材料力学课件:组合变形

合集下载

材料力学组合变形 ppt课件

材料力学组合变形 ppt课件

FN F
M 42 153 0FN.m
(3)立柱横截面的最大应力
t.max
Mz0 Iy
FN A
F 350
M FN
425103 F 0.075 5.31105
15
F 103
667F Pa
c.max
Mz1 Iy
FN A
t.max
c.max
425103 F 0.125 F
5.31105
15103
中性轴方程
x
PMzy0 A Iz
Myz0 Iy
0
对于偏心拉压问题
PPyPy0 PzPz0 0
A Iz
Iy
中性轴
危险点 (距中性轴最远的点)
1 yPy0 zPz0 0
A Iz
I Wy
m
a
x
PMz A Wz
My Wy
例题
铸铁压力机框架,立柱横截面尺寸如图所示,材料的许用 拉应力[t]=30MPa,许用压应力[c]=120MPa。试按立柱
1 242 0
22
25
M W
T Wt
1212 242
2 0
3212 242
第三强度理论:
r31 3
Wt 2W
r3 242[]
r3W 1 M2T2[]
26
M W
T Wt
1212 242
2 0
3212 242
第四强度理论:
r41 2 [(1 2)2 (2 3 )2 (3 1 )2]
r4 232[] r4W 1 M 20.7T 52[]
解:拉扭组合,危险点应力状态如图
F A
Me F
F 450 103 A 0.12

《材料力学组合变形》课件

《材料力学组合变形》课件
这种变形通常发生在承受轴向力 和弯矩的杆件中,其变形特点是 杆件既有伸长或缩短,又有弯曲 。
拉伸与压缩组合变形的分析方法
01
02
03
弹性分析方法
基于弹性力学的基本原理 ,通过求解弹性方程来分 析杆件内部的应力和应变 分布。
塑性分析方法
在材料进入塑性阶段后, 采用塑性力学的基本理论 来分析杆件的承载能力和 变形行为。
材料力学在组合变形中的应用实例
01
02
03
04
桥梁工程
桥梁的受力分析、桥墩的稳定 性分析等。
建筑结构
高层建筑、大跨度结构的受力 分析、抗震设计等。
机械工程
机械零件的强度、刚度和稳定 性分析,如轴、轴承、齿轮等

航空航天
飞机和航天器的结构分析、材 料选择和制造工艺等。
材料力学在组合变形中的发展趋势
特点
剪切与扭转组合变形具有复杂性和多样性,其变形行为受到多种因素的影响,如 材料的性质、杆件的长度和截面尺寸、剪切和扭转的相对大小等。
剪切与扭转组合变形的分析方法
1 2 3
工程近似法
在分析剪切与扭转组合变形时,通常采用工程近 似法,通过简化模型和假设来计算杆件的应力和 变形。
有限元法
有限元法是一种数值分析方法,可以模拟杆件在 剪切与扭转组合变形中的真实行为,提供更精确 的结果。
弯曲组合变形的分析方法
叠加法
刚度矩阵法
叠加法是分析弯曲组合变形的基本方 法之一。该方法基于线性弹性力学理 论,认为各种基本变形的应力、应变 分量可以分别计算,然后按照线性叠 加原理得到最终的应力、应变分布。
刚度矩阵法是通过建立物体内任意一 点的应力、应变与外力之间的关系, 来求解复杂变形问题的一种方法。对 于弯曲组合变形,可以通过构建系统 的刚度矩阵来求解。

《材料力学》课程讲解课件第八章组合变形

《材料力学》课程讲解课件第八章组合变形

强度条件(简单应力状态)——
max
对有棱角的截面,最大的正应力发生在棱角点处,且处于单向应力状态。
max
N A
M zmax Wz
M ymax Wy
x
对于无棱角的截面如何进行强度计算——
1、确定中性轴的位置;
y
F z
M z F ey M y F ez
ez F ey z
y
zk yk z
y
x
1、荷载的分解
F
Fy F cos
Fz F sin
z
2、任意横截面任意点的“σ”
x
F
y
(1)内力: M z (x) Fy x F cos x
M y (x) Fz x F sin x
(2)应力:
Mz k
M z yk Iz
My k
M y zk Iy
(应力的 “+”、“-” 由变形判断)
F
1, 首先将斜弯曲分解
为两个平面弯曲的叠加 Fy F cos
z
L2
L2
Fz F sin
z
2, 确定两个平面弯曲的最大弯矩
y
Mz
Fy L 4
M
y
Fz L 4
3, 计算最大正应力并校核强度
max
My Wy
Mz Wz
217.8MPa
查表: Wy 692.2cm3
4, 讨论 0
y
Wz 70.758cm3
的直径为d3,用第四强度理论设计的直径为d4,则d3 ___=__ d4。
(填“>”、“<”或“=”)
因受拉弯组合变形的杆件,危险点上只有正应力,而无切应力,
r3 1 3 2 4 2
r4

材料力学2-第八章-组合变形PPT课件

材料力学2-第八章-组合变形PPT课件

x
z
xቤተ መጻሕፍቲ ባይዱ
m Pz
Py
y
LP
Pz
zj
Py P
y
② 应力
My引起的应力:
MyzMzcojs
Iy
Iy
M z引起的应力:
MzyMysijn
Iz
Iz
合应力: M(zcoj sysijn)
Iy
Iz
m
x
z
x
m Pz
Py
y
LP
Pz
zj
Py P
y
③ 中性轴方程 M(z0cojsy0sijn)0 中性轴
Iy
Iz
D2
tg y0 Iz ctgj
均布力作用, []=12MPa,许可挠度为L/200 ,E=9GPa,试选
择截面尺寸并校核刚度。
解:① 外力分析—分解q
yq
z
26°34´
q
A
B
L
qyqsin 80 0.0 44 375 N8/m
q z q co 8 s 0 0 .8 0 9 74 N 15 /m
Mzmaxqy8L235838240N 3m Myma xqz8L271 83 5280N4m
az
中性轴
1 yP y0 zPz0 0
iz2
iy2
ay
截面核心
已知 ay, az 后 ,
z
1
yPa y
i
2 z
0
1
z
Pa
i
2 y
z
0
P(zP,yP)
可求 P力的一个作用点 (zP,yP)
y
利用以上关系可确定截面核心的边界
例3 分别确定圆截面与矩形截面的截面核心.

材料力学课件第8章组合变形zym

材料力学课件第8章组合变形zym

§8—4 扭转与弯曲的组合 一、圆截面杆弯扭组合 实例: (一)实例: 已知:塑性材料轴尺寸,传动力偶Me。 已知:塑性材料轴尺寸,传动力偶 。 试建立轴的强度条件。 试建立轴的强度条件。 解: 1、确定危险点: 、确定危险点: (1)外力分析 ) F 计算简图: ①计算简图: Fτ 由 ∑ M x = 0 得: FD = Me 2 可确定F 由F可确定 τ。 可确定 外力分解: ②外力分解: 变形判断: ③变形判断: AB段扭转变形,BE段弯扭组合变 段扭转变形, 段弯扭组合变 段扭转变形 形,EC段弯曲变形。 段弯曲变形。 段弯曲变形
解: 、确定各边为中性轴时的压力作用点: 1、确定各边为中性轴时的压力作用点: b2 h2 2 iy = , iz2 = 12 12 h az = ∞ AB截距: a y = − , 截距: 截距 2 h2 iz2 12 = h , zF = 0 F作用点 坐标: yF = − = − 作用点a坐标 作用点 坐标: h 6 ay − 2 同样确定b,c,d点。 同样确定 点 2、连线 确定截面核心。 、连线a,b,c,d确定截面核心。 确定截面核心 解:
3 由: W ≥ M max = 12 ×10 N ⋅ m 6
[σ ]
100 × 10 Pa
= 12 × 10−5 m3 = 120cm3
查表选定16号工字钢。 查表选定 号工字钢。 号工字钢 (2)组合变形校核计算: )组合变形校核计算: 16号工字钢:W=141cm3,A=26.1cm3 号工字钢: 号工字钢
2、应力状态分析 、 均为单向应力状态 单向应力状态。 均为单向应力状态。
'' σ A = σ ′ +σ A =
F (0.425m) F × (0.075m) + −3 2 15 ×10 m 5310 ×10−8 m 4

材料力学组合变形完整ppt文档

材料力学组合变形完整ppt文档

200
F
F
组合变形/拉压与弯曲的组合
思路分析:
根据受力情况判断立柱的 变形组合类型
拉伸和弯曲的组合
200 F F
拉伸: 求轴力,绘制轴力图 弯曲: 求弯矩,绘制弯矩图
判断危险截面,应力叠加,并进行校核(如下)
200 F F
任意横截面上拉伸正应力: 任意横截面上弯曲正应力:
同一个方向上的正应力可以根据分布情 况直接叠加,叠加后仍为单向应力状态,直 接校核强度。
1. 分解 竖直xy面:
水平xz面:
2. 分别求两个面内的弯矩,绘制弯矩图
竖直xy面:
水平矩图确定可能的危险截面
竖直xy面:
FL
水平xz面:
2FL
FL
结论: 危险截面可 能是中点或 固定端。
4. 通过叠加求危险截面的最大正应力
z
z
y
y
Mxy Mxz Wz Wy
Mx
2 y
Mx
2 z
W
y
竖直xy面:
FL
Z
水平xz面:
2FL FL
求中点处的最大正应力:
FL FL
Wz Wy
求固定端的最大正应力:
0 2FL
Wz Wy
5. 强度校核
2FL
固定端的最大正应力: max
y
Wy
[σ]=20FL/bh
2
m ax[]
梁满足强度要求
组合变形/扭转与弯曲的组合
§8.4 扭转与弯曲的组合
3.确定危险截面,求基本变形的应力
拉伸
N
FN A
(均布 ),
弯曲
Mm
a x Mm a Wz
x(线性 )

材料力学课件-8组合变形

材料力学课件-8组合变形

拉伸-扭转组合变形
定义
拉伸-扭转组合变形是指在材料 受到同时发生拉伸和扭转作用 时所产生的变形。
应用
拉伸-扭转组合变形在桥梁等结 构的设计和工程领域具有广泛 的应用。
计算方法
拉伸-扭转组合变形的计算方法 需要综合考虑材料的力学性质 和应力分布等因素。
扭转-弯曲组合变形
定义
扭转-弯曲组合变形是指在 材料受到同时发生扭转和 弯曲作用时所产生的变形。
应用
扭转-弯曲组合变形在航空 航天和汽车工业中的零部 件设计等方面具有重要的 应用价值。
计算方法
扭转-弯曲组合变形的计算 方法需要考虑材料的刚度、 几何形状以及应力分布等 因素。
总结
• 概括组合变形的内容 • 举例说明组合变形的实际应用 • 强调组合变形的重要性和必要性
材料力学课件ppt-8 组合 变形
材料Байду номын сангаас学课件ppt-8 组合变形是一个关于材料力学领域的课件,介绍了组合变 形的基本概念、分类以及应用。
剪切-拉伸组合变形
1 定义
剪切-拉伸组合变形是指在材料受到同时发生剪切和拉伸作用时所产生的变形。
2 应用
剪切-拉伸组合变形在工程领域中的应用广泛,例如在金属成型和塑料加工等方面。
3 计算方法
剪切-拉伸组合变形的计算方法需要考虑材料的力学性质和应力分布等因素。
剪切-扭转组合变形
1
应用
2
剪切-扭转组合变形在结构和材料设
计中起着重要的作用,例如在飞机翅
膀和桥梁的设计中。
3
定义
剪切-扭转组合变形是指在材料受到 同时发生剪切和扭转作用时所产生的 变形。
计算方法
剪切-扭转组合变形的计算方法涉及 到材料的刚度、几何形状以及应力分 布的考虑。

材料力学课件(组合变形)

材料力学课件(组合变形)
截面核心是以O为中心,半径d/8的圆围成的 区域
(2)矩形截面 解:截面形心为点O 主惯性轴y、z 当中性轴切于边AB时
z A中性轴
b
12 o
y
C

B
h
截距
a y1
h 2
,a
z1
核心边界点1
yF1
iz2 a y1
h 6
,z
F1
i
2 y
az1
0
(iy
b 12
,iz
h) 12
类似地,可定点2
y F2
八、组合变形 (Combined deformation)
杆件有两种或两种以上基本变形的应力分量相当 两种基本变形组合的类型:
拉(压)+扭;拉(压)+弯;扭+弯;平面弯+平面弯
分析方法(线弹性、小变形假设下): 按基本变形分解外力与内力 计算各基本变形的应力与 变形分量 根据叠加原理综合各基本变形的结果 确定组合变形的危险截面与危险点的应力状态
(1
zF z
i
2 y
yF iz2
y
)
在截面上线性分布
中性轴
1
zF z
i
2 y
z0
yF y iz2
y0
0
——不过形心C的直线
截矩
ay
iz2 yF
,az
iy2 zF
距离中性轴最远点:D1——tmax, D2——cmax
横截面外周边具有棱角时,最大正应力在角点上
最大正应力点处于单向应力状态,强度条件 max [ ] 截面形心的位移 w wy2 wz2 x2
练习: P288习题8-16
M I

材料力学 第十章组合变形(123)PPT课件

材料力学 第十章组合变形(123)PPT课件
MPa。
18
例题 8-1
解:1. 将集中荷载F 沿梁横截面的两个对称轴y、z分解为
F y F c4 o o 0 s q 2 ca 4 o o 0 s 0 .3q 8 a 3
F z F s4 io n 0 q 2sa 4 io n 0 0 .3q 2 a 1
19
例题 8-1
2. 梁的计算简图如图b所示,并分别作水平弯曲和 竖直弯曲的弯矩My图和Mz 图(图c ,d)。
纵向对称面:梁的轴线与横截面纵向对称轴所构成的平面
平面弯曲:当作用在梁上的载荷和支反力均
位于纵向对称面内时,梁的轴线由直线弯成
一条位于纵向对称面内的曲线。 F'
F'
F
F'
纵向对称面?
轴线
7
CL7TU1
一.定义:斜弯曲—荷载不作用在构件的纵向对称 面内,梁的轴线变形后不在位于外力所在平面内。
一.力的分解
Fy Fcos
Fz Fsin
z
C
(y, z)
Fz
Fy
Fy
8
CL11TU3
Mz Fy(l x)以z为中性轴弯曲
My Fz(l x)以y为中性轴弯曲
Mz Fcos(lx)Mcos My Fsin(lx)Msin
二.基本变形分析
1.应力计算
z
M
的应力
z
Mz yMycos
Iz
Iz
y
9
M
的应力
y
Myz Mzsin
21
例题 8-1 z
(e)
MyA
z
D1 z
MzA
D2
y
yyBiblioteka (m )A a x M W y y A M W z zA 0 3 .6 .5 q 1 4 1 (1 6 2 2 0 ) 0 .2 2 q 3 6 1 ( 1 6 7 2 6 0 ) (2.1 5130)q

材料力学第八章组合变形 PPT

材料力学第八章组合变形 PPT
m Fr 1020 Nm
(1) 连杆轴颈得强度计算
l 危险截面
连杆轴颈得中点
l 计算内力
取左半部分
M z R1 L / 2 (C C1) l / 2 1170 N m
M y H1 L / 2 553 Nm
My Qy T
Mz Qz
M
M
2 z
M
2 y
1290
Nm
T H1 r 510 Nm
Qz
B点得应力状态如图。
r4 2 3 2 96.7 MPa [ ] 安全
50
例题5 F1=0、5kN,F2=1kN,[]=160MPa、
(1)用第三强度理论计算 AB 得直径 (2)若AB杆得直径 d = 40mm,并在B端加一水平力
F3 = 20kN,校核AB杆得强度、
400
400
B
求:校核轴得强度。
解:
l 求外力
u 力偶矩
m 9549 N n
21.7 Nm
u 皮带张力
(F f ) D m 又 F f 600
2
F 465 N, f 135 N
u 齿轮作用力
Pn
cos 20
d1 2
m
Pn 925 N
l 将各力向轴线简化
P 870 N, Pr 316 N, m m, Fy f y 542 N, Fx fx 257 N
示例1 示例2
F1 产生弯曲变形 F2 产生拉伸变形 Fy 产生弯曲变形 Fx 产生拉伸变形
F2
F1
F2
Fy
F
Fx
三、内力分析
横截面上内力
1、拉(压) :轴力 FN
弯矩 Mz
2、弯曲 剪力Fs

材料力学课件ppt-8组合变形

材料力学课件ppt-8组合变形

z1 12m 5 m Iy 5.31107mm 4 (2)立柱横截面的内力
50 FN F
150
MF35075103
50
150
42F5103N.m
15
目录
§8-2拉(压)弯组合变形
A150m 00m 2
(2)立柱横截面的内力
z0 75mm
FN F
z1 12m 5 m
1 242 0
M W
T
22
m inx 2y1 2 xy24x 2y
Wp
1 242 0
22
33
目录
§8-4 弯扭组合变形
M W
T Wp
1212 242
2 0
3212 242
第三强度理论:
第八章 组合变形
1
目录
第八章 组合变形
§8-1 组合变形和叠加原理 §8-2 拉(压)与弯曲的组合 §8-4 扭转与弯曲组合

2
目录
§8-1 组合变形和叠加原理
组合变形工程实例
3
目录
§8-1 组合变形和叠加原理
组合变形工程实例
10
4
压弯组合变形
目录
§8-1 组合变形和叠加原理
组合变形工程实例
M 42 153 0FN.m
Iy 5.31107mm 4 (3)立柱横截面的最大应力
t.max

Mz0 Iy

FN A
F 350
M FN

425103 F 0.075 5.31105

F 15103
667FPa
c.max

Mz1 Iy

FN A

材力第8章组合变形PPT课件

材力第8章组合变形PPT课件
已知: 皮带张力 F1=3.9kN, F2=1.5kN,两带轮直径均为
600mm,轴的[]=80MPa,
试:按第三第四强度理论选 择轴的直径。
解:1. 画计算简图
FDF CF 1F 25.4kN
2m . D 计算m C 支座F 1 反力F 2D 2 轮 0.7k2N m
FAy3.6kN FB,y1.8kN
叠加法: “先分后合”——将外力进行分解简化,得到
几种基本变形,分别计算应力变形,再进行叠加。
叠加法应用条件: 1)线弹性范围;2)小变形。
§8.2 拉伸(或压缩)与弯曲的组合
返回目录
一、外力分析
Fx Fcos ——拉
Fy Fsin ——弯
二、内力分析
固定端为危险面
轴力: FN Fx
弯矩: MmaxFyl
Fx 0
FAx40kN
Fy 0
FAy 4.8kN
FAx40kN,FAy 4.8kN
Fx 40kN, Fy 12.8kN
解: 2. 作内力图
C为危险截面 3. 分析C截面应力
max压maxFANM W max
查型钢表得16号工字钢
W141cm3, A26.13cm2
max10.40MPa
[]10M 0 Pa
r4W 1 MD 2合0.7T 5D 2 3d23 1.63kNm
d59.2mm
写在最后
经常不断地学习,你就什么都知道。你知道得越多,你就越有力量 Study Constantly, And You Will Know Everything. The More
You Know, The More Powerful You Will Be
拉 ma x拉 max
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

的均布力作用, []=12MPa,容许挠度为:L/200 ,E=9GPa,
q 试校核此梁的强度和刚度。
解:1、外力分解
A
B
qy q cos 800 0.894 714N / m
L
qz q sin 800 0.447 358N / m
2、强度计算
M zmax
q y L2 8
714 3.32 8
平面弯曲:当外力作用面通过纵向对称面(过形心的主惯性面) 时,则弯曲变形后,梁的轴线位于外力的作用面内
z y
z
x
F
F
y xy平面内的平面弯曲
z
y
x
F
zF
y xz平面内 的平面弯曲
一、斜弯曲的概念
§ 9 . 2 斜弯曲
斜弯曲:当外力作用面仍然过形心但不过主惯性平面时,则弯 曲变形后,梁的轴线将不在位于外力的作用面内.
2.内力分析 分别做出各基本变形的内力图,确定构件危 险截面位置及其相应内力分量
3.应力分析 按危险截面上的内力值,分析危险截面上的 应力分布,确定危险点所在位置。
4.强度分析 根据危险点的应力状态和杆件的材料按强度 理论进行强度计算。
§ 9 . 2 斜弯曲
§ 9 . 2 斜弯曲
一、斜弯曲的概念
a Fz
y0 cos z0 sin 0
Iz
Iy
F
z0和y0同时为零 必定满足中性轴方程
y Fy
中性轴为过截面形心的 一条斜直线
y0 Iz tg tg
z0 I y
截面上距中性轴最远的点应力值最大, 1)中性轴只与外力F的倾角及截面的几何形状与 尺寸有关;
Iz
Iy
y cos z sin
F (l x)
0
Iz
0 Iy
0
Mz ( x ) Fy x F cos l x M y ( x ) Fz x F sin l x
——中性轴方程
§ 9 . 2 斜弯曲
对于无棱角的截面——如何确定危险点的位置 中性轴
1、首先确定中性轴的位置;
Fz
b
A LB
fz
Fzl3 3EI y
F sin l3 ,
3EI y
z fz
f fy
总挠度: fz 和 fy 矢量和
大小为: f fy2 f 2 z
F
y
设总挠度与y轴夹角为 :
tg fz FzIz Iz tg tg
f y Fy I y I y
总挠度的方向与中性轴的方向是垂直的
一般情况下,Iy Iz
(2)一般情况下, I y I z
即中性轴并不垂直于外力作用面。
tg y0 Iz tg
z0 I y
拉 z
Fy
中性轴 压
§ 9 . 2 斜弯曲
正应力的分布规律
中性轴
σtmax x
σcmax
F
§ 9 . 2 斜弯曲
4、斜弯曲梁的变形——叠加法
中性轴
fy
Fyl3 3EI z
F
cosl3
3EI z
§ 9 . 2 斜弯曲
b
b
a
a
l x
Mz
z
c
dy
z
My z
c
y
dy
x
F
3、强度计算
危险截面——固定端 M z max Fyl, M y max Fzl
危险点——“b ”点为最大拉应力点,“d ”点为最大压应力点。
Mz max ymax
max
Iz
M y max zmax Mz max M y max
z
f
Fy
——平面弯曲 中性轴
§ 9 . 2 斜弯曲
例1:矩形截面檩条如图,跨长L=3.3m,受集度为 q=800N/m
的均布力作用, []=12MPa,容许挠度为:L/200 ,E=9GPa,
试校核此梁的强度和刚度。
q
A
B
L
b=80mm h=120mm
z
q
=y26°34′
§ 9 . 2 斜弯曲
例1:矩形截面檩条如图,跨长L=3.3m,受集度为 q=800N/m
Mz k
M z yk Iz
My k
M y zk Iy
F
Fy
y
(应力的 “+”、“-” 可由变 形判断)
正应力的分布——
在 Mz 作用下:
§ 9 . 2 斜弯曲 在 My 作用下:
k
z Fz
Mz
z
z
My
F
Fy
y
y (3)叠加:
y
k
Mz k
M y k
M z yk Iz
M y zk Iy
工程实例: 烟囱(水塔),传动轴, 吊车梁的立柱
烟囱(水塔):自重引起轴向压缩 + 水平方向的风力而引起弯曲; 传动轴:在齿轮啮合力的作用下,发生弯曲 + 扭转 立柱:荷载不过轴线,为偏心压缩 = 轴向压缩 + 纯弯曲
§ 9 . 1 组合变形的概念
二、解组合变形问题的一般步骤—— 叠加原理
1.外力分析 将荷载简化为符合基本变形外力作用条件的 静力等效力系
即挠曲线平面与荷载作用面不相重合——斜弯曲
§ 9 . 2 斜弯曲
当截面为圆形、正方形、正三角形或正多边形时,
Iy Iz
所有通过形心的轴均为主轴,且惯性矩相等 中性轴垂直于外力作用面、垂直于变形的挠曲线平面
外力作用面与挠曲线平面重合
平面弯曲:当外力作 用面通过形心主惯性 平面时,则弯曲变形 后,梁的轴线位于外 力的作用面内.
Iy
Wz
Wy
强度条件(看作简单应力状态)—— max
§ 9 . 2 斜弯曲
对于无棱角的截面
F
k
z
确定危险点的位置?
A
LB
Fz
k
Mz k
M y k
Mz y Iz
Myz Iy
F y Fy
1、首先确定中性轴的位置;
令 z0、y0 代表中性轴上任意点的坐标
Mz y0 M y z0 0
972Nm
z
q L2 358 3.32
M y max
z 8
487Nm 8
b=80mm h=120mm
q
y =26°34′
§ 9 . 2 斜弯曲
例1:矩形截面檩条如图,跨长L=3.3m,受集度为 q=800N/m 的均布力作用, []=12MPa,容许挠度为:L/200 ,E=9GPa, 试校核此梁的强度和刚度。
组合变形
§9.1 组合变形的概念 §9.2 斜弯曲 §9.3 拉伸(压缩)与弯曲的组合变形 §9.4 弯曲与扭转的组合变形
§9.1 组合变形的概念
§ 9 . 1 组合变形的概念
工程上的吊车梁立柱
屋架传来的压力
风力
吊车传来的压力 自重
§ 9 . 1 组合变形的概念
一、组合变形概念 当构件的某一截面或某一段内,包含两种或两种以上 的基本变形,如几种变形所对应的应力(或变形)属 同一量级,称为组合变形
z y
x
F
z F
y
§ 9 . 2 斜弯曲
二、斜弯曲的计算
x lx
1、荷载的分解
F
Fy F cos
Fz F sin
z
2、任意横截面任意点的“σ”
y
(1)内力:
Mz ( x ) Fy l x F cos l x
M y ( x ) Fz l x F sin l x
k
z Fz
x
F
(2)应力:
相关文档
最新文档