1,
n
s).
证明:只证(2).
s
因为 SE
nj
2
X ij X • j
j1 i1
nj
总和
平方 和
SA
SE
ST
自由 度 s-1
n-s
n-1
均方
SA SA s 1 SE SE n s
F比
SA SE
计算ST
,
S
A
,
S
的简便公式:
E
nj
s nj
记T• j Xij , j 1, 2,L , s, T••
X ij
i1
j1 i1
ST
s j 1
nj i1
Xij2 nX 2
s j 1
j 1
n
j j ——水平Aj的效应, j 1, 2,..., s
此时有 n11 n22 ... nss 0
模型为:Xij j ij
i
ij
(0,
2
),
各
独立
ij
1, 2,L , nj,j 1, 2,L , s
n11 n22 ... nss 0
假设等价于 H0 :1 2 L s 0