椭圆定义(公开课)ppt课件

合集下载

椭圆的定义PPT课件

椭圆的定义PPT课件

2a=2c时, 线段 2a<2c时, 无轨迹
F1
F2
椭圆标准方程
M
F1
F2
x
椭圆的标准方程
椭圆标准方程
y
M M F1 O F2Fra bibliotekyF2
x
O
x
F1
椭圆的标准方程的形式:焦点随着分母
走,焦点在分母大的轴上。
例题精析
例1:已知椭圆的方程为: ,则
3 ,焦点坐标 a=_____ 4 ,c=_______ 5 ,b=_______
的标准方程为______________.
点评:求椭圆方程首先要判断焦点的位置
练习:若方程4x2+kY2=1表示的曲线是 焦点在y轴上的椭圆,求k的取值范围。 解:由 4x2+ky2=1
可得 因为方程表示的曲线是焦点在y轴上的椭圆
即:0<k<4
所以k的取值范围为 0<k<4 .
例5、化简:
分析: |MF1|+|MF2|=10, 2a=10,2c=6, ∴a=5,c=3,b=4 ∴
M (x,y)
y
F2(0,3) O F1(0,-3)
x
小结:
1.椭圆的定义及焦点、焦距的概念。
2.椭圆的标准方程。
3. 标准方程的简单应用。
作业:
P96习题 8.1
第1,2,4题
(3)曲线上一点P到焦点F1的距离为3,则点P到另一 个焦点F2的距离等于_________,则三角形F1PF2的周 y 长为___________
F2 P O
x
F1
例3、求满足下列条件的椭圆的标准方程: (1)满足a=4, b=1,焦点在 x轴上的椭圆 的标准方程为_____________; (2)满足a=4, c= ,焦点在 y轴上的椭圆

椭圆ppt课件

椭圆ppt课件

02
椭圆的绘制方法
几何法绘制椭圆
固定两点法
选取两个固定点,利用细线、笔 和画板,通过细线两端分别绕两 个固定点旋转绘制椭圆。
圆心与半径法
选取一个圆心,以不同半径分别 用圆规画出两个相交的圆,连接 两个交点得到椭圆的长短轴,再 绘制椭圆。
代数法绘制椭圆
标准方程法
根据椭圆的标准方程,确定长短轴长度和中心位置,利用坐标纸和直尺绘制椭圆 。
椭圆的几何性质
焦点
椭圆有两个焦点,它们位于长轴上,距离原点分别为c。
长轴和短轴
椭圆有两条对称轴,分别是长轴和短轴。长轴通过两个焦 点,短轴与长轴垂直。长轴长度为2a,短轴长度为2b。
离心率
椭圆的离心率e定义为c/a,它描述了椭圆的扁平程度。 0<e<1时,椭圆越扁平;e=0时,椭圆变为圆;e>1时, 椭圆不存在。
椭圆形储罐
椭圆形储罐结构受力均匀 ,节省材料,常用于石油 、化工等行业的聚焦于一点,应用于望 远镜、卫星天线等光学设 备中。
经济学中椭圆的应用
生产可能性边界
生产可能性边界呈椭圆形,表示 在一定资源和技术条件下,两种
产品最大可能产量的组合。
效用函数
在消费者选择理论中,效用函数常 用椭圆函数形式来描述消费者在无 差异曲线上的偏好。
参数方程法
根据椭圆的参数方程,设定参数范围和步长,利用计算器或计算机软件生成椭圆 上的离散点,再连接成椭圆。
电脑绘图软件绘制椭圆
绘图软件工具
使用绘图软件中的椭圆工具,通过鼠标点击和拖动直接在画 布上绘制椭圆。
自定义绘制
利用绘图软件的编程功能,编写自定义的椭圆绘制程序,实 现更复杂的椭圆绘制需求。
03
椭圆的应用举例

椭圆的简单几何性质市公开课一等奖课件名师大赛获奖课件

椭圆的简单几何性质市公开课一等奖课件名师大赛获奖课件
x2 y2 1
25 16
因此: a = 5 ,b = 4
c = 25 16 3
因此,长轴长2a=10,短轴长2b=8 ;
离心率为0.6 ;
焦点坐标为(-3,0),(3,0)
Y
顶点坐标为
(-5,0),(5,0), (0,4),(0,-4)
O
X
例2、求符合下列条件的椭圆的原则方程:
(1)通过点(-3,0)、(0,-2); 解:易知a=3,b=2
A
x2 a2
y2 b2
1
B F1 O F2 x
在Rt△AF1F2中,
C
| AF2 | | F1A |2 | F1F2 |2 2.82 4.52
由椭圆的性质知,| F1A | | F2 A | 2a
所以
a
1 2
(|
F1 A
|
|
F2
A
|)
1 (2.8 2.82 4.52 ) 2
4.1
b a2 c2
离心率
椭圆的焦距与长轴长的比值 e c,叫做椭圆的离心率
a
1 当e靠近1时,c越靠近a,从而 b a2 c2 越小,因此椭圆越扁。
2 当e靠近0时,c越靠近0,从而b越靠近a,图形越靠近于圆。
3 当e=0时,c=0,a=b两焦点重叠,椭圆的原则方程为
x y a
2
2
2 图形就是圆。
椭圆的几何性质
ABC是椭圆的一部分,灯丝位于椭圆的一 种焦点F1上,片门位于另一种焦点F2上, 由椭圆一种焦点F1发出的光线,通过旋转 椭圆面反射后集中到另一种焦点F2。已知 AC F1F2,|F1A|=2.8cm,|F1F2|=4.5cm, 求截口ABC所在椭圆的方程。

椭圆的几何性质优秀课件公开课

椭圆的几何性质优秀课件公开课
切线斜率与法线斜率互为相反数的倒数。
3
切线、法线与椭圆关系
切线、法线都与椭圆在切点处有且仅有一个公共 点。
应用举例:求解相关问题
求给定点的切线方程
给定椭圆上一点,求该点的切线方程。
求给定斜率的切线方程
给定椭圆的方程和切线的斜率,求切线的 方程。
求椭圆与直线的交点
利用切线、法线解决最值问题
给定椭圆和直线的方程,求它们的交点坐 标。
加空间的变化和美感。
椭圆在物理学中的应用
天体运动轨道
椭圆是描述天体运动轨道的重要几何形状之一, 如行星绕太阳的轨道就是椭圆形的。
光学性质
椭圆的光学性质也被广泛应用于物理学中,如椭 圆形的透镜、反射镜等。
电磁学
在电磁学中,椭圆也被用于描述电场和磁场的分 布。
椭圆在工程学中的应用
机械工程
01
椭圆在机械工程中应用广泛,如椭圆形的齿轮、轴承等机械零
工程学
在工程学中,椭圆也经常被用来描述一些物体的形状或运动轨迹。例如,一些机械零件的 截面形状就是椭圆形的;在航空航天领域,飞行器的轨道也可能是椭圆形的。
数学及其他领域
在数学领域,椭圆作为一种重要的几何图形,经常被用来研究一些数学问题。此外,在物 理学、经济学等其他领域,椭圆也有着广泛的应用。
02
从椭圆外一点向椭圆引切线,切线长 相等。这个定理在解决与椭圆切线有 关的问题时非常有用。
03
椭圆上点与焦点关系
点到两焦点距离之和为定值
椭圆上任意一点到两 个焦点的距离之和等 于椭圆的长轴长。
通过该性质,可以推 导出椭圆的其他几何 性质。
这是椭圆定义的基础 ,也是椭圆最基本的 几何性质之一。
点到两焦点距离差与长轴关系

椭圆定义(公开课)ppt课件

椭圆定义(公开课)ppt课件
直角坐方标程系的。曲根线据上椭的圆点的是定否义都知是所符求合轨题迹意方。程是椭
圆. ,且焦点在轴上,所以可设椭圆的标准方程为 :
x2 y2 + = 1(a > b > 0)
a2 b2
y
A
∵ 2a=10, 2c=8 ∴ a=5, c=4
Bo Cx
∴ b2=a2-c2=52-42=9
∴所求椭圆的标准方程为:
x2 b2
1
a b 0
去根号的方法;求标准方程的方法
三个意识:求美意识, 求简意识, 猜想的意识。
练习1:判定下列椭圆的焦点在哪个轴,并指 明a2、b2,写出焦点坐标
x2
y2
+ =1 25 16
答:在 X 轴(-3,0)和(3,0)
x2
y2
+ =1
144 169
答:在 y 轴(0,-5)和(0,5)
D 2 2 m 2 2
例2、写出适合下列条件的椭圆的标准方程
(14)已知a 6, c 1的椭圆的标准方程为
x2 y2 1 36 35
x2 y2 1 35 36
小结:先定位(焦点)再定量(a,b,c) 椭圆的焦点位置不能确定时,椭圆的标准方程一般有 两种情形,必须分类求出
(25) 椭 圆x 2 y 2 1的 焦 距 等 于2, 则m的 值 为
(2)若C为椭圆上一点,F1、F2分别为椭圆的左、右焦点,
并且CF1=2,则CF2=_8__.
变题: 若椭圆的方程为16 x2 9y2 144 ,试口答完成(1).
x2 y2 1 9 16
探究: 若方程 x2 y2 1 表示焦点在y轴上的椭圆, k 2 3k
求k的取值范围; 若方程表示椭圆呢?

高中数学椭圆的简单几何性质(共16张PPT)公开课ppt课件

高中数学椭圆的简单几何性质(共16张PPT)公开课ppt课件

半轴长
长半轴长为a,短半轴
长为b. a>b
离心率
e c a
a、b、c的关系 a2=b2+c2
x2 b2

y2 a2
1(a
b
0)
|x|≤ b,|y|≤ a
关于x轴、y轴成轴对称; 关于原点成中心对称
(b,0)、(-b,0)、 (0,a)、(0,-a)
(0 , c)、(0, -c)
长半轴长为a,短半
轴长为b. a>b
e c a
a2=b2+c2
例1.已知椭圆方程为9x2+25y2=225,
它的长轴长是: 10 ,短轴长是: 6 ,
焦距是: 8
,离心率= 4 ,
5
焦点坐标是: (0, 4) ,顶点坐标是:(5, 0)0,,3
外切矩形的面积等于:
60

练1.求下列椭圆的长轴长、短轴长、焦点坐标、顶点坐 标和离心率.
A1
F1
bocΒιβλιοθήκη aA2F2
B1
3、椭圆的顶点
x2 a2

y2 b2
1(a b 0)
令 x=0,得 y=?,说明椭圆与 y轴的交点?
令 y=0,得 x=?,说明椭圆与 x轴的交点?
*顶点:椭圆与它的对称轴 的四个交点,叫做椭圆的 顶点。
*长轴、短轴:线段A1A2、 A1 B1B2分别叫做椭圆的长轴 (-a,0)F1 和短轴。
(1)x2+9y2=81
(2) 25x2+9y2=225
(3)16x2+y2=25
(4) 4x2+5y2=1
练2.已知椭圆 x2 (m 3) y2 m(m 0) 的离心率 e 3 ,

高三复习—椭圆的定义及标准方程优质公开课精品PPT课件

高三复习—椭圆的定义及标准方程优质公开课精品PPT课件
a、b、c、e,(3)直线与圆锥曲线问题,从弦长到位置
关系.(4)曲线与方程的关系、考查曲线方程的探求, 如直接法、相关点法、待定系数法、定义法、交轨法等. 分值一般在17分左右,解答题难度较大.
高考导航
命题探究
2.预计今后高考命题有以下特点: (1)以选择或填空题考查圆锥曲线的 定义和性质,难度为中档题,(2)以解答 题形式重点考查圆锥曲线的综合问题,多与 直线结合进行命题,难度较大,文科多侧重 于椭圆.
高三一轮复习
椭圆的定义与标准方程
西安交大彬县阳光高中
2017.12
高考导航
考纲解读
1. 了解椭圆的实际背景,了解椭圆在刻画 现实世界和解决实际问题中的作用.
2.掌握椭圆的定义、几何图形、标准方程 及简单性质.
3. 了解椭圆的简单应用. 4.理解数形结合的思想.
高考导航
命题探究
1.从近几年高考题的命题方向来看,大量的运算在 逐渐减少,但与其他知识相结合在逐渐增加,圆锥曲线 的概念、性质、方程等基础知识稳中求活,稳中求新, 命题中经常涉及的有:(1)方程,(2)几何特征值
m4
A.5 B.3 C.5或3 D.8 2.“2<m<6”是“方程 x2 y2 1 表示椭
m2 6m
圆”的( )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件 3. 已知椭圆 mx2 3y2 6m 0 的一个焦点为
(0,2),求m的值.
写在最后
成功的基础在于好的学习习惯
答案:A
基础知识梳理
答案:B
三基能力强化
答案: (1) 9<x<12 (2) 12<x<15
课堂互动讲练

椭圆的定义及标准方程ppt课件

椭圆的定义及标准方程ppt课件

于两个定点之间的距离
15
(一)椭圆的定义
椭圆定义的文字表述:
平面内到两个定点F1,F2的距离之和等于常数 (2a) (大于|F1F2 |)的点的轨迹叫椭圆。
定点F1、F2叫做椭圆的焦点。 两焦点之间的距离叫做焦距(2C)。
椭圆定义的符号表述:
M
(2a>2c)
F2
F1
16
二、椭圆标准方程的推导
24
四 课时小结 1. 学习了椭圆的定义,焦点、焦距, 2. 求出了焦点在X轴上的椭圆标准方程
3 . a、b、c始终满足:a2-b2=c2, a>b>0
25
五 堂堂清
1 椭圆 x2 y2 1的焦距是( B )
43
A1 B 2 C4 D2 3
F1
2已知焦点F1(-6,0),F2(6,0),2a=20的椭圆标准方程
b2 a2 c2 41 3
因此,这个椭圆的标准方程是:x2 y2 1 43
23
1.求适合下列条件的椭圆方程 1.a=4,b=3,焦点在x轴上 2.b=1,c 15 焦点在X轴上
小结: 1 先定位(焦点)
根据焦点位置设出恰当的方程
2 再定量(a,b,c) 3 代入标准方程即可求得
x2 y2 1
100 64
26
x2 y2 3 椭圆 100 36 1 上的一点P到焦点F1的距离等于6
14
那么点P到另外的一个焦点F2的距离是_____
27
4已知方程
表示焦点在x轴
上的椭圆,则m的取值范围是 (0,4.)
28
链接高考
x2 y2
1
1、 已知F1,F2 是椭圆 25 9

椭圆的定义及标准方程PPT教学课件

椭圆的定义及标准方程PPT教学课件

乡下的房子
木板窗
天窗
月光下的草地河滩
一粒星
星空
读一读
帐玻扇偏璃 鹰烁莺蝠蝙
为什么说天窗是神奇的呢?
活泼会想的孩子们会知道怎样通过天窗从“无” 中看出“有”,从“虚”中看出“实”,比任凭 他看到的更真切,更阔达,更复杂,更确实。
为什么“小小的天窗是孩子们唯一的慰藉” 呢?
孩子们跟着木板窗的关闭也就被关在地洞似的屋 里的时候,天窗给漆黑的屋子带来的仅有的光明, 通过天窗看见了雨点、闪电、星星、云彩。这些 都是孩子们唯一的慰藉。
1.你能说说自己生活中排解不快的方法吗?பைடு நூலகம்读书?
看电视?还是摆弄小玩具?
2.把自己的经历像作者这样记录下来,为我们的童 年增添一笔美好的回忆。
椭圆的定义及标准方程
一、天体运行轨迹: 太阳系运行简图: 地球绕太阳旋转轨迹:
二、椭圆的定义与标准方程
(一)定义:
到两定点距离之和等于定值 (大于两定点 间的 距离)的点轨迹. 两定点叫焦点,焦点 间的距离 叫焦距. 看一下定值 的变化与要求:
1.当定值小于两定点间的距离时 不可能,没有任何曲线.
b
F1 焦点坐标
-a
(0,-c),(0,c)
不论焦点在何处,都 有a>b>0且a2=b2+c2
三、练习举例 [例 ]求适合下列条件的椭圆方程:
1.两个焦点的坐标分别是(-4,0)、 (4,0),椭圆上一点P到 两焦点的距 离之和等于10;
2.两个焦点的坐标分别是(0,-2)、
(0,2),并且椭圆经过点
2.当定值等于两定点间的距离时
轨迹是:两定点所确定的线段. 3.当定值大于两定点间的距离时
轨迹是:椭圆.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

x2
a2
y2 a2 c2
1
x2 a2
y2 b2
1
b2
a2 c2
(请大家比较一下上面两式的不同,独立思考后回答
椭圆的标准方程。)
椭圆的标准方程
y
M
焦点在x轴:
x2 a2
y2 b2
1a b 0
b2 a2 c2
F1 o F2 x
(x c)2 y2 (x c)2 y2 2a y
2.如果把细绳的两端拉 开一段距离,分别固定在图 板的两点处,套上铅笔,拉 紧绳子,移动笔尖,画出的 又是什么图形?这一过程中, 笔尖(动点)满足什么几何 条件?
数学实验
• (1)取一条细绳, • (2)把它的两端固定在板
上的两个定点F1、F2 • (3)用铅笔尖(M)把细
绳拉紧,在板上慢慢移 动看看画出的 图形
生 活 中 的 椭 圆
如何精确地设计、制作、建造出现实生活中这些椭圆形的 物件呢?
星系中的椭圆
——仙女座星系
——“传说中的”飞碟
♦ 动画演示:太阳系行星的运动
土星
金星 太阳
地球
p3
月亮
木星
一、合作探究,形成概念:
请同学们用事先准备好的学习用具小组内共同完成一下 任务,并思考相应问题。
1.取一条定长的细绳,把它的两端都固定在图板的同一 点处,套上铅笔,拉紧绳子,移动笔尖,这时笔尖(动点) 画出的轨迹是一个什么图形?笔尖(动点)满足什么几何条 件?
结论:若常数大于|F1F2|,则点M的轨迹是(椭圆 )
若常数等于|F1F2|,则点M的轨迹是( 线段F1F2) 若常数小于|F1F2|,则点M的轨迹( 不存在 )
♦ 探讨建立平面直角坐标系的方案
yy y
y
y
M
F2
M
F1 O O OF2 x x x
O
x
O
x
F1
方案一
方案二
原则:尽可能使方程的形式简单、运算简单;
椭圆的定义
| F1F2 |=2c , | MF1 |+|M F2 |=2a
2a=2c
2a<2c
小结:椭圆的定义需要注意以下几点 1.平面上----这是大前提 2.动点M到两定点F1,F2的距离之和是常数2a 3.常数2a要大于焦距2C
思考:当点M到F1、F2的距离之和不大于|F1F2|时,点M的 轨迹是什么?
(一般利用对称轴或已有的互相垂直的线段所在的
直线作为坐标轴.) (对称、“简
洁”)
椭圆的方程的推导
y
o

x
以经过椭圆焦点 F1,F2 的直
线为 x 轴,线段F1F2的中垂线为y 轴,建立直角坐标系xoy。

设 M(x,y)是椭圆上任一点,
设椭圆的焦距为 2c,点M与两焦点 的距离之和为常数 2a。 故椭圆的两焦点坐标分别为 F1(-c,0) 和 F2(c,0)
x2 b2
1
a b 0
去根号的方法;求标准方程的方法
三个意识:求美意识, 求简意识, 猜想的意识。
练习1:判定下列椭圆的焦点在哪个轴,并指 明a2、b2,写出焦点坐标
x2
y2
+ =1 25 16
答:在 X 轴(-3,0)和(3,0)
x2
y2
+ =1
144 169
答:在 y 轴(0,-5)和(0,5)
于两个定点之间的距离
(一)椭圆的定义
椭圆定义的文字表述:
• 平面内到两个定点F1,F2的距离之和等于常数 (2a) (大于|F1F2 |)的点的轨迹叫椭圆。
• 定点F1、F2叫做椭圆的焦点。 • 两焦点之间的距离叫做焦距(2C)。
椭圆定义的符号表述:
M
MF1 MF2 2a
F2
F1
(2a>2c)
x2
y2
m2 + m2 + 1 = 1 答:在y 轴。(0,-1)和(0,1)
现(限)
由椭圆的定义得
| MF1 | | MF2 | 2a (a > c)
代 (x c)2 y2 (x c)2 y2 2a
化 移项,得
(x c)2 y2 2a (x c)2 y2
平方化简,得
a2 cx a (x c)2 y2
再平方化简,得
a2 c2 x2 a2 y2 a2 a2 c2
y2 b2
1
a
b
0
ox
F1
y2 a2
x2 b2
1
a
b 0
焦点 a,b,c之间的关系
F(±c,0)
F(0,±c)
c2=a2-b2
注: 共同点:椭圆的标准方程表示的一定是焦点在坐标轴上,
中心在坐标原点的椭圆;方程的左边是平方和,右边是1.
不同点:焦点在x轴的椭圆 x2项分母较大. 焦点在y轴的椭圆 y 2项分母较大.
思 1.在椭圆形成的过程中,细绳的两端的位置是固定的还是运动 考 的?
2.在画椭圆的过程中,绳子的长度变了没有?说明了什么? 3.在画椭圆的过程中,绳子长度与两定点距离大小有怎样的关
系?
请你归纳出椭圆的定义,它应该包含几个要素?
(1)由于绳长固定,所以点M到两
M
个定点的距离和是个定值
F1
F2
(2)点M到两个定点的距离和要大
(1)焦点在x轴上 (2)焦点在y轴上
: :
x2 ay22
y2 bx22
1(a b 0) 1 (a b 0)
a2 b2
椭圆方程有特点
系数为正加相连
分母较大焦点定
右边数“1”记心间
一、二、二、三
一个概念; 二个方程; 二个方法:
|MF1|+|MF2|=2a
x2 a2
y2 b2
1
y2 a2
则有F1(0,-c),F2(0,c),
又由椭圆 的定义可得:
F2 M
|MF1|+ |MF2|=2a
由两点间的距离公式,可知:
o
x
焦点在 Y轴
( y c)2 x2 ( y c)2 x2 2a
F1
y2
a2
x2 a2 c2
1
y2 a2
x2 b2
1
b2
a2
c2
焦点在 X轴
(x c)2 y2 (x c)2 y2 2a
焦点在y轴:
y2 a2
x2 b2
1(a
b
0)
b2 a2 c2
F2
M
ox
F1
(y c)2 x2 (y c)2 x2 2a
总体印象:对称、简洁,“像”直线方程的截距 式
两类标准方程的对照表
定义 图形 方程
MF1+MF2=2a (2a>2c>0)
y
y
M
F2 M
F1 o F2 x
x2 a2
两边同时除以 a2 a2 c2 ,得
x2
y2
a2 a2 c2 1
y
观察左图, 和同桌讨论你们能从中找
出表示c 、 a 的线段吗?
ba
oc
x a2-c2 有什么几何意义?
令 | OP | a 2 c2 b
则方程可化为
x2 a2
y2 b2|=2c(c>0),M(x,y)为椭圆上任意y一点,
相关文档
最新文档