2018年山东省济南市高新区中考数学一模试卷
2017-2018学年山东省济南市高新区中考数学模拟试卷和答案
山东省济南市高新区2018届九年级数学下学期第二次模拟考试试题考试时间120分钟 满分150分 第I 卷(选择题 共48分)一、选择题(本大题共12小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1. 下列实数中,是无理数的是( ) A. B. 3.14 C.D.2. 如图是由若干个大小相同的小正方体堆砌而成的几何体.那么其三种视 图中面积最大的是 ( )A.主视图B.左视图C.俯视图D.三种一样3. 据国家新闻出版广电总局电影局数据,2017年国庆中秋节假期全国城市影院电影票房约26亿元,总票房创下该档期新纪录,26亿用科学记数法表示正确的是 ( ) A.26×108 B.2.6×108 C.26×109 D.2.6×1094. 如图,直线l 1∥l 2,等腰直角△ABC 的直角顶点C 落在直线l 2上,若∠1=15°, 则∠2的度数是 ( )A. 20°B. 25°C. 30°D. 35°5. 下列运算正确的是 ( ) A.B.C.D.6. 有的美术字是轴对称图形,下面四个美术字中可以看作轴对称图形的是 ( ) A .B .C .D .7. 下列分式中,最简分式是 ( ) A.B.C.D.8. 我国明代数学家程大位的名著《直接算法统宗》里有一道著名算题:“一百馒头一百僧,大僧三个更无争,小僧三人分一个,大小和尚各几丁?”意思是:有100个和尚分100个馒头,正好分第2题图第4题图完;如果大和尚一人分3个,小和尚3人分一个,试问大、小和尚各几人?设大、小和尚各有x ,y 人,以下列出的方程组正确的是 ( )A. B.C. D.9. 如图,在平面直角坐标系中,矩形OABC 的顶点A 在x 轴正半轴上,顶点C 在y 轴正半轴上,点B (8,6),将△OCE 沿OE 折叠,使点C 恰好落在对角线OB 上D 处,则E 点坐标为 ( )A.(3,6)B.(,6)C.(,6)D.(1,6) 10. 解放路上一座人行天桥如图所示,坡面BC 的坡度 (坡面的铅直高度与水平宽度的比成为坡度)为1:2, 为了方便市民推车过天桥,有关部门决定在保持天桥高度的前提下,降低坡度,使新坡面AC 的坡度为1:3,AB =6m ,则天桥高度CD 为 ( ) A.6m B.6m C.7m D. 8m11. 如图,菱形ABCD 的边长为4,∠DAB =60°,过点A 作AE ⊥AC ,AE =1,连接BE ,交AC 于点F ,则AF 的长度为 ( )A.B.C.D.12. 如图,⊙O 与Rt△ABC 的斜边AB 相切于点D ,与直角边AC 相交于点E ,且DE ∥BC .已知AE =2,AC =3,BC =6,则⊙O的半径是( ) A . 2B. 4C. 4D.3第Ⅱ卷(非选择题 共102分)二、填空题(本大题共6个小题,每小题4分,共24分.)第9题图第10题图第11题图第12题图13. 分解因式: .14. 计算:= .15. 张老师某个月(30天),坚持骑摩拜单车绿色出行,她把每天骑行的距离(单位:km )记录并绘制成了如图所示的统计 图.在这组数据中,中位数是 km.((轴负半轴上一动点,过点,两点,连接OA 、OB时,的最大整数,例如,),则x 2018= .分,解答应写出必要的文字说明、证明过程或演算步骤.) 先化简,在求值:,其中,.20. (本题满分6分)当 x 取哪些整数值时,不等式与都成立?21.(本题满分6分)如图,点E 是正方形ABCD 的边A B 上一点,连结CE ,过顶点C 作CF ⊥CE ,交AD 延长线于F .求第15题图第17题图证:BE =DF.CAD日,第四届世界互联网大会在浙江省乌镇举行.会议期间,某公司 .小张购买了钥匙扣和毛绒玩具两种商品共1524.(本题满分10分)《中国汉字听写大会》唤醒了很多人对文字基本功的重视和对汉字文化的学习,我市某校组织第21题图第22题图了一次全校2000名学生参加的“汉字听写大会”海选比赛,赛后发现所有参赛学生的成绩均不低于50分,为了更好地了解本次海选比赛的成绩分布情况,随机抽取了其中200名学生的海选比赛成绩(成绩x取整数,总分100分)作为样本进行整理,得到下列统计图表:图1 图2C25.(本题满分10分)如图,在平面直角坐标系中,已知Rt△ABC中,∠C=90°,AC=4,BC=3,点A(6,5),B(2,8),反比例函数y过点C,过点A作AD∥y轴交双曲线于点D.(1)求反比例函数y的解析式;(2)动点P在y轴正半轴运动,当线段PC与线段PD的差最大时,求P点的坐标;(3)将Rt△ABC沿直线CO方向平移,使点C移动到点O,求线段AB扫过的面积.第25题图26.(本题满分12分)ABCD中,AB=10cm,BC=4cm,∠BCD=120°,CE平分∠BCD交AB于点E.点P从A 点出发,沿AB方向以1cm/s的速度运动,连接CP,将△PCE绕点C逆时针旋转60°,使CE与CB 重合,得到△QCB,连接PQ.(1)求证:△PCQ 是等边三角形;(2)如图②,当点P 在线段EB 上运动时,△PBQ 的周长是否存在最小值?若存在,求 出△PBQ 周长的最小值;若不存在,请说明理由;(3)如图③,当点P 在射线AM 上运动时,是否存在以点P 、B 、Q 为顶点的直角三角形? 若存在,求出此时t 的值;若不存在,请说明理由.27.(本题满分12分)如图,已知点A (1,0),B (0,3),将Rt△AOB 绕点O 逆时针旋转90°,得到Rt△COD ,CD 的图①图②图③第26题图延长线,交AB于点E,连接BC,二次函数的图象过点A、B、C.(1)求二次函数的解析式;(2)点P是线段BC上方抛物线上的一个动点,当∠PBC=75°时,求点P的坐标;(3)设抛物线的对称轴与x轴交于点F,在抛物线的对称轴上,是否存在一点Q,使得以点Q、O、F为顶点的三角形,与△BDE相似?若存在,请求出点Q的坐标;若不存在,请说明理由.备第27题图九年级数学试题参考答案一、选择题(本大题共12小题,每小题4分,满分48分.)1.C2.A3.D4.C5.B6.D7.C8.C9.A 10.A 11.C 12.D二、填空题(本大题共6个小题.每小题4分,共24分.)13. 14. 15. 2.8 16. 17. (0,) 18. 2三、解答题(本大题共9个小题.共78分.)19. (本题满分6分)解:原式==……………………………………………3分把x=,y=代入得原式==4-2……………………………………………6分20. (本题满分6分)解:解x≤3……………………………………………2分解x>1 ……………………………………………4分∴不等式组的解集为1<x≤3.……………………………………………5分∴x可取的整数值是2,3. ……………………………………………6分21. (本题满分6分)证明:∵CF⊥CE,∴∠ECF=90°,…………………………………………………………………………2分又∵∠BCG=90°,∴∠BCE+∠ECD=∠DCF+∠ECD∴∠BCE=∠DCF,……………………………………………………………………3分.在△BCE与△DCF中,∵∠BCE=∠DCF,BC=CD,∠CDF=∠EBC,∴△BCE≌△BCE(ASA),…………………………………………………………5分∴BE=DF.………………………………………………………………………………6分22. (本题满分8分)解:如图,作CE⊥AD答:钥匙扣的价格为24元,毛绒玩具的价格为36元. ………………………………8分24. (本题满分10分)(1)D的人数是:200﹣10﹣30﹣40﹣70=50(人),补图:………………………………………………………………………………1分(2)B组人数所占的百分比是×100%=15%,则a的值是15;C组扇形的圆心角θ的度数为360×=72°;2000×=700答:估计该校参加这次海选比赛的将C点代入y=得k=10则反比例函数为y= (x>0) ……………………………………………………………2分(2)当P、C、D三点共线时,线段PC与线段PD的差最大…………………………3分设D(6,a)代入y=得a=所以D(6,)设直线CD为y=kx+b, P(0,c)将C(2.5),D(6,)带入得…………………………………………………………………………………4分解得:…………………………………………………………………………5分∴y=-x+将P(0,c)代入得c=即P(0,)……………………………………………………………………………6分(3)如图所示由题意可得点C移到点O;点B移到点B1(0,3);点A移到点A1 (4,0)∴四边形 B B1 OC,四边形 A A1 OC与四边形 B B1A1 A都是平行四边形………………………………………………………7分在五边形B B1 OA1 A中有S△ABC + S B B1 OC + S A A1 OC = S△O B1 A1 + S B B1 A1 A∴×3×4+3×2+4×5 =×3×4 + S B B1 A1 AS B B1 A1 A = 26即线段AB扫过的面积为26…………………………………9分26. (本题满分12分)解:(1)∵旋转∴△PCE≌△QCB∴CP=CQ,∠PCE=∠QCB,∵∠BCD=120°,CE平分∠BCD,∴∠PCQ=60°,………………………………………………………………………1分∴∠PCE+∠QCE=∠QCB+∠QCE=60°,∴△PCQ为等边三角形. ……………………………………………………………2分(2)存在……………………………………………………………………………3分∵CE平分∠BCD,∴∠BCE=,∵在平行四边形ABCD中,∴AB∥CD∴∠ABC=180°﹣120°=60°∴△BCE为等边三角形∴BE=CB=4∵旋转∴△PCE≌△QCB∴EP=BQ,∴C△PBQ=PB+BQ+PQ=PB+EP+PQ=BE+PQ=4+CP……………………………………………………………………………………4分∴CP⊥AB时,△PBQ周长最小当CP⊥AB时,CP=BC sin60°=∴△PBQ周长最小为4+………………………………………………………………………5分(3)①当点B与点P重合时,P,B,Q不能构成三角形………………………………6分②当0≤t<6时,由旋转可知,∠CPE=∠CQB,∠CPQ=∠CPB+∠BPQ=60°则:∠BPQ+∠CQB=60°,又∵∠QPB+∠PQC+∠CQB+∠PBQ=180°∴∠CBQ=180°—60°—60°=60°∴∠QBP=60°,∠BPQ<60°,所以∠PQB可能为直角由(1)知,△PCQ为等边三角形,∴∠PBQ=60°,∠CQB=30°∵∠CQB=∠CPB∵∠CEB=60°,∴∠ACP=∠APC=30°∴PA=CA=4,所以AP=AE-EP=6-4=2所以t=2s…………………………………………………………………………7分③当6<t<10时,由∠PBQ=120°>90°,所以不存在……………………………8分④当t>10时,由旋转得:∠PBQ=60°,由(1)得∠CPQ=60°∴∠BPQ=∠CPQ+∠BPC=60°+∠BPC,而∠BPC>0°,∴∠BPQ>60°∴∠BPQ=90°,从而∠BCP=30°,∴BP=BC=4所以AP=14cm所以t=14s……………………………………………………………………………9分综上所述:t为2s或者14s时,符合题意。
〖中考零距离-新课标〗2018年山东省济南市中考数学第一次模拟试题及答案解析
2018年山东省济南市中考数学一模试卷一、选择题(共15小题,每小题3分,满分45分)1.2016的相反数是()A.B.﹣2016 C.﹣D.20162.中国移动数据中心IDC项目近日在高新区正式开工建设,该项目规划建设规模12.6万平方米,建成后将成为山东省最大的数据业务中心.其中12.6万用科学记数法表示应为()A.1.26×106B.12.6×104C.1.26×105D.0.126×1063.如图所示几何体的左视图是()A. B.C.D.4.2016年4月14日,永远的科比狂砍60分完美谢幕,打破NBA球员退役战得分纪录,成为NBA历史单场60+年纪最大的球员,其中罚球12罚10中,命中率大约是83.3%,下列说法错误的是()A.科比罚球投篮12次,不一定全部命中B.科比罚球投篮120次,一定命中100次C.科比罚球投篮1次,命中的可能性较大D.科比罚球投篮1次,不命中的可能性较小5.如图,将直尺和直角三角板按如图方式摆放,已知∠1=35°,则∠2的大小是()A.35°B.45°C.55°D.65°6.下列计算中,正确的是()A.2a+3b=5ab B.(3a3)2=6a6C.a6+a2=a3D.﹣3a+2a=﹣a7.在下列手机软件图标中是轴对称图形的是( )A .B .C .D .8.计算的结果是( )A .0B .1C .﹣1D .x9.下列命题正确的是( )A .对角线互相垂直的四边形是菱形B .一组对边相等,另一组对边平行的四边形是平行四边形C .对角线相等的四边形是矩形D .对角线互相垂直平分且相等的四边形是正方形10.如图,函数y=2x 和y=ax+4的图象相交于点A (m ,3),则不等式2x <ax+4的解集为()A .x <B .x <3C .x >D .x >311.如图,边长为1的小正方形网格中,⊙O 的圆心在格点上,则∠AED 的正弦值是( )A .B .C .D .12.在平面直角坐标系中,对于平面内任一点(a ,b ),若规定以下三种变换:①f (a ,b )=(﹣a ,b ).如:f (1,3)=(﹣1,3);②g (a ,b )=(b ,a ).如:g (1,3)=(3,1);③h (a ,b )=(﹣a ,﹣b ).如,h (1,3)=(﹣1,﹣3).按照以上变换有:f (g (h (2,﹣3)))=f (g (﹣2,3))=f (3,﹣2)=(﹣3,﹣2),那么f(g(h(﹣3,5)))等于()A.(﹣5,﹣3)B.(5,3)C.(5,﹣3)D.(﹣5,3)13.如图,已知A、B是反比例函数y=(k>0,x>0)图象上的两点,BC∥x轴,交y轴于点C,动点P纵坐标原点O出发,沿O→A→B→C匀速运动,终点为C,过点P作PM⊥x轴,PN ⊥y轴,垂足分别为M、N.设四边形OMPN的面积为S,点P运动的时间为t,则S关于t的函数图象大致为()A.B.C.D.14.已知二次函数的图象如右图,则下列结论中,正确的结论有()①a+b+c>0 ②a﹣b+c<0 ③abc<0 ④b=2a ⑤b>0.A.5个 B.4个 C.3个 D.2个15.如图,正方形ABCD中,AB=3,点E在边CD上,且CD=3DE.将△ADE沿AE对折至△AFE,延长EF交边BC于点G,连接AG、CF.下列结论:①点G是BC的中点;②FG=FC;③AG∥CF;④S△FGC=.其中正确结论是()A.①② B.②④ C.①②③D.①③④二、填空题(本大题共6个小题,每小题3分,共18分.把答案填在题中的横线上.)16.分解因式:x3﹣4x= .17.若代数式和的值相等,则x= .18.等腰三角形的周长为16,其一边长为6,则该等腰三角形的底边长为.19.据调查,2016年1月济南市的房价均价为8300元/m2,2016年3月达到8700元/m2,假设这两个月济南市房价的平均增长率为x,根据题意,所列方程为.20.如图,将矩形ABCD沿CE向上折叠,使点B落在AD边上的点F处.若AE=BE,则长AD 与宽AB的比值是.21.直线y=﹣x﹣1与反比例函数y=(x<0)的图象交于点A,与x轴相交于点B,过点B作x轴垂线交双曲线于点C,若AB=AC,则k的值为.三、解答题(本大题共7个小题,共57分.解答应写出文字说明、证明过程或演算步骤.)22.化简:﹣()﹣1﹣|1﹣|+2sin30°.23.(2016•高新区一模)解不等式组:,并把它的解集在数轴上表示出来.24.已知:如图,点E,A,C在同一直线上,AB∥CD,AB=CE,AC=CD.求证:BC=ED.25.(2016•高新区一模)如图,在⊙O中,过直径AB延长线上的点C做⊙O的一条切线,切点为D,若CD=4,CB=2.求:⊙O的半径.26.苏州某旅行社组织甲、乙两个旅游团分别到西安、北京旅行,已知这两旅游团共有55人,甲旅游团的人数比乙旅游团的人数的2倍少5人.问甲、乙两个旅游团各有多少人?27.为进一步推广“阳光体育”大课间活动,高新中学对已开设的A实心球,B立定跳远,C跑步,D排球四种活动项目的学生喜欢情况进行调查,随机抽取了部分学生,并将调查结果绘制成图1,图2的统计图,请结合图中的信息解答下列问题:(1)请计算本次调查中喜欢“跑步”的学生人数和所占百分比,并将两个统计图补充完整;(2)随机抽取了3名喜欢“跑步”的学生,其中有2名男生,1名女生,现从这3名学生中任意抽取2名学生,请用画树状图或列表的方法,求出刚好抽到一男生一女生的概率.28.如图,将透明三角形纸片PAB的直角顶点P落在第二象限,顶点A、B分别落在反比例函数y=图象的两支上,且PB⊥y轴于点C,PA⊥x轴于点D,AB分别与x轴、y轴相交于点E、F.已知B(1,3).(1)k= ;(2)试说明AE=BF;(3)当四边形ABCD的面积为4时,直接写出点P的坐标.29.如图,正方形OABC的边OA,OC在坐标轴上,点B的坐标为(﹣4,4).点P从点A出发,以每秒1个单位长度的速度沿x轴向点O运动;点Q从点O同时出发,以相同的速度沿x轴的正方向运动,规定点P到达点O时,点Q也停止运动.连接BP,过P点作BP的垂线,与过点Q平行于y轴的直线l相交于点D.BD与y轴交于点E,连接PE.设点P运动的时间为t(s).(1)∠PBD的度数为,点D的坐标为(用t表示);(2)当t为何值时,△PBE为等腰三角形?(3)探索△POE周长是否随时间t的变化而变化?若变化,说明理由;若不变,试求这个定值.30.如图,矩形OABC中,点O为原点,点A的坐标为(0,8),点C的坐标为(6,0).抛物线y=﹣x2+bx+c经过A、C两点,与AB边交于点D.(1)求抛物线的函数表达式;(2)点P为线段BC上一个动点(不与点C重合),点Q为线段AC上一个动点,AQ=CP,连接PQ,设CP=m,△CPQ的面积为S.①求S关于m的函数表达式,并求出m为何值时,S取得最大值;②当S最大时,在抛物线y=﹣x2+bx+c的对称轴l上若存在点F,使△FDQ为直角三角形?若存在,请直接写出所有符合条件的F的坐标;若不存在,请说明理由.参考答案与试题解析一、选择题(共15小题,每小题3分,满分45分)1.2016的相反数是()A.B.﹣2016 C.﹣D.2016【考点】相反数.【专题】推理填空题;实数.【分析】根据相反数的含义,可得求一个数的相反数的方法就是在这个数的前边添加“﹣”,据此解答即可.【解答】解:2016的相反数是﹣2016.故选:B.【点评】此题主要考查了相反数的含义以及求法,要熟练掌握,解答此题的关键是要明确:相反数是成对出现的,不能单独存在;求一个数的相反数的方法就是在这个数的前边添加“﹣”.2.中国移动数据中心IDC项目近日在高新区正式开工建设,该项目规划建设规模12.6万平方米,建成后将成为山东省最大的数据业务中心.其中12.6万用科学记数法表示应为()A.1.26×106B.12.6×104C.1.26×105D.0.126×106【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将12.6万用科学记数法表示为:1.26×105.故选:C.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.如图所示几何体的左视图是()A. B.C.D.【考点】简单组合体的三视图.【分析】根据左视图就是从物体的左边进行观察,得出左视图有1列,小正方形数目为2.【解答】解:如图所示:.故选:A.【点评】此题主要考查了三视图的画法中左视图画法,主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.4.2016年4月14日,永远的科比狂砍60分完美谢幕,打破NBA球员退役战得分纪录,成为NBA历史单场60+年纪最大的球员,其中罚球12罚10中,命中率大约是83.3%,下列说法错误的是()A.科比罚球投篮12次,不一定全部命中B.科比罚球投篮120次,一定命中100次C.科比罚球投篮1次,命中的可能性较大D.科比罚球投篮1次,不命中的可能性较小【考点】概率的意义.【分析】概率是反映事件发生机会的大小的概念,只是表示发生的机会的大小,机会大也不一定发生,机会小也有可能发生.【解答】解:科比罚球投篮120次,一定命中100次错误,故选:B.【点评】此题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.5.如图,将直尺和直角三角板按如图方式摆放,已知∠1=35°,则∠2的大小是()A.35°B.45°C.55°D.65°【考点】平行线的性质.【分析】先求出∠ACE的度数,根据平行线的性质得出∠2=∠ACE,即可得出答案.【解答】解:如图,∵∠ACB=90°,∠1=35°,∴∠ACE=90°﹣35°=55°,∵MN∥EF,∴∠2=∠ACE=55°,故选C.【点评】本题考查了平行线的性质的应用,能熟记平行线的性质是解此题的关键.6.下列计算中,正确的是()A.2a+3b=5ab B.(3a3)2=6a6C.a6+a2=a3D.﹣3a+2a=﹣a【考点】幂的乘方与积的乘方;合并同类项.【分析】合并同类项法则,积的乘方分别求出每个式子的值,再判断即可.【解答】解:A、2a和3b不能合并,故本选项错误;B、结果是9a6,故本选项错误;C、a6和a2不能合并,故本选项错误;D、结果是﹣a,故本选项正确;故选D.【点评】本题考查了同类项,合并同类项,积的乘方的应用,能正确运用法则进行计算是解此题的关键,难度不是很大.7.在下列手机软件图标中是轴对称图形的是()A.B.C.D.【考点】轴对称图形.【分析】根据轴对称图形的概念:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴可得答案.【解答】解:A、不是轴对称图形,故此选项错误;B、不是轴对称图形,故此选项错误;C、不是轴对称图形,故此选项错误;D、是轴对称图形,故此选项正确;故选:D.【点评】此题主要考查了轴对称图形,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.8.计算的结果是()A.0 B.1 C.﹣1 D.x【考点】分式的加减法.【专题】计算题.【分析】原式利用同分母分式的减法法则计算,变形后约分即可得到结果.【解答】解:原式==﹣=﹣1.故选C【点评】此题考查了分式的加减法,分式的加减运算关键是通分,通分的关键是找最简公分母.9.下列命题正确的是()A.对角线互相垂直的四边形是菱形B.一组对边相等,另一组对边平行的四边形是平行四边形C.对角线相等的四边形是矩形D.对角线互相垂直平分且相等的四边形是正方形【考点】命题与定理.【分析】根据矩形、菱形、平行四边形的知识可判断出各选项,从而得出答案.【解答】解:A、对角线互相垂直的四边形不一定是菱形,故本选项错误;B、一组对边相等,另一组对边平行的四边形不一定是平行四边形,也可能是等腰梯形,故本选项错误;C、对角线相等的四边形不一定是矩形,例如等腰梯形,故本选项错误;D、对角线互相垂直平分且相等的四边形是正方形,故本选项正确.故选D.【点评】本题主要考查了命题与定理的知识,解答本题的关键是熟练掌握平行四边形、菱形以及矩形的性质,此题难度不大.10.如图,函数y=2x和y=ax+4的图象相交于点A(m,3),则不等式2x<ax+4的解集为()A.x<B.x<3 C.x>D.x>3【考点】一次函数与一元一次不等式.【分析】先根据函数y=2x和y=ax+4的图象相交于点A(m,3),求出m的值,从而得出点A 的坐标,再根据函数的图象即可得出不等式2x<ax+4的解集.【解答】解:∵函数y=2x和y=ax+4的图象相交于点A(m,3),∴3=2m,m=,∴点A的坐标是(,3),∴不等式2x<ax+4的解集为x<;故选A.【点评】此题考查的是用图象法来解不等式,充分理解一次函数与不等式的联系是解决问题的关键.11.如图,边长为1的小正方形网格中,⊙O的圆心在格点上,则∠AED的正弦值是()A.B.C.D.【考点】圆周角定理;勾股定理;锐角三角函数的定义.【分析】根据同弧所对的圆周角相等得到∠ABC=∠AED,在直角三角形ABC中,利用锐角三角函数定义求出sin∠ABC的值,即为sin∠AED的值.【解答】解:∵∠AED与∠ABC都对,∴∠AED=∠ABC,在Rt△ABC中,AB=2,AC=1,根据勾股定理得:BC=,则sin∠AED=sin∠ABC==,故选C.【点评】本题考查了圆周角定理,锐角三角函数定义,以及勾股定理,熟练掌握圆周角定理是解本题的关键.12.在平面直角坐标系中,对于平面内任一点(a,b),若规定以下三种变换:①f(a,b)=(﹣a,b).如:f(1,3)=(﹣1,3);②g(a,b)=(b,a).如:g(1,3)=(3,1);③h(a,b)=(﹣a,﹣b).如,h(1,3)=(﹣1,﹣3).按照以上变换有:f(g(h(2,﹣3)))=f(g(﹣2,3))=f(3,﹣2)=(﹣3,﹣2),那么f(g(h(﹣3,5)))等于()A.(﹣5,﹣3)B.(5,3)C.(5,﹣3)D.(﹣5,3)【考点】点的坐标.【专题】新定义.【分析】根据f(a,b)=(﹣a,b).g(a,b)=(b,a).h(a,b)=(﹣a,﹣b),可得答案.【解答】解:f(g(h(﹣3,5)))=f(g(3,﹣5)=f(﹣5,3)=(5,3),故选:B.【点评】本题考查了点的坐标,利用f(a,b)=(﹣a,b).g(a,b)=(b,a).h(a,b)=(﹣a,﹣b)是解题关键.13.如图,已知A、B是反比例函数y=(k>0,x>0)图象上的两点,BC∥x轴,交y轴于点C,动点P纵坐标原点O出发,沿O→A→B→C匀速运动,终点为C,过点P作PM⊥x轴,PN ⊥y轴,垂足分别为M、N.设四边形OMPN的面积为S,点P运动的时间为t,则S关于t的函数图象大致为()A.B.C.D.【考点】动点问题的函数图象.【分析】通过两段的判断即可得出答案,①点P在AB上运动时,此时四边形OMPN的面积不变,可以排除B、D;②点P在BC上运动时,S减小,S与t的关系为一次函数,从而排除C.【解答】解:①点P在AB上运动时,此时四边形OMPN的面积S=K,保持不变,故排除B、D;②点P在BC上运动时,设路线O→A→B→C的总路程为l,点P的速度为a,则S=OC×CP=OC ×(l﹣at),因为l,OC,a均是常数,所以S与t成一次函数关系.故排除C.故选A【点评】本题考查了动点问题的函数图象,解答此类题目并不需要求出函数解析式,只要判断出函数的增减性,或者函数的性质即可,注意排除法的运用.14.已知二次函数的图象如右图,则下列结论中,正确的结论有()①a+b+c>0 ②a﹣b+c<0 ③abc<0 ④b=2a ⑤b>0.A.5个 B.4个 C.3个 D.2个【考点】二次函数图象与系数的关系.【专题】计算题.【分析】根据图象,当x=1时,y>0,当x=﹣1时,y<0,可判断①②;根据图象与y轴的交点位置可知c>0,根据对称轴x=﹣>0,可判断ab的符号,可判断③;根据对称轴x=﹣=1可判断④;由抛物线开口向下可知a<0,又知对称轴x=﹣>0,可判断b的符号.【解答】解:根据图象,当x=1时,y=a+b+c>0,当x=﹣1时,y=a﹣b+c<0,可知①②正确;根据图象与y轴的交点位置可知c>0,根据对称轴x=﹣>0,且抛物线开口向下,a<0,可知b>0,abc<0,故③⑤正确;根据对称轴x=﹣=1得b=﹣2a,可知④错误.正确的是①②③⑤4个,故选B.【点评】本题考查了二次函数图象与系数的关系.关键是明确图象的位置与系数之间的关系.15.如图,正方形ABCD中,AB=3,点E在边CD上,且CD=3DE.将△ADE沿AE对折至△AFE,延长EF交边BC于点G,连接AG、CF.下列结论:①点G是BC的中点;②FG=FC;③AG∥CF;④S△FGC=.其中正确结论是()A.①② B.②④ C.①②③D.①③④【考点】正方形的性质;全等三角形的判定与性质;翻折变换(折叠问题).【分析】由正方形和折叠的性质得出AF=AB,∠B=∠AFG=90°,由HL即可证明Rt△ABG≌Rt△AFG,得出BG=FG,设BG=x,则CG=BC﹣BG=6﹣x,GE=GF+EF=BG+DE=x+2,由勾股定理求出x=3,得出①正确;②不正确;由等腰三角形的性质和外角关系得出∠AGB=∠FCG,证出平行线,得出③正确;求出△FGC的面积=,得出④正确;即可得出结论.【解答】解:∵四边形ABCD是正方形,∴AB=AD=DC=3,∠B=D=90°,∵CD=3DE,∴DE=1,∵△ADE沿AE折叠得到△AFE,∴DE=EF=1,AD=AF,∠D=∠AFE=∠AFG=90°,∴AF=AB,在Rt△ABG和Rt△AFG中,,∴Rt△ABG≌Rt△AFG(HL),∴BG=FG,∠AGB=∠AGF,设BG=x,则CG=BC﹣BG=3﹣x,GE=GF+EF=BG+DE=x+1,在Rt△ECG中,由勾股定理得:CG2+CE2=EG2,∵CG=3﹣x,CE=2,EG=x+1,∴(3﹣x)2+22=(x+1)2解得:x=1.5,∴BG=GF=CG=1.5,①正确;②不正确;∴∠CFG=∠FCG,∵∠BGF=∠CFG+∠FCG,又∵∠BGF=∠AGB+∠AGF,∴∠CFG+∠FCG=∠AGB+∠AGF,∵∠AGB=∠AGF,∠CFG=∠FCG,∴∠AGB=∠FCG,∴AG∥CF,③正确;∵△CFG和△CEG中,分别把FG和GE看作底边,则这两个三角形的高相同.∴===,∵S△GCE=×1.5×2=1.5,∴S△CFG=×1.5=,④正确;正确的结论是①③④,故选:D.【点评】本题考查了正方形性质、折叠性质、全等三角形的性质和判定、等腰三角形的性质和判定、平行线的判定等知识点的运用;主要考查学生综合运用性质进行推理论证与计算的能力,有一定难度.二、填空题(本大题共6个小题,每小题3分,共18分.把答案填在题中的横线上.)16.分解因式:x3﹣4x= x(x+2)(x﹣2).【考点】提公因式法与公式法的综合运用.【专题】因式分解.【分析】应先提取公因式x,再对余下的多项式利用平方差公式继续分解.【解答】解:x3﹣4x,=x(x2﹣4),=x(x+2)(x﹣2).故答案为:x(x+2)(x﹣2).【点评】本题考查了提公因式法,公式法分解因式,提取公因式后利用平方差公式进行二次因式分解,分解因式一定要彻底,直到不能再分解为止.17.若代数式和的值相等,则x= 7 .【考点】解分式方程.【专题】计算题;转化思想.【分析】根据题意列出分式方程,求出分式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:根据题意得:=,去分母得:2x+1=3x﹣6,解得:x=7,经检验x=7是分式方程的解.故答案为:x=7.【点评】此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.18.等腰三角形的周长为16,其一边长为6,则该等腰三角形的底边长为6或4 .【考点】等腰三角形的性质;三角形三边关系.【分析】此题分为两种情况:6是等腰三角形的底边或6是等腰三角形的腰.然后进一步根据三角形的三边关系进行分析能否构成三角形.【解答】解:当腰为6时,则底边4,此时三边满足三角形三边关系;当底边为6时,则另两边长为5、5,此时三边满足三角形三边关系;故答案为:6或4.【点评】本题考查了等腰三角形的性质及三角形的三边关系,解题的关键是能够分类讨论,难度不大.19.据调查,2016年1月济南市的房价均价为8300元/m2,2016年3月达到8700元/m2,假设这两个月济南市房价的平均增长率为x,根据题意,所列方程为8300(1+x)2=8700 .【考点】由实际问题抽象出一元二次方程.【专题】增长率问题.【分析】2016年3月的房价8700=2016年1月的房价8300×(1+年平均增长率)2,把相关数值代入即可.【解答】解:2016年2月的房价为8300×(1+x),2016年3月的房价为8300(1+x)(1+x)=8300(1+x)2,即所列的方程为8300(1+x)2=8700.故答案为:8300(1+x)2=8700.【点评】本题考查了从实际问题中抽出一元二次方程,找到关键描述语,找到等量关系准确的列出方程是解决问题的关键.20.如图,将矩形ABCD沿CE向上折叠,使点B落在AD边上的点F处.若AE=BE,则长AD与宽AB的比值是.【考点】翻折变换(折叠问题);勾股定理;矩形的性质.【专题】数形结合;转化思想.【分析】由AE=BE,可设AE=2k,则BE=3k,AB=5k.由四边形ABCD是矩形,可得∠A=∠ABC=∠D=90°,CD=AB=5k,AD=BC.由折叠的性质可得∠EFC=∠B=90°,EF=EB=3k,CF=BC,由同角的余角相等,即可得∠DCF=∠AFE.在Rt△AEF中,根据勾股定理求出AF==k,由cos∠AFE=cos∠DCF得出CF=3k,即AD=3k,进而求解即可.【解答】解:∵AE=BE,∴设AE=2k,则BE=3k,AB=5k.∵四边形ABCD是矩形,∴∠A=∠ABC=∠D=90°,CD=AB=5k,AD=BC.∵将矩形ABCD沿CE向上折叠,使点B落在AD边上的点F处,∴∠EFC=∠B=90°,EF=EB=3k,CF=BC,∴∠AFE+∠DFC=90°,∠DFC+∠FCD=90°,∴∠DCF=∠AFE,∴cos∠AFE=cos∠DCF.在Rt△AEF中,∵∠A=90°,AE=2k,EF=3k,∴AF==k,∴=,即=,∴CF=3k,∴AD=BC=CF=3k,∴长AD与宽AB的比值是=.故答案为:.【点评】此题考查了折叠的性质,矩形的性质,勾股定理以及三角函数的定义.解此题的关键是数形结合思想与转化思想的应用.21.直线y=﹣x﹣1与反比例函数y=(x<0)的图象交于点A,与x轴相交于点B,过点B作x轴垂线交双曲线于点C,若AB=AC,则k的值为﹣4 .【考点】反比例函数与一次函数的交点问题.【分析】过A作AD⊥BC于D,先求出直线=﹣x﹣1与x轴交点B的坐标(﹣2,0),则得到C点的横坐标为﹣2,由于C点在反比例函数y=的图象上,可表示出C点坐标为(﹣2,﹣),利用等腰三角形的性质,由AC=AB,AD⊥BC,得到DC=DB,于是D点坐标为(﹣2,﹣),则可得到A 点的纵坐标为﹣,利用点A 在函数y=的图象上,可表示出点A 的坐标为(﹣4,﹣),然后把A (﹣4,﹣)代入y=﹣x ﹣1得到关于k 的方程,解方程即可求出k 的值.【解答】解:过A 作AD ⊥BC 于D ,如图,∵y=﹣x ﹣1,令y=0,则﹣x ﹣1=0,解得x=﹣2,∴B 点坐标为(﹣2,0),∵CB ⊥x 轴,∴C 点的横坐标为﹣2,∵y=,令x=﹣2,则y=﹣,∴C 点坐标为(﹣2,﹣),∵AC=AB ,AD ⊥BC ,∴DC=DB ,∴D 点坐标为(﹣2,﹣),∴A 点的纵坐标为﹣,而点A 在函数y=的图象上,把y=﹣代入y=,得x=﹣4,∴点A 的坐标为(﹣4,﹣),把A (﹣4,﹣)代入y=﹣x ﹣1,得﹣=﹣×(﹣4)﹣1, ∴k=﹣4.故答案为﹣4.【点评】本题考查了反比例函数与一次函数的交点问题:反比例函数与一次函数的交点坐标满足两个函数的解析式.也考查了与x轴垂直的直线上所有点的横坐标相同以及等腰三角形的性质.三、解答题(本大题共7个小题,共57分.解答应写出文字说明、证明过程或演算步骤.)22.化简:﹣()﹣1﹣|1﹣|+2sin30°.【考点】实数的运算;负整数指数幂;特殊角的三角函数值.【专题】计算题;实数.【分析】原式利用二次根式性质,负整数指数幂法则,绝对值的代数意义,以及特殊角的三角函数值计算即可得到结果.【解答】解:原式=2﹣2﹣+1+2×=.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.23.(2016•高新区一模)解不等式组:,并把它的解集在数轴上表示出来.【考点】解一元一次不等式组;在数轴上表示不等式的解集.【分析】先求出每个不等式的解集,再求出不等式组的解集,最后在数轴上表示出来即可.【解答】解:∵解不等式①得:x>﹣2,解不等式②得:x≤4,∴不等式组的解集为:﹣2<x≤4,在数轴上表示为:.【点评】本题考查了解一元一次不等式组,在数轴上表示不等式组的解集的应用,能根据不等式的解集求出不等式组的解集是解此题的关键.24.已知:如图,点E,A,C在同一直线上,AB∥CD,AB=CE,AC=CD.求证:BC=ED.【考点】全等三角形的判定与性质.【专题】证明题.【分析】首先由AB∥CD,根据平行线的性质可得∠BAC=∠ECD,再有条件AB=CE,AC=CD可证出△BAC和△ECD全等,再根据全等三角形对应边相等证出CB=ED.【解答】证明:∵AB∥CD,∴∠BAC=∠ECD,在△BAC和△ECD中,∴△BAC≌△ECD(SAS),∴CB=ED.【点评】此题主要考查了全等三角形的判定与性质,全等三角形的判定是结合全等三角形的性质证明线段和角相等的重要工具.在判定三角形全等时,关键是选择恰当的判定条件.25.(2016•高新区一模)如图,在⊙O中,过直径AB延长线上的点C做⊙O的一条切线,切点为D,若CD=4,CB=2.求:⊙O的半径.【考点】切线的性质.【分析】连接OD,根据切线的性质,∠ODC=90°,设OD=r,在RT△ODC中利用勾股定理即可解决.【解答】解:连接OD.∵CD是⊙O切线,∴OD⊥CD,∴∠ODC=90°,设半径为r,在RT△ODC中,∵OD=r,OC=r+2,CD=4,∴OD2+CD2=OC2,∴r2+42=(r+2)2,∴r=3,∴⊙O的半径为3.【点评】本题考查切线的性质、勾股定理等知识,解题的关键是利用勾股定理,把问题转化为方程解决,属于中考常考题型.26.苏州某旅行社组织甲、乙两个旅游团分别到西安、北京旅行,已知这两旅游团共有55人,甲旅游团的人数比乙旅游团的人数的2倍少5人.问甲、乙两个旅游团各有多少人?【考点】二元一次方程组的应用.【分析】设甲、乙两个旅游团个有x人、y人,根据题意可得等量关系:甲团+乙团=55人;甲团人数=乙团人数×2﹣5,根据等量关系列出方程组,再解即可.【解答】解:设甲、乙两个旅游团各有x人、y人,由题意得:,解得,答:甲、乙两个旅游团各有35人、20人.【点评】此题主要考查了二元一次方程组的应用,关键是正确理解题意,抓住题目中的关键语句,找出等量关系,列出方程组.27.为进一步推广“阳光体育”大课间活动,高新中学对已开设的A实心球,B立定跳远,C跑步,D排球四种活动项目的学生喜欢情况进行调查,随机抽取了部分学生,并将调查结果绘制成图1,图2的统计图,请结合图中的信息解答下列问题:(1)请计算本次调查中喜欢“跑步”的学生人数和所占百分比,并将两个统计图补充完整;(2)随机抽取了3名喜欢“跑步”的学生,其中有2名男生,1名女生,现从这3名学生中任意抽取2名学生,请用画树状图或列表的方法,求出刚好抽到一男生一女生的概率.【考点】列表法与树状图法;扇形统计图;条形统计图.【专题】计算题.【分析】(1)用A类的人数除以它所占百分比得到调查的总人数,然后用总人数分别减去其它各组人数可得C类人数,用C类人数除以总人数得到C类所占百分比,再补全统计图;(2)画树状图展示所有6种等可能的结果数,再找出一男生一女生的结果数,然后根据概率公式求解.【解答】解:(1)调查的纵人数=15÷10%=150,所以喜欢“跑步”的学生人数=150﹣15﹣45﹣30=60(人),它所占的百分比=×100%=40%;如图,(2)画树状图为:共有6种等可能的结果数,其中一男生一女生的结果数为4,所以刚好抽到一男生一女生的概率==.【点评】本题考查了列表法或树状图法:通过列表法或树状图法展示所有等可能的结果求出n ,再从中选出符合事件A 或B 的结果数目m ,然后根据概率公式求出事件A 或B 的概率.也考查了统计图.28.如图,将透明三角形纸片PAB 的直角顶点P 落在第二象限,顶点A 、B 分别落在反比例函数y=图象的两支上,且PB ⊥y 轴于点C ,PA ⊥x 轴于点D ,AB 分别与x 轴、y 轴相交于点E 、F .已知B (1,3).(1)k= 3 ;(2)试说明AE=BF ;(3)当四边形ABCD 的面积为4时,直接写出点P 的坐标.【考点】反比例函数综合题.【专题】综合题.【分析】(1)把B 坐标代入反比例解析式求出k 的值即可;(2)由题意表示出P ,D ,C ,A 的坐标,求出两对应边之比,再由夹角相等,利用两边对应边对应成比例且夹角相等的三角形相似得到三角形PDC 与三角形PAB 相似,进而得出四边形ADCF 与四边形DEBC 都是平行四边形,利用平行四边形的对边相等即可得证;(3)由四边形ABCD 面积等于三角形PAB 面积减去三角形PCD 面积,列出关于m 的方程,求出方程的解得到m 的值,即可确定出P 的坐标.【解答】解:(1)把B (1,3)代入反比例解析式得:k=3;故答案为:3;(2)根据题意得:P (m ,3),D (m ,0),C (0,3),A (m ,),。
<合集试卷3套>2018届济南市中考数学模拟卷
中考数学模拟试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.关于x 的分式方程230x x a +=-解为4x =,则常数a 的值为( ) A .1a =B .2a =C .4a =D .10a = 【答案】D【解析】根据分式方程的解的定义把x=4代入原分式方程得到关于a 的一次方程,解得a 的值即可.【详解】解:把x=4代入方程230x x a+=-,得 23044a+=-, 解得a=1.经检验,a=1是原方程的解故选D .点睛:此题考查了分式方程的解,分式方程注意分母不能为2.2.如图,钓鱼竿AC 长6m ,露在水面上的鱼线BC 长32m ,某钓者想看看鱼钓上的情况,把鱼竿AC 转动到AC'的位置,此时露在水面上的鱼线B′C′为33m ,则鱼竿转过的角度是( )A .60°B .45°C .15°D .90°【答案】C 【解析】试题解析:∵sin ∠CAB=32262BC AC == ∴∠CAB=45°.∵333B C sin C AB AC '''∠===' ∴∠C′AB′=60°.∴∠CAC′=60°-45°=15°,鱼竿转过的角度是15°.故选C .考点:解直角三角形的应用. 3. 如图,把一个直角三角尺的直角顶点放在直尺的一边上,若∠1=50°,则∠2=( )A .20°B .30°C .40°D .50°【答案】C【解析】由两直线平行,同位角相等,可求得∠3的度数,然后求得∠2的度数. 【详解】∵∠1=50°,∴∠3=∠1=50°,∴∠2=90°−50°=40°.故选C.【点睛】本题主要考查平行线的性质,熟悉掌握性质是关键.4.用加减法解方程组437651x y x y +=⎧⎨-=-⎩①②时,若要求消去y ,则应( )A .32⨯+⨯①②B .3-2⨯⨯①②C .53⨯+⨯①②D .5-3⨯⨯①②【答案】C【解析】利用加减消元法53⨯+⨯①②消去y 即可.【详解】用加减法解方程组437651x y x y +=⎧⎨-=-⎩①②时,若要求消去y ,则应①×5+②×3,故选C【点睛】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法. 5.如图,已知∠1=∠2,要使△ABD ≌△ACD ,需从下列条件中增加一个,错误的选法是()A .∠ADB =∠ADC B .∠B =∠C C .AB =ACD .DB =DC【答案】D【解析】由全等三角形的判定方法ASA证出△ABD≌△ACD,得出A正确;由全等三角形的判定方法AAS 证出△ABD≌△ACD,得出B正确;由全等三角形的判定方法SAS证出△ABD≌△ACD,得出C正确.由全等三角形的判定方法得出D不正确;【详解】A正确;理由:在△ABD和△ACD中,∵∠1=∠2,AD=AD,∠ADB=∠ADC,∴△ABD≌△ACD(ASA);B正确;理由:在△ABD和△ACD中,∵∠1=∠2,∠B=∠C,AD=AD∴△ABD≌△ACD(AAS);C正确;理由:在△ABD和△ACD中,∵AB=AC,∠1=∠2,AD=AD,∴△ABD≌△ACD(SAS);D不正确,由这些条件不能判定三角形全等;故选:D.【点睛】本题考查了全等三角形的判定方法;三角形全等的判定是中考的热点,熟练掌握全等三角形的判定方法是解决问题的关键.6.某公司第4月份投入1000万元科研经费,计划6月份投入科研经费比4月多500万元.设该公司第5、6个月投放科研经费的月平均增长率为x,则所列方程正确的为( )A.1000(1+x)2=1000+500B.1000(1+x)2=500C.500(1+x)2=1000D.1000(1+2x)=1000+500【答案】A【解析】设该公司第5、6个月投放科研经费的月平均增长率为x,5月份投放科研经费为1000(1+x),6月份投放科研经费为1000(1+x)(1+x),即可得答案.【详解】设该公司第5、6个月投放科研经费的月平均增长率为x,则6月份投放科研经费1000(1+x)2=1000+500,故选A.【点睛】考查一元二次方程的应用,求平均变化率的方法为:若设变化前的量为a ,变化后的量为b ,平均变化率为x ,则经过两次变化后的数量关系为a (1±x )2=b .7.如图,以AD 为直径的半圆O 经过Rt △ABC 斜边AB 的两个端点,交直角边AC 于点E ;B 、E 是半圆弧的三等分点,BD 的长为43π,则图中阴影部分的面积为( )A .4633π-B .8933π-C .33223π-D .8633π- 【答案】D 【解析】连接BD ,BE ,BO ,EO ,先根据B 、E 是半圆弧的三等分点求出圆心角∠BOD 的度数,再利用弧长公式求出半圆的半径R ,再利用圆周角定理求出各边长,通过转化将阴影部分的面积转化为S △ABC ﹣S 扇形BOE ,然后分别求出面积相减即可得出答案. 【详解】解:连接BD ,BE ,BO ,EO ,∵B ,E 是半圆弧的三等分点,∴∠EOA =∠EOB =∠BOD =60°,∴∠BAD =∠EBA =30°,∴BE ∥AD ,∵BD 的长为43π , ∴6041803R ππ= 解得:R =4,∴AB =ADcos30°=3,∴BC =12AB =3 ∴AC 3=6,∴S △ABC =12×BC×AC =12×23=63∵△BOE 和△ABE 同底等高,∴△BOE 和△ABE 面积相等,∴图中阴影部分的面积为:S △ABC ﹣S 扇形BOE =2604863633603ππ⨯-=- 故选:D .【点睛】本题主要考查弧长公式,扇形面积公式,圆周角定理等,掌握圆的相关性质是解题的关键.8.如图,在矩形ABCD 中,E 是AD 上一点,沿CE 折叠△CDE ,点D 恰好落在AC 的中点F 处,若CD =3,则△ACE 的面积为( )A .1B 3C .2D .3【答案】B 【解析】由折叠的性质可得3DE=EF ,AC=23由三角形面积公式可求EF 的长,即可求△ACE 的面积.【详解】解:∵点F 是AC 的中点,∴AF=CF=12AC , ∵将△CDE 沿CE 折叠到△CFE ,∴3DE=EF ,∴AC=3在Rt △ACD 中,22AC CD -.∵S △ADC =S △AEC +S △CDE ,∴12×AD×CD=12×AC×EF+12×CD×DE ∴3233,∴DE=EF=1,∴S △AEC=12×33 故选B .【点睛】本题考查了翻折变换,勾股定理,熟练运用三角形面积公式求得DE=EF=1是解决本题的关键. 9.如图,把一块直角三角板的直角顶点放在直尺的一边上,若∠1=50°,则∠2的度数为( ).A .50°B .40°C .30°D .25°【答案】B 【解析】解:如图,由两直线平行,同位角相等,可求得∠3=∠1=50°,根据平角为180°可得,∠2=90°﹣50°=40°.故选B .【点睛】本题考查平行线的性质,掌握两直线平行,同位角相等是解题关键.10.如图,将木条a ,b 与c 钉在一起,∠1=70°,∠2=50°,要使木条a 与b 平行,木条a 旋转的度数至少是( )A .10°B .20°C .50°D .70°【答案】B 【解析】要使木条a 与b 平行,那么∠1=∠2,从而可求出木条a 至少旋转的度数.【详解】解:∵要使木条a 与b 平行,∴∠1=∠2,∴当∠1需变为50 º,∴木条a 至少旋转:70º-50º=20º.故选B.【点睛】本题考查了旋转的性质及平行线的性质:①两直线平行同位角相等;②两直线平行内错角相等;③两直线平行同旁内角互补;④夹在两平行线间的平行线段相等.在运用平行线的性质定理时,一定要找准同位角,内错角和同旁内角.二、填空题(本题包括8个小题)11.已知函数22y x x =--,当 时,函数值y 随x 的增大而增大.【答案】x≤﹣1.【解析】试题分析:∵22y x x =--=2(1)1x -++,a=﹣1<0,抛物线开口向下,对称轴为直线x=﹣1,∴当x≤﹣1时,y 随x 的增大而增大,故答案为x≤﹣1.考点:二次函数的性质.12.将三角形纸片(ABC ∆)按如图所示的方式折叠,使点B 落在边AC 上,记为点'B ,折痕为EF ,已知3AB AC ==,4BC =,若以点'B ,F ,C 为顶点的三角形与ABC ∆相似,则BF 的长度是______.【答案】127或2 【解析】由折叠性质可知B’F=BF ,△B’FC 与△ABC 相似,有两种情况,分别对两种情况进行讨论,设出B’F=BF=x ,列出比例式方程解方程即可得到结果.【详解】由折叠性质可知B’F=BF ,设B’F=BF=x ,故CF=4-x当△B’FC ∽△ABC ,有'B F CF AB BC =,得到方程434x x -=,解得x=127,故BF=127; 当△FB’C ∽△ABC ,有'B F FC AB AC =,得到方程433x x -=,解得x=2,故BF=2; 综上BF 的长度可以为127或2. 【点睛】本题主要考查相似三角形性质,解题关键在于能够对两个相似三角形进行分类讨论.13.已知关于 x 的函数 y=(m ﹣1)x 2+2x+m 图象与坐标轴只有 2 个交点,则m=_______.【答案】1 或 0 15± 【解析】分两种情况讨论:当函数为一次函数时,必与坐标轴有两个交点;当函数为二次函数时,将(0,0)代入解析式即可求出m 的值.【详解】解:(1)当 m ﹣1=0 时,m=1,函数为一次函数,解析式为 y=2x+1,与 x 轴 交点坐标为(﹣12,0);与 y 轴交点坐标(0,1).符合题意. (2)当 m ﹣1≠0 时,m≠1,函数为二次函数,与坐标轴有两个交点,则过原点,且与 x 轴有两个不同的交点,于是△=4﹣4(m ﹣1)m >0,解得,(m ﹣12)2<54,解得 m<2 或 m>2. 将(0,0)代入解析式得,m=0,符合题意.(3)函数为二次函数时,还有一种情况是:与 x 轴只有一个交点,与 Y 轴交于交于另一点, 这时:△=4﹣4(m ﹣1)m=0,解得:. 故答案为1 或 0或12. 【点睛】此题考查一次函数和二次函数的性质,解题关键是必须分两种情况讨论,不可盲目求解.14.若关于x 的不等式组3122x a x x ->⎧⎨->-⎩无解, 则a 的取值范围是 ________. 【答案】2a ≥-【解析】首先解每个不等式,然后根据不等式无解,即两个不等式的解集没有公共解即可求得.【详解】3122x a x x ->⎧⎨->-⎩①②, 解①得:x >a+3,解②得:x <1.根据题意得:a+3≥1,解得:a≥-2.故答案是:a≥-2.【点睛】本题考查了一元一次不等式组的解,解题的关键是熟练掌握解一元一次不等式组的步骤..15.将23x =代入函数1y x =-中,所得函数值记为1y ,又将11x y =+代入函数1y x=-中,所得的函数值记为2y ,再将21x y =+代入函数中,所得函数值记为3y …,继续下去.1y =________;2y =________;3y =________;2006y =________. 【答案】32- 2 13- 2 【解析】根据数量关系分别求出y1,y2,y3,y4,…,不难发现,每3次计算为一个循环组依次循环,用2006除以3,根据商和余数的情况确定y2006的值即可.【详解】y 1=32-,y 2=−1312-+=2, y 3=−112+=13-, y 4=−1113-+=32-, …,∴每3次计算为一个循环组依次循环,∵2006÷3=668余2,∴y2006为第669循环组的第2次计算,与y2的值相同,∴y2006=2, 故答案为32-;2;13-;2. 【点睛】本题考查反比例函数的定义,解题的关键是多运算找规律.16.让我们轻松一下,做一个数字游戏:第一步:取一个自然数15n =,计算211n +得1a ;第二步:算出1a 的各位数字之和得2n ,计算221n +得2a ; 第三步:算出2a 的各位数字之和得3n ,再计算231n +得3a ;依此类推,则2019a =____________【答案】1 【解析】根据题意可以分别求得a 1,a 2,a 3,a 4,从而可以发现这组数据的特点,三个一循环,从而可以求得a 2019的值.【详解】解:由题意可得,a 1=52+1=26,a 2=(2+6)2+1=65,a 3=(6+5)2+1=1,a 4=(1+2+2)2+1=26,…∴2019÷3=673,∴a 2019= a 3=1,故答案为:1.【点睛】本题考查数字变化类规律探索,解题的关键是明确题意,求出前几个数,观察数的变化特点,求出a2019的值.17.亚洲陆地面积约为4400万平方千米,将44000000用科学记数法表示为_____.【答案】4.4×1【解析】分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n是负数.详解:44000000=4.4×1,故答案为4.4×1.点睛:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.△的顶点A,B,C均在格点上,D为AC边上的18.如图,在每个小正方形边长为1的网格中,ABC一点.△的线段AC的值为______________;在如图所示的网格中,AM是ABC+的值最小,请用无刻度的直尺,画出AM和点P,并简要说角平分线,在AM上求一点P,使CP DP明AM和点P的位置是如何找到的(不要求证明)___________.【答案】(Ⅰ)5(Ⅱ)如图,取格点E、F,连接AE与BC交于点M,连接DF与AM交于点P. 【解析】(Ⅰ)根据勾股定理进行计算即可.(Ⅱ)根据菱形的每一条对角线平分每一组对角,构造边长为1的菱形ABEC,连接AE交BC于M,即可得出AM是ABC的角平分线,再取点F使AF=1,则根据等腰三角形的性质得出点C与F关于AM对称,+的值最小.连接DF交AM于点P,此时CP DP【详解】(Ⅰ)根据勾股定理得22+=;345故答案为:1.(Ⅱ)如图,如图,取格点E、F,连接AE与BC交于点M,连接DF与AM交于点P,则点P即为所求.说明:构造边长为1的菱形ABEC,连接AE交BC于M,则AM即为所求的ABC的角平分线,在AB上取点F,使AF=AC=1,则AM垂直平分CF,点C与F关于AM对称,连接DF交AM于点P,则点P即为所求.【点睛】本题考查作图-应用与设计,涉及勾股定理、菱形的判定和性质、几何变换轴对称—最短距离等知识,解题的关键是灵活运用所学知识解决问题,学会利用数形结合的思想解决问题.三、解答题(本题包括8个小题)19.某校对六至九年级学生围绕“每天30分钟的大课间,你最喜欢的体育活动项目是什么?(只写一项)”的问题,对在校学生进行随机抽样调查,从而得到一组数据.如图是根据这组数据绘制的条形统计图,请结合统计图回答下列问题:该校对多少学生进行了抽样调查?本次抽样调查中,最喜欢篮球活动的有多少?占被调查人数的百分比是多少?若该校九年级共有200名学生,如图是根据各年级学生人数占全校学生总人数的百分比绘制的扇形统计图,请估计全校六至九年级学生中最喜欢跳绳活动的人数约为多少?【答案】(1)50(2)36%(3)160【解析】(1)根据条形图的意义,将各组人数依次相加即可得到答案;(2)根据条形图可直接得到最喜欢篮球活动的人数,除以(1)中的调查总人数即可得出其所占的百分比;(3)用样本估计总体,先求出九年级占全校总人数的百分比,然后求出全校的总人数;再根据最喜欢跳绳活动的学生所占的百分比,继而可估计出全校学生中最喜欢跳绳活动的人数.【详解】(1)该校对50名学生进行了抽样调查.()2本次调查中,最喜欢篮球活动的有18人,18100%36%50⨯=, ∴最喜欢篮球活动的人数占被调查人数的36%.(3)()130%26%24%20%-++=,20020%1000÷=人,8100%100016050⨯⨯=人. 答:估计全校学生中最喜欢跳绳活动的人数约为160人.【点睛】本题考查的是条形统计图和扇形统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图中各部分占总体的百分比之和为1,直接反映部分占总体的百分比大小.20.先化简:2222421121x x x x x x x ---÷+--+,然后在不等式2x ≤的非负整数解中选择一个适当的数代入求值. 【答案】21x +;2. 【解析】先将后面的两个式子进行因式分解并约分,然后计算减法,根据题意选择x=0代入化简后的式子即可得出答案.【详解】解:原式=()()()()222121112x x x x x x x ---⋅++-- =()21211x x x x --++ =21x + 2x ≤的非负整数解有:2,1,0,其中当x 取2或1时分母等于0,不符合条件,故x 只能取0∴将x=0代入得:原式=2【点睛】本题考查的是分式的化简求值,注意选择数时一定要考虑化简前的式子是否有意义.21.有大小两种货车,3辆大货车与4辆小货车一次可以运货18吨,2辆大货车与6辆小货车一次可以运货17吨. 请问1辆大货车和1辆小货车一次可以分别运货多少吨? 目前有33吨货物需要运输,货运公司拟安排大小货车共计10辆,全部货物一次运完,其中每辆大货车一次运费花费130元,每辆小货车一次运货花费100元,请问货运公司应如何安排车辆最节省费用?【答案】(1)1辆大货车一次可以运货4吨,1辆小货车一次可以运货32吨;(2)货运公司应安排大货车8辆时,小货车2辆时最节省费用.【解析】(1)设1辆大货车和1辆小货车一次可以分别运货x 吨和y 吨,根据“3辆大货车与4辆小货车一次可以运货18吨、2辆大货车与6辆小货车一次可以运货17吨”列方程组求解可得;(2)因运输33吨且用10辆车一次运完,故10辆车所运货不低于10吨,所以列不等式,大货车运费高于小货车,故用大货车少费用就小进行安排即可.【详解】(1)解:设1辆大货车一次可以运货x 吨,1辆小货车一次可以运货y 吨,依题可得: 34182617x y x y +=⎧⎨+=⎩, 解得:432x y =⎧⎪⎨=⎪⎩. 答:1辆大货车一次可以运货4吨,1辆小货车一次可以运货32吨. (2)解:设大货车有m 辆,则小货车10-m 辆,依题可得:4m+32(10-m )≥33 m≥010-m≥0解得:365≤m≤10, ∴m=8,9,10;∴当大货车8辆时,则小货车2辆;当大货车9辆时,则小货车1辆;当大货车10辆时,则小货车0辆;设运费为W=130m+100(10-m )=30m+1000,∵k=30〉0,∴W 随x 的增大而增大,∴当m=8时,运费最少,∴W=130×8+100×2=1240(元),答:货运公司应安排大货车8辆时,小货车2辆时最节省费用.【点睛】考查了二元一次方程组和一元一次不等式的应用,体现了数学建模思想,考查了学生用方程解实际问题的能力,解题的关键是根据题意建立方程组,并利用不等式求解大货车的数量,解题时注意题意中一次运完的含义,此类试题常用的方法为建立方程,利用不等式或者一次函数性质确定方案.22.已知:如图,在直角梯形ABCD 中,AD ∥BC ,∠ABC=90°,DE ⊥AC 于点F ,交BC 于点G ,交AB 的延长线于点E ,且AE=AC .求证:BG=FG ;若AD=DC=2,求AB 的长.【答案】(1)证明见解析;(2)AB=3【解析】(1)证明:∵90ABC ∠=,DE ⊥AC 于点F ,∴∠ABC=∠AFE .∵AC=AE,∠EAF=∠CAB ,∴△ABC ≌△AFE∴AB=AF .连接AG ,∵AG=AG,AB=AF ∴Rt △ABG ≌Rt △AFG∴BG=FG(2)解:∵AD=DC ,DF ⊥AC∴1122AF AC AE == ∴∠E=30°∴∠FAD=∠E=30°∴323.某高中进行“选科走班”教学改革,语文、数学、英语三门为必修学科,另外还需从物理、化学、生物、政治、历史、地理(分别记为A 、B 、C 、D 、E 、F )六门选修学科中任选三门,现对该校某班选科情况进行调查,对调查结果进行了分析统计,并制作了两幅不完整的统计图.请根据以上信息,完成下列问题:该班共有学生人;请将条形统计图补充完整;该班某同学物理成绩特别优异,已经从选修学科中选定物理,还需从余下选修学科中任意选择两门,请用列表或画树状图的方法,求出该同学恰好选中化学、历史两科的概率.【答案】(1)50人;(2)补图见解析;(3)1 10.【解析】分析:(1)根据化学学科人数及其所占百分比可得总人数;(2)根据各学科人数之和等于总人数求得历史的人数即可;(3)列表得出所有等可能结果,从中找到恰好选中化学、历史两科的结果数,再利用概率公式计算可得.详解:(1)该班学生总数为10÷20%=50人;(2)历史学科的人数为50﹣(5+10+15+6+6)=8人,补全图形如下:(3)列表如下:化学生物政治历史地理化学生物、化学政治、化学历史、化学地理、化学生物化学、生物政治、生物历史、生物地理、生物政治化学、政治生物、政治历史、政治地理、政治历史化学、历史生物、历史政治、历史地理、历史地理化学、地理生物、地理政治、地理历史、地理由表可知,共有20种等可能结果,其中该同学恰好选中化学、历史两科的有2种结果,所以该同学恰好选中化学、历史两科的概率为21= 2010.点睛:本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式求事件A或B的概率.24.如图,已知在Rt△ABC中,∠ACB=90°,AC>BC,CD是Rt△ABC的高,E是AC的中点,ED的延长线与CB的延长线相交于点F.求证:DF是BF和CF的比例中项;在AB上取一点G,如果AE•AC=AG•AD,求证:EG•CF=ED•DF.【答案】证明见解析【解析】试题分析:(1)根据已知求得∠BDF=∠BCD,再根据∠BFD=∠DFC,证明△BFD∽△DFC,从而得BF:DF=DF:FC,进行变形即得;(2)由已知证明△AEG∽△ADC,得到∠AEG=∠ADC=90°,从而得EG∥BC,继而得EG BF ED DF=,由(1)可得BF DFDF CF=,从而得EG DFED CF=,问题得证.试题解析:(1)∵∠ACB=90°,∴∠BCD+∠ACD=90°,∵CD是Rt△ABC的高,∴∠ADC=∠BDC=90°,∴∠A+∠ACD=90°,∴∠A=∠BCD,∵E是AC的中点,∴DE=AE=CE,∴∠A=∠EDA,∠ACD=∠EDC,∵∠EDC+∠BDF=180°-∠BDC=90°,∴∠BDF=∠BCD,又∵∠BFD=∠DFC,∴△BFD∽△DFC,∴BF:DF=DF:FC,∴DF2=BF·CF;(2)∵AE·AC=ED·DF,∴AE AGAD AC=,又∵∠A=∠A,∴△AEG ∽△ADC ,∴∠AEG=∠ADC=90°,∴EG ∥BC , ∴EG BF ED DF = , 由(1)知△DFD ∽△DFC ,∴BF DF DF CF= , ∴EG DF ED CF = , ∴EG·CF=ED·DF.25.班级的课外活动,学生们都很积极.梁老师在某班对同学们进行了一次关于“我喜爱的体育项目”的调査,下面是他通过收集数据后,绘制的两幅不完整的统计图.请根据图中的信息,解答下列问题:调查了________名学生;补全条形统计图;在扇形统计图中,“乒乓球”部分所对应的圆心角度数为________;学校将举办运动会,该班将推选5位同学参加乒乓球比赛,有3位男同学(,,)A B C 和2位女同学(,)D E ,现准备从中选取两名同学组成双打组合,用树状图或列表法求恰好选出一男一女组成混合双打组合的概率.【答案】50 见解析(3)115.2° (4)35【解析】试题分析:(1)用最喜欢篮球的人数除以它所占的百分比可得总共的学生数;(2)用学生的总人数乘以各部分所占的百分比,可得最喜欢足球的人数和其他的人数,即可把条形统计图补充完整;(3)根据圆心角的度数=360 º×它所占的百分比计算;(4)列出树状图可知,共有20种等可能的结果,两名同学恰为一男一女的有12种情况,从而可求出答案.解:(1)由题意可知该班的总人数=15÷30%=50(名)故答案为50;(2)足球项目所占的人数=50×18%=9(名),所以其它项目所占人数=50﹣15﹣9﹣16=10(名) 补全条形统计图如图所示:(3)“乒乓球”部分所对应的圆心角度数=360°×=115.2°,故答案为115.2°;(4)画树状图如图.由图可知,共有20种等可能的结果,两名同学恰为一男一女的有12种情况,所以P(恰好选出一男一女)==.点睛:本题考查的是条形统计图和扇形统计图的综合运用,概率的计算.读懂统计图,从不同的统计图中得到必要的信息及掌握概率的计算方法是解决问题的关键.26.如图,在▱ABCD中,DE⊥AB,BF⊥CD,垂足分别为E,F.求证:△ADE≌△CBF;求证:四边形BFDE 为矩形.【答案】(1)证明见解析;(2)证明见解析.【解析】(1)由DE与AB垂直,BF与CD垂直,得到一对直角相等,再由ABCD为平行四边形得到AD=BC,对角相等,利用AAS即可的值;(2)由平行四边形的对边平行得到DC与AB平行,得到∠CDE为直角,利用三个角为直角的四边形为矩形即可的值.【详解】解:(1)∵DE⊥AB,BF⊥CD,∴∠AED=∠CFB=90°,∵四边形ABCD为平行四边形,∴AD=BC,∠A=∠C,在△ADE和△CBF中,{AED CFB A CAD BC∠=∠∠=∠=,∴△ADE≌△CBF(AAS);(2)∵四边形ABCD为平行四边形,∴CD∥AB,∴∠CDE+∠DEB=180°,∵∠DEB=90°,∴∠CDE=90°,∴∠CDE=∠DEB=∠BFD=90°,则四边形BFDE为矩形.【点睛】本题考查1.矩形的判定;2.全等三角形的判定与性质;3.平行四边形的性质.中考数学模拟试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.如图,数轴上有M、N、P、Q四个点,其中点P所表示的数为a,则数-3a所对应的点可能是( )A.M B.N C.P D.Q【答案】A【解析】解:∵点P所表示的数为a,点P在数轴的右边,∴-3a一定在原点的左边,且到原点的距离是点P到原点距离的3倍,∴数-3a所对应的点可能是M,故选A.点睛:本题考查了数轴,解决本题的关键是判断-3a一定在原点的左边,且到原点的距离是点P到原点距离的3倍.2.计算(ab2)3的结果是()A.ab5B.ab6C.a3b5D.a3b6【答案】D【解析】试题分析:根据积的乘方的性质进行计算,然后直接选取答案即可.试题解析:(ab2)3=a3•(b2)3=a3b1.故选D.考点:幂的乘方与积的乘方.3.甲、乙两超市在1月至8月间的盈利情况统计图如图所示,下面结论不正确的是()A.甲超市的利润逐月减少B.乙超市的利润在1月至4月间逐月增加C.8月份两家超市利润相同D.乙超市在9月份的利润必超过甲超市【答案】D【解析】根据折线图中各月的具体数据对四个选项逐一分析可得.【详解】A、甲超市的利润逐月减少,此选项正确,不符合题意;B、乙超市的利润在1月至4月间逐月增加,此选项正确,不符合题意;C、8月份两家超市利润相同,此选项正确,不符合题意;D、乙超市在9月份的利润不一定超过甲超市,此选项错误,符合题意,故选D.【点睛】本题主要考查折线统计图,折线图是用一个单位表示一定的数量,根据数量的多少描出各点,然后把各点用线段依次连接起来.以折线的上升或下降来表示统计数量增减变化.4.若一个圆锥的底面半径为3cm,母线长为5cm,则这个圆锥的全面积为()A.15πcm2B.24πcm2C.39πcm2D.48πcm2【答案】B【解析】试题分析:底面积是:9πcm1,底面周长是6πcm,则侧面积是:12×6π×5=15πcm1.则这个圆锥的全面积为:9π+15π=14πcm1.故选B.考点:圆锥的计算.5.如图,已知△ABC中,∠ABC=45°,F是高AD和BE的交点,CD=4,则线段DF的长度为( )A.22B.4 C.32D.42【答案】B【解析】求出AD=BD,根据∠FBD+∠C=90°,∠CAD+∠C=90°,推出∠FBD=∠CAD,根据ASA证△FBD≌△CAD,推出CD=DF即可.【详解】解:∵AD⊥BC,BE⊥AC,∴∠ADB=∠AEB=∠ADC=90°,∴∠EAF+∠AFE=90°,∠FBD+∠BFD=90°,∵∠AFE=∠BFD,∴∠EAF=∠FBD,∵∠ADB=90°,∠ABC=45°,∴∠BAD=45°=∠ABC,∴AD=BD,在△ADC和△BDF中CAD DBF AD BDFDB ADC∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△ADC≌△BDF,∴DF=CD=4,故选:B .【点睛】此题主要考查了全等三角形的判定,关键是找出能使三角形全等的条件.6.如图所示的图形,是下面哪个正方体的展开图( )A .B .C .D .【答案】D 【解析】根据展开图中四个面上的图案结合各选项能够看见的面上的图案进行分析判断即可.【详解】A. 因为A 选项中的几何体展开后,阴影正方形的顶点不在阴影三角形的边上,与展开图不一致,故不可能是A:B. 因为B 选项中的几何体展开后,阴影正方形的顶点不在阴影三角形的边上,与展开图不一致,故不可能是B ;C .因为C 选项中的几何体能够看见的三个面上都没有阴影图家,而展开图中有四个面上有阴影图室,所以不可能是C.D. 因为D 选项中的几何体展开后有可能得到如图所示的展开图,所以可能是D ;故选D.【点睛】本题考查了学生的空间想象能力, 解决本题的关键突破口是掌握正方体的展开图特征.7.如图,△ABC 中,AD 是中线,BC=8,∠B=∠DAC ,则线段 AC 的长为( )A .3B .2C .6D .4【答案】B 【解析】由已知条件可得ABC DAC ~,可得出AC BC DC AC=,可求出AC 的长. 【详解】解:由题意得:∠B=∠DAC ,∠ACB=∠ACD,所以ABC DAC ~,根据“相似三角形对应边成比例”,得AC BC DC AC=,又AD 是中线,BC=8,得DC=4,代入可得AC=2, 故选B.【点睛】本题主要考查相似三角形的判定与性质.灵活运用相似的性质可得出解答.8.若直线y=kx+b 图象如图所示,则直线y=−bx+k 的图象大致是( )A .B .C .D .【答案】A【解析】根据一次函数y=kx+b 的图象可知k >1,b <1,再根据k ,b 的取值范围确定一次函数y=−bx+k 图象在坐标平面内的位置关系,即可判断.【详解】解:∵一次函数y=kx+b 的图象可知k >1,b <1,∴-b >1,∴一次函数y=−bx+k 的图象过一、二、三象限,与y 轴的正半轴相交,故选:A .【点睛】本题考查了一次函数的图象与系数的关系.函数值y 随x 的增大而减小⇔k <1;函数值y 随x 的增大而增大⇔k >1;一次函数y=kx+b 图象与y 轴的正半轴相交⇔b >1,一次函数y=kx+b 图象与y 轴的负半轴相交⇔b <1,一次函数y=kx+b 图象过原点⇔b=1. 9.如图,排球运动员站在点O 处练习发球,将球从O 点正上方2m 的A 处发出,把球看成点,其运行的高度y (m )与运行的水平距离x (m )满足关系式y =a (x ﹣k )2+h .已知球与D 点的水平距离为6m 时,达到最高2.6m ,球网与D 点的水平距离为9m .高度为2.43m ,球场的边界距O 点的水平距离为18m ,则下列判断正确的是( )A .球不会过网B .球会过球网但不会出界C .球会过球网并会出界D .无法确定【答案】C 【解析】分析:(1)将点A(0,2)代入2(6) 2.6y a x =-+求出a 的值;分别求出x=9和x=18时的函数值,再分别与2.43、0比较大小可得.。
(完整版)2018年山东省济南市中考数学试卷(可编辑修改word版)
A . 12B . -12C .1 12D . - 1 122018 年ft 东省济南市中考数学试卷一、选择题(共 15 小题,每小题 3 分,满分 45 分) 1.-12 的绝对值是()2.如图,直线 a∥b,直线 c 与 a ,b 相交,∠1=65°,则∠2=()3.2018 年伦敦奥运会火炬传递路线全长约为 12800 公里,数字 12800 用科学记数法表示为( )4.下列事件中必然事件的是()A . 任意买一张电影票, 座位号是偶数A . 1.28× 103B . 12.8× 103C . 1.28× 104D . 0.128× 105A . 115°B . 65°C . 35°D . 25°B.正常情况下,将水加热到 100℃ 时水会沸腾C.三角形的内角和是360°D.打开电视机,正在播动画片5.下列各式计算正确的是()A.3x-2x=1 B.a2+a2=a4C.a5÷a5=a D.a3•a2=a56.下面四个立体图形中,主视图是三角形的是()A.B.C.D.7.化简5(2x-3)+4(3-2x)结果为()A.2x-3 B.2x+9 C.8x-3 D.18x-38.暑假即将来临,小明和小亮每人要从甲、乙、丙三个社区中随机选取一个社区参加综合实践活动,那么小明和小亮选到同一社区参加实践活动的概率为()A . 1 2B . 1 3C . 1 6D . 1 99. 如图,在 8×4 的矩形网格中,每格小正方形的边长都是 1,若△ABC 的三个顶点在图中相应的格点上,则 tan∠ACB的10. 下列命题是真命题的是()A. 对角线相等的四边形是矩形B. 一组邻边相等的四边形是菱形C. 四个角是直角的四边形是正方形D. 对角线相等的梯形是等腰梯形值为( ) A .B .C .1 12 D . 332 2A.2 +1 B.5C.1455D.52A.x=2 B.y=2 C.x=-1 D.y=-111.一次函数y=kx+b 的图象如图所示,则方程kx+b=0 的解为()12.已知⊙O1和⊙O2的半径是一元二次方程x2-5x+6=0 的两根,若圆心距O1O2=5,则⊙O1和⊙O2的位置关系是()13.如图,∠MON=90°,矩形ABCD 的顶点A、B 分别在边OM,ON 上,当B 在边ON 上运动时,A 随之在边OM 上运动,矩形ABCD 的形状保持不变,其中AB=2,BC=1,运动过程中,点D 到点O 的最大距离为()A.外离B.外切C.相交D.内切14.如图,矩形 BCDE 的各边分别平行于 x 轴或 y 轴,物体甲和物体乙分别由点 A(2,0)同时出发,沿矩形 BCDE 的边作环绕运动,物体甲按逆时针方向以 1 个单位/秒匀速运动,物体乙按顺时针方向以 2 个单位/秒匀速运动,则两个物体运动后的第 2018 次相遇地点的坐标是()A.(2,0)B.(-1,1)C.(-2,1)D.(-1,-1)15.如图,二次函数的图象经过(-2,-1),(1,1)两点,则下列关于此二次函数的说法正确的是()A. y 的最大值小于 0 B.当 x=0 时, y 的值大于 1C.当 x=-1 时, y 的值大于 1 D.当 x=-3 时, y 的值小于 0二、填空题(共6 小题,每小题 3 分,满分 18 分)16.分解因式:a2-1=.★★★★★17.计算:2sin30°-16=.18.不等式组2x−4<0x+1≥0的解集为.19.如图,在Rt△ABC中,∠C=90°,AC=4,将△ABC沿CB 向右平移得到△DEF,若平移距离为 2,则四边形 ABED 的面积等于.20.如图,在Rt△ABC中,∠B=90°,AB=6,BC=8,以其三边为直径向三角形外作三个半圆,矩形 EFGH 的各边分别与半圆相切且平行于 AB 或BC,则矩形 EFGH 的周长是.21.如图,济南建邦大桥有一段抛物线型的拱梁,抛物线的表达式为 y=ax2+bx.小强骑自行车从拱梁一端O 沿直线匀速穿过拱梁部分的桥面 OC,当小强骑自行车行驶 10 秒时和 26 秒时拱梁的高度相同,则小强骑自行车通过拱梁部分的桥面OC共需秒.三、解答题(共 7 小题,共 57 分,解答应写出文字说明,证明过程或演算步骤)22.(1)解不等式 3x-2≥4,并将解集在数轴上表示出来.(2)化简:a−1a−2÷a2−2a+12a−4.23.(1)如图 1,在▱ABCD 中,点 E,F 分别在 AB,CD 上,AE=CF.求证:DE=BF.(2)如图 2,在△ABC 中,AB=AC,∠A=40°,BD 是∠ABC 的平分线,求∠BDC 的度数.24.冬冬全家周末一起去济南ft区参加采摘节,他们采摘了油桃和樱桃两种水果,其中油桃比樱桃多摘了 5 斤,若采摘油桃和樱桃分别用了 80 元,且樱桃每斤价格是油桃每斤价格的 2 倍,问油桃和樱桃每斤各是多少元?25.济南以“泉水”而闻名,为保护泉水,造福子孙后代,济南市积极开展“节水保泉”活动,宁宁利用课余时间对某小区 300 户居民的用水情况进行了统计,发现5 月份各户居民的用水量比4 月份有所下降,宁宁将5 月份各户居民的节水量统计整理如下统计图表:节水量(米3) 1 1.5 2.5 3户数50 80 100 70(1)300 户居民 5 月份节水量的众数,中位数分别是多少米3?(2)扇形统计图中 2.5 米3对应扇形的圆心角为度;(3)该小区 300 户居民 5 月份平均每户节约用水多少米3?26.如图 1,在菱形 ABCD 中,AC=2,BD=23,AC,BD 相交于点 O.(1)求边 AB 的长;(2)如图 2,将一个足够大的直角三角板60°角的顶点放在菱形 ABCD 的顶点 A 处,绕点 A 左右旋转,其中三角板60°角的两边分别与边 BC,CD 相交于点 E,F,连接 EF 与AC 相交于点 G.①判断△AEF 是哪一种特殊三角形,并说明理由;②旋转过程中,当点 E 为边 BC 的四等分点时(BE>CE),求 CG 的长.27.如图,已知双曲线 y=kx经过点 D(6,1),点 C 是双曲线第三象限上的动点,过 C 作CA⊥x 轴,过 D 作DB⊥y 轴,垂足分别为 A,B,连接 AB,BC (1)求k 的值;(2)若△BCD的面积为 12,求直线 CD 的解析式;(3)判断 AB 与CD 的位置关系,并说明理由.28.如图 1,抛物线 y=ax2+bx+3 与x 轴相交于点 A(-3,0),B(-1,0),与 y 轴相交于点 C,⊙O1为△ABC的外接圆,交抛物线于另一点 D.(1)求抛物线的解析式;(2)求cos∠CAB的值和⊙O1的半径;(3)如图 2,抛物线的顶点为 P,连接 BP,CP,BD,M 为弦BD 中点,若点 N 在坐标平面内,满足△BMN∽△BPC,请直接写出所有符合条件的点 N 的坐标.。
2018年山东省济南市市中区中考数学一模试卷
2018年山东省济南市市中区中考数学一模试卷参考答案与试题解析一、选择题(本大题共15个小题.每小题3分,共45分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.(3分)4的算术平方根是()A.﹣2 B.2C.±2 D.16考点:算术平方根.分析:根据算术平方根的定义进行解答即可.解答:解:∵22=4,∴4的算术平方根是2.故选B.点评:本题考查了算术平方根的定义,熟记定义是解题的关键.2.(3分)据萧山区旅游局统计,2012年春节约有359525人来萧旅游,将这个旅游人数(保留三个有效数字)用科学记数法表示为()A.3.59×105B.3.60×105C.3.5×105D.3.6×105考点:科学记数法与有效数字.专题:计算题.分析:根据科学记数法与有效数字的定义将359525保留三个有效数字得到3.60×105.解答:解:359525≈3.60×105.故选B.点评:本题考查了科学记数法与有效数字:把一个数表示成a×10n(1≤a<10)叫科学记数法;从一个数的左边第一个不为零的数字数起,到最后一个数字止,所有数字都是这个数的有效数字.3.(3分)下列运算正确的是()A.﹣(a﹣1)=﹣a﹣1 B.(﹣2a3)2=4a6C.(a﹣b)2=a2﹣b2D.a3+a2=2a5考点:完全平方公式;合并同类项;去括号与添括号;幂的乘方与积的乘方.专题:常规题型.分析:根据去括号法则,积的乘方的性质,完全平方公式,合并同类项法则,对各选项分析判断后利用排除法求解.解答:解:A、因为﹣(a﹣1)=﹣a+1,故本选项错误;B、(﹣2a3)2=4a6,正确;C、因为(a﹣b)2=a2﹣2ab+b2,故本选项错误;D、因为a3与a2不是同类项,而且是加法,不能运算,故本选项错误.故选B.点评:本题考查了合并同类项,积的乘方,完全平方公式,理清指数的变化是解题的关键.4.(3分)如图,由几个小正方体组成的立体图形的左视图是()A.B.C.D.考点:简单组合体的三视图.分析:找到从左面看所得到的图形即可,注意所有的看到的棱都应表现在三视图中.解答:解:从物体左面看,左边2列,右边是1列.故选A.点评:本题考查了三视图的知识,左视图是从物体的左面看得到的视图,解答时学生易将三种视图混淆而错误的选其它选项.5.(3分)已知α为锐角,sin(α﹣20°)=,则α=()A.20°B.40°C.60°D.80°考点:特殊角的三角函数值.分析:根据特殊角的三角函数值直接解答即可.解答:解:∵α为锐角,sin(α﹣20°)=,∴α﹣20°=60°,∴α=80°,故选D.点评:本题考查的是特殊角的三角函数值,属较简单题目.6.(3分)下列事件中确定事件是()A.掷一枚均匀的硬币,正面朝上B.买一注福利彩票一定会中奖C.把4个球放入三个抽屉中,其中一个抽屉中至少有2个球D.掷一枚六个面分别标有1,2,3,4,5,6的均匀正方体骰子,骰子停止转动后奇数点朝上考点:随机事件.分析:确定事件包括必然事件和不可能事件.必然事件指在一定条件下,一定发生的事件;不可能事件是指在一定条件下,一定不发生的事件;不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.解答:解:A、掷一枚均匀的硬币,正面朝上是随机事件;B、买一注福利彩票一定会中奖是随机事件;C、把4个球放入三个抽屉中,其中一个抽屉中至少有2个球是必然事件,即确定事件;D、掷一枚六个面分别标有1,2,3,4,5,6的均匀正方体骰子,骰子停止转动后奇数点朝上是随机事件.故选C.点评:解决本题需要正确理解必然事件、不可能事件、随机事件的概念.注意确定事件包括必然事件和不可能事件.7.(3分)如图,把一块含有45°角的直角三角板的两个顶点放在直尺的对边上.如果∠1=15°,则∠2的余角的度数是()A.30°B.55°C.55°D.60°考点:平行线的性质;余角和补角.分析:由两直线平行,内错角相等,即可求得∠3的度数,又由等腰直角三角形的性质,可求得∠2的度数,继而求得∠2的余角的度数.解答:解:∵a∥b,∴∠3=∠1=15°,∵∠ABC=45°,∴∠2=∠ABC﹣∠3=45°﹣15°=30°,∴∠2的余角的度数是:90°﹣∠2=60°.故选D.点评:此题考查了平行线的性质与余角的定义.此题比较简单,解题的关键是掌握两直线平行,内错角相等定理的应用,掌握数形结合思想的应用.8.(3分)若式子有意义,则x的取值范围为()A.x≥2 B.x≠3 C.x≥2或x≠3 D.x≥2且x≠3考点:二次根式有意义的条件;分式有意义的条件.专题:计算题.分析:根据二次根式的性质和分式的意义,被开方数大于等于0,分母不等于0,就可以求解.解答:解:根据二次根式有意义,分式有意义得:x﹣2≥0且x﹣3≠0,解得:x≥2且x≠3.故选D.点评:本题考查了二次根式有意义的条件和分式的意义.考查的知识点为:分式有意义,分母不为0;二次根式的被开方数是非负数.9.(3分)已知,且﹣1<x﹣y<0,则k的取值范围为()A.﹣1<k<﹣B.0<k<C.0<k<1 D.<k<1考点:解一元一次不等式组.分析:利用第二个方程减去第一个方程,得到一个不等式,根据﹣1<x﹣y<0得到一个不等式,组成不等式组解这个不等式即可.解答:解:第二个方程减去第一个方程得到x﹣y=1﹣2k,根据﹣1<x﹣y<0得到:﹣1<1﹣2k<0即解得<k<1k的取值范围为<k<1.故选D.点评:要求k的取值范围可以通过解方程组,得到关于k的不等式组解决.10.(3分)下列关于x的一元二次方程中,有两个不相等的实数根的方程是()A.x2+1=0 B.x2+2x+1=0 C.x2+2x+3=0 D.x2+2x﹣3=0考点:根的判别式.分析:要判断所给方程是有两个不相等的实数根,只要找出方程的判别式,根据判别式的正负情况即可作出判断.有两个不相等的实数根的方程,即判别式的值大于0的一元二次方程.解答:解:A、x2+1=0中△<0,没有实数根;B、x2+2x+1=0中△=0,有两个相等的实数根;C、x2+2x+3=0中△<0,没有实数根;D、x2+2x﹣3=0中△>0,有两个不相等的实数根.故选D.点评:总结:一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.11.(3分)二次函数y1=ax2﹣x+1的图象与y2=﹣2x2图象的形状,开口方向相同,只是位置不同,则二次函数y1的顶点坐标是()A.(﹣,﹣)B.(﹣,)C.(,)D.(,﹣)考点:二次函数的性质.分析:因为图象的形状,开口方向相同,所以a=﹣2.利用公式法y=ax2+bx+c的顶点坐标公式即可求.解答:解:根据题意可知,a=﹣2,又∵=﹣,=,∴顶点坐标为(﹣,).故选B.点评:此题考查了二次函数的性质.12.(3分如图,点A、B、C、D、E、F为圆O的六等分点,动点P从圆心O出发,沿O﹣C﹣D﹣O的路线作匀速运动.设运动时间为x秒,∠APF的度数为y度,则下列图象中表示y与x之间函数关系最恰当的是()A .B .C .D .考点: 动点问题的函数图象.专题: 压轴题.分析:根据图象分别求出当动点P 在OC 上、在上、在DO 上运动时,∠APB 的变化情况即可得出表示y 与x 之间函数关系最恰当的图象.解答: 解:如图:当动点P 在OC 上运动时,∠APF 逐渐减小;当动点P 在上运动时,∠APF 不变;当动点P 在DO 上运动时,∠APF 逐渐增大.则表示y 与x 之间函数关系最恰当的是C ;故选C .点评: 此题考查了动点问题的函数图象,用到的知识点是圆周角、圆内的角及函数图象,关键是得出动点P 从圆心O 出发,沿O ﹣C ﹣D ﹣O 的路线作匀速运动时∠APF 的度数是如何变化的.13.(3分)如图,已知菱形ABCD 的对角线AC 、BD 的长分别为6cm 、8cm ,AE ⊥BC 于点E ,则AE 的长是( )A .B .C .D .考点: 菱形的性质;勾股定理.专题: 压轴题.分析: 根据菱形的性质得出BO 、CO 的长,在RT △BOC 中求出BC ,利用菱形面积等于对角线乘积的一半,也等于BC ×AE ,可得出AE 的长度.解答:解:∵四边形ABCD是菱形,∴CO=AC=3cm,BO=BD=4cm,AO⊥BO,∴BC==5cm,∴S菱形ABCD==×6×8=24cm2,∵S菱形ABCD=BC×AE,∴BC×AE=24,∴AE=cm,故选D.点评:此题考查了菱形的性质,也涉及了勾股定理,要求我们掌握菱形的面积的两种表示方法,及菱形的对角线互相垂直且平分.14.(3分)如图,P1是反比例函数y=在第一象限图象上的一点,点A1的坐标为(2,0).若△P1OA1与△P2A1A2均为等边三角形,则A2点的坐标为()A.2B.2﹣1 C.2D.2﹣1考点:反比例函数综合题.分析:由于△P1OA1为等边三角形,作P1C⊥OA1,垂足为C,由等边三角形的性质及勾股定理可求出点P1的坐标,根据点P1是反比例函数y=图象上的一点,利用待定系数法求出此反比例函数的解析式;作P2D⊥A1A2,垂足为D.设A1D=a,由于△P2A1A2为等边三角形,由等边三角形的性质及勾股定理,可用含a的代数式分别表示点P2的横、纵坐标,再代入反比例函数的解析式中,求出a的值,进而得出A2点的坐标.解答:解:(1)因为△P1OA1为边长是2的等边三角形,所以OC=1,P1C=2×=,所以P1(1,).代入y=,得k=,所以反比例函数的解析式为y=.作P2D⊥A1A2,垂足为D.设A1D=a,则OD=2+a,P2D=a,所以P2(2+a,a).∵P2(2+a,a)在反比例函数的图象上,∴代入y=,得(2+a)•a=,化简得a2+2a﹣1=0解得:a=﹣1±.∵a>0,∴a=﹣1+.∴A1A2=﹣2+2,∴OA2=OA1+A1A2=2,所以点A2的坐标为(2,0).故选C.点评:此题综合考查了反比例函数的性质,利用待定系数法求函数的解析式,正三角形的性质等多个知识点.此题难度稍大,综合性比较强,注意对各个知识点的灵活应用.15.(3分)在平面坐标系中,正方形ABCD的位置如图所示,点A的坐标为(1,0),点D的坐标为(0,2),延长CB交x轴于点A1,作正方形A1B1C1C,延长C1B1交x轴于点A2,作正方形A2B2C2C1,…按这样的规律进行下去,第2012个正方形的面积为()A.B.C.D.考点:相似三角形的判定与性质;坐标与图形性质;正方形的性质.专题:压轴题;规律型.分析:首先设正方形的面积分别为S1,S2…S2012,由题意可求得S1的值,易证得△BAA1∽△B1A1A2,利用相似三角形的对应边成比例与三角函数的性质,即可求得S2的值,继而求得S3的值,继而可得规律:S n=5×()2n﹣2,则可求得答案.解答:解:∵点A的坐标为(1,0),点D的坐标为(0,2),∴OA=1,OD=2,设正方形的面积分别为S1,S2 (2012)根据题意,得:AD∥BC∥C1A2∥C2B2,∴∠BAA1=∠B1A1A2=∠B2A2x,∵∠ABA1=∠A1B1A2=90°,∴△BAA1∽△B1A1A2,在直角△ADO中,根据勾股定理,得:AD==,∴AB=AD=BC=,∴S1=5,∵∠DAO+∠ADO=90°,∠DAO+∠BAA1=90°,∴∠ADO=∠BAA1,∴tan∠BAA1===,∴A1B=,∴A1C=BC+A1B=,∴S2=×5=5×()2,∴==,∴A2B1=×=,∴A2C1=B1C1+A2B1=+==×()2,∴S3=×5=5×()4,由此可得:S n=5×()2n﹣2,∴S2012=5×()2×2012﹣2=5×()4022.故选D.点评:此题考查了相似三角形的判定与性质、正方形的性质以及三角函数等知识.此题难度较大,解题的关键是得到规律S n=5×()2n﹣2.二、填空题(本大题共6个小题.每小题3分,共18分.把答案填在题中横线上)16.(3分)分解因式:2x2+4x+2=2(x+1)2.考点:提公因式法与公式法的综合运用.分析:先提取公因式2,再根据完全平方公式进行二次分解.完全平方公式:a2±2ab+b2=(a±b)2.解答:解:2x2+4x+2=2(x2+2x+1)=2(x+1)2.故答案为:2(x+1)2.点评:本题考查了提公因式法,公式法分解因式,提取公因式后利用完全平方公式进行二次分解,注意分解要彻底.17.(3分)当宽为3cm的刻度尺的一边与圆相切时,另一边与圆的两个交点处的读数如图所示(单位:cm),那么该圆的半径为cm.考点:垂径定理的应用;勾股定理.专题:压轴题;探究型.分析:连接OA,过点O作OD⊥AB于点D,由垂径定理可知,AD=AB=(9﹣1)=4,设OA=r,则OD=r﹣3,在Rt△OAD中利用勾股定理求出r的值即可.解答:解:连接OA,过点O作OD⊥AB于点D,∵OD⊥AB,∴AD=AB=(9﹣1)=4cm,设OA=r,则OD=r﹣3,在Rt△OAD中,OA2﹣OD2=AD2,即r2﹣(r﹣3)2=42,解得r=cm.故答案为:.点评:本题考查的是垂径定理及勾股定理,根据题意作出辅助线,构造出直角三角形是解答此题的关键.18.(3分)化简的结果是m+1.考点:分式的混合运算.专题:计算题.分析:把原式括号中通分后,利用同分母分式的加法运算法则:分母不变,只把分子相加进行计算,同时将除式的分母利用平方差公式分解因式,并根据除以一个数等于乘以这个数的倒数把除法运算化为乘法运算,约分后即可得到结果.解答:解:(1+)÷=(+)÷=•=•=m+1.故答案为:m+1点评:此题考查了分式的混合运算,分式的加减运算关键是通分,通分的关键是找最简公分母;分式的乘除运算关键是约分,约分的关键是找公因式,约分时若分子分母是多项式,应先将多项式分解因式后再约分.19.(3分)在一个暗箱里放有a个除颜色外完全相同的球,这a个球中红球只有3个.每次将球搅拌均匀后,任意摸出一个球,记下颜色后,再放回暗箱,通过大量的重复试验后发现,摸到红球的频率稳定在25%.那么估计a大约有12个.考点:利用频率估计概率.分析:在同样条件下,大量反复试验时,随机事件发生的频率逐渐稳定在概率附近,可以从比例关系入手,列出方程求解.解答:解:由题意可得,×100%=25%,解得,a=12个.故估计a大约有12个.点评:本题利用了用大量试验得到的频率可以估计事件的概率.关键是根据红球的频率得到相应的等量关系.20.(3分)如图,在矩形ABCD中,AB=3,AD=4,P是AD上一动点,PE⊥AC于E,PF⊥BD于F,则PE+PF=.考点:矩形的性质;相似三角形的判定与性质.专题:动点型.分析:根据△AEP∽△ADC;△DFP∽△DAB找出关系式解答.解答:解:设AP=x,PD=4﹣x,由勾股定理,得AC=BD==5,∵∠PAE=∠CAD,∠AEP=∠ADC=90°,∴Rt△AEP∽Rt△ADC;∴=,即=﹣﹣﹣(1).同理可得Rt△DFP∽Rt△DAB,∴=﹣﹣﹣(2).故(1)+(2)得=,∴PE+PF=.另解:∵四边形ABCD为矩形,∴△OAD为等腰三角形,∴PE+PF等于△OAD腰OA上的高,即Rt△ADC斜边上的高,∴PE+PF==.点评:此题比较简单,根据矩形的性质及相似三角形的性质解答即可.21.(3分)将边长为8cm的正方形ABCD的四边沿直线l向右滚动(不滑动),当正方形滚动两周时,正方形的顶点A所经过的路线的长是16π+8πcm.考点:弧长的计算;正方形的性质.专题:压轴题.分析:可先计算旋转周时,正方形的顶点A所经过的路线的长,可以看出是四段弧长,根据弧长公式计算即可.解答:解:第一次旋转是以点C为圆心,AC为半径,旋转角度是90度,所以弧长==4π;第二次旋转是以点D为圆心,AD为半径,角度是90度,所以弧长==4π;第三次旋转是以点A为圆心,所以没有路程;第四次是以点B为圆心,AB为半径,角度是90度,所以弧长==4π;所以旋转一周的弧长共=4π+8π.所以正方形滚动两周正方形的顶点A所经过的路线的长是16π+8π.点评:本题的关键是理清第一次旋转时的圆心及半径和圆心角的度数,然后利用弧长公式求解.三、解答题(本大题共7个小题.共57分.解答应写出文字说明、证明过程或演算步骤)22.(7分)(1)计算:(2)解方程:考点:特殊角的三角函数值;零指数幂;解分式方程.专题:计算题.分析:(1)分别根据0指数幂、特殊角的三角函数值、绝对值计算出各数,再根据实数的运算法则进行计算,(2)本题的最简公分母是x(x+1),方程两边都乘最简公分母,可把分式方程转换为整式方程求解.解答:解:(1)原式=1﹣3×+﹣2=﹣1,(2)方程两边都乘x(x+1),得:x+1=2x,x=1,经检验:x=1是原方程的解.点评:本题考查了0指数幂、特殊角的三角函数值、绝对值,是基础知识比较简单,分式方程都通过去分母转化成整式方程求解,检验是解分式方程必不可少的一步,难度适中.23.(7分)(1)一个人由山底爬到山顶,需先爬45°的山坡200m,再爬30°的山坡300m,求山的高度(结果可保留根号).(2)如图,△ABC与△ABD中,AD与BC相交于O点,∠1=∠2,请你添加一个条件(不再添加其它线段,不再标注或使用其他字母),使AC=BD,并给出证明.你添加的条件是:AD=BC;OC=OD;∠C=∠D;∠CAO=∠DBC等.证明:考点:解直角三角形的应用-坡度坡角问题;全等三角形的判定与性质.分析:(1)由已知可得到山的高度由两部分组成分别是45°和30°所对的高度,所以利用三角函数分别求得这两部分的值,此时山的高度就不难求了;(2)要使AC=BD,可以证明△ABC≌△BAD,从而得到结论.解答:(1)解:依题意,可得山高h=200sin45°+300sin30°=200×+300×=100+150(m)所以山高为(100+150)m.(2)解:添加条件例举:AD=BC;OC=OD;∠C=∠D;∠CAO=∠DBC 等.证明例举(以添加条件AD=BC为例):∵在△ABC与△BAD中,,∴△ABC≌△BAD(SAS).∴AC=BD.点评:(1)考查了坡度坡角的理解及解直角三角形的综合运用.(2)考查了全等三角形的判定及性质;判定两个三角形全等的方法有:SSS,SAS,ASA,AAS,本题已知一边一角,所以可以寻找夹这个角的另外一边或者是另外两个角.24.(8分)广安市某楼盘准备以每平方米6000元的均价对外销售,由于国务院有关房地产的新政策出台后,购房者持币观望,房地产开发商为了加快资金周转,对价格经过两次下调后,决定以每平方米4860元的均价开盘销售.(1)求平均每次下调的百分率.(2)某人准备以开盘价均价购买一套100平方米的住房,开发商给予以下两种优惠方案以供选择:①打9.8折销售;②不打折,一次性送装修费每平方米80元,试问哪种方案更优惠?考点:一元二次方程的应用.专题:增长率问题;优选方案问题;压轴题.分析:(1)根据题意设平均每次下调的百分率为x,列出一元二次方程,解方程即可得出答案;(2)分别计算两种方案的优惠价格,比较后发现方案①更优惠.解答:解:(1)设平均每次下调的百分率为x,则6000(1﹣x)2=4860,解得:x1=0.1=10%,x2=1.9(舍去),故平均每次下调的百分率为10%;(2)方案①购房优惠:4860×100×(1﹣0.98)=9720(元);方案②可优惠:80×100=8000(元).故选择方案①更优惠.点评:本题主要考查一元二次方程的实际应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解,属于中档题.25.(8分)“五•一”假期,某公司组织部分员工分别到A、B、C、D四地旅游,公司按定额购买了前往各地的车票.下图是未制作完的车票种类和数量的条形统计图,根据统计图回答下列问题:(1)若去D地的车票占全部车票的10%,请求出D地车票的数量,并补全统计图;(2)若公司采用随机抽取的方式分发车票,每人抽取一张(所有车票的形状、大小、质地完全相同且充分洗匀),那么员工小胡抽到去A地的概率是多少?(3)若有一张车票,小王、小李都想要,决定采取抛掷一枚各面分别标有1,2,3,4的正四面体骰子的方法来确定,具体规则是:“每人各抛掷一次,若小王掷得着地一面的数字比小李掷得着地一面的数字小,车票给小王,否则给小李”.试用“列表法或画树状图”的方法分析,这个规则对双方是否公平?考点:游戏公平性;条形统计图;概率公式;列表法与树状图法.分析:(1)首先设D地车票有x张,根据去D地的车票占全部车票的10%列方程即可求得去D地的车票的数量,则可补全统计图;(2)根据概率公式直接求解即可求得答案;(3)依据题意先用列表法或画树状图法分析所有等可能的出现结果,然后根据概率公式求出该事件的概率,比较是否相等即可求得答案.解答:解:(1)设D地车票有x张,则x=(x+20+40+30)×10%,解得x=10.即D地车票有10张.补全统计图如图所示.(2)小胡抽到去A地的概率为=.(3)不公平.以列表法说明:1 2 3 4小李掷得数字小王掷得数字1 (1,1)(1,2)(1,3)(1,4)2 (2,1)(2,2)(2,3)(2,4)3 (3,1)(3,2)(3,3)(3,4)4 (4,1)(4,2)(4,3)(4,4)或者画树状图法说明(如图)由此可知,共有16种等可能结果.其中小王掷得数字比小李掷得数字小的有6种:(1,2),(1,3),(1,4),(2,3),(2,4),(3,4).∴小王掷得数字比小李掷得数字小的概率为=.则小王掷得数字不小于小李掷得数字的概率为=.∴这个规则对双方不公平.点评:本题考查的是用列表法或画树状图法求概率与概率公式得到应用.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件.游戏双方获胜的概率相同,游戏就公平,否则游戏不公平.用到的知识点为:概率=所求情况数与总情况数之比.26.(9分)如图,反比例函数(x>0)的图象经过线段OA的端点A,O为原点,作AB⊥x轴于点B,点B的坐标为(2,0),tan∠AOB=.(1)求k的值;(2)将线段AB沿x轴正方向平移到线段DC的位置,反比例函数(x>0)的图象恰好经过DC的中点E,求直线AE的函数表达式;(3)若直线AE与x轴交于点M、与y轴交于点N,请你探索线段AN与线段ME的大小关系,写出你的结论并说明理由.考点:反比例函数综合题.分析:(1)在直角△AOB中利用三角函数求得A的坐标,然后利用待定系数法即可求得k的值;(2)已知E是DC的中点,则E的纵坐标已知,代入反比例函数的解析式即可求得E的坐标,然后利用待定系数法即可求得直线的解析式;(3)首先求得M、N的坐标,延长DA交y轴于点F,则AF⊥ON,利用勾股定理求得AN和EM 的长,即可证得.解答:解:(1)由已知条件得,在Rt△OAB中,OB=2,tan∠AOB=,∴=,∴AB=3,∴A点的坐标为(2,3)…(1分)∴k=xy=6…(2分)(2)∵DC由AB平移得到,点E为DC的中点,∴点E的纵坐标为,…(3分)又∵点E在双曲线上,∴点E的坐标为(4,)…(4分)设直线MN的函数表达式为y=k1x+b,则,解得,∴直线MN的函数表达式为.…(5分)(3)结论:AN=ME…(6分)理由:在表达式中,令y=0可得x=6,令x=0可得y=,∴点M(6,0),N(0,)…(7分)解法一:延长DA交y轴于点F,则AF⊥ON,且AF=2,OF=3,∴NF=ON﹣OF=,∴根据勾股定理可得AN=…(8分)∵CM=6﹣4=2,EC=∴根据勾股定理可得EM=∴AN=ME…(9分)解法二:连接OE,延长DA交y轴于点F,则AF⊥ON,且AF=2,∵S△EOM=,S△AON=…(8分)∴S△EOM=S△AON,∵AN和ME边上的高相等,∴AN=ME…(9分)点评:本题是待定系数法求一次函数的解析式,以及勾股定理的综合应用,求得E的坐标是关键.27.(9分如图1,△ABC是等腰直角三角形,四边形ADEF是正方形,D、F分别在AB、AC边上,此时BD=CF,BD⊥CF成立.(1)当正方形ADEF绕点A逆时针旋转θ(0°<θ<90°)时,如图2,BD=CF成立吗?若成立,请证明;若不成立,请说明理由.(2)当正方形ADEF绕点A逆时针旋转45°时,如图3,延长BD交CF于点G.①求证:BD⊥CF;②当AB=4,AD=时,求线段BG的长.考点:相似三角形的判定与性质;全等三角形的判定与性质;勾股定理;等腰直角三角形;正方形的性质;旋转的性质.专题:几何综合题;压轴题.分析:(1)△ABC是等腰直角三角形,四边形ADEF是正方形,易证得△BAD≌△CAF,根据全等三角形的对应边相等,即可证得BD=CF;(2)①由△BAD≌△CAF,可得∠ABM=∠GCM,又由对顶角相等,易证得△BMA∽△CMG,根据相似三角形的对应角相等,可得BGC=∠BAC=90°,即可证得BD⊥CF;②首先过点F作FN⊥AC于点N,利用勾股定理即可求得AE,BC的长,继而求得AN,CN的长,又由等角的三角函数值相等,可求得AM=AB=,然后利用△BMA∽△CMG,求得CG的长,再由勾股定理即可求得线段BG的长.解答:解(1)BD=CF成立.理由:∵△ABC是等腰直角三角形,四边形ADEF是正方形,∴AB=AC,AD=AF,∠BAC=∠DAF=90°,∵∠BAD=∠BAC﹣∠DAC,∠CAF=∠DAF﹣∠DAC,∴∠BAD=∠CAF,在△BAD和△CAF中,∴△BAD≌△CAF(SAS).∴BD=CF.…(3分)(2)①证明:设BG交AC于点M.∵△BAD≌△CAF(已证),∴∠ABM=∠GCM.∵∠BMA=∠CMG,∴△BMA∽△CMG.∴∠BGC=∠BAC=90°.∴BD⊥CF.…(6分)②过点F作FN⊥AC于点N.∵在正方形ADEF中,AD=DE=,∴AE==2,∴AN=FN=AE=1.∵在等腰直角△ABC 中,AB=4,∴CN=AC﹣AN=3,BC==4.∴在Rt△FCN中,tan∠FCN==.∴在Rt△ABM中,tan∠ABM==tan∠FCN=.∴AM=AB=.∴CM=AC﹣AM=4﹣=,BM==.…(9分)∵△BMA∽△CMG,∴.∴.∴CG=.…(11分)∴在Rt△BGC中,BG==.…(12分)点评:此题考查了相似三角形的判定与性质、全等三角形的判定与性质、等腰直角三角形的性质、矩形的性质、勾股定理以及三角函数等知识.此题综合性很强,难度较大,注意数形结合思想的应用,注意辅助线的作法.28.(9分)如图,已知直线y=kx﹣6与抛物线y=ax2+bx+c相交于A,B两点,且点A(1,﹣4)为抛物线的顶点,点B在x轴上.(1)求抛物线的解析式;(2)在(1)中抛物线的第二象限图象上是否存在一点P,使△POB与△POC全等?若存在,求出点P的坐标;若不存在,请说明理由;(3)若点Q是y轴上一点,且△ABQ为直角三角形,求点Q的坐标.考点:二次函数综合题.专题:综合题;压轴题;数形结合;分类讨论.分析:(1)已知点A坐标可确定直线AB的解析式,进一步能求出点B的坐标.点A是抛物线的顶点,那么可以将抛物线的解析式设为顶点式,再代入点B的坐标,依据待定系数法可解.(2)首先由抛物线的解析式求出点C的坐标,在△POB和△POC中,已知的条件是公共边OP,若OB与OC不相等,那么这两个三角形不能构成全等三角形;若OB等于OC,那么还要满足的条件为:∠POC=∠POB,各自去掉一个直角后容易发现,点P正好在第二象限的角平分线上,联立直线y=﹣x与抛物线的解析式,直接求交点坐标即可,同时还要注意点P在第二象限的限定条件.(3)分别以A、B、Q为直角顶点,分类进行讨论.找出相关的相似三角形,依据对应线段成比例进行求解即可.解答:解:(1)把A(1,﹣4)代入y=kx﹣6,得k=2,∴y=2x﹣6,令y=0,解得:x=3,∴B的坐标是(3,0).∵A为顶点,∴设抛物线的解析为y=a(x﹣1)2﹣4,把B(3,0)代入得:4a﹣4=0,解得a=1,∴y=(x﹣1)2﹣4=x2﹣2x﹣3.(2)存在.∵OB=OC=3,OP=OP,∴当∠POB=∠POC时,△POB≌△POC,此时PO平分第二象限,即PO的解析式为y=﹣x.设P(m,﹣m),则﹣m=m2﹣2m﹣3,解得m=(m=>0,舍),∴P(,).(3)①如图,当∠Q1AB=90°时,△DAQ1∽△DOB,∴=,即=,∴DQ1=,∴OQ1=,即Q1(0,);②如图,当∠Q2BA=90°时,△BOQ2∽△DOB,∴=,即=,∴OQ2=,即Q2(0,);③如图,当∠AQ3B=90°时,作AE⊥y轴于E,则△BOQ3∽△Q3EA,∴=,即=,∴OQ32﹣4OQ3+3=0,∴OQ3=1或3,即Q3(0,﹣1),Q4(0,﹣3).综上,Q点坐标为(0,)或(0,)或(0,﹣1)或(0,﹣3).点评:本题主要考查了利用待定系数法求函数解析式的方法、直角三角形的判定、全等三角形与相似三角形应用等重点知识.(3)题较为复杂,需要考虑的情况也较多,因此要分类进行讨论.。
2018年济南市高新区九年级第一次模拟考试数学试题(word-答案)
2018年市高新区第一次模拟考试数学试题全卷满分150分一、选择题(本大题共12小题,每小题4分,共48分) 1.-3的相反数是( )A.-3B.3C.-13 D . 132.2018年十九大提出,伴随着时代的飞跃发展,高铁已驰骋神州,预计2020年西客站客流量将达到2150万人,数字2150用科学记数法表示为( )A .0.215×104 B. 2.15×104 C. 2.15×103 D.21.5×1023.下列图形中,中心对称图形的是( )A B C D 4.下列计算正确的是( )A .(a 2)3=a 5 B.a 6÷a 3=a 3 C.(a -b )2=a 2-b 2 D.a 2+a 2=a 45.如图,直线AB ∥CD ,AF 交CD 于点E ,∠CEF=140°,则∠A=( ) A.35° B.40° C.45° D.50°6.化简11122-÷-x x 的结果是( ) A.11+x B.x 2 C.12-x D.()12+x 7.为了迎接体育中考,体育委员到体育用品商店购买排球和实心球,若购买2个排球和3个实心球共需95远,若购买5个排球和7个实心球共需230元,若设每个排球x 元,每个实心球y 元,则根据题意列二元一次方程组得( ) A,⎩⎨⎧=+=+230759523y x y x B.⎩⎨⎧=+=+230759532y x y x C.⎩⎨⎧=+=+230579523y x y x D.⎩⎨⎧=+=+230579532y x y x8.如图,半径为5的⊙A 经过点C (0,5)和点O (0,0),B 是⊙A 优弧上一点,则∠OBC 的余弦值为( ) A.21 B.43 C.23 D.549.如图,矩形ABOC 的顶点A 的坐标为(-4,5),D 是OB 的中点,E 是OC 上的一点,当△ADE 的周长最小时,点E 的坐标为( ) A.⎪⎭⎫ ⎝⎛34,0 B.⎪⎭⎫ ⎝⎛35,0 C.()2,0 D.⎪⎭⎫⎝⎛310,10.一次函数y =ax +b 与xba y -=,其中0<ab ,a ,b 为常数,它们在同一坐标系中的图 象可以是( )A B C D11.如图,在口ABCD 中,AC ,BD 相交于点O ,点E 是OA 的中点,连接BE 并延长AD 于点F ,已知4=∆AEF S ,则下列结论中不正确的是( ) A.21=FD AF B.36=∆BCE S C.12=∆ABE S D.AFE ∆∽ACD ∆12.如图,已知二次函数y =ax 2+bx +c (a ≠0)的图象与x 轴交于点A (-1,0),与y 轴的交点B 在(0,-2)和(0,-1)之间(不包括这两点),对称轴为直线x =1,(1)abcD>0;(2)4a +2b +c >0;(3)4ac -b 2<16a ;(4)13<a <23;(5)b <c ,其中正确的结论有( )A.(2)(3)(4)(5)B.(1)(3)(4)(5)C.(1)(3)(4)D.(1)(2)(5)二、填空题(本大题共6小题,每小题4分,共24分)13.因式分解:xy 2-4x =______________;14.关于x 的一元二次方程(k -1)x 2+6x +k 2-k =0,有一个根是0,则k 的值是________; 15.在一个不透明的袋子中,装有大小,形状,质地都相同,但颜色不同的红球3个,黄球2个,白球若干个,从袋子中随机摸出一个小球是黄球的概率是14,则袋子中白色小球有______个;16.如图,矩形ABCD 的边AB =1,BE 平分∠ABC ,交AD 于点E ,AD =2AB ,以点B 为圆心,BE 为半径画弧,交BC 于点F ,则图中阴影部分的面积是________;17.如图,菱形OABC 的一边OA 在x 轴的负半轴上,O 是坐标原点,tan ∠AOC =43,反比例函数y =-12x的图像经过点C ,与AB 交与点D ,则△COD 的面积的值等于_______;18.如图,在平面直角坐标系中,直线l :y =33x -33与x 轴交于点B 1,以OB 1为边长作等边三角形A 1OB 1,过点A 1作A 1B 2平行于x 轴,交直线l 于点B 2,以A 1B 2为边长作等边三角形A 2A 1B 2,过点A 2作A 2B 3平行于x 轴,交直线l 于点B 3,以A 2B 3为边长作等边三角形A 3A 2B 3,......,则点A 2018的横坐标是_______。
济南市2018年中考数学模拟综合检测试卷(一)含答案
济南市 2018 年中考数学模拟综合检测试卷(一)含答案济南市 2018 年中考数学模拟综合检测卷 ( 一)一、选择题1.以下各数中,比 3 大的数是 ( )1A.-3B.- |3|C.πD.2 22.以下列图的工件是由两个长方体构成的组合体,则它的主视图是( )3.据媒体报道,我国最新研制的“察打一体”无人机的速度极快,经测试最高速度可达 204 000 米/ 分,这个数用科学记数法表示,正确的是 ( )A.204×10B.20.4 ×1043C.2.04 ×105D.2.04 ×1064.下列选项中,哪个不可以得到l 1∥l2()A.∠ 1=∠ 2B.∠ 2=∠3C.∠ 3=∠ 5D.∠ 3+∠ 4=180°5.以下汽车标志中,既是轴对称图形又是中心对称图形的是( )a46.计算a+2-a2+2a的结果是()2a-2a-4A. a B.a-2 C. a D.a2+2a7.函数 y =x+1 与 y=ax+b(a ≠0) 的图象以下列图,这两个函数12图象的交点在 y 轴上,那么使 y1,y2的值都大于 0 的 x 的取值范围是( )A.x>- 1B.x>2C.x<2D.- 1<x<28.赵老师是一名健步走运动的爱好者,她用手机软件记录了某个月(30 天) 每天健步走的步数 ( 单位:万步 ) ,将记录结果绘制成了如图所示的统计图.在每天所走的步数这组数据中,众数和中位数分别是( )A.,B.1.4 ,C.,D.1.3 ,9.如图,在矩形 ABCD中,AB=2,AD= 2,以点 A 为圆心, AD的长为半径的圆交 BC边于点 E,则图中阴影部分的面积为( )A.22-1-πB.22-1-π32C.22-2-πD.22-1-π2410.以下列图,在△ ABC中, AD⊥BC于点 D,CE⊥AB 于点 E,且 BE3=2AE,已知 AD=33,tan ∠BCE=3,那么 CE等于 ( )A.2 3 B .3 3-2 C .5 2 D .4 311.函数 y=x3-3x 的图象以下列图,则以下关于该函数图象及其性质的描述正确的选项是 ( )A.函数最大值为2B.函数图象最低点为(1 ,- 2)C.函数图象关于原点对称D.函数图象关于y 轴对称12.如图, E,F 分别是正方形 ABCD的边 CD,AD上的点,且 CE=DF,AE,BF订交于点 O,以下结论: (1)AE =BF;(2)AE ⊥BF;(3)AO=OE;(4)S=S中,正确的有 ( )△AOB四边形 DEOFA.4 个B.3 个C.2 个D.1 个二、填空题13.计算: 3tan 60 °-12=________.14.分解因式: (a -b) 2-4b2=________.15.小明把以下列图的平行四边形纸板挂在墙上,玩飞镖游戏( 每次飞镖均落在纸板上,且落在纸板的任何一个点的机遇都相等 ) ,则飞镖落在阴影地域的概率是 ________.16.如图,△ ABC内接于⊙ O,∠ ACB=90°,∠ ACB的角均分线交⊙O于D.若 AC=6,BD=5 2,则 BC的长为 ________.1317.如图,函数 y=x和 y=-x的图象分别是 l 1和 l 2. 设点 P在 l 1上,PC⊥x轴,垂足为 C,交 l 2于点 A,PD⊥y轴,垂足为 D,交 l 2于点 B,则△ PAB的面积为 ______.18.如图,在平面直角坐标系 xOy 中,矩形 OABC 的边 OA ,OC 分别在x 轴和 y 轴上, OC =3,OA =2 6,D 是 BC 的中点,将△ OCD 沿直线OD 折叠后获取△ OGD ,延长 OG 交 AB 于点 E ,连接 DE ,则点 G 的坐标为 ________.三、解答题2x>3x +2,19.解不等式组: 2x +1 x 23 ≤2-3.20.如图,AB 是⊙O 的直径, CA 与⊙O 相切于点 A ,连接 CO 交⊙O 于点 D ,CO 的延长线交⊙O 于点 E ,连接 BE ,BD ,∠ ABD =25°,求∠C 的度数.21. “母亲节”前夕,某商店依照市场检查,用 3 000 元购进第一批盒装花,上市后很快售完,接着又用 5 000 元购进第二批这种盒装花,已知第二批所购花的盒数是第一批所购花盒数的 2 倍,且每盒花的进价比第一批的进价少 5 元.求第一批盒装花每盒的进价是多少元?22.如图,在四边形 ABCD中, BD为一条对角线, AD∥BC, AD=2BC, ∠ABD=90°, E 为 AD的中点,连接 BE.(1)求证:四边形 BCDE为菱形;(2)连接 AC,若 AC均分∠ BAD,BC=1,求 AC的长.23.近来几年来,我国连续大面积的雾霾天气让环保和健康问题成为焦点.为进一步普及环保和健康知识,我市某校举行了“建设大美济南,关注环境保护”的知识竞赛,竞赛结果分为四个等级 (A. 不及格, B. 及格, C.优秀, D. 优秀 ) ,并将检查结果绘制成了以下两幅不完满的统计图.请依照统计图回答以下问题:(1)此次被检查的学生共有多少人;(2)请将统计图 2 补充完满;(3)统计图 1 中 A 项目对应的扇形的圆心角是多少度;(4)已知该校共有学生 5 000 人,请依照检查结果估计该校成绩优秀的学生人数.24.如图,已知正比率函数和反比率函数的图象都经过点M(-2,-1),且 P(-1,- 2) 为双曲线上的一点,点 Q为坐标平面上一动点,PA垂直于 x 轴, QB垂直于 y 轴,垂足分别是A,B.(1)写出正比率函数和反比率函数的表达式;(2)当点 Q在直线 MO上运动时,直线 MO上可否存在这样的点 Q,使得△ OBQ与△ OAP面积相等?若是存在,央求出点的坐标;若是不存在,请说明原由.25. 如图 1,在平行四边形 ABCD中,AB=12,BC=6,AD⊥BD.以 AD 为斜边在平行四边形ABCD的内部作Rt△AED,∠EAD=30°,∠AED =90°.(1)求△ AED的周长;(2)若△ AED以每秒 2 个单位长度的速度沿 DC向右平行搬动,获取△A0E0D0,当点E0 恰幸好BC上时停止搬动,设运动时间为t秒,△A0E0D0与△ BDC重叠的面积为S,请直接写出S 与 t 之间的函数关系式,并写出 t 的取值范围;(3)如图 2,在(2) 中,当△ AED搬动至△ BEC的地址时,将△ BEC绕点C 按顺时针方向旋转α(0°<α<90°),在旋转过程中,B的对应点为 B1,E 的对应点为 E1,设直线 B1E1与直线 BE交于点 P、与直线 CB 交于点 Q.可否存在这样的α,使△ BPQ为等腰三角形?若存在,求出α 的度数;若不存在,请说明原由.26.在平面直角坐标系中,已知抛物线经过A(-4,0) ,B(0,-4) ,C(2,0) 三点.(1)求抛物线的表达式;(2)若点 M为第三象限内抛物线上的一动点,点 M的横坐标为 m,△AMB 的面积为 S,求 S关于 m的函数关系式,并求出S 的最大值;(3)若点 P 是抛物线上的动点,点 Q是直线 y=- x 上的动点,判断有几个地址能够使得以点 P,Q,B,O 为极点的四边形为平行四边形?直接写出相应的点 Q的坐标.参照答案1.113. 314.(a -3b)(a +b) 15. 46 6 318.( 5 ,5)2x>3x +2,①19.解: 2x +1 x 23 ≤2-3. ②由①得 x<-2,由②得 x ≤- 6,∴不等式组的解集为 x ≤- 6. 20.解:∵∠ ABD =25°, ∴∠ AOD =2∠ABD =50°.∵CA 与⊙O 相切于点 A ,OA 是半径,∴OA ⊥AC ,∴∠ C =90°-∠ AOD =40°.21.解:设第一批盒装花的进价是 x 元/ 盒,则2×3 000 5 000x = x -5 , 解得 x =30,经检验, x =30 是原方程的根.答:第一批盒装花每盒的进价是 30 元.22.(1) 证明:∵E 为 AD 的中点, AD =2BC ,∴ BC =ED.∵AD ∥BC, ∴四边形 BCDE 是平行四边形.又∵E 为 AD 的中点,∴ BE = ED.∴四边形 BCDE是菱形.(2) 解:∵ AD∥BC, AC均分∠ BAD,∴∠ BAC=∠ DAC=∠ BCA,∴ BA= BC=1.1∵AD= 2BC=2,∴ sin∠ADB=2,∠ ADB=30°,∴∠ DAC=30°,∠ADC=60°.在Rt△ACD中, AD=2,CD=1,∴ AC= 3.23.解:(1) 由题图知 C等级的人数有 140,占检查总人数的 28%,则检查总人数是 140÷28%= 500.(2)A 等级的人数为 500-75-140-245=40.(3)40 ÷500×100%= 8%,360°× 8%=28.8 °.答: A等级对应的扇形的圆心角是28.8 °.(4)245÷500×100%= 49%,5 000 ×49%= 2 450(人) .答:该校成绩优秀的学生大体有 2 450人.k24.解:(1)设反比率函数的表达式为y=x(k ≠0) ,正比率函数的表达式为y=k′x,∵正比率函数和反比率函数的图象都经过点M(-2,- 1) ,k∴- 1=-2,- 1=- 2k′,1∴k=2,k′=2.12∴正比率函数的表达式为y=2x,反比率函数的表达式为y=x.(2)当点 Q在直线 MO上运动时,假设在直线 MO上存在这样的点 Q(x,112x) ,使得△ OBQ与△ OAP的面积相等,则B(0 ,2x) .111∴2·x·2x=2×2×1.解得 x=± 2.1当x=2 时,2x=1;1当x=- 2 时,2x=- 1.∴存在点 Q(2,1) 或( -2,- 1) .25.解: (1) ∵四边形 ABCD是平行四边形,∴AD= BC=6.在Rt△ADE中, AD=6,∠ EAD=30°,∴AE=AD·cos 30 °= 33,DE=AD·sin 30 °= 3,∴△ AED的周长为 6+3 3+3=9+3 3.(2)在△ AED向右平移的过程中:( Ⅰ) 当 0≤t ≤1.5 时,如图,此时重叠部分为△D0NK.∵DD0=2t ,∴ ND0=DD0·sin30°= t ,NK=ND·tan 30 °=3t ,11 3 2∴S=S△D0NK=2ND0·NK=2t ·3t =2 t .( Ⅱ) 当1.5 <t≤时,如图,此时重叠部分为四边形D0E0KN.∵AA0=2t ,∴A0B=AB-AA0=12- 2t ,1∴A0N=2A0B=6-t,3NK=A0N·tan 30 °=3 (6 -t) .∴S=S 四边形 D0E0 KN=S△A0D0E0-S△A0NK113=2×3×3 3-2×(6 -t) ×3 (6 -t)3233=-6 t +23t -2 .综上所述, S与 t 之间的函数关系式为3 2t ,0≤t ≤1.5 ,S=-6 t 2+2 3t -323,1.5<t ≤4.5.(3)存在α,使△ BPQ为等腰三角形.原由以下:∵∠ BQP=∠B1QC,∠ QBP=∠QB1C,∴△ BPQ∽△B1CQ.3故当△ BPQ为等腰三角形时,△B1QC也为等腰三角形.( Ⅰ) 如图,当 QB=QP时,则QB1=QC,∴∠B1CQ=∠B1=30°,即∠ BCB1=30°. ∴ α=30°.( Ⅱ) 当 BQ=BP时,则 B1Q=B1C,如图,点 Q在线段 B1E1的延长线上,∵∠B1=30°,∴∠B1CQ=∠B1QC=75°,即∠ BCB1=75°. ∴ α=75°.综上所述,存在α=30°或 75°时,△ BPQ为等腰三角形.26.解: (1) 设抛物线的表达式为 y=ax2+bx+c(a ≠0) ,将 A,B,C三点代入得116a-4b+c=0,a=2,c=- 4,解得b=1,4a+2b+c=0,c=- 4,1 2∴函数表达式为y=2x +x-4.(2)∵M点的横坐标为 m,且点 M在抛物线上,121 1 21∴M(m,2m+m-4),∴ S=S△AOM+S△OBM-S△AOB=2×4( -2m-m+4)+2 122×4×( - m)-2×4×4=- m-4m=- (m+2)+4.∵- 4<m<0,∴当 m=- 2 时, S 有最大值为 S=4.12(3) 设 P(x ,2x -x+4) ,当 OB为边时,∵ PB∥OQ,∴Q的横坐标的绝对值等于P的横坐标的绝对值,∴ Q(x,- x) .由PQ=OB,得| -x-( 1x2+x-4)| =4,2解得 x=0( 舍去 ) 或 x=- 4 或 x=- 2±2 5.当 BO为对角线时,点A 与点 P 重合, OP=4,∴BQ= PO=4,即点 Q的横坐标为 4,∴ Q(4,- 4) .综上 Q(-4,4) 或( -2+2 5,2-2 5) 或( -2-2 5,2+25) 或(4 ,-4) .。
山东省济南市中考数学一模试卷
山东省济南市中考数学一模试卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分) (2018七上·滨海月考) 下列各数中,最大的数是().A .B .C .D .2. (2分)有一圆柱形的水池,已知水池的底面直径为4米,水面离池口2米,水池内有一小青蛙,它每天晚上都会浮在水面上赏月,则它能观察到的最大视角为()A . 45°B . 60°C . 90°D . 135°3. (2分)在我国社会科学院发布的2013年《社会蓝皮书》中公布,2012年1~9月,全国城镇新增就业人数为1024万人,就业形势稳定,农民工和大学生就业未出现紧张局面。
将1024万人用科学记数法可表示为()A . 1.24×107B . 1.024×107C . 1.024×08D . 1.24×1034. (2分)如图,D,E,F分别是△ABC各边的中点,下列说法中错误的是()A . △ABC与△DEF是相似形B . △ABC与△AEF是位似图形C . EF与AD互相平分D . AD平分∠BAC5. (2分)(2018·贺州) 如图,在同一平面直角坐标系中,一次函数y1=kx+b(k、b是常数,且k≠0)与反比例函数y2= (c是常数,且c≠0)的图象相交于A(﹣3,﹣2),B(2,3)两点,则不等式y1>y2的解集是()A . ﹣3<x<2B . x<﹣3或x>2C . ﹣3<x<0或x>2D . 0<x<26. (2分)有下列说法,其中正确说法的个数是()⑴无理数就是开方开不尽的数;⑵无理数是无限不循环小数;⑶无理数包括正无理数、零、负无理数;⑷无理数是无限不循环小数.A . 0B . 1C . 2D . 37. (2分)(2017·东城模拟) 如图,点E为菱形ABCD的BC边的中点,动点F在对角线AC上运动,连接BF、EF,设AF=x,△BEF的周长为y,那么能表示y与x的函数关系的大致图象是()A .B .C .D .8. (2分)在正方形网格中,△ABC的位置如图所示,则cosB的值为()A .B .C .D .9. (2分) (2016九下·苏州期中) 二次函数y=ax2+bx+c与一次函数y=ax+c,它们在同一直角坐标系中的图象大致是()A .B .C .D .10. (2分)如图,下面是按照一定规律画出的“树形图”,经观察可以发现:图A2比图A1多出2个“树枝”,图A3比图A2多出4个“树枝”,图A4比图A3多出8个“树枝”,…,照此规律,图A6比图A2多出“树枝”()A . 28个B . 56个C . 60个D . 124个二、填空题 (共5题;共5分)11. (1分)(2018·西华模拟) 计算:20180-=________.12. (1分) (2015八下·深圳期中) 如图,将周长为8cm的△ABC沿BC方向平移1cm得到△DEF,则四边形ABFD的周长为________ cm.13. (1分)(2018·广元) 已知一次函数,其中从1,-2中随机取一个值,从-1,2,3中随机取一个值,则该一次函数的图象经过一,二,三象限的概率为________14. (1分) (2020九下·盐城月考) 如图,在中,,,以AB中点D 为圆心,作圆心角为的扇形DEF,点C恰好在弧EF上,则图中阴影部分面积为________.15. (1分)(2018·鼓楼模拟) 如图,一次函数y=- x+8的图像与x轴、y轴分别交于A、B两点.P 是x轴上一个动点,若沿BP将△OBP翻折,点O恰好落在直线AB上的点C处,则点P的坐标是________.三、解答题 (共8题;共95分)16. (5分)化简分式÷ ﹣1,并选取一个你认为合适的整数a代入求值.17. (15分)(2018·无锡模拟) 小王同学在学校组织的社会调查活动中负责了解他所居住的小区450户居民的生活用水情况,他从中随机调查了50户居民的月均用水量(单位:t),并绘制了样本的频数分布表和频数分布直方图(如图).月均用水量(单位:t)频数百分比2≤x<324%3≤x<41224%4≤x<55≤x<61020%6≤x<712%7≤x<836%8≤x<924%(1)请根据题中已有的信息补全频数分布表和频数分布直方图;(2)如果家庭月均用水量“大于或等于4t且小于7t”为中等用水量家庭,请你估计总体小王所居住的小区中等用水量家庭大约有多少户?(3)从月均用水量在2≤x<3,8≤x<9这两个范围内的样本家庭中任意抽取2个,请用列举法(画树状图或列表)求抽取出的2个家庭来自不同范围的概率.18. (10分)(2018·黄梅模拟) △OAB是⊙O的内接三角形,∠AOB=120°,过O作OE⊥AB于点E,交⊙O 于点C,延长OB至点D,使OB=BD,连CD.(1)求证: CD是⊙O切线;(2)若F为OE上一点,BF的延长线交⊙O于G,连OG,,CD=6 ,求S△GOB.19. (5分)(2017·南京模拟) 如图,小明要测量河内小岛B到河边公路AD的距离,在点A处测得∠BAD=37°,沿AD方向前进150米到达点C,测得∠BCD=45°.求小岛B到河边公路AD的距离.(参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)20. (15分)(2017·大冶模拟) 某花木公司在20天内销售一批马蹄莲.其中,该公司的鲜花批发部日销售量y1(万朵)与时间x(x为整数,单位:天)部分对应值如下表所示.时间x(天)048121620销量y1(万朵)0162424160另一部分鲜花在淘宝网销售,网上销售日销售量y2(万朵)与时间x(x为整数,单位:天)关系如图所示.(1)请你从所学过的一次函数、二次函数和反比例函数中确定哪种函数能表示y1与x的变化规律,写出y1与x的函数关系式及自变量x的取值范围;(2)观察马蹄莲网上销售量y2与时间x的变化规律,请你设想商家采用了何种销售策略使得销售量发生了变化,并写出销售量y2与x的函数关系式及自变量x的取值范围;(3)设该花木公司日销售总量为y万朵,写出y与时间x的函数关系式,并判断第几天日销售总量y最大,并求出此时最大值.21. (15分) (2019九上·顺德月考) 如图一次函数y=kx+b的图象与反比例函数 (x > 0)的图象交于A(2,–l),B( ,n)两点,直线y=2与y轴交于点C .(1)求反比例函数的解析式;(2)求一次函数的解析式;(3)求△ABC的面积.22. (15分) (2016七下·临沭期中) 如图1,在平面直角坐标系中,A(a,0),B(b,0),C(﹣1,2),且|a+2|+(b﹣4)2=0.(1)求a,b的值.(2)在坐标轴上是否存在一点M,使△COM的面积= △ABC的面积,求出点M的坐标.(3)如图2,过点C作CD⊥y轴交y轴于点D,点P为线段CD延长线上的一动点,连接OP,OE平分∠AOP,OF⊥OE.当点P运动时,的值是否会改变?若不变,求其值;若改变,说明理由.23. (15分)(2017·丹东模拟) 如图①,点P是正方形ABCD的BC边上的一点,以DP为边长的正方形DEFP 与正方形ABCD在BC的同侧,连接AC,FB.(1)请你判断FB与AC又怎样的位置关系?并证明你的结论;(2)若点P在射线CB上运动时,如图②,判断(1)中的结论FB与AC的位置关系是否仍然成立?并说明理由;(3)当点P在射线CB上运动时,请你指出点E的运动路线,不必说明理由.参考答案一、选择题 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共5题;共5分)11-1、12-1、13-1、14-1、15-1、三、解答题 (共8题;共95分)16-1、17-1、17-2、17-3、18-1、18-2、19-1、20-1、20-2、20-3、21-1、21-2、21-3、22-1、22-2、22-3、23-1、23-2、23-3、。
2018年济南市高新区九年级第一次模拟考试数学试题(word 答案)(优选.)
最新文件---------------- 仅供参考--------------------已改成-----------word 文本 --------------------- 方便更改2018年济南市高新区第一次模拟考试数学试题全卷满分150分一、选择题(本大题共12小题,每小题4分,共48分) 1.-3的相反数是( )A .-3B .3C .-13 D . 132.2018年十九大提出,伴随着时代的飞跃发展,高铁已驰骋神州大地,预计2020年济南西客站客流量将达到2150万人,数字2150用科学记数法表示为( ) A .0.215×104 B. 2.15×104 C. 2.15×103 D.21.5×102 3.下列图形中,中心对称图形的是( )A B C D 4.下列计算正确的是( )A .(a 2)3=a 5B.a 6÷a 3=a 3C.(a -b )2=a 2-b 2D.a 2+a 2=a 45.如图,直线AB ∥CD ,AF 交CD 于点E ,∠CEF=140°,则∠A=( ) A.35° B.40° C.45° D.50°AC DEF6.化简11122-÷-x x 的结果是( ) A.11+x B.x 2 C.12-x D.()12+x 7.为了迎接体育中考,体育委员到体育用品商店购买排球和实心球,若购买2个排球和3个实心球共需95远,若购买5个排球和7个实心球共需230元,若设每个排球x 元,每个实心球y 元,则根据题意列二元一次方程组得( )A,⎩⎨⎧=+=+230759523y x y x B.⎩⎨⎧=+=+230759532y x y x C.⎩⎨⎧=+=+230579523y x y x D.⎩⎨⎧=+=+230579532y x y x8.如图,半径为5的⊙A 经过点C (0,5)和点O (0,0),B 是⊙A 优弧上一点,则∠OBC 的余弦值为( )A.21 B.43 C.23 D.549.如图,矩形ABOC 的顶点A 的坐标为(-4,5),D 是OB 的中点,E 是OC 上的一点,当△ADE 的周长最小时,点E 的坐标为( ) A.⎪⎭⎫ ⎝⎛34,0 B.⎪⎭⎫ ⎝⎛35,0 C.()2,0 D.⎪⎭⎫⎝⎛310,10.一次函数y =ax +b 与xba y -=,其中0<ab ,a ,b 为常数,它们在同一坐标系中的图象可以是( )A B C D11.如图,在口ABCD 中,AC ,BD 相交于点O ,点E 是OA 的中点,连接BE 并延长AD 于点F ,已知4=∆AEF S ,则下列结论中不正确的是( ) A.21=FD AF B.36=∆BCE S C.12=∆ABE S D.AFE ∆∽ACD ∆ FE DCA12.如图,已知二次函数y =ax 2+bx +c (a ≠0)的图象与x 轴交于点A (-1,0),与y 轴的交点B 在(0,-2)和(0,-1)之间(不包括这两点),对称轴为直线x =1,(1)abc >0;(2)4a +2b +c >0;(3)4ac -b 2<16a ;(4)13<a <23;(5)b <c ,其中正确的结论有( )A.(2)(3)(4)(5)B.(1)(3)(4)(5)C.(1)(3)(4)D.(1)(2)(5)xy -2-1-1x =1AOB二、填空题(本大题共6小题,每小题4分,共24分)13.因式分解:xy 2-4x =______________;14.关于x 的一元二次方程(k -1)x 2+6x +k 2-k =0,有一个根是0,则k 的值是________;15.在一个不透明的袋子中,装有大小,形状,质地都相同,但颜色不同的红球3个,黄球2个,白球若干个,从袋子中随机摸出一个小球是黄球的概率是14,则袋子中白色小球有______个;16.如图,矩形ABCD 的边AB =1,BE 平分∠ABC ,交AD 于点E ,AD =2AB ,以点B 为圆心,BE 为半径画弧,交BC 于点F ,则图中阴影部分的面积是________;17.如图,菱形OABC 的一边OA 在x 轴的负半轴上,O 是坐标原点,tan ∠AOC =43,反比例函数y =-12x的图像经过点C ,与AB 交与点D ,则△COD 的面积的值等于_______;18.如图,在平面直角坐标系中,直线l :y =33x -33与x 轴交于点B 1,以OB 1为边长作等边三角形A 1OB 1,过点A 1作A 1B 2平行于x 轴,交直线l 于点B 2,以A 1B 2为边长作等边三角形A 2A 1B 2,过点A 2作A 2B 3平行于x 轴,交直线l 于点B 3,以A 2B 3为边长作等边三角形A 3A 2B 3,......,则点A 2018的横坐标是_______。
┃精选3套试卷┃2018年济南市某名校中考数学1月质量监测试题
中考数学模拟试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.化简221x -÷11x -的结果是( ) A .21x + B .2x C .21x - D .2(x +1)【答案】A 【解析】原式利用除法法则变形,约分即可得到结果.【详解】原式=211x x +-()()•(x ﹣1)=21x +. 故选A .【点睛】本题考查了分式的乘除法,熟练掌握运算法则是解答本题的关键.2.如图,将△ABC 绕点A 逆时针旋转一定角度,得到△ADE ,若∠CAE=65°,∠E=70°,且AD ⊥BC ,∠BAC 的度数为( ).A .60 °B .75°C .85°D .90°【答案】C 【解析】试题分析:根据旋转的性质知,∠EAC=∠BAD=65°,∠C=∠E=70°.如图,设AD ⊥BC 于点F .则∠AFB=90°,∴在Rt △ABF 中,∠B=90°-∠BAD=25°,∴在△ABC 中,∠BAC=180°-∠B-∠C=180°-25°-70°=85°,即∠BAC 的度数为85°.故选C .考点: 旋转的性质.3.如图,在矩形ABCD 中,AB=4,BC=6,点E 为BC 的中点,将ABE 沿AE 折叠,使点B 落在矩形内点F 处,连接CF,则CF 的长为( )A .95B .185C .165D .125【答案】B【解析】连接BF ,由折叠可知AE 垂直平分BF ,根据勾股定理求得AE=5,利用直角三角形面积的两种表示法求得BH=125,即可得BF=245 ,再证明∠BFC=90°,最后利用勾股定理求得CF=185. 【详解】连接BF ,由折叠可知AE 垂直平分BF ,∵BC=6,点E 为BC 的中点,∴BE=3,又∵AB=4, ∴222243AB BE +=+=5, ∵1122AB BE AE BH ⋅=⋅, ∴1134522BH ⨯⨯=⨯⨯, ∴BH=125,则BF=245, ∵FE=BE=EC ,∴∠BFC=90°,∴2222246()5BC BF -=-=185 . 故选B .【点睛】本题考查的是翻折变换的性质、矩形的性质及勾股定理的应用,掌握折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等是解题的关键.4.如图,∠ACB=90°,D 为AB 的中点,连接DC 并延长到E ,使CE=13CD ,过点B 作BF ∥DE ,与AE 的延长线交于点F ,若AB=6,则BF 的长为( )A .6B .7C .8D .10【答案】C 【解析】 ∵∠ACB=90°,D 为AB 的中点,AB=6,∴CD=12AB=1. 又CE=13CD , ∴CE=1,∴ED=CE+CD=2.又∵BF ∥DE ,点D 是AB 的中点,∴ED 是△AFB 的中位线,∴BF=2ED=3.故选C .5.若0<m <2,则关于x 的一元二次方程﹣(x+m )(x+3m )=3mx+37根的情况是( )A .无实数根B .有两个正根C .有两个根,且都大于﹣3mD .有两个根,其中一根大于﹣m【答案】A【解析】先整理为一般形式,用含m 的式子表示出根的判别式△,再结合已知条件判断△的取值范围即可.【详解】方程整理为22x 7mx 3m 370+++=,△()()22249m 43m 3737m 4=-+=-,∵0m 2<<,∴2m 40-<,∴△0<,∴方程没有实数根,故选A .【点睛】本题考查了一元二次方程根的判别式,当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.6.如图,将边长为3a的正方形沿虚线剪成两块正方形和两块长方形.若拿掉边长2b的小正方形后,再将剩下的三块拼成一块矩形,则这块矩形较长的边长为()A.3a+2b B.3a+4b C.6a+2b D.6a+4b【答案】A【解析】根据这块矩形较长的边长=边长为3a的正方形的边长-边长为2b的小正方形的边长+边长为2b的小正方形的边长的2倍代入数据即可.【详解】依题意有:3a﹣2b+2b×2=3a﹣2b+4b=3a+2b.故这块矩形较长的边长为3a+2b.故选A.【点睛】本题主要考查矩形、正方形和整式的运算,熟读题目,理解题意,清楚题中的等量关系是解答本题的关键. 7.如图,一次函数y1=x+b与一次函数y2=kx+4的图象交于点P(1,3),则关于x的不等式x+b>kx +4的解集是()A.x>﹣2 B.x>0 C.x>1 D.x<1【答案】C【解析】试题分析:当x>1时,x+b>kx+4,即不等式x+b>kx+4的解集为x>1.故选C.考点:一次函数与一元一次不等式.8.如图,一个斜边长为10cm的红色三角形纸片,一个斜边长为6cm的蓝色三角形纸片,一张黄色的正方形纸片,拼成一个直角三角形,则红、蓝两张纸片的面积之和是()A .60cm 2B .50cm 2C .40cm 2D .30cm 2【答案】D 【解析】标注字母,根据两直线平行,同位角相等可得∠B=∠AED ,然后求出△ADE 和△EFB 相似,根据相似三角形对应边成比例求出53DE BF =,即53EF BF =,设BF=3a ,表示出EF=5a ,再表示出BC 、AC ,利用勾股定理列出方程求出a 的值,再根据红、蓝两张纸片的面积之和等于大三角形的面积减去正方形的面积计算即可得解.【详解】解:如图,∵正方形的边DE ∥CF ,∴∠B=∠AED ,∵∠ADE=∠EFB=90°,∴△ADE ∽△EFB , ∴10563DE AE BF BE ===, ∴53EF BF =, 设BF=3a ,则EF=5a ,∴BC=3a+5a=8a , AC=8a×53=403a , 在Rt △ABC 中,AC 1+BC 1=AB 1, 即(403a )1+(8a )1=(10+6)1, 解得a 1=1817, 红、蓝两张纸片的面积之和=12×403a×8a-(5a )1, =1603a 1-15a 1, =853a 1, =853×1817, =30cm 1.故选D .【点睛】本题考查根据相似三角形的性质求出直角三角形的两直角边,利用红、蓝两张纸片的面积之和等于大三角形的面积减去正方形的面积求解是关键.9.如图,在Rt△ABC中,∠BAC=90°,将△ABC绕点A顺时针旋转90°后得到△AB′C′(点B的对应点是点B′,点C的对应点是点C′,连接CC′.若∠CC′B′=32°,则∠B的大小是( )A.32°B.64°C.77°D.87°【答案】C【解析】试题分析:由旋转的性质可知,A C=AC′,∵∠CAC′=90°,可知△CAC′为等腰直角三角形,则∠CC′A=45°.∵∠CC′B′=32°,∴∠C′B′A=∠C′CA+∠CC′B′=45°+32°=77°,∵∠B=∠C′B′A,∴∠B=77°,故选C.考点:旋转的性质.10.如图,图1是由5个完全相同的正方体堆成的几何体,现将标有E的正方体平移至如图2所示的位置,下列说法中正确的是( )A.左、右两个几何体的主视图相同B.左、右两个几何体的左视图相同C.左、右两个几何体的俯视图不相同D.左、右两个几何体的三视图不相同【答案】B【解析】直接利用已知几何体分别得出三视图进而分析得出答案.【详解】A、左、右两个几何体的主视图为:,故此选项错误;B、左、右两个几何体的左视图为:,故此选项正确;C、左、右两个几何体的俯视图为:,故此选项错误;D、由以上可得,此选项错误;故选B.【点睛】此题主要考查了简单几何体的三视图,正确把握观察的角度是解题关键.二、填空题(本题包括8个小题)11.若不等式(a﹣3)x>1的解集为13xa<-,则a的取值范围是_____.【答案】3a<.【解析】∵(a−3)x>1的解集为x<13a-,∴不等式两边同时除以(a−3)时不等号的方向改变,∴a−3<0,∴a<3.故答案为a<3.点睛:本题考查了不等式的性质:在不等式的两边同时乘以或除以同一个负数不等号的方向改变.本题解不等号时方向改变,所以a-3小于0.12.如图,点A,B,C在⊙O上,∠OBC=18°,则∠A=_______________________.【答案】72°.【解析】解:∵OB=OC,∠OBC=18°,∴∠BCO=∠OBC=18°,∴∠BOC=180°﹣2∠OBC=180°﹣2×18°=144°,∴∠A=12∠BOC=12×144°=72°.故答案为72°.【点睛】本题考查圆周角定理,掌握同弧所对的圆周角是圆心角的一半是本题的解题关键.13.如图,在矩形ABCD中,E、F分别是AD、CD的中点,沿着BE将△ABE折叠,点A刚好落在BF上,若AB=2,则AD=________.【答案】22【解析】如图,连接EF ,∵点E 、点F 是AD 、DC 的中点,∴AE=ED ,CF=DF=12CD=12AB=1, 由折叠的性质可得AE=A′E ,∴A′E=DE ,在Rt △EA′F 和Rt △EDF 中,EA ED EF EF ='⎧⎨=⎩, ∴Rt △EA′F ≌Rt △EDF (HL ),∴A ′F=DF=1,∴BF=BA′+A′F=AB+DF=2+1=3,在Rt △BCF 中, 22223122BF CF -=-=∴2 .点睛:本题考查了翻折变换的知识,解答本题的关键是连接EF ,证明Rt △EA′F ≌Rt △EDF ,得出BF 的长,再利用勾股定理解答即可.14.一个布袋里装有10个只有颜色不同的球,这10个球中有m 个红球,从布袋中摸出一个球,记下颜色后放回,搅匀,再摸出一个球,通过大量重复试验后发现,摸到红球的频率稳定在0.3左右,则m 的值约为__________.【答案】3【解析】在同样条件下,大量重复实验时,随机事件发生的频率逐渐稳定在概率附近,可以从比例关系入手,列出等式解答.【详解】解:根据题意得,10m =0.3,解得m =3.【点睛】本题考查随机事件概率的意义,关键是要知道在同样条件下,大量重复实验时,随机事件发生的频率逐渐稳定在概率附近.15.不等式组340 12412xx+≥⎧⎪⎨-≤⎪⎩的所有整数解的积为__________.【答案】1【解析】解:34012412xx+≥⎧⎪⎨-≤⎪⎩①②,解不等式①得:43x≥-,解不等式②得:50x≤,∴不等式组的整数解为﹣1,1,1…51,所以所有整数解的积为1,故答案为1.【点睛】本题考查一元一次不等式组的整数解,准确计算是关键,难度不大.16.如图,平行四边形ABCD中,AB=AC=4,AB⊥AC,O是对角线的交点,若⊙O过A、C两点,则图中阴影部分的面积之和为_____.【答案】1.【解析】∵∠AOB=∠COD,∴S阴影=S△AOB.∵四边形ABCD是平行四边形,∴OA=12AC=12×1=2.∵AB⊥AC,∴S阴影=S△AOB=12OA•AB=12×2×1=1.【点睛】本题考查了扇形面积的计算.17.已知(x+y)2=25,(x﹣y)2=9,则x2+y2=_____.【解析】先利用完全平方公式展开,然后再求和.【详解】根据(x+y )2=25,x 2+y 2+2xy=25;(x ﹣y )2=9, x 2+y 2-2xy=9,所以x 2+y 2=17.【点睛】(1)完全平方公式:2222a b a ab b ±=±+().(2)平方差公式:(a+b)(a-b)=22a b +.(3)常用等价变形:()2222 ,a b b a b a a b -=-=-+=-+ ()33a b b a -=--, ()()b a b a -=--,()22a b a b --=+.18.如图,半圆O 的直径AB=2,弦CD ∥AB ,∠COD=90°,则图中阴影部分的面积为_____.【答案】4π 【解析】解:∵弦CD ∥AB ,∴S △ACD =S △OCD ,∴S 阴影=S 扇形COD =2901360π⨯=4π.故答案为4π. 三、解答题(本题包括8个小题)19.“十九大”报告提出了我国将加大治理环境污染的力度,还我青山绿水,其中雾霾天气让环保和健康问题成为焦点,为了调查学生对雾霾天气知识的了解程度,某校在全校学生中抽取400名同学做了一次调查,根据调查统计结果,绘制了不完整的一种统计图表.对雾霾了解程度的统计表对雾霾的了解程度 百分比A.非常了解5%B.比较了解mC.基本了解45%D.不了解n请结合统计图表,回答下列问题:统计表中:m=,n=;请在图1中补全条形统计图;请问在图2所示的扇形统计图中,D部分扇形所对应的圆心角是多少度?【答案】(1)20;15%;35%;(2)见解析;(3)126°.【解析】(1)根据被调查学生总人数,用B的人数除以被调查的学生总人数计算即可求出m,再根据各部分的百分比的和等于1计算即可求出n;(2)求出D的学生人数,然后补全统计图即可;(3)用D的百分比乘360°计算即可得解.【详解】解:(1)非常了解的人数为20,60÷400×100%=15%,1﹣5%﹣15%﹣45%=35%,故答案为20;15%;35%;(2)∵D等级的人数为:400×35%=140,∴补全条形统计图如图所示:(3)D部分扇形所对应的圆心角:360°×35%=126°.【点睛】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小20.某商场以每件280元的价格购进一批商品,当每件商品售价为360元时,每月可售出60件,为了扩大销售,商场决定采取适当降价的方式促销,经调查发现,如果每件商品降价1元,那么商场每月就可以多售出5件.降价前商场每月销售该商品的利润是多少元?要使商场每月销售这种商品的利润达到7200元,且更有利于减少库存,则每件商品应降价多少元?【答案】(1) 4800元;(2) 降价60元.【解析】试题分析:(1)先求出降价前每件商品的利润,乘以每月销售的数量就可以得出每月的总利润;(2)设每件商品应降价x元,由销售问题的数量关系“每件商品的利润×商品的销售数量=总利润”列出方程,解方程即可解决问题.试题解析:(1)由题意得60×(360-280)=4800(元).即降价前商场每月销售该商品的利润是4800元;(2)设每件商品应降价x元,由题意得(360-x-280)(5x+60)=7200,解得x1=8,x2=60.要更有利于减少库存,则x=60.即要使商场每月销售这种商品的利润达到7200元,且更有利于减少库存,则每件商品应降价60元.点睛:本题考查了列一元二次方程解实际问题的销售问题,解答时根据销售问题的数量关系建立方程是关键.21.如图,在平面直角坐标系中,△AOB的三个顶点坐标分别为A(1,0),O(0,0),B(2,2).以点O为旋转中心,将△AOB逆时针旋转90°,得到△A1OB1.画出△A1OB1;直接写出点A1和点B1的坐标;求线段OB1的长度.【答案】(1)作图见解析;(2)A1(0,1),点B1(﹣2,2).(3)22【解析】(1)按要求作图.(2)由(1)得出坐标.(3)由图观察得到,再根据勾股定理得到长度.【详解】解:(1)画出△A1OB1,如图.(2)点A1(0,1),点B1(﹣2,2).(3)OB1=OB==2.【点睛】本题主要考查的是绘图、识图、勾股定理等知识点,熟练掌握方法是本题的解题关键.22.为更精准地关爱留守学生,某学校将留守学生的各种情形分成四种类型:A.由父母一方照看;B.由爷爷奶奶照看;C.由叔姨等近亲照看;D.直接寄宿学校.某数学小组随机调查了一个班级,发现该班留守学生数量占全班总人数的20%,并将调查结果制成如下两幅不完整的统计图.该班共有名留守学生,B类型留守学生所在扇形的圆心角的度数为;将条形统计图补充完整;已知该校共有2400名学生,现学校打算对D类型的留守学生进行手拉手关爱活动,请你估计该校将有多少名留守学生在此关爱活动中受益?【答案】(1)10,144;(2)详见解析;(3)96【解析】(1)依据C类型的人数以及百分比,即可得到该班留守的学生数量,依据B类型留守学生所占的百分比,即可得到其所在扇形的圆心角的度数;(2)依据D类型留守学生的数量,即可将条形统计图补充完整;(3)依据D类型的留守学生所占的百分比,即可估计该校将有多少名留守学生在此关爱活动中受益.【详解】解:(1)2÷20%=10(人),410×100%×360°=144°,故答案为10,144;(2)10﹣2﹣4﹣2=2(人),如图所示:(3)2400×210×20%=96(人),答:估计该校将有96名留守学生在此关爱活动中受益.【点睛】本题考查的是条形统计图和扇形统计图的综合运用.读懂统计图,从统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据.23.校车安全是近几年社会关注的重大问题,安全隐患主要是超速和超载.某中学数学活动小组设计了如下检测公路上行驶的汽车速度的实验:先在公路旁边选取一点C,再在笔直的车道l上确定点D,使CD与l垂直,测得CD的长等于21米,在l上点D的同侧取点A、B,使∠CAD=30︒,∠CBD=60︒.求AB的长(精确到0.1米,参考数据:3 1.732 1.41≈≈,);已知本路段对校车限速为40千米/小时,若测得某辆校车从A到B用时2秒,这辆校车是否超速?说明理由.【答案】(1)24.2米(2) 超速,理由见解析【解析】(1)分别在Rt△ADC与Rt△BDC中,利用正切函数,即可求得AD与BD的长,从而求得AB的长.(2)由从A到B用时2秒,即可求得这辆校车的速度,比较与40千米/小时的大小,即可确定这辆校车是否超速.【详解】解:(1)由題意得,在Rt△ADC中,CDADtan30︒=213?3=,在Rt△BDC中,CDBD73tan603===︒,∴AB=AD-BD=213?73=14314 1.73=24.2224.2-≈⨯≈(米).(2)∵汽车从A到B用时2秒,∴速度为24.2÷2=12.1(米/秒),∵12.1米/秒=43.56千米/小时,∴该车速度为43.56千米/小时.∵43.56千米/小时大于40千米/小时,∴此校车在AB路段超速.24.先化简,再求值:22212212x x xxx x x--+÷-+-,其中x=1.【答案】2【解析】原式第二项利用除法法则变形,约分后两项通分并利用同分母分式的加法法则计算得到最简结果,将x的值代入计算即可求出值.【详解】原式=()()()()21121•21x x x x x x x +--+-- =111x x ++- =21x x -, 当x=1时,原式=23331⨯=-. 【点睛】 此题考查了分式的化简求值,分式的加减运算关键是通分,通分的关键是找最简公分母;分式的乘除运算关键是约分,约分的关键是找公因式.25.如图,在△ABC 中,AB=AC ,D 为BC 的中点,DE ⊥AB ,DF ⊥AC ,垂足分别为E 、F ,求证:DE=DF .【答案】答案见解析【解析】由于AB=AC ,那么∠B=∠C ,而DE ⊥AC ,DF ⊥AB 可知∠BFD=∠CED=90°,又D 是BC 中点,可知BD=CD ,利用AAS 可证△BFD ≌△CED ,从而有DE=DF .26.如图,在矩形ABCD 中,AB=1DA ,以点A 为圆心,AB 为半径的圆弧交DC 于点E ,交AD 的延长线于点F ,设DA=1.求线段EC 的长;求图中阴影部分的面积.【答案】(1)423-;(1)8233π- 【解析】(1)根据矩形的性质得出AB=AE=4,进而利用勾股定理得出DE 的长,即可得出答案;(1)利用锐角三角函数关系得出∠DAE=60°,进而求出图中阴影部分的面积为:FAE DAE S S 扇形∆-,求出即可.【详解】解:(1)∵在矩形ABCD 中,AB=1DA ,DA=1,∴AB=AE=4,∴2223AE AD -=,∴3(1)∵sin∠DEA=12 ADAE=,∴∠DEA=30°,∴∠EAB=30°,∴图中阴影部分的面积为:S扇形FAB-S△DAE-S扇形EAB=9041304822323 36023603πππ⨯⨯-⨯⨯-=-.【点睛】此题主要考查了扇形的面积计算以及勾股定理和锐角三角函数关系等知识,根据已知得出DE的长是解题关键.中考数学模拟试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.如图,将长方形纸片ABCD折叠,使边DC落在对角线AC上,折痕为CE,且D点落在对角线D′处.若AB=3,AD=4,则ED的长为A.32B.3 C.1 D.43【答案】A【解析】首先利用勾股定理计算出AC的长,再根据折叠可得△DEC≌△D′EC,设ED=x,则D′E=x,AD′=AC ﹣CD′=2,AE=4﹣x,再根据勾股定理可得方程22+x2=(4﹣x)2,再解方程即可【详解】∵AB=3,AD=4,∴DC=3∴根据勾股定理得AC=5根据折叠可得:△DEC≌△D′EC,∴D′C=DC=3,DE=D′E设ED=x,则D′E=x,AD′=AC﹣CD′=2,AE=4﹣x,在Rt△AED′中:(AD′)2+(ED′)2=AE2,即22+x2=(4﹣x)2,解得:x=3 2故选A.2.下列各式计算正确的是( )A.633-=B.1236⨯=C.3535+=D.1025÷=【答案】B【解析】A选项中,∵63、不是同类二次根式,不能合并,∴本选项错误;B选项中,∵123=36=6⨯,∴本选项正确;C选项中,∵35=35⨯,而不是等于3+5,∴本选项错误;D选项中,∵10102=52÷≠,∴本选项错误;故选B.3.有理数a、b在数轴上的位置如图所示,则下列结论中正确的是()A.a+b>0 B.ab>0 C.a﹣b<o D.a÷b>0【答案】C【解析】利用数轴先判断出a、b的正负情况以及它们绝对值的大小,然后再进行比较即可.【详解】解:由a、b在数轴上的位置可知:a<1,b>1,且|a|>|b|,∴a+b<1,ab<1,a﹣b<1,a÷b<1.故选:C.4.已知一次函数y=﹣2x+3,当0≤x≤5时,函数y的最大值是()A.0 B.3 C.﹣3 D.﹣7【答案】B【解析】由于一次函数y=-2x+3中k=-2<0由此可以确定y随x的变化而变化的情况,即确定函数的增减性,然后利用解析式即可求出自变量在0≤x≤5范围内函数值的最大值.【详解】∵一次函数y=﹣2x+3中k=﹣2<0,∴y随x的增大而减小,∴在0≤x≤5范围内,x=0时,函数值最大﹣2×0+3=3,故选B.【点睛】本题考查了一次函数y=kx+b的图象的性质:①k>0,y随x的增大而增大;②k<0,y随x的增大而减小.5.某车间有27名工人,生产某种由一个螺栓套两个螺母的产品,每人每天生产螺母16个或螺栓22个,若分配x名工人生产螺栓,其他工人生产螺母,恰好使每天生产的螺栓和螺母配套,则下面所列方程中正确的是()A.22x=16(27﹣x)B.16x=22(27﹣x)C.2×16x=22(27﹣x) D.2×22x=16(27﹣x)【答案】D【解析】设分配x名工人生产螺栓,则(27-x)人生产螺母,根据一个螺栓要配两个螺母可得方程2×22x=16(27-x),故选D.6.如图,AB∥ED,CD=BF,若△ABC≌△EDF,则还需要补充的条件可以是()A.AC=EF B.BC=DF C.AB=DE D.∠B=∠E【答案】C【解析】根据平行线性质和全等三角形的判定定理逐个分析.AB ED,得∠B=∠D,【详解】由//,因为CD BF若ABC ≌EDF ,则还需要补充的条件可以是:AB=DE,或∠E=∠A, ∠EFD=∠ACB,故选C【点睛】本题考核知识点:全等三角形的判定. 解题关键点:熟记全等三角形判定定理.7.如图,在△ABC 中,AC ⊥BC ,∠ABC=30°,点D 是CB 延长线上的一点,且BD=BA ,则tan ∠DAC 的值为( )A .2+3B .23C .3+3D .33【答案】A 【解析】设AC=a ,由特殊角的三角函数值分别表示出BC 、AB 的长度,进而得出BD 、CD 的长度,由公式求出tan ∠DAC 的值即可.【详解】设AC=a ,则BC=30AC tan ︒=3a ,AB=30AC sin ︒=2a , ∴BD=BA=2a ,∴CD=(2+3)a ,∴tan ∠DAC=2+3.故选A.【点睛】本题主要考查特殊角的三角函数值.8.某单位组织职工开展植树活动,植树量与人数之间关系如图,下列说法不正确的是( )A .参加本次植树活动共有30人B .每人植树量的众数是4棵C .每人植树量的中位数是5棵D .每人植树量的平均数是5棵 【答案】D【解析】试题解析:A、∵4+10+8+6+2=30(人),∴参加本次植树活动共有30人,结论A正确;B、∵10>8>6>4>2,∴每人植树量的众数是4棵,结论B正确;C、∵共有30个数,第15、16个数为5,∴每人植树量的中位数是5棵,结论C正确;D、∵(3×4+4×10+5×8+6×6+7×2)÷30≈4.73(棵),∴每人植树量的平均数约是4.73棵,结论D不正确.故选D.考点:1.条形统计图;2.加权平均数;3.中位数;4.众数.9.分式方程213xx=-的解为()A.x=-2 B.x=-3 C.x=2 D.x=3【答案】B【解析】解:去分母得:2x=x﹣3,解得:x=﹣3,经检验x=﹣3是分式方程的解.故选B.10.已知x1,x2是关于x的方程x2+ax-2b=0的两个实数根,且x1+x2=-2,x1·x2=1,则b a的值是( ) A.B.-C.4 D.-1【答案】A【解析】根据根与系数的关系和已知x1+x2和x1•x2的值,可求a、b的值,再代入求值即可.【详解】解:∵x1,x2是关于x的方程x2+ax﹣2b=0的两实数根,∴x1+x2=﹣a=﹣2,x1•x2=﹣2b=1,解得a=2,b=,∴b a=()2=.故选A.二、填空题(本题包括8个小题)11.某厂家以A、B两种原料,利用不同的工艺手法生产出了甲、乙两种袋装产品,其中,甲产品每袋含1.5千克A原料、1.5千克B原料;乙产品每袋含2千克A原料、1千克B原料.甲、乙两种产品每袋的成本价分别为袋中两种原料的成本价之和.若甲产品每袋售价72元,则利润率为20%.某节庆日,厂家准备生产若干袋甲产品和乙产品,甲产品和乙产品的数量和不超过100袋,会计在核算成本的时候把A原料和B原料的单价看反了,后面发现如果不看反,那么实际成本比核算时的成本少500元,那么厂家在生产甲乙两种产品时实际成本最多为_____元.【答案】5750【解析】根据题意设甲产品的成本价格为b 元,求出b ,可知A 原料与B 原料的成本和40元,然后设A 种原料成本价格x 元,B 种原料成本价格(40﹣x)元,生产甲产品m 袋,乙产品n 袋,列出方程组得到xn =20n ﹣250,最后设生产甲乙产品的实际成本为W 元,即可解答 【详解】∵甲产品每袋售价72元,则利润率为20%. 设甲产品的成本价格为b 元, ∴72-bb=20%, ∴b =60,∴甲产品的成本价格60元,∴1.5kgA 原料与1.5kgB 原料的成本和60元, ∴A 原料与B 原料的成本和40元,设A 种原料成本价格x 元,B 种原料成本价格(40﹣x)元,生产甲产品m 袋,乙产品n 袋, 根据题意得:10060(240)50060(802)m n m x x n m n x x +≤⎧⎨++-+=+-+⎩, ∴xn =20n ﹣250,设生产甲乙产品的实际成本为W 元,则有 W =60m+40n+xn ,∴W =60m+40n+20n ﹣250=60(m+n)﹣250, ∵m+n≤100, ∴W≤6250;∴生产甲乙产品的实际成本最多为5750元, 故答案为5750; 【点睛】此题考查不等式和二元一次方程的解,解题关键在于求出甲产品的成本价格12.已知21x y =⎧⎨=⎩是方程组ax 5{1by bx ay +=+=的解,则a ﹣b 的值是___________ 【答案】4; 【解析】试题解析:把21x y =⎧⎨=⎩代入方程组得:25{21a b b a ++=①=②, ①×2-②得:3a=9,即a=3, 把a=3代入②得:b=-1, 则a-b=3+1=4,13.如图,点A ,B 在反比例函数y =1x (x >0)的图象上,点C ,D 在反比例函数y =kx(k >0)的图象上,AC ∥BD ∥y 轴,已知点A ,B 的横坐标分别为1,2,△OAC 与△ABD 的面积之和为32,则k 的值为_____.【答案】1【解析】过A 作x 轴垂线,过B 作x 轴垂线,求出A (1,1),B (2,12),C (1,k ),D (2,2k),将面积进行转换S △OAC =S △COM ﹣S △AOM ,S △ABD =S 梯形AMND ﹣S 梯形AAMNB 进而求解. 【详解】解:过A 作x 轴垂线,过B 作x 轴垂线,点A ,B 在反比例函数y =1x(x >0)的图象上,点A ,B 的横坐标分别为1,2, ∴A (1,1),B (2,12), ∵AC ∥BD ∥y 轴, ∴C (1,k ),D (2,2k ), ∵△OAC 与△ABD 的面积之和为32, 111112222OACCOMAOMk SSSk ∴=-=⨯-⨯⨯=-, S △ABD =S 梯形AMND ﹣S 梯形AAMNB 1k 11k 1111122224-⎛⎫⎛⎫=+⨯-⨯+⨯= ⎪ ⎪⎝⎭⎝⎭, 1132242k k -∴-+=, ∴k =1, 故答案为1. 【点睛】本题考查反比例函数的性质,k 的几何意义.能够将三角形面积进行合理的转换是解题的关键. 14.某书店把一本新书按标价的九折出售,仍可获利20%,若该书的进价为21元,则标 价为___________元.【答案】28【解析】设标价为x元,那么0.9x-21=21×20%,x=28.15.某菜农搭建了一个横截面为抛物线的大棚,尺寸如图,若菜农身高为1.8m,他在不弯腰的情况下,在棚内的横向活动范围是__m.【答案】1【解析】设抛物线的解析式为:y=ax2+b,由图得知点(0,2.4),(1,0)在抛物线上,列方程组得到抛物线的解析式为:y=﹣x2+2.4,根据题意求出y=1.8时x的值,进而求出答案;【详解】设抛物线的解析式为:y=ax2+b,由图得知:点(0,2.4),(1,0)在抛物线上,∴,解得:,∴抛物线的解析式为:y=﹣x2+2.4,∵菜农的身高为1.8m,即y=1.8,则1.8=﹣x2+2.4,解得:x=(负值舍去)故他在不弯腰的情况下,横向活动范围是:1米,故答案为1.16.如图,动点P在平面直角坐标系中按图中箭头所示方向运动,第1次从原点运动到点(1,1),第2次接着运动到点(2,0),第3次接着运动到点(3,2),…,按这样的运动规律,经过第2019次运动后,动点P 的坐标是_______.【答案】(2019,2)【解析】分析点P的运动规律,找到循环次数即可.【详解】分析图象可以发现,点P的运动每4次位置循环一次.每循环一次向右移动四个单位.∴2019=4×504+3当第504循环结束时,点P 位置在(2016,0),在此基础之上运动三次到(2019,2) 故答案为(2019,2). 【点睛】本题是规律探究题,解题关键是找到动点运动过程中,每运动多少次形成一个循环. 17.已知两圆内切,半径分别为2厘米和5厘米,那么这两圆的圆心距等于_____厘米. 【答案】1【解析】由两圆的半径分别为2和5,根据两圆位置关系与圆心距d ,两圆半径R ,r 的数量关系间的联系和两圆位置关系求得圆心距即可.【详解】解:∵两圆的半径分别为2和5,两圆内切, ∴d =R ﹣r =5﹣2=1cm , 故答案为1. 【点睛】此题考查了圆与圆的位置关系.解题的关键是掌握两圆位置关系与圆心距d ,两圆半径R ,r 的数量关系间的联系.18.如图是一张长方形纸片ABCD ,已知AB=8,AD=7,E 为AB 上一点,AE=5,现要剪下一张等腰三角形纸片(△AEP ),使点P 落在长方形ABCD 的某一条边上,则等腰三角形AEP 的底边长是_____________.【答案】525 1 【解析】如图所示:①当AP=AE=1时,∵∠BAD=90°,∴△AEP 是等腰直角三角形,∴底边2AE=52 ②当PE=AE=1时,∵BE=AB ﹣AE=8﹣1=3,∠B=90°,∴22PE BE -=4,∴底边22AB PB +2284+45③当PA=PE 时,底边AE=1;综上所述:等腰三角形AEP 的对边长为52451; 故答案为5251.三、解答题(本题包括8个小题)19.如图,小明今年国庆节到青城山游玩,乘坐缆车,当登山缆车的吊箱经过点A 到达点B 时,它经过了200m ,缆车行驶的路线与水平夹角∠α=16°,当缆车继续由点B 到达点D 时,它又走过了200m ,缆车由点B 到点D 的行驶路线与水平面夹角∠β=42°,求缆车从点A 到点D 垂直上升的距离.(结果保留整数)(参考数据:sin16°≈0.27,cos16°≈0.77,sin42°≈0.66,cos42°≈0.74)【答案】缆车垂直上升了186 m .【解析】在Rt ABC △中,sin 200sin1654BC AB α=⋅=⨯︒≈米,在Rt BDF 中,sin 200sin42132DF BD β=⋅=⨯︒≈,即可求出缆车从点A 到点D 垂直上升的距离.【详解】解:在Rt ABC △中,斜边AB=200米,∠α=16°, sin 200sin1654BC AB α=⋅=⨯︒≈(m ), 在Rt BDF 中,斜边BD=200米,∠β=42°,sin 200sin42132DF BD β=⋅=⨯︒≈,因此缆车垂直上升的距离应该是BC+DF=186(米). 答:缆车垂直上升了186米. 【点睛】本题考查了解直角三角形的应用-坡度坡角问题,锐角三角函数的定义,结合图形理解题意是解决问题的关键.20.某学校八、九两个年级各有学生180人,为了解这两个年级学生的体质健康情况,进行了抽样调查,具体过程如下:收集数据从八、九两个年级各随机抽取20名学生进行体质健康测试,测试成绩(百分制)如下:整理、描述数据将成绩按如下分段整理、描述这两组样本数据:(说明:成绩80分及以上为体质健康优秀,70~79分为体质健康良好,60~69分为体质健康合格,60分以下为体质健康不合格)分析数据两组样本数据的平均数、中位数、众数、方差如表所示:(1)表格中a的值为______;请你估计该校九年级体质健康优秀的学生人数为多少?根据以上信息,你认为哪个年级学生的体质健康情况更好一些?请说明理由.(请从两个不同的角度说明推断的合理性)【答案】(1)81;(2) 108人;(3)见解析.【解析】(1)根据众数的概念解答;(2)求出九年级学生体质健康的优秀率,计算即可;(3)分别从不同的角度进行评价.【详解】解:(1)由测试成绩可知,81分出现的次数最多,∴a=81,故答案为:81;(2)九年级学生体质健康的优秀率为:10+2100%=60% 20,九年级体质健康优秀的学生人数为:180×60%=108(人),。
山东省济南市2018年最新九年级学业水平数学模拟试卷(一)及答案
2018年济南市九年级学业水平模拟考试数学试题考试时间:120分钟满分150分第I 卷(选择题共48分)一、选择题(本大题共12小题,每小题4分,共48分。
在每小题列出的四个选项中,只有一项是符合题目要求的。
)1.-2的绝对值是()A.2 B.-2 C.21D.-212.2017年济南市GDP 总量实现历史性突破,生产总值达386000000000元,首次跃居全市第二。
将386000000000用科学计数法表示为()A.3.86×1010B.3.86×1011C.3.86×1012D.3.86×1093.下图是由4个相同的正方体搭成的几何体,则其俯视图是A .B .C .D .4.下列运算正确的是()A .x 2+x 3=x 5B .(x ﹣2)2=x 2﹣4C .(x 3)4=x 7D .2x 2⋅x 3=2x 55.如图,AB ∥DE ,FG ⊥BC 于F ,∠CDE=40°,则∠FGB=()A .40°B .50°C .60°D .70°6.关于x 的一元二次方程mx 2﹣(m+1)x+1=0有两个不等的整数根,第5题图m 为整数,那么m 的值是()A .﹣1B .1C .0D .±17.在△ABC 中,∠C=90°,BC=2,sinA=,则边AC 的长是()A .B .3C .D .第8题图8.二次函数y=ax 2+bx+c (a≠0)的图象如图所示,则下列结论中正确的是()A .a >0B .c <0C .当﹣1<x <3时,y >0D .当x≥1时,y 随x 的增大而增大9.下列说法正确的是()A .“明天降雨的概率是60%”表示明天有60%的时间都在降雨。
2018届九年级数学第一次模拟考试试题扫描版
∵AE2+EF2=7+2=9,AF2=9,即AE2+EF2=AF2∴△AEF为直角三角形,……7分
∴∠BEF=90∘∴∠AED=∠AEF+DEF=90∘+45∘=135∘;……8分
(3)∵M是AB中点,∴MA= AB= AD,
∵AB∥CD,∴ ,……9分
在Rt△DAM中,DM=
∴DO= ,∵OF= ,∴DF= ,……10分
∵∠DFN=∠DCO=45∘,∠FDN=∠CDO,∴△DFN∽△DCO,……11分
……12分
27.(1)∵C(0,4),∴OC=4.
∵OA=OC=4OB,∴OA=4,OB=1,
∴A(4,0),B(−1,0),
设抛物线解析式:y=a(x+1)(x−4),
∴4=−4a,∴a=−1.∴y=−x2+3x+4.……3分
=1- …………3分
(2)原式=a2-6+2a-a2………2分,
=2a-6………3分
20.(1)解 得:x<4………1分
解 得:x ………2分
所以原不等式组的解集是2 x<4………3分
(2)由x2-4x+3=0得(x-1)(x-3)=0………1分
∴x-1=0或x-3=0………2分
∴x1=1,x2=3………3分
(3)Q(0,0),(-4,0), .……12分
(3)以BC为底,则BC边上的高AE为3+2=5,∴S△ABC= ×2×5=5.……10分
26.(1)CE=AF;……1分
证明:在正方形ABCD,等腰直角三角形CEF中,FD=DE,CD=CA,∠ADC=∠EDF=90∘
∴∠ADF=∠CDE,∴△ADF≌△CDE,∴CE=AF.……4分
(汇总3份试卷)2018年济南市中考数学毕业升学考试一模试题
中考数学模拟试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.如图,已知△ABC 中,∠C=90°,AC=BC=2,将△ABC 绕点A 顺时针方向旋转60°到△AB′C′的位置,连接C′B ,则C′B 的长为( )A .2-2B .32C .3-1D .1【答案】C 【解析】延长BC′交AB′于D ,根据等边三角形的性质可得BD ⊥AB′,利用勾股定理列式求出AB ,然后根据等边三角形的性质和等腰直角三角形的性质求出BD 、C′D ,然后根据BC′=BD -C′D 计算即可得解.【详解】解:延长BC′交AB′于D ,连接BB ',如图,在Rt △AC′B′中,AB′=2AC′=2,∵BC′垂直平分AB′,∴C′D=12AB=1, ∵BD 为等边三角形△ABB′的高,∴BD=3AB′=3, ∴BC′=BD -C′D=3-1.故本题选择C.【点睛】熟练掌握勾股定理以及由旋转60°得到△ABB′是等边三角形是解本题的关键.2.设点()11A ,x y 和()22B ,x y 是反比例函数k y x=图象上的两个点,当1x <2x <时,1y <2y ,则一次函数2y x k =-+的图象不经过的象限是A .第一象限B .第二象限C .第三象限D .第四象限 【答案】A【解析】∵点()11A ,x y 和()22B ,x y 是反比例函数k y x =图象上的两个点,当1x <2x <1时,1y <2y ,即y 随x 增大而增大,∴根据反比例函数k y x =图象与系数的关系:当0k >时函数图象的每一支上,y 随x 的增大而减小;当0k <时,函数图象的每一支上,y 随x 的增大而增大.故k <1. ∴根据一次函数图象与系数的关系:一次函数1y=k x+b 的图象有四种情况:①当1k 0>,b 0>时,函数1y=k x+b 的图象经过第一、二、三象限;②当1k 0>,b 0<时,函数1y=k x+b 的图象经过第一、三、四象限;③当1k 0<,b 0>时,函数1y=k x+b 的图象经过第一、二、四象限;④当1k 0<,b 0<时,函数1y=k x+b 的图象经过第二、三、四象限.因此,一次函数2y x k =-+的1k 20=-<,b=k 0<,故它的图象经过第二、三、四象限,不经过第一象限.故选A .3.如图,矩形 ABCD 的边 AB=1,BE 平分∠ABC ,交 AD 于点 E ,若点 E 是 AD 的中点,以点 B 为圆心,BE 长为半径画弧,交 BC 于点 F ,则图中阴影部分的面积是( )A .2-4πB .324π-C .2-8πD .324π- 【答案】B【解析】利用矩形的性质以及结合角平分线的性质分别求出AE ,BE 的长以及∠EBF 的度数,进而利用图中阴影部分的面积=S ABCD 矩形-S ABE -S EBF 扇形,求出答案.【详解】∵矩形ABCD 的边AB=1,BE 平分∠ABC ,∴∠ABE=∠EBF=45°,AD ∥BC ,∴∠AEB=∠CBE=45°,∴2 ,∵点E 是AD 的中点,∴AE=ED=1,∴图中阴影部分的面积=S ABCD 矩形 −S ABE −S EBF 扇形 =1×2−123-24π 故选B.【点睛】此题考查矩形的性质,扇形面积的计算,解题关键在于掌握运算公式4.下列调查中,调查方式选择合理的是( )A .为了解襄阳市初中每天锻炼所用时间,选择全面调查B .为了解襄阳市电视台《襄阳新闻》栏目的收视率,选择全面调查C .为了解神舟飞船设备零件的质量情况,选择抽样调查D .为了解一批节能灯的使用寿命,选择抽样调查【答案】D【解析】A .为了解襄阳市初中每天锻炼所用时间,选择抽样调查,故A 不符合题意;B .为了解襄阳市电视台《襄阳新闻》栏目的收视率,选择抽样调查,故B 不符合题意;C .为了解神舟飞船设备零件的质量情况,选普查,故C 不符合题意;D .为了解一批节能灯的使用寿命,选择抽样调查,故D 符合题意;故选D .5.世界上最小的开花结果植物是澳大利亚的出水浮萍,这种植物的果实像一个微小的无花果,质量只有0.0000000076克,将数0.0000000076用科学记数法表示为( )A .7.6×10﹣9B .7.6×10﹣8C .7.6×109D .7.6×108【答案】A【解析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10n -,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】解:将0.0000000076用科学计数法表示为97.610-⨯.故选A.【点睛】本题考查了用科学计数法表示较小的数,一般形式为a×10n -,其中110a ≤<,n 为由原数左边起第一个不为0的数字前面的0的个数所决定.6.今年“五一”节,小明外出爬山,他从山脚爬到山顶的过程中,中途休息了一段时间.设他从山脚出发后所用的时间为t (分钟),所走的路程为s (米),s 与t 之间的函数关系如图所示,下列说法错误的是( )A.小明中途休息用了20分钟B.小明休息前爬山的平均速度为每分钟70米C.小明在上述过程中所走的路程为6600米D.小明休息前爬山的平均速度大于休息后爬山的平均速度【答案】C【解析】根据图像,结合行程问题的数量关系逐项分析可得出答案.【详解】从图象来看,小明在第40分钟时开始休息,第60分钟时结束休息,故休息用了20分钟,A正确;小明休息前爬山的平均速度为:28007040=(米/分),B正确;小明在上述过程中所走的路程为3800米,C错误;小明休息前爬山的平均速度为:70米/分,大于休息后爬山的平均速度:380028002510060-=-米/分,D正确.故选C.考点:函数的图象、行程问题.7.如图,⊙O 是等边△ABC 的外接圆,其半径为3,图中阴影部分的面积是()A.πB.32πC.2πD.3π【答案】D【解析】根据等边三角形的性质得到∠A=60°,再利用圆周角定理得到∠BOC=120°,然后根据扇形的面积公式计算图中阴影部分的面积即可.【详解】∵△ABC 为等边三角形,∴∠A=60°,∴∠BOC=2∠A=120°,∴图中阴影部分的面积= 21203360π⨯=3π. 故选D .【点睛】本题考查了三角形的外接圆与外心、圆周角定理及扇形的面积公式,求得∠BOC=120°是解决问题的关键.8.如图,BD 为⊙O 的直径,点A 为弧BDC 的中点,∠ABD =35°,则∠DBC =( )A .20°B .35°C .15°D .45°【答案】A 【解析】根据∠ABD =35°就可以求出AD 的度数,再根据180BD ︒=,可以求出AB ,因此就可以求得ABC ∠的度数,从而求得∠DBC【详解】解:∵∠ABD =35°,∴的度数都是70°,∵BD 为直径,∴的度数是180°﹣70°=110°,∵点A 为弧BDC 的中点,∴的度数也是110°, ∴的度数是110°+110°﹣180°=40°,∴∠DBC ==20°, 故选:A .【点睛】本题考查了等腰三角形性质、圆周角定理,主要考查学生的推理能力.9.已知抛物线y =ax 2+bx+c (a <0)与x 轴交于点A (﹣1,0),与y 轴的交点在(0,2),(0,3)之间(包含端点),顶点坐标为(1,n ),则下列结论:①4a+2b <0; ②﹣1≤a≤23-; ③对于任意实数m ,a+b≥am 2+bm 总成立;④关于x 的方程ax 2+bx+c =n ﹣1有两个不相等的实数根.其中结论正确的个数为( ) A .1个B .2个C .3个D .4个 【答案】C【解析】①由抛物线的顶点横坐标可得出b=-2a ,进而可得出4a+2b=0,结论①错误;②利用一次函数图象上点的坐标特征结合b=-2a 可得出a=-3c ,再结合抛物线与y 轴交点的位置即可得出-1≤a≤-23,结论②正确; ③由抛物线的顶点坐标及a <0,可得出n=a+b+c ,且n≥ax 2+bx+c ,进而可得出对于任意实数m ,a+b≥am 2+bm 总成立,结论③正确;④由抛物线的顶点坐标可得出抛物线y=ax 2+bx+c 与直线y=n 只有一个交点,将直线下移可得出抛物线y=ax 2+bx+c 与直线y=n-1有两个交点,进而可得出关于x 的方程ax 2+bx+c=n-1有两个不相等的实数根,结合④正确.【详解】:①∵抛物线y=ax 2+bx+c 的顶点坐标为(1,n ),∴-2b a=1, ∴b=-2a ,∴4a+2b=0,结论①错误;②∵抛物线y=ax 2+bx+c 与x 轴交于点A (-1,0),∴a-b+c=3a+c=0,∴a=-3c . 又∵抛物线y=ax 2+bx+c 与y 轴的交点在(0,2),(0,3)之间(包含端点),∴2≤c≤3,∴-1≤a≤-23,结论②正确; ③∵a <0,顶点坐标为(1,n ),∴n=a+b+c ,且n≥ax 2+bx+c ,∴对于任意实数m ,a+b≥am 2+bm 总成立,结论③正确;④∵抛物线y=ax 2+bx+c 的顶点坐标为(1,n ),∴抛物线y=ax 2+bx+c 与直线y=n 只有一个交点,又∵a <0,∴抛物线开口向下,∴抛物线y=ax 2+bx+c 与直线y=n-1有两个交点,∴关于x 的方程ax 2+bx+c=n-1有两个不相等的实数根,结合④正确.故选C .【点睛】本题考查了二次函数图象与系数的关系、抛物线与x轴的交点以及二次函数的性质,观察函数图象,逐一分析四个结论的正误是解题的关键.10.观察下列图中所示的一系列图形,它们是按一定规律排列的,依照此规律,第2019个图形共有()个〇.A.6055 B.6056 C.6057 D.6058【答案】D【解析】设第n个图形有a n个O(n为正整数),观察图形,根据各图形中O的个数的变化可找出"a n=1+3n(n 为正整数)",再代入a=2019即可得出结论【详解】设第n个图形有a n个〇(n为正整数),观察图形,可知:a1=1+3×1,a2=1+3×2,a3=1+3×3,a4=1+3×4,…,∴a n=1+3n(n为正整数),∴a2019=1+3×2019=1.故选:D.【点睛】此题考查规律型:图形的变化,解题关键在于找到规律二、填空题(本题包括8个小题)11.已知x=2是关于x的一元二次方程kx2+(k2﹣2)x+2k+4=0的一个根,则k的值为_____.【答案】﹣1【解析】把x=2代入kx2+(k2﹣2)x+2k+4=0得4k+2k2﹣4+2k+4=0,再解关于k的方程,然后根据一元二次方程的定义确定k的值即可.【详解】把x=2代入kx2+(k2﹣2)x+2k+4=0得4k+2k2﹣4+2k+4=0,整理得k2+1k=0,解得k1=0,k2=﹣1,因为k≠0,所以k的值为﹣1.故答案为:﹣1.【点睛】本题考查了一元二次方程的定义以及一元二次方程的解,能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.12.因式分解:3x3﹣12x=_____.【答案】3x(x+2)(x﹣2)【解析】先提公因式3x,然后利用平方差公式进行分解即可.【详解】3x3﹣12x=3x(x2﹣4)=3x(x+2)(x﹣2),故答案为3x(x+2)(x﹣2).【点睛】本题考查了提公因式法与公式法分解因式,要求灵活使用各种方法对多项式进行因式分解,一般来说,如果可以先提取公因式的要先提取公因式,再考虑运用公式法分解.13.如图所示,在四边形ABCD中,AD⊥AB,∠C=110°,它的一个外角∠ADE=60°,则∠B的大小是_____.【答案】40°【解析】根据外角的概念求出∠ADC的度数,再根据垂直的定义、四边形的内角和等于360°进行求解即可得.【详解】∵∠ADE=60°,∴∠ADC=120°,∵AD⊥AB,∴∠DAB=90°,∴∠B=360°﹣∠C﹣∠ADC﹣∠A=40°,故答案为40°.【点睛】本题考查了多边形的内角和外角,掌握四边形的内角和等于360°、外角的概念是解题的关键.14.如图,已知点C为反比例函数6yx=-上的一点,过点C向坐标轴引垂线,垂足分别为A、B,那么四边形AOBC的面积为___________.【答案】1【解析】解:由于点C为反比例函数6yx=-上的一点,则四边形AOBC的面积S=|k|=1.故答案为:1.15.半径为2的圆中,60°的圆心角所对的弧的弧长为_____.【答案】2π3【解析】根据弧长公式可得:602180π⨯⨯=23π,故答案为23π.16.如图,在正六边形ABCDEF的上方作正方形AFGH ,联结GC,那么GCD∠的正切值为___.【答案】31+【解析】延长GF与CD交于点D,过点E作EM DF⊥交DF于点M,设正方形的边长为a,则,CD GF DE a===解直角三角形可得DF,根据正切的定义即可求得GCD∠的正切值【详解】延长GF与CD交于点D,过点E作EM DF⊥交DF于点M,设正方形的边长为a,则,CD GF DE a===AF//CD,90,CDG AFG∴∠=∠=1209030,EDM∠=-=3cos30,DM DE=⋅=23,DF DM a∴==)331,DG GF FD a a a∴=+==()3131tan.aGDGCDCD a∠===3 1.【点睛】考查正多边形的性质,锐角三角函数,构造直角三角形是解题的关键.17.A .如果一个正多边形的一个外角是45°,那么这个正多边形对角线的条数一共有_____条. B .用计算器计算:7•tan63°27′≈_____(精确到0.01).【答案】20 5.1【解析】A 、先根据多边形外角和为360°且各外角相等求得边数,再根据多边形对角线条数的计算公式计算可得;B 、利用计算器计算可得.【详解】A 、根据题意,此正多边形的边数为360°÷45°=8,则这个正多边形对角线的条数一共有8(83)2⨯-=20, 故答案为20;B 、7•tan63°27′≈2.646×2.001≈5.1,故答案为5.1.【点睛】本题主要考查计算器-三角函数,解题的关键是掌握多边形的内角与外角、对角线计算公式及计算器的使用.18.如图,⊙O 的半径为6,四边形ABCD 内接于⊙O ,连接OB ,OD ,若∠BOD=∠BCD ,则弧BD 的长为________.【答案】4π【解析】根据圆内接四边形对角互补可得∠BCD+∠A=180°,再根据同弧所对的圆周角与圆心角的关系以及∠BOD=∠BCD ,可求得∠A=60°,从而得∠BOD=120°,再利用弧长公式进行计算即可得.【详解】解:∵四边形ABCD 内接于⊙O ,∴∠BCD+∠A=180°,∵∠BOD=2∠A ,∠BOD=∠BCD ,∴2∠A+∠A=180°,解得:∠A=60°,∴∠BOD=120°,∴BD 的长=41812060ππ=⨯, 故答案为4π.【点睛】本题考查了圆周角定理、弧长公式等,求得∠A 的度数是解题的关键.三、解答题(本题包括8个小题)19.已知m 是关于x 的方程2450x x -=+的一个根,则228m m +=__【答案】10【解析】利用一元二次方程的解的定义得到245m m +=,再把228m m + 变形为()224m m +,然后利用整体代入的方法计算 .【详解】解:m 是关于x 的方程2450x x +-=的一个根,2450m m ∴+-=,245m m ∴+=,()2228242510m m m m ∴+=+=⨯=.故答案为 10 .【点睛】本题考查了一元二次方程的解: 能使一元二次方程左右两边相等的未知数的值是一元二次方程的解 . 20.某中学课外活动小组准备围建一个矩形生物苗圃园,其中一边靠墙,另外三边用长为30米的篱笆围成.已知墙长为18米(如图所示),设这个苗圃园垂直于墙的一边的长为x 米. 若平行于墙的一边长为y 米,直接写出y 与x 的函数关系式及其自变量x的取值范围.垂直于墙的一边的长为多少米时,这个苗圃园的面积最大,并求出这个最大值.【答案】112.1【解析】试题分析:(1)根据题意即可求得y 与x 的函数关系式为y=30﹣2x 与自变量x 的取值范围为6≤x <11;(2)设矩形苗圃园的面积为S ,由S=xy ,即可求得S 与x 的函数关系式,根据二次函数的最值问题,即可求得这个苗圃园的面积最大值.试题解析:解:(1)y=30﹣2x (6≤x <11).(2)设矩形苗圃园的面积为S ,则S=xy=x (30﹣2x )=﹣2x 2+30x ,∴S=﹣2(x ﹣7.1)2+112.1,由(1)知,6≤x <11,∴当x=7.1时,S 最大值=112.1,即当矩形苗圃园垂直于墙的一边的长为7.1米时,这个苗圃园的面积最大,这个最大值为112.1.点睛:此题考查了二次函数的实际应用问题.解题的关键是根据题意构建二次函数模型,然后根据二次函数的性质求解即可.21.6月14日是“世界献血日”,某市采取自愿报名的方式组织市民义务献血.献血时要对献血者的血型进行检测,检测结果有“A型”、“B型”、“AB型”、“O型”4种类型.在献血者人群中,随机抽取了部分献血者的血型结果进行统计,并根据这个统计结果制作了两幅不完整的图表:血型 A B AB O人数10 5(1)这次随机抽取的献血者人数为人,m=;补全上表中的数据;若这次活动中该市有3000人义务献血,请你根据抽样结果回答:从献血者人群中任抽取一人,其血型是A型的概率是多少?并估计这3000人中大约有多少人是A型血?【答案】(1)50,20;(2)12,23;见图;(3)大约有720人是A型血.【解析】(1)用AB型的人数除以它所占的百分比得到随机抽取的献血者的总人数,然后用B型的人数除以抽取的总人数即可求得m的值;(2)先计算出O型的人数,再计算出A型人数,从而可补全上表中的数据;(3)用样本中A型的人数除以50得到血型是A型的概率,然后用3000乘以此概率可估计这3000人中是A型血的人数.【详解】(1)这次随机抽取的献血者人数为5÷10%=50(人),所以m=1050×100=20,故答案为50,20;(2)O型献血的人数为46%×50=23(人),A型献血的人数为50﹣10﹣5﹣23=12(人),补全表格中的数据如下:血型 A B AB O 人数12 10 5 23 故答案为12,23;(3)从献血者人群中任抽取一人,其血型是A型的概率=126 5025,3000×625=720,估计这3000人中大约有720人是A型血.【点睛】本题考查了扇形统计图、统计表、概率公式、用样本估计总体等,读懂统计图、统计表,从中找到必要的信息是解题的关键;随机事件A 的概率P (A )=事件A 可能出现的结果数除以所有可能出现的结果数.22.先化简,后求值:(1﹣11a +)÷(2221a a a a -++),其中a =1. 【答案】11a a +-,2. 【解析】先根据分式的混合运算顺序和运算法则化简原式,再将a 的值代入计算可得. 【详解】解:原式=()()2111111a a a a a a -+⎛⎫-÷ ⎪++⎝⎭+ ()()2111a a a a a +=+- 11a a +=-, 当a =1时, 原式=3131+-=2. 【点睛】本题主要考查分式的化简求值,解题的关键是掌握分式的混合运算顺序和运算法则.23.2018年“植树节”前夕,某小区为绿化环境,购进200棵柏树苗和120棵枣树苗,且两种树苗所需费用相同.每棵枣树苗的进价比每棵柏树苗的进价的2倍少5元,每棵柏树苗的进价是多少元.【答案】15元.【解析】首先设每棵柏树苗的进价是x 元,则每棵枣树苗的进价是(2x -5)元,根据题意列出一元一次方程进行求解.【详解】解:设每棵柏树苗的进价是x 元,则每棵枣树苗的进价是(2x -5)元.根据题意,列方程得:200=120(25)x x -, 解得:x=15答:每棵柏树苗的进价是15元.【点睛】此题考查了一元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.24201(1)6tan 303π-︒⎛⎫--+- ⎪⎝⎭解方程:544101236x x x x -++=-- 【答案】 (1)10;(2)原方程无解.【解析】(1)原式利用二次根式性质,零指数幂、负整数指数幂法则,以及特殊角的三角函数值计算即可求出值;(2)分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【详解】(1)原式=323169+-⨯+=10;(2)去分母得:3(5x﹣4)+3x﹣6=4x+10,解得:x=2,经检验:x=2是增根,原方程无解.【点睛】此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.25.如图,以D为顶点的抛物线y=﹣x2+bx+c交x轴于A、B两点,交y轴于点C,直线BC的表达式为y=﹣x+1.求抛物线的表达式;在直线BC上有一点P,使PO+PA的值最小,求点P的坐标;在x轴上是否存在一点Q,使得以A、C、Q为顶点的三角形与△BCD相似?若存在,请求出点Q的坐标;若不存在,请说明理由.【答案】(1)y=﹣x2+2x+1;(2)P (97,127);(1)当Q的坐标为(0,0)或(9,0)时,以A、C、Q为顶点的三角形与△BCD相似.【解析】(1)先求得点B和点C的坐标,然后将点B和点C的坐标代入抛物线的解析式得到关于b、c的方程,从而可求得b、c的值;(2)作点O关于BC的对称点O′,则O′(1,1),则OP+AP的最小值为AO′的长,然后求得AO′的解析式,最后可求得点P的坐标;(1)先求得点D的坐标,然后求得CD、BC、BD 的长,依据勾股定理的逆定理证明△BCD为直角三角形,然后分为△AQC∽△DCB和△ACQ∽△DCB两种情况求解即可.【详解】(1)把x=0代入y=﹣x+1,得:y=1,∴C(0,1).把y=0代入y=﹣x+1得:x=1,∴B(1,0),A(﹣1,0).将C(0,1)、B(1,0)代入y=﹣x2+bx+c得:9303b cc-++=⎧⎨=⎩,解得b=2,c=1.∴抛物线的解析式为y=﹣x2+2x+1.(2)如图所示:作点O 关于BC 的对称点O′,则O′(1,1).∵O′与O 关于BC 对称,∴PO=PO′.∴OP+AP=O′P+AP≤AO′.∴OP+AP 的最小值=O′A=()()221330--+-=2. O′A 的方程为y=3344x + P 点满足33443y x y x ⎧=+⎪⎨⎪=+⎩﹣解得:97127x y ⎧=⎪⎪⎨⎪=⎪⎩所以P (97 ,127) (1)y=﹣x 2+2x+1=﹣(x ﹣1)2+4,∴D (1,4).又∵C (0,1,B (1,0),∴2,25∴CD 2+CB 2=BD 2,∴∠DCB=90°.∵A (﹣1,0),C (0,1), ∴OA=1,CO=1.∴13AO CD CO BC ==. 又∵∠AOC=DCB=90°,∴△AOC ∽△DCB .∴当Q 的坐标为(0,0)时,△AQC ∽△DCB .如图所示:连接AC ,过点C 作CQ ⊥AC ,交x 轴与点Q .∵△ACQ为直角三角形,CO⊥AQ,∴△ACQ∽△AOC.又∵△AOC∽△DCB,∴△ACQ∽△DCB.∴CD ACBD AQ=,即21025=,解得:AQ=3.∴Q(9,0).综上所述,当Q的坐标为(0,0)或(9,0)时,以A、C、Q为顶点的三角形与△BCD相似.【点睛】本题考查了二次函数的综合应用,解题的关键是掌握待定系数法求二次函数的解析式、轴对称图形的性质、相似三角形的性质和判定,分类讨论的思想.26.如图,AC=DC,BC=EC,∠ACD=∠BCE.求证:∠A=∠D.【答案】证明见试题解析.【解析】试题分析:首先根据∠ACD=∠BCE得出∠ACB=∠DCE,结合已知条件利用SAS判定△ABC和△DEC 全等,从而得出答案.试题解析:∵∠ACD=∠BCE ∴∠ACB=∠DCE 又∵AC=DC BC=EC ∴△ABC≌△DEC ∴∠A=∠D考点:三角形全等的证明中考数学模拟试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.估算9153+÷的运算结果应在( ) A .2到3之间B .3到4之间C .4到5之间D .5到6之间【答案】D【解析】解:9153+÷=35+ ,∵2<5<3,∴35+在5到6之间.故选D . 【点睛】此题主要考查了估算无理数的大小,正确进行计算是解题关键.2.如图,正比例函数11y k x =的图像与反比例函数22k y x =的图象相交于A 、B 两点,其中点A 的横坐标为2,当12y y >时,x 的取值范围是( )A .x <-2或x >2B .x <-2或0<x <2C .-2<x <0或0<x <2D .-2<x <0或x >2【答案】D 【解析】先根据反比例函数与正比例函数的性质求出B 点坐标,再由函数图象即可得出结论.【详解】解:∵反比例函数与正比例函数的图象均关于原点对称,∴A 、B 两点关于原点对称,∵点A 的横坐标为1,∴点B 的横坐标为-1,∵由函数图象可知,当-1<x <0或x >1时函数y 1=k 1x 的图象在22k y x=的上方, ∴当y 1>y 1时,x 的取值范围是-1<x <0或x >1.故选:D .【点睛】本题考查的是反比例函数与一次函数的交点问题,能根据数形结合求出y 1>y 1时x 的取值范围是解答此题的关键.3.如图,圆弧形拱桥的跨径12AB =米,拱高4CD =米,则拱桥的半径为( )米A.6.5B.9C.13D.15【答案】A【解析】试题分析:根据垂径定理的推论,知此圆的圆心在CD所在的直线上,设圆心是O.连接OA.根据垂径定理和勾股定理求解.得AD=6设圆的半径是r,根据勾股定理,得r2=36+(r﹣4)2,解得r=6.5考点:垂径定理的应用.4.中国幅员辽阔,陆地面积约为960万平方公里,“960万”用科学记数法表示为()A.0.96×107B.9.6×106C.96×105D.9.6×102【答案】B【解析】试题分析:“960万”用科学记数法表示为9.6×106,故选B.考点:科学记数法—表示较大的数.5.对于一组统计数据1,1,6,5,1.下列说法错误的是()A.众数是1 B.平均数是4 C.方差是1.6 D.中位数是6【答案】D【解析】根据中位数、众数、方差等的概念计算即可得解.【详解】A、这组数据中1都出现了1次,出现的次数最多,所以这组数据的众数为1,此选项正确;B、由平均数公式求得这组数据的平均数为4,故此选项正确;C、S2=15[(1﹣4)2+(1﹣4)2+(6﹣4)2+(5﹣4)2+(1﹣4)2]=1.6,故此选项正确;D、将这组数据按从大到校的顺序排列,第1个数是1,故中位数为1,故此选项错误;故选D.考点:1.众数;2.平均数;1.方差;4.中位数.6.如图1,在△ABC中,AB=BC,AC=m,D,E分别是AB,BC边的中点,点P为AC边上的一个动点,连接PD,PB,PE.设AP=x,图1中某条线段长为y,若表示y与x的函数关系的图象大致如图2所示,则这条线段可能是()A .PDB .PBC .PED .PC【答案】C 【解析】观察可得,点P 在线段AC 上由A 到C 的运动中,线段PE 逐渐变短,当EP ⊥AC 时,PE 最短,过垂直这个点后,PE 又逐渐变长,当AP=m 时,点P 停止运动,符合图像的只有线段PE ,故选C.点睛:本题考查了动点问题的函数图象,对于此类问题来说是典型的数形结合,图象应用信息广泛,通过看图获取信息,不仅可以解决生活中的实际问题,还可以提高分析问题、解决问题的能力.用图象解决问题时,要理清图象的含义即会识图.7.某种品牌手机经过二、三月份再次降价,每部售价由1000元降到810元,则平均每月降价的百分率为( )A .20%B .11%C .10%D .9.5% 【答案】C【解析】设二,三月份平均每月降价的百分率为x ,则二月份为1000(1)x -,三月份为21000(1)x -,然后再依据第三个月售价为1,列出方程求解即可.【详解】解:设二,三月份平均每月降价的百分率为x .根据题意,得21000(1)x -=1.解得10.1x =,2 1.9x =-(不合题意,舍去).答:二,三月份平均每月降价的百分率为10%【点睛】本题主要考查一元二次方程的应用,关于降价百分比的问题:若原数是a ,每次降价的百分率为a ,则第一次降价后为a (1-x );第二次降价后后为a (1-x )2,即:原数x (1-降价的百分率)2=后两次数. 8.在半径等于5 cm 的圆内有长为53cm 的弦,则此弦所对的圆周角为A .60°B .120°C .60°或120°D .30°或120° 【答案】C【解析】根据题意画出相应的图形,由OD ⊥AB ,利用垂径定理得到D 为AB 的中点,由AB 的长求出AD 与BD 的长,且得出OD 为角平分线,在Rt △AOD 中,利用锐角三角函数定义及特殊角的三角函数值求出∠AOD 的度数,进而确定出∠AOB 的度数,利用同弧所对的圆心角等于所对圆周角的2倍,即可求出弦AB 所对圆周角的度数.【详解】如图所示,∵OD⊥AB,∴D为AB的中点,即AD=BD=532,在Rt△AOD中,OA=5,AD=53 2,∴sin∠AOD=5332=52,又∵∠AOD为锐角,∴∠AOD=60°,∴∠AOB=120°,∴∠ACB=12∠AOB=60°,又∵圆内接四边形AEBC对角互补,∴∠AEB=120°,则此弦所对的圆周角为60°或120°.故选C.【点睛】此题考查了垂径定理,圆周角定理,特殊角的三角函数值,以及锐角三角函数定义,熟练掌握垂径定理是解本题的关键.9.如图,在正方形ABCD中,点E,F分别在BC,CD上,AE=AF,AC与EF相交于点G,下列结论:①AC垂直平分EF;②BE+DF=EF;③当∠DAF=15°时,△AEF为等边三角形;④当∠EAF=60°时,S△ABE=12S△CEF,其中正确的是()A.①③B.②④C.①③④D.②③④【答案】C【解析】①通过条件可以得出△ABE≌△ADF,从而得出∠BAE=∠DAF,BE=DF,由正方形的性质就可以得出EC=FC ,就可以得出AC 垂直平分EF ,②设BC=a ,CE=y ,由勾股定理就可以得出EF 与x 、y 的关系,表示出BE 与EF ,即可判断BE+DF 与EF 关系不确定;③当∠DAF=15°时,可计算出∠EAF=60°,即可判断△EAF 为等边三角形,④当∠EAF=60°时,设EC=x ,BE=y ,由勾股定理就可以得出x 与y 的关系,表示出BE 与EF ,利用三角形的面积公式分别表示出S △CEF 和S △ABE ,再通过比较大小就可以得出结论.【详解】①四边形ABCD 是正方形,∴AB ═AD ,∠B=∠D=90°.在Rt △ABE 和Rt △ADF 中,AE AF AB AD=⎧⎨=⎩, ∴Rt △ABE ≌Rt △ADF (HL ),∴BE=DF∵BC=CD ,∴BC-BE=CD-DF ,即CE=CF ,∵AE=AF ,∴AC 垂直平分EF .(故①正确).②设BC=a ,CE=y ,∴BE+DF=2(a-y )y ,∴BE+DF 与EF 关系不确定,只有当y=()a 时成立,(故②错误).③当∠DAF=15°时,∵Rt △ABE ≌Rt △ADF ,∴∠DAF=∠BAE=15°,∴∠EAF=90°-2×15°=60°,又∵AE=AF∴△AEF 为等边三角形.(故③正确).④当∠EAF=60°时,设EC=x ,BE=y ,由勾股定理就可以得出:(x+y)2+y 2=x)2∴x 2=2y (x+y )∵S △CEF =12x 2,S △ABE =12y(x+y),∴S △ABE =12S △CEF .(故④正确). 综上所述,正确的有①③④,故选C .【点睛】本题考查了正方形的性质的运用,全等三角形的判定及性质的运用,勾股定理的运用,等边三角形的性质的运用,三角形的面积公式的运用,解答本题时运用勾股定理的性质解题时关键.10.《九章算术》是中国传统数学的重要著作,方程术是它的最高成就.其中记载:今有共买物,人出八,盈三;人出七,不足四,问人数、物价各几何?译文:今有人合伙购物,每人出8钱,会多3钱;每人出7钱,又会差4钱,问人数、物价各是多少?设合伙人数为x 人,物价为y 钱,以下列出的方程组正确的是( )A .8374y x y x -=⎧⎨-=⎩B .8374y x x y -=⎧⎨-=⎩C .8374x y y x -=⎧⎨-=⎩D .8374x y x y -=⎧⎨-=⎩【答案】C 【解析】分析题意,根据“每人出8钱,会多3钱;每人出7钱,又会差4钱,”可分别列出方程.【详解】设合伙人数为x 人,物价为y 钱,根据题意得8x-y 3y 7x 4=⎧⎨-=⎩故选C【点睛】本题考核知识点:列方程组解应用题.解题关键点:找出相等关系,列出方程.二、填空题(本题包括8个小题)11.在Rt △ABC 中,∠C =90°,AB =2,BC sin2A =_____. 【答案】12【解析】根据∠A 的正弦求出∠A =60°,再根据30°的正弦值求解即可.【详解】解:∵sin 2BC A AB == ∴∠A =60°, ∴1sinsin 3022A ︒==. 故答案为12. 【点睛】本题考查了特殊角的三角函数值,熟记30°、45°、60°角的三角函数值是解题的关键.12.如图,直线y 1=kx+n (k≠0)与抛物线y 2=ax 2+bx+c (a≠0)分别交于A (﹣1,0),B (2,﹣3)两点,那么当y 1>y 2时,x 的取值范围是_____.【答案】﹣1<x<2【解析】根据图象得出取值范围即可.【详解】解:因为直线y1=kx+n(k≠0)与抛物线y2=ax2+bx+c(a≠0)分别交于A(﹣1,0),B(2,﹣3)两点,所以当y1>y2时,﹣1<x<2,故答案为﹣1<x<2【点睛】此题考查二次函数与不等式,关键是根据图象得出取值范围.13.将抛物线y=2x2平移,使顶点移动到点P(﹣3,1)的位置,那么平移后所得新抛物线的表达式是_____.【答案】y=2(x+3)2+1【解析】由于抛物线平移前后二次项系数不变,然后根据顶点式写出新抛物线解析式.【详解】抛物线y=2x2平移,使顶点移到点P(﹣3,1)的位置,所得新抛物线的表达式为y=2(x+3)2+1.故答案为:y=2(x+3)2+1【点睛】本题考查了二次函数图象与几何变换:由于抛物线平移后的形状不变,故a不变,所以求平移后的抛物线解析式通常可利用两种方法:一是求出原抛物线上任意两点平移后的坐标,利用待定系数法求出解析式;二是只考虑平移后的顶点坐标,即可求出解析式.14.已知关于x方程x2﹣3x+a=0有一个根为1,则方程的另一个根为_____.【答案】1【解析】分析:设方程的另一个根为m,根据两根之和等于-ba,即可得出关于m的一元一次方程,解之即可得出结论.详解:设方程的另一个根为m,根据题意得:1+m=3,解得:m=1.故答案为1.点睛:本题考查了根与系数的关系,牢记两根之和等于-ba是解题的关键.15.抛物线y=(x+1)2 - 2的顶点坐标是______ .。
2018年山东省济南市高新区中考一模数学试卷(解析版)
A.(0, )
B.(0, )
C.(0,2)
D.(0, )
10.(4 分)一次函数 y=ax+b 与反比例函数 y= ,其中 ab<0,a、b 为常数,
它们在同一坐标系中的图象可以是( )
A.
B.
第 2 页(共 30 页)
C.
D.
11.(4 分)如图,在▱ ABCD 中,AC,BD 相交于点 O,点 E 是 OA 的中点,连
的值是
.
15.(4 分)在一个不透明的袋子中,装有大小,形状,质地都相同,但颜色不
同的红球 3 个,黄球 2 个,白球若干个,从袋子中随机摸出一个小球是黄球
第 3 页(共 30 页)
的概率是 ,则袋子中白色小球有
个;
16.(4 分)如图,矩形 ABCD 的边 AB=1,BE 平分∠ABC,交 AD 于点 E,AD
接 BE 并延长 AD 于点 F,已知 S△AEF=4,则下列结论中不正确的是( )
A.
B.S△BCE=36
C.S△ABE=12
D.△AFE∽△
ACD 12.(4 分)如图,已知二次函数 y=ax2+bx+c(a≠0)的图象与 x 轴交于点 A(﹣
1,0),与 y 轴的交点 B 在(0,﹣2)和(0,﹣1)之间(不包括这两点), 对称轴为直线 x=1,(1)abc>0;(2)4a+2b+c>0;(3)4ac﹣b2<16a;(4)
元,若设每个排球 x 元,每个实心球 y 元,则根据题意列二元一次方程组得 ()
A.
B.
C.
D.
8.(4 分)如图,直径为 10 的⊙A 上经过点 C(0,5)和点 0(0,0),B 是 y 轴右侧⊙A 优弧上一点,则∠OBC 的余弦值为( )
2018济南市学业水平考试数学一摸试题
.(用含 a,h
的代数式表示)
数学试题第 5页(共 6 页)
【灵活应用】 如图③,有一块“缺角矩形”ABCDE,AB=32,BC=40,AE=20,CD=16,小明从中剪出了 一个面积最大的矩形(∠B 为所剪出矩形的内角),求该矩形的面积. 【实际应用】 如图④,现有一块四边形的木板余料 ABCD,经测量 AB=50cm,BC=108cm,CD=60cm, 且 tanB=tanC= 4 ,木匠徐师傅从这块余料中裁出了顶点 M,N 在边 BC 上且面积最大的矩形
第 I 卷(选择题共 48 分)
注意事项: 第Ⅰ卷为选择题,每小题选出答案后,用 2B 铅笔把答题卡上对应题目的答案标号涂黑;
如需改动,用橡皮擦干净后,再选涂其他答案标号.答案写在试卷上无效. 一、选择题(本大题共 12 个小题,每小题 4 分,共 48 分.在每小题给出的四个选项中,只有
一项是符合题目要求的.) 1. 7 的相反数是
交 CA 延长线于点 E,连接 AD,BD.
C
(1)△ABD 的面积是___________;
(2)求证:DE 是⊙O 的切线; (3)求线段 DE 的长.
A
O
B
E
D
26.(本小题满分 12 分) 【探索发现】
如图①,是一张直角三角形纸片,∠C=60°,小明想从中剪出一个以∠B 为内角且面积最
大的矩形,经过多次操作发现,当沿着中位线 DE,EF 剪下时,矩形的面积最大,经证明发
数学试题第 6页(共 6 页)
在点 P 运动过程中,若⊙P 与直线 y x 4 有且只有 3 次相
切时,则定值 R 为
.
第 18 题图
三、解答题:(本大题共 9 个小题,共 78 分.解答应写出文字说明、证明过程或演算步骤.) 19.(本小题满分 6 分)
2018年济南市市中九年级第一次模拟考试数学试题(word无答案)
2018 年济南市市中九年级第一次模拟考试数学试题( word 无答案)2018 年济南市市中区第一次模拟考试数学试题全卷满分 150 分一、选择题(本大题共 12 小题,每题 4 分,共 48 分)1. 4 的平方根是()A .2B .- 2C .± 2D .42.以以下图所示的一个几何体,它的主视图是( )3. 2017 年依据济南市政府“拆未拆临,建绿透绿”决议部署,济南市各个部门共同努力,年内共拆掉违纪建设约32900000 平方米,拆违拆临工作获得重要历史性打破,数字32900000 用科学记数法表示为( )A .329× 105×10587B .C . × 10D .3.29 × 104.以下各式计算正确的选项是()236236223A . a · a = aB .( a ) = aC . a + a = a 5.以下所示的图形既是轴对称图形又是中心对称图形的是(623D . a ÷ a = a)6.假如一组数据 2, 4, x , 3,5 的众数是 4,那么该组数据的均匀数是( ) A . B . C . 4 D .7.假如一元二次方程 x 2- 2x + p = 0 总有实数根,那么 p应知足的条件是()A .p ≤1B . p <1C . p =1D . p >1a 2 ab ab的结果是()8.化简 baa b2a - ba + b2aA .aB .a -b C . b D . b 9.如图是一副三角尺 ABC 和 DEF 拼成的图案,若将三角尺 DEF 绕点 M 依据顺时针方向旋转,则边 DE 与边 AB 第一次平行时,旋转角的度数是( )A .45°B . 75°C . 30°D .60°D AMC (F ) B (E )10.以下图, 圆形铁片与直角三角尺, 直尺紧靠在一同放在桌面上,已知铁片的圆心为 O ,2018 年济南市市中九年级第一次模拟考试数学试题(word 无答案)处,铁片与三角尺的独一公共点B,以下说法错误的选项是()A .圆形铁片的半径是 4cm B.四边形 AOBC 为正方形C.弧 AB 的长度为 4πcm2 D.扇形 OAB 的面积是 4πcm11.如图,菱形 ABCD 的对角线AC 与 BD 交于点 O,AC= 6,BD= 8.动点 E 从点 B 出发,沿着 B- A-D 在菱形 ABCD 边上运动,运动到点 D 停止.点 F 是点 E 对于 BD 的对称点, EF 交 BD 于点 P,若 BP= x,△ OEF 的面积为 y,则 y 与 x 之间的函数图象大概为()AEB DOFCA B C D12.二次函数y=ax2+ bx+ c(a≠ 0)的图象如图,给出以下四个结论:①4ac-b2< 0;② 4a+c< 2b;③ 3b+ 2c< 0;④ m(am+b)+ b< a(m≠- 1),此中正确结论的个数是()A.4个B.3个C.2个D.1个yO1xx=- 1二、填空题(本大题共 6 小题,每题 4 分,共 24 分)13.分解因式:3 2 2x - 2x y+xy = ______________。
2018年济南市高新区九年级第一次模拟考试数学试题(word答案)
2018年济南市咼新区第一次模拟考试数学试题全卷满分150分、选择题(本大题共 12小题,每小题4分,共48 分)1. -3的相反数是() A. — 37•为了迎接体育中考,体育委员到体育用品商店购买排球和实心球,若购买2个排球和3个实心球共需95远,若购买5个排球和7个实心球共需230元,若设每个排球x 元,每个实心球y 元, 则根据题意列二兀一次方程组得()3x 2y95 2x 3y 95 3x2y 952x 3y 95A,B.C.D.5x 7y 2305x 7y 2307x 5y 230 7x 5y 230&如图,半径为 5的O A 经过点 C (0, 5)和点O (0,0) ,B 是O A 优弧上一点,则/OBC 的余弦值为()1 A.-3 B.-.3 C.—4 D.-24252. 2020年济南3. 4. 5. 2150用科学记数法表示为(C. 2.15 X 103)D.21.5 X 102A下列计算正确的是 2 35A . (a ) = a 如图,直线 A.35 °AB // B( )63:B.a * a = a CD , AF 交 CD 于点 E ,Z CEF=140° , B.402 2.2C.(a — b) = a —D.502 一D.a + a = a 则/ A=(o6.化简 2x 2111的结果是(x 1 ) 12 2 A.-B.-C.-x 1xx 1D. 2 x 1B.3C2018年十九大提出,伴随着时代的飞跃发展,高铁已驰骋神州大地,预计西客站客流量将达到 2150万人,数字 A . 0.215 X 104B. 2.15 X 104下列图形中,中心对称图形的是()OC.459.如图,矩形 ABOC的顶点A 的坐标为(一4, 5), D 是0B 的中点,E 是0C 上的一点, 当△ADE的周长最小时,点 E 的坐标为( )11.如图,在 口 ABCD 中,AC , BD相交于点 O,点E 是OA 的中点,连接 BE 并延长AD 于点F ,已知S AEF 4,则下列结论中不正确的是(212.如图,已知二次函数y = ax + bx + c (a 丰0)的图象与x 轴交于点 A (- 1, 0),与y 轴的交点B 在(0,- 2)和(0,— 1)之间(不包括这两点),对称轴为直线 x = 1,(1)abcA. 03B.C. 0,2D. 0,10310. 一次函数y = ax + b 与y象可以是( ),其中ab 0 , a,b 为常数,它们在同一坐标系中的图 xAF 1 A.-FD 2B. S BCE 36D. AFE sACDD A B CC. S ABE 1221 2> 0; (2) 4a + 2b + c > 0; (3) 4ac — b v 16a ; (4) 3V a v 3; (5) b v c ,其中正确的结 论有()二、填空题(本大题共6小题,每小题4分,共24分) 13 .因式分解: xy — 4x = _____________ ;14. 关于x 的一元二次方程(k — 1)x 2 + 6x + k 2— k = 0,有一个根是 0,贝U k 的值是 ___________ ; 15.在一个不透明的袋子中,装有大小,形状,质地都相同,但颜色不同的红球3个,黄球2个,白球若干个,从袋子中随机摸出一个小球是黄球的概率是丄,则袋子中白色小球有•个;16. 如图,矩形 ABCD 的边AB = 1,BE 平分/ ABC ,交AD 于点E ,AD =2 AB ,以点B 为圆心,BE 为半径画弧,交 BC 于点F ,则图中阴影部分的面积是 _____________ ;417. 如图,菱形 OABC 的一边OA 在x 轴的负半轴上,O 是坐标原点,tan /AOC =3 反比3图像经过点C ,与AB 交与点D ,^UA COD 的面积的值等于 __________例函数y =— —的x等边三角形A 1OB 1,过点A 作A 1B 2平行于x 轴,交直线I 于点B 2,以A 1B 2为边长作等边 三角形A 2A 1B 2,过点A 2作A 2B 3平行于x 轴,交直线l 于点B s ,以A 2B 3为边长作等边三角 形A.(2)(3)(4)(5)B.(1) (3)(4)(5)C •⑴(3)(4)D.(1)(2)(5)1218.如图,在平面直角坐标系中,直线 l : x = 1B 1,以OB 1为边长作A3A2B3, ......... ,则点A2018的横坐标是__________ 。
2018年山东省济南市中考数学试卷(含答案与解析)
绝密★启用前2018年山东省济南市初中学业水平考试数学(考试时间120分钟,满分120分)第Ⅰ卷(选择题共48分)一、选择题(本大题共12小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.4的算术平方根是()A.2B.2-C.2±D.22.如图所示的几何体,它的俯视图是()A B C D3.2018年1月,“墨子号”量子卫星实现了距离达7 600km的洲际量子密钥分发,这标志着“墨子号”具备了洲际量子保密通信的能力.数字7 600用科学记数法表示为()A.40.7610⨯ B.37.610⨯C.47.610⨯ D.27610⨯4.“瓦当”是中国古建筑装饰檐头的附件,是中国特有的文化艺术遗产,下面“瓦当”图案中既是轴对称图形又是中心对称图形的是()A B C D5.如图,AF是BAC∠的平分线,DF AC∥,若135∠=︒,则BAF∠的度数为()A.17.5︒B.35︒C.55︒D.70︒6.下列运算正确的是()A.2323a a a+= B.()23524a a=-C.()()2212a a a a+-=+- D.()222a b a b+=+7.关于x的方程321x m-=的解为正数,则m的取值范围是()A.12m<- B.12m>-C.12m> D.12m<8.在反比例函数2yx=-图象上有三点()11,A x y、()22B x y,、33C x y(,),若123x x x<<<,则下列结论正确的是()A.321y y y<< B.132y y y<<C.231y y y<< D.312y y y<<9.如图,在平面直角坐标系中,ABC△的顶点都在方格线的格点上,将ABC△绕点P顺时针方向旋转90︒,得到A B C'''△,则点P的坐标为()A.()0,4 B.()1,1C.()1,2 D.()2,1(第9题)10.下面的统计图大致反应了我国2012年至2017年人均阅读量的情况.根据统计图提供的信息,下列推断不合理的是()毕业学校_____________姓名________________考生号_____________________________________________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------数学试卷第1页(共52页)数学试卷第2页(共52页)数学试卷 第3页(共52页) 数学试卷 第4页(共52页)A.与2016年相比,2017年我国电子书人均阅读量有所降低B.2012年至2017年,我国纸质书的人均阅读量的中位数是4.57C.从2014年到2017年,我国纸质书的人均阅读量逐年增长D.2013年我国纸质书的人均阅读量比电子书的人均阅读量的1.8倍还多2012—2017年中国人均阅读(第10题)(第11题)11.如图1,一扇形纸片的圆心角为90︒,半径为6.如图2,将这张扇形纸片折叠,使点A 与点O 恰好重合,折痕为CD ,图中阴影为重合部分,则阴影部分的面积为( )A.6πB.6π-C.12π-D.94π 12.若平面直角坐标系内的点M 满足横、纵坐标都为整数,则把点M 叫做“整点”.例如:()1,0P 、()2,2Q -都是“整点”.抛物线()24420y mx mx m m +--=>与x 轴的交点为A 、B ,若该抛物线在点A 、B 之间的部分与线段AB 所围成的区域(包括边界)恰有七个整点,则m 的取值范围是( )A.112m ≤< B.112m <≤ C.12m <≤ D.12m <<第Ⅱ卷(非选择题共102分)二、填空题(本大题共6小题,每小题4分,共24分) 13.分解因式:24m -=___________.14.在不透明的盒子中装有5个黑色棋子和若干个白色做子,每个棋子除颜色外都相同,任意摸出一个棋子,摸到黑色棋子的概率是14,则白色棋子的个数是=___________.15.一个正多边形的每个内角等于108︒,则它的边数是___________.. 16.若代数式24x x --的值是2,则x =___________. 17.A 、B 两地相距20 km ,甲乙两人沿同一条路线从A 地到B 地.甲先出发,匀速行驶,甲出发1小时后乙再出发,乙以2 km/h 的速度匀速行驶1小时后.提高速度并继续匀速行驶,结果比甲提前到达.甲、乙两人离开A 地的距离 km s ()与时间 h t ()的关系如图所示,则甲出发___________小时后和乙相遇.(第17题)(第18题)18.如图,矩形EFGH 的四个顶点分别在矩形ABCD 的各条边上,AB EF =,2FG =,3GC =.有以下四个结论:①BGF CHG ∠=∠;②BFG DHE △≌△;③1tan 2BFG ∠=;④矩形EFGH的面积是其中一定成立的是___________.(把所有正确结论的序号填在横线上)三、解答题(本大题共9小题,共78分.解答应写出文字说明、证明过程或演算步骤.) 19.(本小题满分6分)计算:()125sin30π1-+︒+---.20.(本小题满分6分)解不等式组:31233122x x x x ++⎧⎪⎨-⎪⎩<①>②,并写出它的所有整数解. 21.(本小题满分6分)如图,在ABCD 中,连接BD ,E F 、分别是DA 和BC 延长线上的点,且AE CF =,连接EF 交BD 于点O .求证:OB OD =.数学试卷 第5页(共52页)数学试卷 第6页(共52页)(第20题)22.(本小题满分8分)本学期学校开展以“感受中华传统美德”为主题的研学活动,组织150名学生参观历史博物馆和民俗展览馆,每名学生只能参加其中一项活动,共支付票款2000元,票价信息如下:地点 票价 历史博物馆 10元/人 民俗展览馆20元/人请问参观历史博物馆和民俗展览馆的人数各是多少人?若学生都去参观历史博物馆,则能节省票款多少元? 23.(本小题满分8分)如图AB 是O 的直径,PA 与O 相切于点A ,BP 与O 相交于点D ,C 为O 上的一点,分别连接CB 、CD ,60BCD ∠=︒. (1)求ABD ∠的度数; (2)若6AB =,求PD 的长度.(第23题)24.(本小题满分10分)某学校开设了“3D ”打印、数学史、诗歌欣赏、陶艺制作四门校本课程,为了解学生对这四门校本课程的喜爱情况,对学生进行了随机问卷调查,并将调查结果整理后绘制成如下不完整的统计图表.校本课程频数 频率 A36 0.45 B 0.25 C 16 b D 8 合计a1(第24题)请根据图表中提供的信息回答下列问题:(1)统计表中的a =___________,b =___________; (2)“D ”对应扇形的圆心角为___________度;(3)根据调查结果,请估计该校2000名学生中,最喜欢“数学史”校本课程的人数; (4)小明和小亮参加校本课程学习,若每人从“A ”、“B ”、“C ”三门校本课程中随机选取一门,请用画树状图或列表格的方法,求两人恰好选中同一门校本课程的概率.25.(本小题满分10分)如图,直线2y ax =+与x 轴、y 轴分别相交于点()1,0A ,将线段AB 先向右平移1个单位长度,再向上平移()0t t >个单位长度后得到对应线段CD ,反比例函数ky x=()0x >的图象恰好经过C 、D 两点,连接AC 、BD . 毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------数学试卷 第7页(共52页) 数学试卷 第8页(共52页)(1)求a 和b 的值;(2)求反比例函数的表达式及四边形ABDC 的面积; (3)点N 在x 轴正半轴上,点M 是反比例函数ky x=()0x >图象上的一个点,若CMN △是以CM 为直角边的等腰直角三角形时,求所有满足条件的点M 的坐标.(第25题)26.(本小题满分12分)在ABC 中,AB AC =,120BAC ∠=︒,以CA 为边在ACB ∠的另一侧作ACM ACB ∠=∠,点D 为射线BC 上任意一点,在射线CM 上截取CE BD =,连接AD 、DE 、AE .(1)如图1,当点D 落在线段BC 的延长线上时,直接写出ADE ∠的度数. (2)如图2,当点D 落在线段BC (不含端点)上时,AC 与DE 交于点F ,请问(1)中的结论是否仍成立?如果成立,请给出证明;如果不成立,请说明理由. (3)在(2)的条件下,若6AB =,求CF 的最大值.(第26题)27.(本小题满分12分)如图1,抛物线24y ax bx =++过()2,0A 、()4,0B 两点,交y 轴于点C ,过点C 作x 轴的平行线与不等式抛物线上的另一个交点为D ,连接AC 、BC .点P 是抛物线上一动点,设点P 的横坐标为()4m m >. (1)求该抛物线的表达式和ACB ∠的正切值. (2)如图2,若45ACP ∠=︒,求m 的值.(3)如图3,过点A 、P 的直线与y 轴于点N ,过点P 作PM CD ⊥,垂足为M ,直线MN 与x 轴交于点Q ,试判断四边形ADMQ 的形状,并说明理由.(第27题)5 / 262018年山东省济南市初中学业水平考试数学答案解析1.【答案】A【解析】解:2的平方为4,∴4的算术平方根为2.故选:A . 【考点】算术平方根. 2.【答案】D【解析】解:从几何体上面看,2排,上面3个,下面1个,左边2个正方形.故选:D . 【考点】简单几何体的三视图 3.【答案】B【解析】解:37 6007.610=⨯,故选:B . 【考点】科学记数法—表示较大的数. 4.【答案】D【解析】解:A .不是轴对称图形,也不是中心对称图形;B .不是轴对称图形,是中心对称图形;C .是轴对称图形,不是中心对称图形;D .是轴对称图形,是中心对称图形.故选:D . 【考点】轴对称图形;中心对称图形. 5.【答案】B【解析】解:DF AC ∥,135FAC ∴∠=∠=︒,AF 是BAC ∠的平分线,35BAF FAC ∴∠=∠=︒,故选:B .【考点】平行线的性质,角平分线的性质 6.【答案】C【解析】:A .错误,不是同类项不能合并;B .错误,应该是()23624a a =-;C .正确;D .错误,应该是()2222a b a ab b +=++;故选:C .【考点】整式的运算 7.【答案】B【解析】解:解方程321x m -=得:123m x +=,关于x 的方程321x m -=的解为正数,1203m+∴>,解得:12m >-,故选:B . 【考点】一元一次方程的解;解一元一次不等式. 8.【答案】C6【解析】解:()11,A x y 在反比例函数2y x=-图象上,10x <,10y ∴>,对于反比例函数2y x =-,在第二象限,y 随x 的增大而增大,230x x <<,230y y ∴<<,231y y y ∴<<;故选:C . 【考点】反比例函数图象的增减性 9.【答案】C【解析】解:由图知,旋转中心P 的坐标为()1,2,,故选:C .【考点】坐标与图形变化—旋转. 10.【答案】B【解析】解:A .与2016年相比,2017年我国电子书人均阅读量有所降低,正确;B .2012年至2017年,我国纸质书的人均阅读量的中位数是4.615,错误;C .从2014年到2017年,我国纸质书的人均阅读量逐年增长,正确;D .2013年我国纸质书的人均阅读量比电子书的人均阅读量的1.8倍还多,正确;故选:B .【考点】折线统计图,中位数. 11.【答案】A【解析】解:连接OD ,如图,扇形纸片折叠,使点A 与点O 恰好重合,折痕为CD ,AC OC ∴=, 23OD OC ∴==,CD ∴==30CDO ∴∠=︒,60COD ∠=︒,∴由弧AD 、线段AC 和CD 所围成的图形的面积7 / 26260π 61 3 π3602S AOD S COD ⋅⋅⋅=-=扇形-∴阴影部分的面积为6π-A . 【考点】扇形面积的计算;翻折变换(折叠问题). 12.【答案】B 【解析】解:2244222y mx mx m m x =+-=---()且0m >,∴该抛物线开口向上,顶点坐标为()2,2-,对称轴是直线2x =. 由此可知点()2,0、点()2,1-、顶点()2,2-符合题意.①当该抛物线经过点()1,1-和()3,1-时(如答案图1),这两个点符合题意. 将()1,1-代入2442y mx mx m +-=-得到1442m m m -=-+-.解得1m =. 此时抛物线解析式为242yx x -=+.由0y =得2420x x +=-.解得120.6x =-≈,22 3.4x =+≈.x ∴轴上的点()1,0、()2,0、()3,0符合题意.则当m=1时,恰好有()1,0、()2,0、()3,0、()1,1-、()3,1-、()2,1-、()2,2-这7个整点符合题意. 1m ∴≤.【注:m 的值越大,抛物线的开口越小,m 的值越小,抛物线的开口越大】答案图1(1m =时)答案图2(12m =时) ①当该抛物线经过点()0,0和点()4,0时(如答案图2),这两个点符合题意. 此时x 轴上的点()1,0、()2,0、()3,0也符合题意.将()0,0代入2442y mx mx m +-=-得到00402m =-+-.解得12m =. 此时抛物线解析式为22y x x =-. 当1x =时,得13121122y =⨯-⨯=-<-.∴点()1,1-符合题意.当3x =时,得y=12×9﹣2×3=﹣32<﹣1.①点(3,﹣1)符合题意.8综上可知:当12m =时,点()0,0、()1,0、()2,0、()3,0、()4,0、()1,1-、()3,1-、()2,2-、()2,1-都符合题意,共有9个整点符合题意,12m ∴=不符合题;12m ∴>. 综合①①可得:当112m <≤时,该函数的图象与x 轴所围城的区域(含边界)内有七个整点, 故选:B .【考点】抛物线的顶点坐标,根据点的坐标确定抛物线的位置 13.【答案】()()22m m +-【解析】解:()()2422m m m =+--.故答案为:()()22m m +-. 【考点】因式分解—运用公式法. 14.【答案】15 【解析】解:155154÷-=.∴白色棋子有15个;故答案为:15. 【考点】概率. 15.【答案】5【解析】解:正多边形的每个内角等于108︒,∴每一个外角的度数为18010872︒-︒=︒,∴边数360725=︒÷︒=,∴这个正多边形是正五边形.故答案为:5. 【考点】多边形内角与外角. 16.【答案】6 【解析】解:2=24x x --, 去分母得:()224x x -=-228x x -=- 6x =,经检验:6x =是原方程的解. 故答案为:6. 【考点】解分式方程. 17.【答案】1659 / 26【解析】解:由图象可得:()405y t t =≤≤甲;()()()211291624t t y t t ⎧-≤≤⎪=⎨-<≤⎪⎩乙;由方程组4916y t y t =⎧⎨=-⎩,解得165t =.故答案为165. 【考点】一次函数的应用. 19.【答案】① ② ④【解析】解:90FGH ∠=︒,90BGF CGH ∴∠+∠=︒. 又90CGH CHG ∠+∠=︒,BGF CHG ∴∠=∠,故①正确.同理可得DEH CHG ∠=∠.BGF DEH ∴∠=∠.又90B D ∠=∠=︒,FG EH =,BFG DHE ∴△≌△,故②正确.同理可得AFE CHG ≌.AF CH ∴=,易得BFG CGH △∽△. 设GH 、EF 为a ,BF FG CG GH ∴=.23BF a∴=.6BF a∴=,6AF AB BF a a ∴=-=-.6CH AF a a∴==-.在Rt CGH △中,222CG CH GH +=,22263a a a ∴+-=().解得a =GH ∴=6BF a a∴=-在Rt BFG △中,cos BF BFG FG ∠==,30BFG ∴∠=︒.tan tan30BFG ∴∠=︒10矩形EFGH的面积2FG GH =⨯=⨯= 故答案为:① ② ④.【考点】全等三角形的判定与性质;矩形的性质;解直角三角形.19.【答案】解:1025sin 0π1||3-+︒-+--().115122=+-+ 6=.【解析】解:1025sin 0π1||3-+︒-+--().115122=+-+ 6=.【考点】实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值. 20.【答案】解:由①,得3231x x -<-.2x ∴<. 由②,得431x x >-,1x ∴>-.∴不等式组的解集为12x -<<.【解析】解:由①,得3231x x -<-.2x ∴<. 由②,得431x x >-,1x ∴>-.∴不等式组的解集为12x -<<. 【考点】解一元一次不等式组. 21.【答案】证明:ABCD 中,AD BC ∴=,AD BC ∥. ADB CBD ∴∠=∠.又AE CF =,AE AD CF BC ∴+=+.ED FB ∴=,又EOD FOB ∠=∠,EOD FOB ∴△≌△,OB OD ∴=.【解析】证明:ABCD 中,AD BC ∴=,AD BC ∥. ADB CBD ∴∠=∠.又AE CF =,AE AD CF BC ∴+=+.11 / 26ED FB ∴=,又EOD FOB ∠=∠,EOD FOB ∴△≌△,OB OD ∴=.【考点】全等三角形的判定与性质;平行四边形的性质.22.【答案】解:(1)设参观历史博物馆的有x 人,参观民俗展览馆的有y 人,依题意,得150********x y x y +=⎧⎨+=⎩,解得10050x y =⎧⎨=⎩答:参观历史博物馆的有100人,则参观民俗展览馆的有50人.(2)200015010500-⨯=(元).答:若学生都去参观历史博物馆,则能节省票款500元.【解析】解:(1)设参观历史博物馆的有x 人,参观民俗展览馆的有y 人,依题意,得150********x y x y +=⎧⎨+=⎩,解得10050x y =⎧⎨=⎩ 答:参观历史博物馆的有100人,则参观民俗展览馆的有50人.(2)200015010500-⨯=(元).答:若学生都去参观历史博物馆,则能节省票款500元.【考点】二元一次方程的应用.23.【答案】解:(1)方法一:如图1,连接AD . BA 是O 直径,90BDA ∴∠=︒.BD BD =,60BAD C ∴∠=∠=︒.90906030ABD BAD ∴∠=︒-∠=︒-︒=︒.方法二:如图2,连接DA 、OD ,则2260120BOD C ∠=∠=⨯︒=︒.OB OD =,()1180120302OBD ODB ∴∠=∠=︒-︒=︒,即30ABD ∠=︒. (2)如图1,AP 是O 的切线,90BAP ∴∠=︒.在Rt BAD 中,30ABD ∠=︒,116322DA BA ∴==⨯=.BD ∴==在Rt BAP 中,cos AB ABD PB∠=,6cos30PB ∴︒==,BP ∴=PD BP BD ∴=-==【解析】解:(1)方法一:如图1,连接AD . BA 是O 直径,90BDA ∴∠=︒.BD BD =,60BAD C ∴∠=∠=︒.90906030ABD BAD ∴∠=︒-∠=︒-︒=︒.方法二:如图2,连接DA 、OD ,则2260120BOD C ∠=∠=⨯︒=︒.OB OD =,()1180120302OBD ODB ∴∠=∠=︒-︒=︒,即30ABD ∠=︒. (2)如图1,AP 是O 的切线,90BAP ∴∠=︒.在Rt BAD 中,30ABD ∠=︒,116322DA BA ∴==⨯=.BD ∴==在Rt BAP 中,cos AB ABD PB∠=,6cos30PB ∴︒==,BP ∴=PD BP BD ∴=-==13 / 26【考点】圆周角定理;切线的性质;相似三角形的判定与性质.24.【答案】(1)800.2(2)36(3)500(4)A B C AA ,AB ,AC ,A BA ,B B ,BC ,B C A ,C B ,C C ,C共有9种等可能的结果,其中两人恰好选中同一门校本课程的结果有3种,所以两人恰好选中同一门校本课程的概率为:3193=. 【解析】解:(1)360.4580a =÷=,16800.20b =÷=,故答案为:80,0.2;(2)“D ”对应扇形的圆心角的度数为:88036036÷⨯︒=︒,故答案为:36;(3)估计该校2000名学生中最喜欢“数学史”校本课程的人数为:2 0000.25500⨯=(人);(4)列表格如下:A B C AA ,AB ,AC ,A BA ,B B ,BC ,B C A ,C B ,C C ,C共有9种等可能的结果,其中两人恰好选中同一门校本课程的结果有3种,所以两人恰好选中同一门校本课程的概率为:3193=. 【考点】用样本估计总体;频数(率)分布表;扇形统计图;加权平均数;列表法与树状图法.25.【答案】解:(1)将点()1,0A 代入2y ax =+,得02a =+.2a ∴=-.∴直线的解析式为22y x =-+.将0x =代入上式,得2y =.2b ∴=.(2)由(1)知,2b =,()0,2B ∴,由平移可得:点()2,C t 、()1,2D t +.将点()2,C t 、()1,2D t +分别代入k y x =,得221k t kt ⎧=⎪⎪⎨⎪+=⎪⎩42k t =⎧∴⎨=⎩. ∴反比例函数的解析式为4y x=,点()2,2C 、点()1,4D . 如图1,连接BC 、AD . ()0,2B 、()2,2C ,BC x ∴∥轴,2BC =.()1,0A 、()1,4D ,AD x ∴⊥轴,4AD =.BC AD ∴⊥.1124422ABDC S BC AD ∴=⨯⨯=⨯⨯=四边形. (3)①当90NCM ∠=︒、CM CN =时,如图2,过点C 作直线l x 轴,交y 轴于点G .过点M 作MF ⊥直线l 于点F ,交x 轴于点H .过点N 作NE ⊥直线l 于点E .设点(),0N m (其中0m >),则ON m =,2CE m =-.90MCN ∠=︒,90MCF NCE ∴∠+∠=︒.NE ⊥直线l 于点E ,90ENC NCE ∴∠+∠=︒.MCF ENC ∴∠=∠;又90MFC NEC ∠=∠=︒,CN CM =,NEC CFM ∴△≌△.15 / 262CF EN ∴==,2FM CE m ==-.224FG CG CF ∴=+=+=.4M x ∴=.将4x =代入4y x=,得1y =. ∴点()4,1M ;②当90NMC ∠=︒、MC MN =时,如图3,过点C 作直线l y ⊥轴与点F ,则2C CF x ==.过点M 作MG x ⊥轴于点G ,MG 交直线l 与点E ,则MG ⊥直线l 于点E ,2C EG y ==.90CMN ∠=︒,90CME NMG ∴∠+∠=︒.ME ⊥直线l 于点E ,90ECM CME ∴∠+∠=︒,NMG ECM ∴∠=∠.又90CEM NGM ∠=∠=︒,CM MN =,CEM MGN ∴≌.CE MG ∴=,EM NG =.设CE MG a ==,则M y a =,2M x CF CE a =+=+.∴点()2,M a a +.将点()2,M a a +代入4y a =,得42a a=+.解得11a =-,21a =-.21M x a ∴=+=.∴点)1M +. 综合①②可知:点M 的坐标为()4,1或)1+.【解析】解:(1)将点()1,0A 代入2y ax =+,得02a =+.2a ∴=-.∴直线的解析式为22y x =-+.将0x =代入上式,得2y =.2b ∴=.(2)由(1)知,2b =,()0,2B ∴,由平移可得:点()2,C t 、()1,2D t +.将点()2,C t 、()1,2D t +分别代入k y x =,得221k t k t ⎧=⎪⎪⎨⎪+=⎪⎩42k t =⎧∴⎨=⎩. ∴反比例函数的解析式为4y x=,点()2,2C 、点()1,4D . 如图1,连接BC 、AD . ()0,2B 、()2,2C ,BC x ∴∥轴,2BC =.()1,0A 、()1,4D ,AD x ∴⊥轴,4AD =.BC AD ∴⊥.1124422ABDC S BC AD ∴=⨯⨯=⨯⨯=四边形. (3)①当90NCM ∠=︒、CM CN =时,如图2,过点C 作直线l x 轴,交y 轴于点G .过点M 作MF ⊥直线l 于点F ,交x 轴于点H .过点N 作NE ⊥直线l 于点E .设点(),0N m (其中0m >),则ON m =,2CE m =-.90MCN ∠=︒,90MCF NCE ∴∠+∠=︒.NE ⊥直线l 于点E ,90ENC NCE ∴∠+∠=︒.MCF ENC ∴∠=∠;又90MFC NEC ∠=∠=︒,CN CM =,NEC CFM ∴△≌△.2CF EN ∴==,2FM CE m ==-.17 / 26224FG CG CF ∴=+=+=.4M x ∴=.将4x =代入4y x=,得1y =. ∴点()4,1M ;②当90NMC ∠=︒、MC MN =时,如图3,过点C 作直线l y ⊥轴与点F ,则2C CF x ==.过点M 作MG x ⊥轴于点G ,MG 交直线l 与点E ,则MG ⊥直线l 于点E ,2C EG y ==. 90CMN ∠=︒,90CME NMG ∴∠+∠=︒.ME ⊥直线l 于点E ,90ECM CME ∴∠+∠=︒,NMG ECM ∴∠=∠.又90CEM NGM ∠=∠=︒,CM MN =,CEM MGN ∴≌.CE MG ∴=,EM NG =.设CE MG a ==,则M y a =,2M x CF CE a =+=+.∴点()2,M a a +.将点()2,M a a +代入4y a =,得42a a=+.解得11a =-,21a =-.21M x a ∴=+=.∴点)1M +. 综合①②可知:点M 的坐标为()4,1或)1+.【考点】反比例函数综合题.26.【答案】解:(1)30ADE ∠=︒.理由如下:AB AC =,120BAC ∠=︒,30ABC ACB ∴∠=∠=︒,ACM ACB ∠=∠,ACM ABC ∴∠=∠,在ABD △和ACE △中,AB AC ABC ACE BD CE =⎧⎪∠=∠⎨⎪=⎩,ABD ACE ∴△≌△,AD AE ∴=,CAE BAD ∠=∠,120DAE BAC ∴∠=∠=︒,30ADE ∴∠=︒;(2)(1)中的结论成立,证明:120BAC ∠=︒,AB AC =,30B ACB ∴∠=∠=︒.ACM ACB ∠=∠,30B ACM ∴∠=∠=︒.在ABD △和ACE △中,AB AC ABC ACE BD CE =⎧⎪∠=∠⎨⎪=⎩,ABD ACE ∴△≌△.AD AE ∴=,BAD CAE ∠=∠.120CAE DAC BAD DAC BAC ∴∠+∠=∠+∠=∠=︒.即120DAE ∠=︒. AD AE =,30ADE AED ∴∠=∠=︒;(3)AB AC =,6AB =,6AC ∴=,30ADE ACB ∠=∠=︒且DAF CAD ∠=∠,ADF ACD ∴△∽△.=AD AF AC AD∴. 2 AD AF AC ∴=⋅,26AD AF ∴=.26AD AF ∴=. ∴当AD 最短时,AF 最短、CF 最长.19 / 26易得当AD BC ⊥时,AF 最短、CF 最长,此时132AD AB ==. 2233=662AD AF ∴==最短, 39622CF AC AF ∴=-=-=最长最短. 【解析】解:(1)30ADE ∠=︒.理由如下:AB AC =,120BAC ∠=︒,30ABC ACB ∴∠=∠=︒,ACM ACB ∠=∠,ACM ABC ∴∠=∠,在ABD △和ACE △中,AB AC ABC ACE BD CE =⎧⎪∠=∠⎨⎪=⎩,ABD ACE ∴△≌△,AD AE ∴=,CAE BAD ∠=∠,120DAE BAC ∴∠=∠=︒,30ADE ∴∠=︒;(2)(1)中的结论成立,证明:120BAC ∠=︒,AB AC =,30B ACB ∴∠=∠=︒.ACM ACB ∠=∠,30B ACM ∴∠=∠=︒.在ABD △和ACE △中,AB AC ABC ACE BD CE =⎧⎪∠=∠⎨⎪=⎩,ABD ACE ∴△≌△.AD AE ∴=,BAD CAE ∠=∠.120CAE DAC BAD DAC BAC ∴∠+∠=∠+∠=∠=︒.即120DAE ∠=︒. AD AE =,30ADE AED ∴∠=∠=︒;(3)AB AC =,6AB =,6AC ∴=,30ADE ACB ∠=∠=︒且DAF CAD ∠=∠,ADF ACD ∴△∽△.=AD AF AC AD∴. 2 AD AF AC ∴=⋅,26AD AF ∴=.26AD AF ∴=. ∴当AD 最短时,AF 最短、CF 最长.易得当AD BC ⊥时,AF 最短、CF 最长,此时132AD AB ==. 2233=662AD AF ∴==最短, 39622CF AC AF ∴=-=-=最长最短. 【考点】三角形综合题. 27.【答案】解:(1)将点()2,0A 和点()4,0B 分别代入24y ax bx =++,得424016440a b a b ++=⎧⎨++=⎩,解得:123a b ⎧=⎪⎨⎪=-⎩. ∴该抛物线的解析式为21342y x x -=+. 过点B 作BG CA ⊥,交CA 的延长线于点G (如图1所示),则90G ∠=︒.90COA G ∠=∠=︒,CAO BAG ∠=∠,GAB OAC ∴△∽△.4==22BG OC AG OA ∴=. 2BG AG ∴=.在Rt ABG 中,222BG AG AB +=,21 / 26()22222AG AG ∴+=.解得:AG =BG ∴CG AC AG +=+= 在Rt BCG 中,1tan =3BG ACB CG ∠=. (2)如图2,过点B 作BH CD ⊥于点H ,交CP 于点K ,连接AK .易得四边形OBHC 是正方形.应用“全角夹半角”可得AK OA HK =+.设()4,K h ,则BK h =,4HK HB KB h =-=-,()246AK OA HK h h =+=+-=-.在Rt ABK 中,由勾股定理,得222AB BK AK +=.()22226h h ∴+=-.解得83h =. ∴点84,3K ⎛⎫ ⎪⎝⎭. 设直线CK 的解析式为4y hx =+. 将点84,3K ⎛⎫ ⎪⎝⎭代入上式,得8443h =+.解得13h =-. ∴直线CK 的解析式为143y x =-+. 设点P 的坐标为(),x y ,则x 是方程21134422x x x +=+--的一个解. 将方程整理,得23160x x -=. 解得1163x =,20x =(不合题意,舍去). 将1163x =代入143y x =-+,得209y =.∴点P 的坐标为1620,39⎛⎫ ⎪⎝⎭. (3)四边形ADMQ 是平行四边形.理由如下:CD x ∥轴,4C D y y ∴==.将4y =代入21342y x x -=+,得214342x x -=+. 解得10x =,26x =.∴点()6,4D . 根据题意,得21,342P m m m +-⎛⎫ ⎪⎝⎭,(),4M m ,. 21342PH m m -∴=+,OH m =,2AH m =-,4MH =. ①当46m <<时,6DM m =-,如图3,OAN HAP △∽△,=ON OA PH AH∴. 22=12342ONm m m ∴--+. 2(4)(2)68=422m m m m ON m m m ---+∴==---. ONQ HMP △∽△,=OQ ON HM HQ∴.23 / 26 =4OQ ON m OQ∴-. 4=4OQ m m OQ -∴-,4OQ m ∴=-. ()246AQ OA OQ m m ∴=-=--=-.6AQ DM m ∴==-,又AQ DM ∥,∴四边形ADMQ 是平行四边形.②当6m >时,同理可得:四边形ADMQ 是平行四边形.综上,四边形ADMQ 是平行四边形.【解析】解:(1)将点()2,0A 和点()4,0B 分别代入24y ax bx =++,得424016440a b a b ++=⎧⎨++=⎩,解得:123a b ⎧=⎪⎨⎪=-⎩. ∴该抛物线的解析式为21342y x x -=+. 过点B 作BG CA ⊥,交CA 的延长线于点G (如图1所示),则90G ∠=︒.90COA G ∠=∠=︒,CAO BAG ∠=∠,GAB OAC ∴△∽△.4==22BG OC AG OA ∴=. 2BG AG ∴=.在Rt ABG 中,222BG AG AB +=, ()22222AG AG ∴+=.解得:AG =BG ∴CG AC AG +=+=在Rt BCG 中,1tan =3BG ACB CG ∠=. (2)如图2,过点B 作BH CD ⊥于点H ,交CP 于点K ,连接AK .易得四边形OBHC 是正方形.应用“全角夹半角”可得AK OA HK =+.设()4,K h ,则BK h =,4HK HB KB h =-=-,()246AK OA HK h h =+=+-=-.在Rt ABK 中,由勾股定理,得222AB BK AK +=.()22226h h ∴+=-.解得83h =. ∴点84,3K ⎛⎫ ⎪⎝⎭. 设直线CK 的解析式为4y hx =+. 将点84,3K ⎛⎫ ⎪⎝⎭代入上式,得8443h =+.解得13h =-. ∴直线CK 的解析式为143y x =-+. 设点P 的坐标为(),x y ,则x 是方程21134422x x x +=+--的一个解. 将方程整理,得23160x x -=. 解得1163x =,20x =(不合题意,舍去). 将1163x =代入143y x =-+,得209y =. ∴点P 的坐标为1620,39⎛⎫⎪⎝⎭. (3)四边形ADMQ 是平行四边形.理由如下:CD x ∥轴,25 / 264C D y y ∴==.将4y =代入21342y x x -=+,得214342x x -=+. 解得10x =,26x =.∴点()6,4D . 根据题意,得21,342P m m m +-⎛⎫ ⎪⎝⎭,(),4M m ,. 21342PH m m -∴=+,OH m =,2AH m =-,4MH =. ①当46m <<时,6DM m =-,如图3,OAN HAP △∽△,=ON OA PH AH∴. 22=12342ONm m m ∴--+. 2(4)(2)68=422m m m m ON m m m ---+∴==---. ONQ HMP △∽△,=OQ ON HM HQ ∴. =4OQ ON m OQ∴-. 4=4OQ m m OQ -∴-,4OQ m ∴=-.()246AQ OA OQ m m ∴=-=--=-.∥,∴==-,又AQ DMAQ DM m6∴四边形ADMQ是平行四边形.m>时,同理可得:四边形ADMQ是平行四边形.②当6综上,四边形ADMQ是平行四边形.【考点】二次函数综合题.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2018年山东省济南市高新区中考数学一模试卷
一、选择题(本大题共12小题,每小题4分,共48分)
1.(4分)﹣3的相反数是()
A.﹣3B.3C.D.
2.(4分)随着高铁的发展,预计2020年济南西客站客流量将达到2150万人,数字2150用科学记数法表示为()
A.0.215×104B.2.15×103C.2.15×104D.21.5×102 3.(4分)下列图形中,中心对称图形的是()
A.B.
C.D.
4.(4分)下列计算正确的是()
A.a6÷a3=a3B.(a2)3=a8
C.(a﹣b)2=a2﹣b2D.a2+a2=a4
5.(4分)如图,直线AB∥CD,AF交CD于点E,∠CEF=140°,则∠A等于()
A.35°B.40°C.45°D.50°
6.(4分)化简÷的结果是()
A.B.C.D.2(x+1)7.(4分)为了迎接体育中考,体育委员到体育用品商店购买排球和实心球,若购买2个排球和3个实心球共需95元,若购买5个排球和7个实心球共需230
元,若设每个排球x元,每个实心球y元,则根据题意列二元一次方程组得()
A.B.
C.D.
8.(4分)如图,直径为10的⊙A上经过点C(0,5)和点0(0,0),B是y轴右侧⊙A优弧上一点,则∠OBC的余弦值为()
A.B.C.D.
9.(4分)如图,矩形ABOC的顶点A的坐标为(﹣4,5),D是OB的中点,E 是OC上的一点,当△ADE的周长最小时,点E的坐标是()
A.(0,)B.(0,)C.(0,2)D.(0,)10.(4分)一次函数y=ax+b与反比例函数y=,其中ab<0,a、b为常数,它们在同一坐标系中的图象可以是()
A.B.
C.D.
11.(4分)如图,在▱ABCD中,AC,BD相交于点O,点E是OA的中点,连接BE并延长AD于点F,已知S△AEF=4,则下列结论中不正确的是()
A.B.S△BCE=36C.S△ABE=12D.△AFE∽△ACD 12.(4分)如图,已知二次函数y=ax2+bx+c(a≠0)的图象与x轴交于点A(﹣1,0),与y轴的交点B在(0,﹣2)和(0,﹣1)之间(不包括这两点),对称轴为直线x=1,(1)abc>0;(2)4a+2b+c>0;(3)4ac﹣b2<16a;(4)<a<;(5)b<c,其中正确的结论有()
A.(2)(3)(4)(5)B.(1)(3)(4)(5)
C.(1)(3)(4)D.(1)(2)(5)
二、填空题(本大题共6小题,每小题4分,共24分)
13.(4分)因式分解:xy2﹣4x=.
14.(4分)关于x的一元二次方程(k﹣1)x2+6x+k2﹣k=0的一个根是0,则k 的值是.
15.(4分)在一个不透明的袋子中,装有大小,形状,质地都相同,但颜色不同的红球3个,黄球2个,白球若干个,从袋子中随机摸出一个小球是黄球
的概率是,则袋子中白色小球有个;
16.(4分)如图,矩形ABCD的边AB=1,BE平分∠ABC,交AD于点E,AD=2AB,以点B为圆心,BE为半径画弧,交BC于点F,则图中阴影部分的面积是.
17.(4分)如图,菱形OABC的一边OA在x轴的负半轴上,O是坐标原点,tan ∠AOC=,反比例函数y=﹣的图象经过点C,与AB交与点D,则△COD 的面积的值等于;
18.(4分)如图,在平面直角坐标系中,直线l:y=与x轴交于点B1,以OB1为边长作等边三角形A1OB1,过点A1作A1B2平行于x轴,交直线l于点B2,以A1B2为边长作等边三角形A2A1B2,过点A2作A2B3平行于x轴,交直线l于点B3,以A2B3为边长作等边三角形A3A2B3,…,则点A2018的横坐标是.
三、解答题(本题共78分,第19~21题,每小题5分,第22~23题,每小题
5分,第24~25题,每小题5分,第26~27题,每小题5分,解答应写出文字说明,验算步骤或证明过程.)
19.(5分)计算:﹣|﹣2|+()﹣1﹣2cos45°
20.(6分)解不等式组:,并把解集在数轴上表示出来.
21.(6分)如图,矩形ABCD中,过对角线BD中点O的直线分别交AB,CD边于点E,F.求证:四边形BEDF是平行四边形.
22.(8分)济南在创建全国文明城市的进程中,高新区为美化城市环境,计划种植树木30000棵,由于志愿者的加入,实际每天植树比原计划多20%.结果提前10天完成任务,求原计划每天植树多少棵.
23.(10分)济南某中学在参加“创文明城,点赞泉城”书画比赛中,杨老师从全校30个班中随机抽取了4个班(用A,B,C,D表示),对征集到的作鼎的数量进行了分析统计,制作了两幅不完整的统计图.
请根据以上信息,回答下列问题:
(l)杨老师采用的调查方式是(填“普查”或“抽样调查”);
(2)请补充完整条形统计图,并计算扇形统计图中C班作品数量所对应的圆心
角度数.
(3)请估计全校共征集作品的什数.
(4)如果全枝征集的作品中有5件获得一等奖,其中有3名作者是男生,2名作者是女生,现要在获得一样等奖的作者中选取两人参加表彰座谈会,请你用列表或树状图的方法,求恰好选取的两名学生性别相同的概率.
24.(9分)某款篮球架的示意图如图所示,已知底座BC=0.60米,底座BC与支架AC所成的角∠ACB=75°,支架AF的长为2米,篮板顶端F点到篮框点D的距离FD=1.35米,篮板底部支架HE与支架AF所成的角∠FHE=60°,求篮框D 到地面的距离(精确到0.1米).(参考数据:cos75°≈0.26,sin75°≈0.97,tan75°≈3.73,≈1.73,≈1.41)
25.(10分)如图,已知矩形OABC中,OA=2,AB=4,双曲线(k>0)与矩形两边AB、BC分别交于E、F.
(1)若E是AB的中点,求F点的坐标;
(2)若将△BEF沿直线EF对折,B点落在x轴上的D点,作EG⊥OC,垂足为G,证明△EGD∽△DCF,并求k的值.
26.(12分)在△ABC中,AB=AC,∠BAC=90°,点D在射线BC上(与B、C两
点不重合),以AD为边作正方形ADEF,使点E与点B在直线AD的异侧,射线BA与直线CF相交于点G.
(1)若点D在线段BC上,如图(1),判断:线段BC与线段CG的数量关系:,位置关系:.
(2)如图(2),①若点D在线段BC的延长线上,(1)中判断线段BC与线段CG 的数量关系与位置关系是否仍然成立,并说明理由;
②当G为CF中点,连接GE,若AB=,求线段GE的长.
27.(12分)如图,抛物线y=ax2+bx+c(a<0,a、b、c为常数)与x轴交于A、C两点,与y轴交于B点,A(﹣6,0),C(1,0),B(0,).
(1)求该抛物线的函数关系式与直线AB的函数关系式;
(2)已知点M(m,0)是线段OA上的一个动点,过点M作x轴的垂线l,分别与直线AB和抛物线交于D、E两点,当m为何值时,△BDE恰好是以DE 为底边的等腰三角形?
(3)在(2)问条件下,当△BDE恰妤是以DE为底边的等腰二角形时,动点M 相应位置记为点M′,将OM′绕原点O顺时针旋转得到ON(旋转角在0°到90°之间);
i:探究:线段OB上是否存在定点P(P不与O、B重合),无论ON如何旋转,始终保持不变,若存在,试求出P点坐标:若不存在,请说明理由;
ii:试求出此旋转过程中,(NA+NB)的最小值.
2018年山东省济南市高新区中考数学一模试卷
参考答案
一、选择题(本大题共12小题,每小题4分,共48分)
1.B;2.B;3.D;4.A;5.B;6.A;7.B;8.C;9.B;10.C;11.D;
12.C;
二、填空题(本大题共6小题,每小题4分,共24分)
13.x(y+2)(y﹣2);14.0;15.3;16.﹣;17.10;18.;
三、解答题(本题共78分,第19~21题,每小题5分,第22~23题,每小题
5分,第24~25题,每小题5分,第26~27题,每小题5分,解答应写出文字说明,验算步骤或证明过程.)
19.;20.;21.;22.;23.抽样调查;150°;24.;
25.;26.BC=CG;BC⊥CG;27.;。