铁氰化钾的循环伏安法

合集下载

铁氰化钾的循环伏安测试

铁氰化钾的循环伏安测试
铁氰化钾的循环伏安测试
铁氰化钾的循环伏安测试
一、实验目的 1. 学习固体电极表面的处理方法; 2. 掌握循环伏安仪的使用技术; 3. 了解扫描速率和浓度对循环伏安图的影 响。
LOGO
铁氰化钾的循环伏安测试
二、实验原理
铁氰化钾离子[Fe(CN)6]3-亚铁氰化钾离子[Fe(CN)6]4-氧 化还原电对的标准电极电位为0.36V 电极电位与电极表面活度的Nernst方程式为 φ=φθ’+ RT/Fln(C Ox/CRed) 在一定扫描速率下,从起始电位(-0.2V)正向扫描到转折电位 (+0.8V)期间,溶液中[Fe(CN)6]4-被氧化生成[Fe(CN)6]3-, 产生氧化电流;当负向扫描从转折电位(+0.6V)变到原起始电位(0.2V)期间,在指示电极表面生成的[Fe(CN)6]3-被还原生成[Fe (CN)6]4-,产生还原电流。为了使液相传质过程只受扩散控制,应 在加入电解质和溶液处于静止下进行电解。在0.1MNaCl溶液中[Fe( CN)6]4-的电子转移速率大,为可逆体系(1MNaCl溶液中,25℃时 ,标准反应速率常数为5.2×10-2 cm2s-1;)。
LOGO
0.7
Potential/V(vs.SCE)
LOGO
铁氰化钾的循环伏安测试
LOGO
铁氰化钾的循环伏安测试
结论
对于表面吸附控制的电极反应过程,峰电流ip与扫描速度呈正比 关系,即ip~V为一直线。(此关系也可利用标准曲线法的线性拟合功 能,以峰电流为横坐标,扫描速度的二分之一次方或扫描速度为纵坐 标,考察线性关系)将不同扫描速率的循环伏安曲线进行叠加。随着 扫描速度的增加,峰电流也增加。且分别测量他们的峰数据可以得到 峰电流与扫描速度的关系。根据电化学理论,对于扩散控制的电极过 程,峰电流ip与扫描速度的二分之一次方呈正比关系。用标准曲线法 中的线性拟合处理,得出峰电流ip与呈线性关系,R为扫描速度。 在误差的范围内K3 [Fe(CN)6]在KCl溶液中电极过程的具有可 逆性。 对于可逆体系,氧化峰电流ipa与还原峰电流ipc绝对值的比值 :ipa/ ipc=1。 从图中可以看出来随着扫描速率的增大氧化还原峰的 距离越来越大,即是可逆性实验步骤

铁氰化钾循环伏安法有关性质的测定

铁氰化钾循环伏安法有关性质的测定

实验五铁氰化钾循环伏安法有关性质的测定一. 实验目的掌握循环伏安法(CV)基本操作;了解可逆电化学过程及条件电极电位的测定;获得峰电流随电位扫描速度的变化曲线,获得峰电流随溶液浓度的变化函数关系;并学会电化学工作站仪器的使用。

二. 循环伏安法原理电化学中随着氧化还原反应的进行,会导致电流和电位的变化。

其中根据公式峰电流与电位扫描速度的1/2次方、溶液浓度成正比。

对于循环伏安法,扫描图像中前半部扫描(电压上升部分)为去极化剂在电极上被还原的阴极过程,则后半部扫描(电压下降部分)为还原产物重新被氧化的阳极过程。

因此.一次三角波扫描完成一个还原过程和氧化过程的循环,故称为循环伏安法。

三. 实验仪器和药品铁氰化钾溶液、氯化钾溶液、铝粉、四个25ml容量瓶、电化学工作站,银电极,铂碳电极,银丝电极四. 实验步骤打开电脑并将仪器预热20分钟,打开电化学工作站操作界面。

将铁氰化钾标准溶液转移至电解池中 插入三支电极连接。

以标准的铁氰化钾溶液测试未磨电极的循环伏安曲线,看电位差的大小;超过100mv则用粗细的铝粉抛光铂碳电极,使得电位差在70--80以下;确定各参量:起始电位在0.5V左右,扫速为10、20、40、80、160mv/s,灵敏度为10-5--10-6,以标准铁氰化钾溶液测定不同扫速下的伏安曲线,测定并保存;配制4组不同浓度的铁氰化钾溶液:0.1、0.2、0.5、1.0ml 的铁氰化钾标准溶液于容量瓶中,在加入5ml氯化钾溶液,定容;控制参量:扫速为80,每个浓度6段三次扫描,依次对四组溶液测定伏安曲线,导出实验数据和曲线。

五.数据处理实验参数设定:打磨后电位差为81mv左右,比较合理。

亚铁氰化钾溶液的条件电极电位:从浓度和电位的表格中,可以根据浓度和电位做出曲线图,根据截距求出初始电位和条件电极电位。

测定峰电流和浓度关系时:Init E (V) = 0 High E (V) = 0.5 Low E (V) = 0 Init P/N = PScan Rate (V/s) = 0.08 Segment = 6 Sample Interval (V) = 0.001Quiet Time (sec) = 2 Sensitivity (A/V) = 1e-5测定峰电流和扫速关系时:Init E (V) = 0 High E (V) = 0.5 Low E (V) = 0 Init P/N = PScan Rate (V/s) = 0.02 Segment = 2 Sample Interval (V) = 0.001Quiet Time (sec) = 2 Sensitivity (A/V) = 1e-5数据表:峰电流和扫速数据表:0.1 0.2 0.5 10.226 0.226 0.231 0.24110mv20mv40mv80mv160mvSegment 1:Segment 1:Segment 1:Segment 1:Segment 1:Ep = 0.227V Ep = 0.226V Ep = 0.231V Ep = 0.239V Ep = 0.248Vip = -3.549e-6A ip = -5.605e-6A ip = -8.951e-6A ip = -1.245e-5A ip = -1.924e-5A Ah = -2.377e-5C Ah = -1.801e-5C Ah = -1.522e-5C Ah = -1.150e-5C Ah = -9.455e-6C Segment 2:Segment 2:Segment 2:Segment 2:Segment 2:Ep = 0.145V Ep = 0.140V Ep = 0.136V Ep = 0.126V Ep = 0.120Vip = 5.963e-6A ip = 8.119e-6A ip = 1.095e-5A ip = 1.437e-5A ip = 1.915e-5A Ah = 3.933e-5C Ah = 2.807e-5C Ah = 1.956e-5C Ah = 1.398e-5C Ah = 9.846e-6C曲线图:浓度和峰电流曲线图:所加体积ml0.10.20.51峰电流均值/10-6 2.6243 4.26310.65321.29峰电流和浓度的表格:0.1ml0.2ml0.5ml 1.0mlSegment 1:Segment 1:Segment 1:Segment 1:Ep = 0.226V Ep = 0.226V Ep = 0.231V Ep = 0.241Vip = -2.606e-6A ip = -3.670e-6A ip = -9.316e-6A ip = -1.788e-5A Ah = -2.189e-6C Ah = -2.997e-6C Ah = -8.084e-6C Ah = -1.722e-5C Segment 2:Segment 2:Segment 2:Segment 2:Ep = 0.144V Ep = 0.140V Ep = 0.132V Ep = 0.121Vip = 2.614e-6A ip = 4.106e-6A ip = 1.047e-5A ip = 2.132e-5A Ah = 2.090e-6C Ah = 3.476e-6C Ah = 9.477e-6C Ah = 2.124e-5C Segment 3:Segment 3:Segment 3:Segment 3:Ep = 0.226V Ep = 0.226V Ep = 0.232V Ep = 0.241Vip = -2.433e-6A ip = -3.807e-6A ip = -9.191e-6A ip = -1.705e-5A Ah = -2.025e-6C Ah = -3.105e-6C Ah = -8.032e-6C Ah = -1.634e-5C Segment 4:Segment 4:Segment 4:Segment 4:Ep = 0.144V Ep = 0.140V Ep = 0.131V Ep = 0.121Vip = 2.623e-6A ip = 4.292e-6A ip = 1.067e-5A ip = 2.133e-5A Ah = 2.092e-6C Ah = 3.622e-6C Ah = 9.763e-6C Ah = 2.123e-5C Segment 5:Segment 5:Segment 5:Segment 5:Ep = 0.226V Ep = 0.226V Ep = 0.232V Ep = 0.241Vip = -2.428e-6A ip = -3.940e-6A ip = -9.339e-6A ip = -1.708e-5A Ah = -2.015e-6C Ah = -3.221e-6C Ah = -8.149e-6C Ah = -1.640e-5C Segment 6:Segment 6:Segment 6:Segment 6:Ep = 0.145V Ep = 0.140V Ep = 0.131V Ep = 0.121Vip = 2.636e-6A ip = 4.391e-6A ip = 1.082e-5A ip = 2.132e-5A Ah = 2.069e-6C Ah = 3.690e-6C Ah = 9.877e-6C Ah = 2.117e-5C。

循环伏安法测定铁氰化钾的电极反应过程

循环伏安法测定铁氰化钾的电极反应过程

实验三十四循环伏安法测定铁氰化钾的电极反应过程一、实验目的见《仪器分析实验》p123二、方法原理见《仪器分析实验》p123。

三、仪器和试剂1.JP—303型极谱分析仪2.铁氰化钾标准溶液:5.0×10-2mol/L3.氯化钾溶液:1.0mol/L四、实验步骤1.铁氰化钾试液的配置准确移取1.0mL5.0×10-2mol/L的铁氰化钾标准溶液于10mL的小烧杯中,加入1.0 mol/L 的氯化钾溶液5.0mL,再加蒸溜水4.0mL。

2.测量手续(1)打开303极谱仪的电源。

屏幕显示清晰后,输入当天的日期:××.××.××,按【INT】键。

(2)屏幕显示“运行方式”菜单后,选取“使用当前方法”项,按【YES】键。

屏幕将显示“线性循环伏安法”的方法参数菜单:导数(0~2)0量程(10e nA,e=1~4) 4扫描次数(1~8) 4扫描速率(50~1000mV/s)50起始电位(-4000~4000mV)-100终止电位(-4000~4000mV)600静止时间(0~999s)0如果显示的参数不符合,请按提示修改。

(3)测量铁氰化钾试液在教师指导下,置电极系统于10mL小烧杯的铁氰化钾试液里。

按【运行】键,运行自动完成后,“波高基准”项闪烁,用∧∨键确定“前谷”方法处理图谱,按【YES】键。

请记录波峰电位和波峰电流数据。

按两次【退回】键,再按【方法】键,选取“使用当前方法”项,按【YES】键,显示“线性循环伏安法”的方法参数菜单。

修改扫描速率为100mV,按【ENT】键。

再按【运行】键,照上述的过程一样进行测量。

直至完成扫描速率为50、100、150、200、250mV/s的测量。

上述的循环伏安图打印样本见附图。

五、结果处理见《仪器分析实验》p127五的1、3、5题。

六、问题讨论见《仪器分析实验》p128六的2题。

循环伏安法测定铁氰化钾电化学性能

循环伏安法测定铁氰化钾电化学性能

3. 相同K3Fe(CN)6浓度下(步骤3b),以ipa或 ipc对
v1/2作图并拟合(origin ,相关系数 ),说明二者
编辑课件
16
六、数据处理
1. 从K3 [Fe(CN)6]溶液的循环伏安图上,读取并记录
ipa、ipc、 Epa 、 Epc 的值,计算相应的ipa/ ipc 、ΔEp,
估测电极反应的可逆性。
2. 相同扫描速度下(步骤3a),以ipa或 ipc对K3 [Fe(CN)6]溶液的浓度作图并拟合(origin,相关系 数 ),说明两者之间的关系。
其中:ip为峰电流(A),n为电子转移数,A为电极面 积(cm2),D为扩散系数(cm2/s),v为扫描速度
(V/s),c为浓度(mol/L)。由此可见,ip与v1/2和c都
是直线关系。由于Da和Dc大致相同,对于可逆电极反应
ipa/ ipc ≈1。
编辑课件
5
Y AYxiAsxiTsitlTeitle
编辑课件
7
图形解析
可逆体系
ipa 1 ipc
△Ep = 2.3RT / nF = 56.5/n mV ( 25℃)
编辑课件
8
编辑课件
9
循环伏安法与单扫描极谱法的不同
• 极化电压不同——单扫描极谱法施加的是锯齿波型 (不对称)的电压;而循环伏安法施加的是等腰三角 波电压。
• 工作电极不同——单扫描极谱法是用滴汞电极,极化 电压是同步地施加在滴汞生长的后期;循环伏安法是 用固定静止的固态或液态电极,如悬汞、汞膜电极或 铂、玻璃石墨电极等。编辑课件Biblioteka 11四、实验仪器与试剂
仪器: CHI660电化学工作站,电解池 铂盘工作电极 铂丝辅助电极 Ag/AgCl参比电极

铁氰化钾循环伏安法有关性质的测定

铁氰化钾循环伏安法有关性质的测定

实验五铁氰化钾循环伏安法有关性质的测定一. 实验目的掌握循环伏安法(CV)基本操作;了解可逆电化学过程及条件电极电位的测定;获得峰电流随电位扫描速度的变化曲线,获得峰电流随溶液浓度的变化函数关系;并学会电化学工作站仪器的使用。

二. 循环伏安法原理电化学中随着氧化还原反应的进行,会导致电流和电位的变化。

其中根据公式峰电流与电位扫描速度的1/2次方、溶液浓度成正比。

对于循环伏安法,扫描图像中前半部扫描(电压上升部分)为去极化剂在电极上被还原的阴极过程,则后半部扫描(电压下降部分)为还原产物重新被氧化的阳极过程。

因此.一次三角波扫描完成一个还原过程和氧化过程的循环,故称为循环伏安法。

三. 实验仪器和药品铁氰化钾溶液、氯化钾溶液、铝粉、四个25ml容量瓶、电化学工作站,银电极,铂碳电极,银丝电极四. 实验步骤打开电脑并将仪器预热20分钟,打开电化学工作站操作界面。

将铁氰化钾标准的循环伏安曲线,看电位差的大小;超过100mv则用粗细的铝粉抛光铂碳电极,使得电位差在70--80以下;确定各参量:起始电位在0.5V左右,扫速为10、20、40、80、160mv/s,灵敏度为10-5--10-6,以标准铁氰化钾溶液测定不同扫速下的伏安曲线,测定并保存;配制4组不同浓度的铁氰化钾溶液:0.1、0.2、0.5、1.0ml 的铁氰化钾标准溶液于容量瓶中,在加入5ml氯化钾溶液,定容;控制参量:扫速为80,每个浓度6段三次扫描,依次对四组溶液测定伏安曲线,导出实验数据和曲线。

五.数据处理实验参数设定:打磨后电位差为81mv左右,比较合理。

亚铁氰化钾溶液的条件电极电位:从浓度和电位的表格中,可以根据浓度和电位做出曲线图,根据截距求出初始电位和条件电极电位。

测定峰电流和浓度关系时:Init E (V) = 0 High E (V) = 0.5 Low E (V) = 0 Init P/N = PScan Rate (V/s) = 0.08 Segment = 6 Sample Interval (V) = 0.001Quiet Time (sec) = 2 Sensitivity (A/V) = 1e-5测定峰电流和扫速关系时:Init E (V) = 0 High E (V) = 0.5 Low E (V) = 0 Init P/N = PScan Rate (V/s) = 0.02 Segment = 2 Sample Interval (V) = 0.001Quiet Time (sec) = 2 Sensitivity (A/V) = 1e-5数据表:峰电流和扫速数据表:0.1 0.2 0.5 10.226 0.226 0.231 0.24110mv20mv40mv80mv160mvSegment 1:Segment 1:Segment 1:Segment 1:Segment 1:Ep = 0.227V Ep = 0.226V Ep = 0.231V Ep = 0.239V Ep = 0.248Vip = -3.549e-6A ip = -5.605e-6A ip = -8.951e-6A ip = -1.245e-5A ip = -1.924e-5A Ah = -2.377e-5C Ah = -1.801e-5C Ah = -1.522e-5C Ah = -1.150e-5C Ah = -9.455e-6C Segment 2:Segment 2:Segment 2:Segment 2:Segment 2:Ep = 0.145V Ep = 0.140V Ep = 0.136V Ep = 0.126V Ep = 0.120Vip = 5.963e-6A ip = 8.119e-6A ip = 1.095e-5A ip = 1.437e-5A ip = 1.915e-5A Ah = 3.933e-5C Ah = 2.807e-5C Ah = 1.956e-5C Ah = 1.398e-5C Ah = 9.846e-6C曲线图:浓度和峰电流曲线图:所加体积ml0.10.20.51峰电流均值/10-6 2.6243 4.26310.65321.29峰电流和浓度的表格:0.1ml0.2ml0.5ml 1.0mlSegment 1:Segment 1:Segment 1:Segment 1:Ep = 0.226V Ep = 0.226V Ep = 0.231V Ep = 0.241Vip = -2.606e-6A ip = -3.670e-6A ip = -9.316e-6A ip = -1.788e-5A Ah = -2.189e-6C Ah = -2.997e-6C Ah = -8.084e-6C Ah = -1.722e-5C Segment 2:Segment 2:Segment 2:Segment 2:Ep = 0.144V Ep = 0.140V Ep = 0.132V Ep = 0.121Vip = 2.614e-6A ip = 4.106e-6A ip = 1.047e-5A ip = 2.132e-5A Ah = 2.090e-6C Ah = 3.476e-6C Ah = 9.477e-6C Ah = 2.124e-5C Segment 3:Segment 3:Segment 3:Segment 3:Ep = 0.226V Ep = 0.226V Ep = 0.232V Ep = 0.241Vip = -2.433e-6A ip = -3.807e-6A ip = -9.191e-6A ip = -1.705e-5A Ah = -2.025e-6C Ah = -3.105e-6C Ah = -8.032e-6C Ah = -1.634e-5C Segment 4:Segment 4:Segment 4:Segment 4:Ep = 0.144V Ep = 0.140V Ep = 0.131V Ep = 0.121Vip = 2.623e-6A ip = 4.292e-6A ip = 1.067e-5A ip = 2.133e-5A Ah = 2.092e-6C Ah = 3.622e-6C Ah = 9.763e-6C Ah = 2.123e-5C Segment 5:Segment 5:Segment 5:Segment 5:Ep = 0.226V Ep = 0.226V Ep = 0.232V Ep = 0.241Vip = -2.428e-6A ip = -3.940e-6A ip = -9.339e-6A ip = -1.708e-5A Ah = -2.015e-6C Ah = -3.221e-6C Ah = -8.149e-6C Ah = -1.640e-5C Segment 6:Segment 6:Segment 6:Segment 6:Ep = 0.145V Ep = 0.140V Ep = 0.131V Ep = 0.121Vip = 2.636e-6A ip = 4.391e-6A ip = 1.082e-5A ip = 2.132e-5A Ah = 2.069e-6C Ah = 3.690e-6C Ah = 9.877e-6C Ah = 2.117e-5C。

循环伏安法测定铁氰化钾的电极反应过程

循环伏安法测定铁氰化钾的电极反应过程
讨论
对实验结果进行了分析,探讨了铁氰化钾在电极上的氧化还原过程 和反应机理,为进一步研究铁氰化钾的电化学性质提供了基础。
展望
未来可以进一步优化实验条件,提高测定的灵敏度和准确性,为实际 应用提供更可靠的数据支持。
THANKS
感谢观看
电极材料选择
01
02
03
石墨电极
石墨电极具有高导电性和 化学稳定性,适用于多种 电化学反应。
铂电极
铂电极具有优良的导电性 和稳定性,适用于氧化还 原反应。
碳纤维电极
碳纤维电极具有高比表面 积和良好的电化学活性, 适用于电化学传感和催化 反应。
电极制备方法
物理涂布法
将活性物质涂布在电极基 底上,经过干燥和热处理 后得到电极。
循环伏安法
通过测量电极在多个扫描速率下的伏 安响应来分析电极的电化学行为,包 括氧化还原峰电位、峰电流等。
04
CATALOGUE
铁氰化钾的电极反应过程
铁氰化钾在电极上的氧化过程
铁氰化钾在电极上发生氧化反应,释放电子并生 成铁离子和氰根离子。
氧化峰电流随扫描速率的增加而增大,表明铁氰 化钾的氧化过程受扩散控制。
理信息。
02
CATALOGUE
铁氰化钾的性质
铁氰化钾的物理性质
外观
铁氰化钾是深红色晶体,易溶于水,在水溶液中呈现鲜艳的红色 。
密度
铁氰化钾的密度较大,大约为1.8g/cm³。
稳定性
铁氰化钾在常温下稳定,但在光照或加热条件下易分解。
铁氰化钾的化学性质
络合反应
铁氰化钾能与多种金属离子发生络合反应,形成稳定的配合 物。
氧化还原反应
铁氰化钾具有氧化还原性质,在不同的电位下可以发生氧化 或还原反应。

循环伏安法测定铁氰化钾和电极反应过程

循环伏安法测定铁氰化钾和电极反应过程

pc
20
d
阳极 i / 阴极
e
10
c
i
f
pc
0a
b
h
g
k
-10
ii
pa

pa
j
-20 0.6 0.5 0.4 0.3 0.2 0.1 0.0 -0.1 -0.2
/v
图1-2 K3Fe(CN)6在KCL溶液中的循环伏安图
由图1-2 可见, 循环伏安图有两个 峰电流和两个峰电 位。ipc和 ipa分别表 示阴极峰值电流和 阳极峰值电流,对 应的阴极峰值电位 与阳极峰值电位分
别为Epc和Epa。
55
实验原理
3.判断电极可逆性
根据Nernst方程,在实验测定温度为298K时,计算
得出
△Ep = Epa- Epc≈59/n mV
(1-1)
阳极峰电流ipa和阴极峰电流ipc 满足以下关系:
ipc/ipa≈1
(1-2)
同时满足以上两式,即可认为电极反应是可逆过程。
如果从循环伏安图得出的 △Ep/mv = 55/n~65/n范围,
也可认为电极反应是可逆的。
66
实验原理
4.计算原理
对可逆体系的正向峰电流,由Randles-savcik方程
可表示为:
ip 2.69105 n3 2AD1 21/2C
(1-3)
式中:ip为峰电流(A)
n为电子转移数
A为电极面积(cm2)
D为扩散系数(cm2/s)
为扫描速度(V/s)
c为浓度(mol/L)
99
实验数据处理
1.从循环伏安图上读取ipc、ipa、Epc、Epa 的值。
2. 绘制同一铁氰化钾浓度下ipc与相应的 1/2的关

铁氰化钾循环伏安法

铁氰化钾循环伏安法

实验六铁氰化钾循环伏安法有关性质的测定1.实验目的①掌握循环伏安法(CV)基本操作;掌握受扩散控制电化学过程的判别方法;了解可逆电化学过程及条件电极电位的测定;了解电化学—化学偶联反应过程的循环伏安特点。

并学会电化学工作站仪器的使用。

②测定铁氰化钾相关性质2.实验仪器与试剂电化学工作站、铂碳电极、Ag-AgCl参比电极、饱和甘汞电极、25ml容量瓶铁氰化钾溶液、氯化钾溶液、氧化铝粉、蒸馏水3.实验原理①循环伏安法是在工作电极上施加一个线性变化的循环电压(本实验采用三角波),记录工作电极上得到的电流与施加电压的关系曲线,对溶液中的电活性物质进行分析的方法。

扫描图像中电压上升部分为阴极过程,电压下降部分阳极过程,一次扫描过程中完成一个氧化和还原过程的循环,故称为循环伏安法。

②正向扫描电极上将发生还原反应,反向回扫时,电极上生成的还原态物质将发生氧化反应,形成电流-电压图。

其峰电流与被测物质浓度c、扫描速度v等因素有关。

③从循环伏安图可确定氧化峰峰电流ipa和还原峰电流ipc,氧化峰峰电位值和还原峰峰电位值。

④对于可逆体系,氧化峰峰电流与还原峰峰电流比约等于1。

氧化峰峰电位与还原峰峰电位差严格符合能斯特方程。

由此可判断电极过程的可逆性。

4.实验步骤①依次用粗、细粒径的氧化铝粉末对铂碳电极进行抛光至表面均匀呈镜面。

②验证:亚铁氰化钾溶液中进行循环伏安扫描。

③电极连接,参数设定(起始电位、电位扫描范围、扫描速度等)。

④测定:峰电流随电位扫描速度的变化5.数据处理①计算亚铁氰化钾的条件电极电位;φθ’==0.1893V②作出峰电流~扫速v 1/2图,判断是否是扩散控制过程。

在误差范围内,峰电流与扫速1/2成正比,该过程是扩散控制过程6.实验分析与讨论①本次试验的主要误差在于在于前期电极的打磨,是否做到基本平滑整洁,本实验于电极情况密不可分,这是主要的误差来源。

②实验现象分析:在低扫速的时候有充电电流的干扰,会发生曲线在还原曲线开始的位置和氧化曲线结束的位置发生交叉。

铁氰化钾的循环伏安法测定

铁氰化钾的循环伏安法测定
化学实验教学中心 Chemistry Lab Center
实验原理 电极反应的途径
化学实验教学中心 Chemistry Lab Center
实验原理
铁氰化钾离子-亚铁氰化钾离子 氧化还原电对的标准电极电位
3 4
Fe(CN)6 e Fe(CN)6
0 0.36V(vs.NHE)
ipa Epa
0.2 0.1 0.0
重要参数:两个峰电位 差 Δ E p ( Δ P)
0.1
0.0
0.6 0.6
0.5 0.5 0.4 0.4 0.3
0.2 0.2 0.3Title X Axis
0.1
0.0
E / V vs. SCE
X Axis Title
Δ Ep= Pa- Pc =2.22 RT nF =56.5/n (mv)
化学实验教学中心 Chemistry Lab Center
实验原理

0.0000020 2 0.0000020 0.0000015 0.0000015
Epc
ipc

Y Axis Title
0.0000005 0.0000005 0.0000000 0.0000000 0
i p / A
0.0000010 1 0.0000010
3. 指示电极的预处理:
用Al2O3粉末(粒径0.3 µ m)在湿的抛光布上抛光金电极表 面,再用蒸馏水冲洗干净 , 然后依次用丙酮、乙醇超声清洗 10min,蒸馏水冲洗,最后用去离子水冲洗干净。
化学实验教学中心 Chemistry Lab Center
4. 不同浓度 K3[Fe(CN)6]溶液的循环伏安图:
电极处理
保存数据

铁氰化钾循环伏安法

铁氰化钾循环伏安法

实验六铁氰化钾循环伏安法有关性质的测定1.实验目的①掌握循环伏安法(CV)基本操作;掌握受扩散控制电化学过程的判别方法;了解可逆电化学过程及条件电极电位的测定;了解电化学—化学偶联反应过程的循环伏安特点。

并学会电化学工作站仪器的使用。

②测定铁氰化钾相关性质2.实验仪器与试剂电化学工作站、铂碳电极、Ag-AgCl参比电极、饱和甘汞电极、25ml容量瓶铁氰化钾溶液、氯化钾溶液、氧化铝粉、蒸馏水3.实验原理①循环伏安法是在工作电极上施加一个线性变化的循环电压(本实验采用三角波),记录工作电极上得到的电流与施加电压的关系曲线,对溶液中的电活性物质进行分析的方法。

扫描图像中电压上升部分为阴极过程,电压下降部分阳极过程,一次扫描过程中完成一个氧化和还原过程的循环,故称为循环伏安法。

②正向扫描电极上将发生还原反应,反向回扫时,电极上生成的还原态物质将发生氧化反应,形成电流-电压图。

其峰电流与被测物质浓度c、扫描速度v等因素有关。

③从循环伏安图可确定氧化峰峰电流ipa和还原峰电流ipc,氧化峰峰电位值和还原峰峰电位值。

④对于可逆体系,氧化峰峰电流与还原峰峰电流比约等于1。

氧化峰峰电位与还原峰峰电位差严格符合能斯特方程。

由此可判断电极过程的可逆性。

4.实验步骤①依次用粗、细粒径的氧化铝粉末对铂碳电极进行抛光至表面均匀呈镜面。

②验证:亚铁氰化钾溶液中进行循环伏安扫描。

③电极连接,参数设定(起始电位、电位扫描范围、扫描速度等)。

④测定:峰电流随电位扫描速度的变化5.数据处理①计算亚铁氰化钾的条件电极电位;φθ’==0.1893V②作出峰电流~扫速v 1/2图,判断是否是扩散控制过程。

在误差范围内,峰电流与扫速1/2成正比,该过程是扩散控制过程6.实验分析与讨论①本次试验的主要误差在于在于前期电极的打磨,是否做到基本平滑整洁,本实验于电极情况密不可分,这是主要的误差来源。

②实验现象分析:在低扫速的时候有充电电流的干扰,会发生曲线在还原曲线开始的位置和氧化曲线结束的位置发生交叉。

循环伏安法测定铁氰化钾的电化学行为

循环伏安法测定铁氰化钾的电化学行为

循环伏安法测定铁氰化钾的电化学行为一、实验目的1、学习循环伏安法测定电极反应参数的基本原理及方法。

2、熟悉CHI660电化学工作站的使用。

3、学会使用伏安极谱仪。

4、学会测量峰电流和峰电位。

二、实验原理循环伏安法(cyclic voltammetry ,CV )是在固定面积的工作电极和参比电极之间加上对称的三角波扫描电压,记录工作电极上得到的电流与施加电位的关系曲线,即循环伏安图。

从伏安图的波形、氧化还原峰电流的数值及其比值、峰电位等可以判断电极反应机理。

可用来检测物质的氧化还原电位, 考察电化学反应的可逆性和反应机理, 判断产物的稳定性,研究活性物质的吸附和脱附现象; 也可用于反应速率的半定量分析等。

循环伏安在工作电极上施加一个线性变化的循环电压,记录工作电极上得到的电流与施加电压的关系曲线,对溶液中的电活性物质进行分析。

由于施加的电压为三角波,这种方法也称为三角波线性扫描极谱法。

U t + - + + -+ + - +三角波图1 电路的接法一次扫描过程中完成一个氧化和还原过程的循环,称为循环伏安法。

与汞电极相比,物质在固体电极上伏安行为的重现性差,其原因与固体电极的表面状态直接有关,因而了解固体电极表面处理的方法和衡量电极表面被净化的程度,以及测算电极有效表面积的方法,是十分重要的。

一般对这类问题要根据固体电极材料不同而采取适当的方法。

循环伏安法控制电极电位φ随时间t 从φi 线性变化增大(或减小)至某电位φτ后,相同速率线性减小(大)归到最初电位φi 。

其典型的CV 法响应电流对电位曲线(循环伏安图)如图1示。

图2. 循环伏安曲线图假如电位从φi 开始以扫描速度υ向负方向扫描, 置φi 较φ (研究电极的标 准电极电位)正得多, 开始时没有法拉第电流, 当电位移向φ 附近时, 还原电流 出现并逐渐增大, 电位继续负移时, 由于电极反应主要受界面电荷传递动力学控 A g /A g c l 铂盘电极制, 电流进一步增大, 当电位负移到足够负时, 达到扩散控制电位后, 电流则转至受扩散过程限制而衰减, 使i φ曲线上出现电流峰i pc , 对应的峰电位为φpc 。

循环伏安法测定铁氰化钾

循环伏安法测定铁氰化钾

循环伏安法测定铁氰化钾王燕燕 40507224一、实验目的1、学习固体电极的处理方法2、掌握循环伏安仪的使用技术3、了解扫描速率和浓度对循环伏安图的影响二、实验原理铁氰化钾离子[Fe(CN)6]3-—亚铁氰化钾离子[Fe(CN)6]4-氧化还原电对的标准电极电位为[Fe(CN)6]3- + e-= [Fe(CN)6]4-φθ= 0.36 V(vs.NHE) 电极电位与电极表面活度的Nernst方程式为φ=φθ+ RT/Fln(C Ox/C Red)在一定扫描速率下,从起始电位(-0.2 V)正向扫描到转折电位(+0.8 V)期间,溶液中[Fe(CN)6]4-被氧化生成[Fe(CN)6]3-,产生氧化电流;当负向扫描从转折电位(+0.8 V)变到原起始电位(-0.2 V)期间,在指示电极表面生成的[Fe(CN)6]3-被还原生成[Fe(CN)6]4-,产生还原电流。

为了使液相传质过程只受扩散控制,应在加入电解质和溶液处于静止下进行电解。

在1 M NaCl 溶液中[Fe(CN)6]的扩散系数为0.63×10-5 cm.s-1;电子转移速率大,为可逆体系(1 M NaCl溶液中,25℃时,标准反应速率常数为5.2×10-2 cm·s-1)。

溶液中的溶解氧具有电活性,用通入惰性气体除去。

三、仪器和药品LK98B型循环伏安仪,X-Y记录仪,银电极,铂丝电极,饱和甘汞电极,电解池,移液管等。

0.10 Mol*L-1 K3[Fe(CN)6], 1.00 Mol*L-1 NaCl四、实验步骤(1)指示电极的预处理铂电极用Al2O3粉末(粒径0.05 µm)将电极表面抛光,然后用蒸馏水清洗。

(2)支持电解质的循环伏安图在电解池中放入30 mL 1,0 mol·L-1 NaCl溶液,插入电极,以新处理的铂电极为指示电极,铂丝电极为辅助电极,饱和甘汞电极为参比电极,进行循环伏安仪设定,扫描速率为50 mV/s;起始电位为-0.2 V;终止电位为+0.8 V。

循环伏安法判断铁氰化钾的电极反应过程

循环伏安法判断铁氰化钾的电极反应过程

循环伏安法判断铁氰化钾的电极反应过程一、目的要求1.掌握用循环伏安法判断电极反应过程的可逆性2.学会使用电化学工作站3.学会测量峰电流和峰电位,培养学生的动手操作能力及分析问题解决问题能力二、实验用品1.仪器:电化学工作站,三电极系统(两支铂电极,一支甘汞电极),电解杯数只2.试剂:铁氰化钾标准溶液(6.0×10-3 mol/L ,1.00×10-5、1.00×10-4、1.00×10-3、1.00×10-2含KCl 溶液1.0 mol/L ),三、实验原理电化学工作站(Electrochemical workstation )是电化学测量系统的简称,是电化学研究和教学常用的测量设备。

将这种测量系统组成一台整机,内含快速数字信号发生器、高速数据采集系统、电位电流信号滤波器、多级信号增益、IR 降补偿电路以及恒电位仪、恒电流仪。

可直接用于超微电极上的稳态电流测量。

如果与微电流放大器及屏蔽箱连接,可测量1pA 或更低的电流。

如果与大电流放大器连接,电流范围可拓宽为±2A 。

动态范围极为宽广。

可进行循环伏安法、交流阻抗法、交流伏安法等测量。

循环伏安法是用途最广泛的研究电活性物质的电化学分析方法,在电化学、无机化学、有机化学、生物化学等领域得到了广泛的应用。

由于它能在很宽的电位范围内迅速观察研究对象的氧化还原行为,因此电化学研究中常常首先进行的是循环伏安行为研究。

循环伏安是在工作电极上施加一个线性变化的循环电压,记录工作电极上得到的电流与施加电压的关系曲线,对溶液中的电活性物质进行分析。

铁氰化钾离子-亚铁氰化钾离子氧化还原电对的标准电极电位:选择施加在起始点的起始电位,沿负的电位正向扫描,当电位负到能够将O ([Fe(CN)6]3-)还原时,在工作电极上发生还原反应:O+ Ze = R ,阴极电流迅速增加,电流达到最高峰,此后由于电极附近溶液中的O ([Fe(CN)6]3-)转变为R ([Fe(CN)6]4-)而耗尽,电流迅速衰减;电压沿正的方向扫描,当电位正到能够将R ([Fe(CN)6]4-)氧化时,在工作电极表面聚集的R 将发生氧化反应:R= O+Ze ,阳极电流迅速增加,电流达[][]3466Fe(CN)Fe(CN)e ---+=00.36V(.NHE)vs ϕ=到最高峰,此后由于电极附近溶液中的R转变为O([Fe(CN)6]3-)而耗尽,电流迅速衰减;当电压达到的起始电位时便完成了一个循环。

循环伏安法测定铁氰化钾电化学性能

循环伏安法测定铁氰化钾电化学性能

3、循环伏安法测量
将配制的系列铁氰化钾溶液逐一转移至电解池中,插 入干净的电极系统。起始电位0.5V,终止电位-0.1V。 a. 以10mV/s的扫描速度完成各浓度试样的测量。 b. 4mmol.L-1完成4种扫描速度的测量: 5mV/s 、(10 mV/s)、20mV/s、40 mV/s进行测量。
• 对于可逆电极反应
ip=2.69×105n3/2D1/2v1/2Ac
其中:ip为峰电流(A),n为电子转移数,A为电极面 积(cm2),D为扩散系数(cm2/s),v为扫描速度 (V/s),c为浓度(mol/L)。由此可见,ip与v1/2和c都 是直线关系。由于Da和Dc大致相同,对于可逆电极反应 ipa/ ipc ≈1。
4、避免电极夹头互碰导致仪器短路。
附录:CHI660A 电化学工作站简介
• 感谢阅读
感谢阅读
• 感谢阅读
• 非可逆电极的ΔEp和ipa/ ipa不具有上述理论关系,原则 上其差异大小与不可逆性是一致的。
图形解析
可逆体系
ipa 1 ipc
△Ep = 2.3RT / nF
= 56.5/n mV ( 25℃)
循环伏安法与单扫描极谱法的不同
• 极化电压不同——单扫描极谱法施加的是锯齿波型 (不对称)的电压;而循环伏安法施加的是等腰三角 波电压。
Technique Parameters Scan Rate
Cyclic Voltammetry
Init E= 0.5V High E=0.5V Low E=-0.1V
Initial Scan-----Negative
5mV/s、 10 mV/s、 20 mV/s、40 mV/s
Sensitivity 调节 OK

循环伏安法测定铁氰化钾的电极反应过程

循环伏安法测定铁氰化钾的电极反应过程

循环伏安法测定铁氰化钾的电极反应过程一、实验原理 1.循环伏安法循环伏安法是将循环变化的电压施加于工作电极和对电极之间,记录工作电极上得到的电流与施加电压的关系曲线。

此方法也称为三角波线性电位扫描方法。

图1-1表明了施加电压的变化方式。

选定电位扫描范围E1~E2 和扫描速率, 从起始电位E1开始扫描到达E2 , 然后连续反向在扫描从E2回到E1。

由图1-2 可见,循环伏安图有两个峰电流和两个峰电位。

i pc 和 i pa 分别表示阴极峰值电流和阳极峰值电流,对应的阴极峰值电位与阳极峰值电位分别为E pc 和E pa 。

图1-1 循环伏安法的典型激发信号 图1-2 K3Fe(CN)6在KCL 溶液中的循环伏安图2.判断电极可逆性根据Nernst 方程,在实验测定温度为298K 时,计算得出 △Ep = Epa- Epc≈59/n mV (1-1) 阳极峰电流ipa 和阴极峰电流ipc 满足以下关系: ipc/ipa ≈1 (1-2)同时满足以上两式,即可认为电极反应是可逆过程。

如果从循环伏安图得出的 △Ep/mv = 55/n ~65/n 范围,也可认为电极反应是可逆的。

3.计算原理铁氰化钾离子-亚铁氰化钾离子氧化还原电对的标准电极电位 [Fe(CN)6]3- + e - = [ Fe(CN)6]4- Φ=0.36v 电极电位与电极表面活度的Nernst 方程:峰电流与电极表面活度的Randles-Savcik 方程: i p = 2.69×105n 3/2ACD 1/2v 1/2 二、实验仪器与试剂0'Ox pa RedC RTIn F C ϕϕ∆=+E / Vt / s阳极 i / μA 阴极ϕ / v仪器: CHI660电化学工作站,电解池铂盘工作电极铂丝辅助电极Ag/AgCl参比电极。

试剂:铁氰化钾溶液:0.1mol/L;硝酸钾溶液:1.0mol/L三、实验步骤1.Pt工作电极预处理不同粒度的α-Al2O3粉,抛光,洗去表面污物,再超声水浴中清洗,每次2-3分钟,重复三次,得到平滑光洁和新鲜的电极表面。

铁氰化钾循环伏安法有关性质的测定

铁氰化钾循环伏安法有关性质的测定

实验六铁氰化钾循环伏安法有关性质的测定一.实验目的掌握循环伏安法(CV)基本操作;掌握受扩散控制电化学过程的判别方法;了解可逆电化学过程及条件电极电位的测定;了解电化学一化学偶联反应过程的循环伏安特点。

并学会电化学工作站仪器的使用。

二.循环伏安法原理扫描电压呈等腰三角形。

如果前半部扫描(电压上升部分)为去极化剂在电极上被还原的阴极过程,则后半部扫描(电压下降部分)为还原产物重新被氧化的阳极过程。

因此.一次三角波扫描完成一个还原过程和氧化过程的循环,故称为循环伏安法。

循环伏安法可用于研究化合物电极过程的机理、双电层、吸附现象和电极反应动力学•成为最有用的电化学方法之一05 T.9 紹坪悅宝网三.实验步骤1.电极表面抛光2.验证:亚铁氰化钾溶液中进行循环伏安扫描(电位差小于70mv)3.电极连接,参数设定(起始电位、电位扫描范围、扫描速度等)4.测定:峰电流随电位扫描速度的变化(处理在一张图上)5.反应模拟器(Simulation):模拟实验(调节:模型、传递系数a标准速率常数k0等)四.数据处理1.计算亚铁氰化钾的条件电极电位;2•作出峰电流~扫速v 1/2图,判断是否是扩散控制过程。

峰电诲与标堆电极此碧的关系为"%十先g 缶由于扩散系数并没有实际测量,这里不做详细计算P^C^-nM 性iw 知” d 亠険"I"屮下 ~—■ Rt 4^up Cartpr^ &i 卢矗IL »:S^i Awr\|E|口蓬jT|回昼・・• r 刮土直 也■年■ | I 宴|Mu. 24.2DW 1* KI T«h - CVFit : IfflM.IDBtf)It E(VJ«O.D£ HflheCVJwgift LcwElVi=gO5Smn 倉血 甘训■■ & bl 导烯rtiE zg 3-^ipi Iftrtrwei tV) * Q001 3«t TIP* |4] ■ g Svrti 眄 |AV| ■ - fl-5iffiM 1O.br —1册胡二0»力 —-1mM aDfrn —-1mM -SD bmimM lOO^riPotential / X扫描速度(V/s)0.01 0.02 0.04 0.08 0.1氧化峰电 流(卩A)-2.734 -3.669 -4.886 -6.500 -7.111FLU!»ia.1,Zb f JOLO/ 2E-0.26-65V•h? •"rb hTrt 勺峰电流--扫速的1/2丄TV5D二=#==】峰电流一扫速的丄/2由上图,峰电流与扫速的1/2在误差允许范围内成正比,所以该过程是扩散控制过程。

实验7 循环伏安法测定铁氰化钾的电极反应过程

实验7 循环伏安法测定铁氰化钾的电极反应过程

实验7 循环伏安法测定铁氰化钾的电极反应过程实验七循环伏安法测定铁氰化钾的电极反应过程一、目的要求1.学习循环伏安法测定电极反应参数的基本原理及方法; 2.学会使用伏安仪;3.掌握用循环伏安法判断电极反应过程的可逆性。

二、试验原理循环伏安法(CV)是最重要的电分析化学研究方法之一。

由于其设备价廉、操作简便、图谱解析直观,能迅速提供电活性物质电极反应过程的可逆性,化学反应历程、电极表面吸附等许多信息。

因而一般是电分析化学的首选方法。

CV方法是将循环变化的电压施加于工作电极和参比电极之间,记录工作电极上得到的电流与施加电压的关系曲线。

这种方法也常称为三角波线性电位扫描方法。

图1中表明了施加电压的变化方式:起扫电位为+0.8V,反向/起扫电位为-0.2V,终点又回扫到+0.8V。

当工作电极被施加的扫描电压激发时,其上将产生响应电流。

以该电流(纵坐标)对电位(横坐标)作图,称为循环伏安图。

典型的循环伏安图如图2所示。

该图是在1.0mol/L的KNO3电解质溶液中,6×10-3mol/L 的K3Fe(CN)6在Pt工作电极上反应得到的结果。

起始电位Ei为+0.8V(a点),然后沿负的电位扫描(如箭头所指方向),当电1位至Fe(CN)63�C可还原时,即析出电位,将产生阴极电流(b点)。

其电极反应为: [Fe(CN)6]3??e?[Fe(CN)6]4?随着电位的变负,阴极电流迅速增加(b-c-d),直至电极表面的Fe(CN)63-浓度趋近零,电流在d点达到最高峰。

然后迅速衰减(d-e-f),这是因为电极表面附近溶液中的Fe(CN)63-几乎全部因电解转变为Fe(CN)64-而耗尽。

当电压开始阳极化扫描时,由于电极电位仍相当的负,扩散至电极表面的Fe(CN)63-仍在不断还原,故仍呈现阴极电流。

当电极电位继续正向变化至Fe(CN)64-的析出电位时,聚集在电极表面附近的还原产物Fe(CN)64-被氧化,其反应为:[Fe(CN)6]4??e?[Fe(CN)6]3?这时产生阳极电流(i-j-k),阳极电流随着扫描电位正移迅速增加,当电极表面的Fe(CN)64-浓度趋于零时,阳极化电流达到峰值(j点)。

循环伏安法测定铁氰化钾

循环伏安法测定铁氰化钾
的值,填下表。
浓度(mol/L) 扫速(mV/s)
扫速开方
(mA)
(mA)
(mV/s)
i pa
i pc
(V)
(V)
E pa
E pc
数据处理
2.分别以ipa和ipc对v1/2作图,说明扫描速
率v对iP的影响。
峰电流和扫描速度关系表
峰电流与扫描速度关系图
4
v1/2
Ipa/*e-6A Ipc/*e-6A
洗2-3次,将小烧杯烘干放凉备用.
2.系列标准溶液的配制 分 别 取 2.5 浓 度 1.0×10-2mol/L K3[Fe(CN)6] 标 准 溶 液 于 50mL 容 量 瓶 中 , 再 加 入 5mL浓度为2.0mol/L
KNO3溶液, 用蒸馏水稀释至刻度,摇匀.
3. 工作电极的预处理: 用Al2O3粉末(粒径0.3 µm)在湿的抛光布上抛光电极表 面,再用蒸馏水冲洗干净 ,然后依次用丙酮、乙醇超声清 洗10min,蒸馏水冲洗,最后用去离子水冲洗干净。置 于0.5mol/L H2SO4 溶液中,接通三电极系统,在-1.0— 1.0V电位范围内,以1000mV/s的扫描速率进行循环扫描
极化处理,至CV曲线稳定为止(约十周)。
4. K3 [Fe(CN)6]溶液的循环伏安曲线 取一定量的测试液于电解池(50ml烧杯)中,插入三电极,连 接电极连线。设置扫描参数:起始电位600mV,终止电位-
200mV,扫描速度为20mV/s,取样间隔2mV,量程 100mA,然后开始扫描.
5. 不 同 扫 描 速 率K3 [Fe(CN)6]溶液的循环伏安曲线 在上述浓度的K3[Fe(CN)6]溶液中,分别以40mv/s、 60mv/s、80mv/s、100mv/s ,在+600mV - -200m V电 位范围内扫描,分别记录不同扫描速率下溶液的循环伏安

循环伏安法测定铁氰化钾实验讲义

循环伏安法测定铁氰化钾实验讲义

[实验目的]1) 学习固体电极表面的处理方法。

2) 掌握循环伏安仪的使用技术。

3) 了解扫描速率和浓度对循环伏安图的影响。

[实验原理]铁氰化钾离子-亚铁氰化钾离子:])([])([6463CN Fe K CN Fe K ⇔氧化还原电对的标准电极电位:V 36.00=ϕ峰电流方程: 循环伏安法产生氧化电流。

为了使液相传质过程只受扩散控制,应在加入电解质和溶液处于静止下进行电解。

实验前电极表面要处理干净。

在0.10 mol.L -1 NaCl 溶液中[Fe(CN)6]的扩散系数为0.63×10-5 cm.s -1;电子转移速率大,为可逆体系(1.0 mol.L -1 NaCl 溶液中,25℃时,标准反应速率常数为5.2×10-2 cm ·s -1)。

[注意事项和问题]1.实验前电极表面要处理干净。

2. 扫描过程保持溶液静止。

3. 若实验中测得的条件电极电位和与文献值有差异,说明其原因。

53/21/21/2p 2.6910i n ACD v =⨯i —E 曲线[实验步骤]1. 指示电极的预处理铂电极用Al 2O 3粉末(粒径0.05 µm)将电极表面抛光,然后用蒸馏水超声清洗3min.。

2.配制溶液配制2⨯10-2、2⨯10-3 、8⨯10-4、2⨯10-4 mol ·L -1的K 3[Fe(CN)6]溶液。

3. 不同扫描速率K 3[Fe(CN)6]溶液的循环伏安图先对10-3mol·L -1K 3 [Fe(CN)6]溶液(含支持电解质KNO 3浓度为0.50 mol·L -1, 通氮气除氧5min )以20mV/s 在+0.8至-0.2V 电位范围内扫描循环伏安图。

再对上述溶液以10、40、60、80、100、200mV/s ,在+0.8至-0.2V 电位范围内扫描,分别记录循环伏安图。

4. 不同浓度K 3[Fe(CN)6]溶液的循环伏安图在10-4、4⨯10-4、10-2 mol·L -1 K 3[Fe(CN)6]溶液(均含支持电解质KNO 3浓度为0.50 mol·L -1, 通氮气除氧5min )中,以20mV/s ,在-0.2至+0.8V 电位范围内扫描,分别记录循环伏安图。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
化学实验教学中心 Chemistry Lab Center
实验装置
流过的电流 i
电 解 WE 池
CE
设定的电位E RE
恒电位仪
i—E图
电位扫描仪
流过的电流 i
化学实验教学中心 Chemistry Lab Center
i—E
实验原理
在一定扫描速率下,
+0.4 V— -0.6 V, [Fe(CN)6]3- 还原 [Fe(CN)6]4-,产生还原电流
化学实验教学中心 Chemistry Lab Center
实验步骤
1.清洗玻璃仪器 准备5个小烧杯和5个25mL容量瓶,清洗干净,
将小烧杯烘干放凉备用;
2.系列标准溶液的配制 分 别 取 1.0, 1.5, 2.0, 2.5, 3.0mL 2.0×10-2mol/L
K3Fe(CN)6标准溶液于25mL容量瓶中,再加入5mL 5.0mol/L H2SO4, 加水至刻度,摇匀. 3. 指示电极的预处理:
铂电极用Al2O3粉末(粒径0.3 µm)将电极表面抛 光,然后用蒸馏水清洗。
化学实验教学中心 Chemistry Lab Center
4. 不同浓度K4[Fe(CN)6]溶液的循环伏安图: 将配制好的Fe(CN)63-标准溶液分别倒入电解池中,
插入无水分的工作电极、对电极和饱和甘汞电极,以 20mV/s的扫描速率,从+0.4--0.6V扫描,分别记录各 种浓度溶液的循环伏安图; 5. 不同扫描速率K4 [Fe(CN)6]溶液的循环伏安图:
试剂
0.02 mol·L-1 K3[Fe(CN)6] 5.0 mol·L-1 H2SO4
化学实验教学中心 Chemistry Lab Center
饱 和 甘 汞 电 极
化学实验教学中心 Chemistry Lab Center
基本操作 准备溶液
电极处理
打开软件
选择方法
数据处理
保存数据
运行实验
设置参数
化学实验教学中心 Chemistry Lab Center
注意事项
1.溶液保持静止 电极表面存在三种传质 过程 扩散(循环伏安法) 电迁 对流
2.实验前电极表面要处理干净
Au + 4Cl- AuCl4-+3e形成薄层氧化膜
化学实验教学中心 Chemistry Lab Center
仪器与试剂
仪器
LK98电化学分析系统;金电极;铂柱电极,饱和甘 汞电极;电解池 大多电解池以玻璃制造(偶有石英),可以根据需要 加工设计成各种形状
电化学的起源
意大利科学家 伽伐尼 (1737~1798)
化学实验教学中心 Chemistry Lab Center
电堆的发明
意大利物理学家 伏 打 (1745~1827)
化学实验教学中心 Chemistry Lab Center
电化学的应用
电池
生物电化学
电解工业
表面处理
电子学
化学实验教学中心 Chemistry Lab Center
(2) 分别以iPa 和iPc对v1/2作图,说明扫描速率对iP的影响。
(3) 扫描速率对△EP的影响。
(4) 分别以iPa 和iPc对Fe(CN)63- 浓度作图,说明浓度与峰 电流的关系。
(5) 所有实验数据用Excell软件在电脑上处理,处理后的 结果打印后附于实验报告中。
化学实验教学中心 Chemistry Lab Center
循环伏安法测定铁氰化钾
实验目的 ➢ 学习固体电极表面的处理方法。 ➢ 掌握循环伏安法的实验原理、实验参数的 确定、 实验数据的处理及分析;
➢ 掌握循环伏安仪的使用技术。
化学实验教学中心 Chemistry Lab Center
循环伏安法的应用
1、判断电极表面微观反应过程 2、判断电极反应的可逆性 3、作为无机制备反应“摸条件”的手段 4、为有机合成“摸条件” 5、前置化学反应(CE)的循环伏安特征 6、后置化学反应(EC)的循环伏安特征 7、催化反应的循环伏安特征
-0.6 V— +0.4 V, [Fe(CN)6]3- 氧化 [Fe(CN)6]4-,产生氧化电流
曲 线
化学实验教学中心 Chemistry Lab Center
实验原理
Au
Pt
e e
SCE
Fe2+
Fe3+
[Fe(CN)6]3-+ e- = [Fe(CN)6]4-
化学实验教学中心 Chemistry Lab Center
实验原理
铁氰化钾离子-亚铁氰化钾离子 氧化还原电对的标准电极电位
F e (C N )63 e F e (C N )64 00.36V(vs.N H E)
电极电位与电极表面活度的Nernst方程
pa
0'
RTInCOx F CRed
峰电流与电极表面活度的Cotroll方程
ip2 .6 9 1 0 5n 3/2A C D 1 /2v1 /2
化学实验教学中心 Chemistry Lab Center
图形解析
1.从循环伏安图上读取以下数据
ipc ipa
2.计算 ipa 1 ipc
p c p a 0' (pc pa )
2
△φ
pc
pa
0.059 n
3.作图并验证以下公式
ip ~ C
ip ~ v1/ 2
ip 2 .6 9 1 0 5n 3 /2A C D 1 /2 v 1 /2
在 一 定 浓 度 的 K4[Fe(CN)6] 溶 液 中 , 以 4mv/s 、 9mv/s、16mv/s、25mv/s、36mv/s、49mv/s、64mv/s , 在+0.4至-0.6 V电位范围内扫描,分别记录循环伏安图。
化学实验教学中心 Chemistry Lab Center
数据处理
(1) 由Fe(CN)63-溶液的循环伏安图测定iPa 、iPc和Epa、 Epc值。
பைடு நூலகம்
思考题
1.实验前电极表面
要处理干净。
2. 扫描过程
要保持溶液静止。
化学实验教学中心 Chemistry Lab Center
相关文档
最新文档