现代控制理论(浙大)第一章(A)
《现代控制理论》讲稿
贺廉云
第1章 控制系统的状态空间模型
要点:
1 理解状态空间表示法概念;
2 掌握状态空间图示法;
3 掌握连续系统的数学模型转换;
4 了解多变量系统的传递函数阵及其求法
难点:
连续系统的数学模型转换
C=[ 0 0 1]
三状态空间模型的图示法
1. 基本元件
(a) (b) (c)
试求其传递函数阵。
解:根据式(1-10),可得
G(s)=
=
=
=
2传递函数阵的状态空间模型的实现
(1) 可控标准形的实现
对于单输入单输出(SISO)系统,传递函数阵退化成传递函数。要把SISO系统式G(s)=的传递函数形式转换成能控标准性的状态空间模型,即
图1-3 状态结构基本元件
a-积分器 b-加法器 c-比例器
2. 一阶标量微分方程 的一阶系统状态结构图
u
图1-4 一阶系统状态结构
1 由状态空间模型转换成传递函数
系统的状态方程
L G(s)=
= (1-10)
是A阵的特征多项式 * 表示伴随矩阵
例2 已知某一单一输入输出系统的状态空间表达式为
(1-11)
A= b= (1-12)
上述A阵是nn方阵,它的维数正好是传递函数的阶数,它的最后一行元素正还是传递函数分母(即系统的特征方程)所对应的稀疏,只不过均相差一个负号,其次对角线的元素均为1,其余为零,而b阵是一个列向量,最后一个元素为1,其余为零。正是b阵中的唯一的1对应友阵A的形式,是的输入信号u能对系统的每一个状态进行控制,因此称其为能控标准行。为了得到A阵和b阵的这种形式,应按下列规律选择状态变量:,于是有
现代控制理论 第一章状态空间表达式的建立:实现的方法之一
大
大
大
大
大
大
大
大
学
Байду номын сангаас
学
学
学
学
学
学
学
M
M
M
M
M
M
M
M
C
O
M
O
大
学
国
中
C
O
O
O
C
M
国
大
学
中
O
O
C
M
国
大
学
中
M
学
国
大
中
M
学
国
大
中
M
学
国
大
中
M
O
O
O
O
O
O
O
O
O
O
O
O
≤
M
O
大
学
国
O
O
C
M
国
大
学
中
()
中
C
O
M
O
大
学
国
1
O
O
C
M
学
国
大
中
M
学
M
学
国
大
中
O
C
C
C
C
C
C
C
C
+−1 −1 +⋯+1 +0
… −n−1
1
中
C
O
M
O
大
学
国
O
O
C
M
国
大
学
现代控制理论第1章
控制理论的研究对象是系统,所谓的控制是系 统的控制。 系统是由客观世界中实体与实体间的相互作用和 相互依赖的若干部分按一定规律组合而成的具有特定 功能的一个整体。 系统具有不同的属性如经济系统、社会系统、 生物系统、物理系统、 化学系统和工程系统等。 系统的分类方法是多种多样的。 动态系统 系统的模型可用微分部分或全部描述 系统
将线性系统更细致的进行分类,可以分为线性定常系统 与线性时变系统, 线性定常系统是描述系统状态的线性微分 或差分方程中的每个系数都是不随时间t 变化的。而线性时 变系统即系统的线性微分或差分方程的系数有随时间t 变化 的系数,不全是常数。
1.6 线性系统理论的主要任务
线性系统理论主要研究线性系统状态的运动规律和改 变这种运动规律的可能性和方法,建立和揭示系统结构、 参数、行为和性能间的确定的和定量的关系。通常,研究 系统运动规律的问题成为分析问题,研究改变运动规律的 可能性和方法的问题则为综合问题或设计。
(3)快速性与平稳性 系统的被控变量从一个值变到另一个值的过程称 为过渡过程。此时系统所表现出来的特性称为动态特 性。过渡过程的快速和平稳是人们所期望达到的又一 目标。控制系统受到外界的作用后,能否从一个平衡 状态迅速地达到另一个平衡状态,这就是系统的快速 性。只有当系统稳定时,才有快速性可言。
1.5 线性系统理论的研究对象
古典控制理论主要以传递函数为基础,以拉氏变 换为数学工具,主要研究单输入- 单输出一类自动控制 系统的分析和设计问题。 现代控制理论主要以线性代数和微分方程为数学 工具,以状态空间法为基础,分析与设计控制系统。 20 世纪70 年代以来控制理论在大系统理论和智 能控制理论方面有了新的突破,有人称之为第三代 控制理论。
前者属于认知系统,后者为改造系统。 (1) 建立系统数学模型
《现代控制理论》课后习题答案1.pdf
《现代控制理论》第一章习题解答1.1 线性定常系统和线性时变系统的区别何在? 答:线性系统的状态空间模型为:xAx Bu y Cx Du=+=+线性定常系统和线性时变系统的区别在于:对于线性定常系统,上述状态空间模型中的系数矩阵A ,B ,C 和中的各分量均为常数,而对线性时变系统,其系数矩阵D A ,B ,C 和中有时变的元素。
线性定常系统在物理上代表结构和参数都不随时间变化的一类系统,而线性时变系统的参数则随时间的变化而变化。
D 1.2 现代控制理论中的状态空间模型与经典控制理论中的传递函数有什么区别? 答: 传递函数模型与状态空间模型的主要区别如下:传递函数模型(经典控制理论)状态空间模型(现代控制理论) 仅适用于线性定常系统 适用于线性、非线性和时变系统用于系统的外部描述 用于系统的内部描述基于频域分析基于时域分析1.3 线性系统的状态空间模型有哪几种标准形式?它们分别具有什么特点?答: 线性系统的状态空间模型标准形式有能控标准型、能观标准型和对角线标准型。
对于阶传递函数n 1212101110()n n n n n n n b s b s b s b G s d s a s a s a −−−−−−++++=+++++"",分别有[]012101210100000100000101n n n xx ua a a a yb b b b x du−−−⎧⎡⎤⎪⎢⎥⎪⎢⎥⎪⎢⎥=+⎪⎢⎥⎨⎢⎥⎪⎢⎥⎪−−−−⎣⎦⎪=+⎪⎩"" ###%##"""⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⑴ 能控标准型:[]0011221100010********001n n n b a b a xa x ub a b y xdu −−−⎧−⎡⎤⎡⎤⎪⎢⎥⎢⎥−⎪⎢⎥⎢⎥⎪⎢⎥⎢⎥=−+⎪⎢⎥⎢⎥⎨⎢⎥⎢⎥⎪⎢⎥⎢⎥⎪−⎣⎦⎣⎦⎪=+⎪⎩"" "######""⑵ 能观标准型:[]1212001001001n n p p x x up y c c c x du⎧⎡⎤⎡⎤⎪⎢⎥⎢⎥⎪⎢⎥⎢⎥=+⎪⎢⎥⎢⎥⎨⎢⎥⎢⎥⎪⎣⎦⎣⎦⎪⎪=+⎩"" ##%##""⑶ 对角线标准型: 式中的和可由下式给出,12,,,n p p p "12,,,n c c c "12121012111012()n n n n n n n n nb s b s b s bc c c G sd d s a s a s a s p s p s p −−−−−−++++=+=++++++−−−"""++能控标准型的特点:状态矩阵的最后一行由传递函数的分母多项式系数确定,其余部分具有特定结构,输出矩阵依赖于分子多项式系数,输入矩阵中的元素除了最后一个元素是1外,其余全为0。
《现代控制理论》课后习题全部答案(最完整打印版)
第一章习题答案1-1 试求图1-27系统的模拟结构图,并建立其状态空间表达式。
11K s K K p +sK s K p 1+s J 11sK n 22s J K b -++-+-)(s θ)(s U 图1-27系统方块结构图解:系统的模拟结构图如下:)(s U )(s θ---+++图1-30双输入--双输出系统模拟结构图1K pK K 1pK K 1+++pK n K ⎰⎰⎰11J ⎰2J K b ⎰⎰-1x 2x 3x 4x 5x 6x系统的状态方程如下:u K K x K K x K K x X K x K x x x x J K x J x J K x J K x x J K x x x pp p p n p b1611166131534615141313322211+--=+-==++--===∙∙∙∙∙∙阿令y s =)(θ,则1x y =所以,系统的状态空间表达式及输出方程表达式为[]⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡+⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡-----=⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡∙∙∙∙∙∙654321165432111111112654321000001000000000000010010000000000010x x x x x x y uK K x x x x x x K K K K K K J K J J K J K J K x x x x x x p p pp npb1-2有电路如图1-28所示。
以电压)(t u 为输入量,求以电感中的电流和电容上的电压作为状态变量的状态方程,和以电阻2R 上的电压作为输出量的输出方程。
R1L1R2L2CU---------Uc---------i1i2图1-28 电路图解:由图,令32211,,x u x i x i c ===,输出量22x R y =有电路原理可知:∙∙∙+==+=++3213222231111x C x x x x R x L ux x L x R 既得22213322222131111111111x R y x C x C x x L x L R x u L x L x L R x =+-=+-=+--=∙∙∙写成矢量矩阵形式为:[]⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡+⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎣⎡----=⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡32121321222111321000*********x x x R y u L x x x CCL L R L L R x x x 。
现代控制理论-第1章 基础知识
L[xt ] s2 X s sx0 x0
L[x(n) (t)] sn X (s) sn1x(0) sn2x' (0) sx(n2) (0) x(n1) (0)
(2)积分性质
设:L[x(t)] X (s) ,xi (0)
tr2
r2 !
k1r
e
p1t
n
k jepjt
j r 1
对象)
热电偶
恒温箱自动控制系统功能框图
反馈
反馈是指将输出信号部分或全部返回到输入端
反馈是控制系统的灵魂、思想和立足点
内在反馈、外部反馈、开环与闭环
反馈作用:减少给定环节与被控对象之间的偏差
组成:给定环节、比较环节、放大环节、执行环节、
被控对象、测量反馈环节
扰动
温度t
给定 信号
u1 u
函数X(s)可以展成如下形式:
X (s)
B(s) A(s)
(s
k11 p1)
(s
k 12 p1)
1
k1 k2 (s p1) s p2
kj s pi
kn s pn
k11
lim
s p1
s
p1 r
X
s
绪论
一、工程控制论的研究对象
工程控制论研究的是工程技术中的广义系统,在 一定的外界条件作用下,从系统的初态出发,所 经历的由其内部固有属性所决定的整个动态过程, 研究该过程中输入、输出与系统的关系。
1.广义系统:由相互联系、相互作用的若干部分 构成,达到一定目的或实现一定运动规律的一个 整体。可繁可简、可虚可实。
现代控制理论第一章
七、状态空间表达式的系统方块图
经典控制理论类似,可以用方块图表示系统信号
的传递关系. 将状态方程表示的系统动态方程用方块图表示为
如图所示。系统有两个前向通道和一个状态反馈回路 组成,其中D通道表示控制输入U到系统输出Y的直接 转移。
整理得:
写成矢量形式为: 这就是如图2-3所示RLC电网络的动态方程。
【例1-3】 多输入多输出系统(MIMO) 如图2-5所示机
械系统,质量 m 1 , m 2
位置的位移分别为
各受到
x1, x2
f 1 , f 2 的作用,其相对静平衡
。
解:根据牛顿定律,分别对 m 1 , m 2 进行受力分析,我
x1 0
x
2
0
1 0
积分器的输入端即 x 1 , x 2
从图可得系统状态方程:
取y为系统输出,输出方程为:y x1
写成矢量矩阵形式,我们得到系统动态方程:
• 二 . 从系统的机理 出发建立状态空间表达 式
•
•
一般控制系统可分为电气、机械、
机电、气压、热力等等。要研究它们,一
般先要建立其运动的数学模型〔微分方程
、传递函数、动态方程等〕。根据具体系
众所周知,n阶微分方程式要有唯一的解,必须 知道n个独立的初始条件,很明显,这个独立的初始 条件就是一组状态变量在初始时刻的值.
状态变量是既足以完全确定系统运动状态而个 数又是最小的一组变量,当其在t=to时刻的值已知, 则在给定t>=to时间的输入作用下,便能完全确定系 统在任何t>=to时间的行为.
现代控制理论(1-8讲第1-2章知识点)精品PPT课件
dia dt
Ke
I fD Coபைடு நூலகம்st
n f Const
nDJ , f
其中:Kf 为发电机增益常数;Ke 为电动机反电势常数。
(3).电动机力矩平衡方程:J
d
dt
f
Kmia
(Km
-电动机转矩常数)
以上三式可改写为:
d
dt
f J
Km J
ia
dia dt
Ke Ra
La
La
ia
Kf La
if
试写出其状态空间表达式。
解:选择相变量为系统的状态变量,有
•
•
•• •
x1 y x2 y x1 x3 y x2
故
即
•
x1 x2
•
x2 x3
•
x3
a0 a3
x1
a1 a3
x2
a2 a3
x3
1 a3
u
•
0
x 0
a0
a3
1 0 a1 a3
0
0
1 x 0 u
a2
1
a3 a3
a1 y a0 y
bnu (n)
b u (n1) n 1
b0u
(1)
分为两种情况讨论。
一、输入信号不含有导数项:
此时系统的运动方程为:
•
y(n)
a y(n1) n1
a1 y a0 y b u
故选
x1 y
•
x2 y
..
xn1
y(n2)
xn y(n1)
对左边各式求导一次,即有
18
24
2-3 化系统的频域描述为状态空间描述
现代控制理论1-8三习题库
复习题
1.现代控制理论研究的主要内容是什么? 2.现代控制理论研究对象? 3.现代控制理论所使用的数学工具有哪些? 4.现代控制理论问题的解决方法是什么?
练习题 1.控制一个动态系统的几个基本步骤是什么?
第二章(单元): 控制系统的状态空间表达式
本章节(单元)教学目标: 正确理解线性系统的数学描述,状态空间的基本概念,熟练掌握状态空间的表达式,线
3 均为标量。
d
u
3
2
1
+
y
+
x3 1/s x3 +
1/s
x2
x2
+ x1
1/s x1
a3
a2
a1
7. 试求图中所示的电网络中,以电感 L1 、L2 上的支电流 x1 、 x2 作为状态
变量的状态空间表达式。这里 u 是恒流源的电流值,输出 y 是 R3 上的
支路电压。
8. 已知系统的微分方程 y y 4y 5y 3u ,试列写出状态空间表达式。
复习题 练习题
2. 若已知系统的模拟结构图,如何建立其状态空间表达式? 3. 求下列矩阵的特征矢量
1 -1 0
A
2
0 2
10 5 2
4. (判断)状态变量的选取具有非惟一性。 5. (判断)系统状态变量的个数不是惟一的,可任意选取。 6. (判断)通过适当选择状态变量,可将线性定常微分方程描述其输入输
G(s) 3s 4 s(s 1)(s 3)
40. 已知系统的传递函数,试列写出状态空间表达式,并画出状态变量图。
G(s) s 2 2s 3 s3 1
41. 已知系统的传递函数,试列写出状态空间表达式,并画出状态变量图。
现代控制理论(第一章)绪论
三、研究线性系统的基本工具
研究有限维线性系统的基本工具是线性代数 或矩阵论。
用线性代数的基本理论来处理系统与控制理 论中的问题,往往易于把握住问题的核心而得到 理论上深刻的结果。
一)矩阵的基本概念
1.矩阵 矩阵定义为矩阵阵列,它的元素可以是实数、
复数、函数或算子。一个n行m列的矩阵表示为
a11 a12 A a21 a22
an1 an2
a1m
a2
m
anm
a11 a21
AT
a12
a22
a1m a2m
an1
an2
anm
矩阵转置的规律: 1)(AT )T = A 3)(AB )T = BT AT
2)(A+B )T = AT+ BT 4)(kA )T = kAT
6.奇异矩阵与非奇异矩阵
设方阵A的行列式为|A|,如果|A|=0,则称A为奇 异矩阵;如果|A|≠0,则称A为非奇异矩阵。
七)向量的线性相关和线性独立
设有m个n维向量
11
1
12
,
1n
21
2
22
,
2n
m1
,
m
m2
mn
如果存在一组不全为零的数 c1, c2, , cm,使得
c11 c22 cmm 0
则称向量组 1,2, ,m 是线性相关的。如果只有当 c1 c2 cm 0 时,才能使
课程主要章节的计划学时分配
第一章 绪论 第二章 线性系统的状态空间描述 第三章 线性系统的运动分析 第四章 线性系统的可控性、可观测性 第五章 系统稳定性分析 第六章 线性反馈系统的时间域综合
2学时 8学时 4学时 8学时 8学时 10学时
现代控制理论A(第一部分)
3
最优化包括静态最优化和动态最优化两部分 动态(线性规划,整数规划,非线性规划) 动态(最优控制)
4
绪论
– 最优控制问题举例 • 飞船的月球软着陆问题 飞船靠其发动机产生一个与月球重力方向相反的推力f, 以控制飞船实现软着陆(落在月球上的速度刚好为零)。 现在的问题是要求选择一个最合适的发动机推力f(t),使燃料 消耗最少。
11
最优控制问题的提法
将通常的最优控制问题抽象成一个数学问题,并用数 学语言严格地表述出来
凡属最优控制问题的数学描述应包含: •受控动态系统的数学模型
状态方程:
X t f X t , ut , t
T
其中 X t x1 t x2 t xn t
由此可见,满足上述约束,使飞船实现软着陆的推力 f(t)并不是仅一种,其中消耗燃料最少的才是问题所要求最 好的推力。 即问题可归结为求
J max mt f
极值 最大的数学问题
F减少最少
7
•最快拦截问题
y
VyM Vyl VxM
f(t)
t
M
Vxl
L
x
设我方发射一枚导弹 (拦截器L),欲在空中拦 截另一枚来自敌方的导弹 (目标M),问应当怎样控 制拦截器L的运动,才能最 快地击毁目标M?
16
变分法的基本概念
•容许函数类(空间) 满足一定约束条件的函数称泛函的容许函数类,其相 当于函数中的定义域。
当用空间来表示时,就称容许函数空间。任何一个 容许函数都是函数空间中的一个点。
例: ①所有在区间[a,b]上连续函数的全体是一个函数空间,
Ca, b 记作:
②所有在区间[a,b]上连续且二次可微的函数的全体也
现代控制理论第1章L
第1章绪论1.1 控制系统的构成控制系统的组成和运行的普遍机制是控制论的反馈控制原理。
从信息处理和控制的角度看,控制系统可以看成由施控系统和被控系统两部分组成,并运行于一定的扰动和环境中,如图1–1所示。
施控系统产生控制作用,控制被控系统的物质流、能量流、信息流和资金流在规定的条件下以期望的或最优的方式运行。
扰动图1–1 控制系统的组成施控系统和被控系统的划分应根据实际应用情况定,由所考察的重点确定。
被控系统包括单台机械或设备、生产线、生产过程、以及整个工厂和企业等,它们是接受物质流、能量流、信息流和资金流的对象,也称控制对象。
施控系统应包括传感、控制和执行三部分。
传感是获得被控系统的状态、输出和环境等方面信息的各种手段之总和,包括测量物理变量的传感器,为获得某些不能用测量仪表测量的变量的软测量技术,以及多传感器信息融合技术等。
执行是产生施控系统最终输出信息的各种手段之总和,它可能是驱动部件(如调节阀、电动机、继电器等)、信息转换和通信部件(如与下级计算机的接口)、显示、记录以及图、文、声、多媒体输出部件等。
控制则以计算机为主体,完成控制问题的求解,形成控制算法和控制策略,产生控制规律,它是控制系统的核心。
抽象化后的控制系统结构如图1–2所示。
图1–2 控制系统结构当着重研究控制策略而不关心信息的获取以及控制输出的实现时,将传感简化为求差器,将控制、执行合称控制器,如图1–3所示。
控制策略(狭义也称控制算法)是控制器的核心,是控制理论研究的重点。
图1–3 简化的控制系统1.2 控制理论发展简况在工业应用和理论研究中,控制理论的发展过程大体上可分为三个阶段:经典控制理论、现代控制理论及智能控制理论。
这种阶段性的发展过程是由简单到复杂、由量变到质变的辩证发展过程,是现代科学技术迅速发展对自动控制的程度、精度、范围及其适应能力的需求越来越高,从而推动控制理论发展的结果。
理论来源于实践,反过来指导实践,控制理论的发展过程证明了这个真理。
现代控制理论-第1章
1.1 状态变量及状态空间表达式
1.1.1 状态变量 状态变量是既足以完全确定系统运动状态而个数又是最小的一组变量,
当其在t=t0时刻的值已知时,则在给定t≥t0时刻的输入作用下,便能完全确 定系统在任何t≥t0时刻的行为。
说明:①状态变量个数唯一但选取不唯一(应该相互独立);
②状态变量个数=微分方程阶数=储能元件个数。
1.1 状态变量及状态空间表达式 1.2 状态变量及状态空间表达式的模拟结构图 1.3 状态变量及状态空间表达式的建立(一) 1.4 状态变量及状态空间表达式的建立(二) 1.5 状态矢量的线性变换(坐标变换) 1.6 从状态空间表达式求传递函数阵 1.7 离散时间系统的状态空间表达式 1.8 时变系统和非线性系统的状态空间表达式
自学P19例1-2
1.4 状态变量及状态空间表达式的建立(二)
考虑一个单变量线性定常系统,它的运动方程是一个 阶线性常系数微 分方程:
相应的传递函数为
1.4.1 传递函数中没有零点时的实现 在这种情况下,系统的微分方程为:
相应的系统传递函数为
上式的实现,可以有多种结构,常用的简便形式可由相应的模拟结构图 (下图)导出。这种由中间变量到输入端的负反馈,是一种常见的结构形式, 也是一种最易求得的结构形式。
将图中每个积分器的输出取作状态变量,有时称为相变量,它是输出 的各阶导数。至于每个积分器的输入,显然就是各状态变量的
导数。 从图(a),容易列出系统的状态方程:
输出方程为:
表示成矩阵形式,则为:
顺便指出,当 矩阵具有式上矩阵的形式时,称为友矩阵,友矩阵的特 点是主对角线上方的元素均为1;最后一行的元素可取任意值;而其余元素均 为零。
对于一阶标量微分方程:
现代控制理论1-8三习题库
信息工程学院现代控制理论课程习题清单正确理解线性系统的数学描述,状态空间的基本概念,熟练掌握状态空间的表达式,线性变换,线性定常系统状态方程的求解方法。
重点内容:状态空间表达式的建立,状态转移矩阵和状态方程的求解,线性变换的基本性质,传递函数矩阵的定义。
要求熟练掌握通过传递函数、微分方程和结构图建立电路、机电系统的状态空间表达式,并画出状态变量图,以及能控、能观、对角和约当标准型。
难点:状态变量选取的非唯一性,多输入多输出状态空间表达式的建立。
预习题1.现代控制理论中的状态空间模型与经典控制理论中的传递函数有何区别2.状态、状态空间的概念3.状态方程规范形式有何特点4.状态变量和状态矢量的定义5.怎样建立状态空间模型6.怎样从状态空间表达式求传递函数复习题1.怎样写出SISO系统状态空间表达式对应的传递函数阵表达式2.若已知系统的模拟结构图,如何建立其状态空间表达式3.求下列矩阵的特征矢量⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=2510221-1A4.(判断)状态变量的选取具有非惟一性。
5.(判断)系统状态变量的个数不是惟一的,可任意选取。
6.(判断)通过适当选择状态变量,可将线性定常微分方程描述其输入输出关系的系统,表达为状态空间描述。
7.(判断)传递函数仅适用于线性定常系统;而状态空间表达式可以在定常系统中应用,也可以在时变系统中应用.8.如果矩阵 A 有重特征值,并且独立特征向量的个数小于n ,则只能化为模态阵。
9.动态系统的状态是一个可以确定该系统______(结构,行为)的信息集合。
这些信息对于确定系统______(过去,未来)的行为是充分且必要的。
10.如果系统状态空间表达式中矩阵A, B, C, D中所有元素均为实常数时,则称这样的系统为______(线性定常,线性时变)系统。
如果这些元素中有些是时间t 的函数,则称系统为______(线性定常,线性时变)系统。
11.线性变换不改变系统的______特征值,状态变量)。
(完整版)现代控制理论
第一章线性离散系统第一节概述随着微电子技术,计算机技术和网络技术的发展,采样系统和数字控制系统得到广泛的应用。
通常把采样系统,数字控制系统统称为离散系统。
一、举例自动测温,控温系统图;加热气体图解:1. 当炉温h变化时,测温电阻R变化→R∆,电桥失去平衡状态,检流计指针发生偏转,其偏转角度为)e;(t2. 检流计是个高灵敏度的元件,为防磨损不允许有摩擦力。
当凸轮转动使指针),接触时间为τ秒;与电位器相接触(凸轮每转的时间为T3. 当炉温h 连续变化时,电位器的输出是一串宽度为τ的脉冲信号e *τ(t);4.e *τ(t)为常值。
加热气体控制阀门角度调速器电动机放大器h →→→→→→ϕ 二、相关定义说明(通过上例来说明) 1. 信号采样偏差)(t e 是连续信号,电位器的输出的e *τ(t)是脉冲信号。
连续信号转变为脉冲信号的过程,成为采样或采样过程。
实现采样的装置成为采样器。
To —采样周期,f s =--To1采样频率,W s =2πf s —采样角频率 2.信号复现因接触时间很小,τo T 〈〈τ,故可把采样器的输出信号)(t e *近似看成是一串强度等于矩形脉冲面积的理想脉冲,为了去除采样本身带来的高额分量,需要把离散信号)(t e *恢复到原信号)(t e 。
实现方法:是在采样器之后串联一个保持器,及信号复现滤波器。
作用:是把)(t e *脉冲信号变成阶梯信号e h (t)3.采样系统结构图r(t),e(t),c(t),y(t)为连续信号,)(t e *为离散信号)(s G h ,)(s G p ,)(s H 分别为保持器,被控对象和反馈环节的传递函数。
(t)r4.采样系统工作过程⇒由保持器5. 采样控制方式采样周期To ⎪⎩⎪⎨⎧=≠=⇒相位不同步采样常数常数6. 采样系统的研究方法(或称使用的数字工具)因运算过程中出现s 的超越函数,故不用拉式变换法,二采用z 变换方法,状态空间法。
现代控制理论第1章
3
《现代控制理论基础》第一章(讲义)
& x − p1 1 x & 2 0 x 0 & 3 & 0 4 x = • • • • • • & x n 0
Λ
1
x1 x 2 bn − a n bo • bn−1 − a n−1bo u + • Λ • b1 − a1bo xn
(1.5)
y = [0 0 Λ
x1 x 2 • 0 1]• + bou • x n−1 x n
该系统的状态空间表达式的对角线标准形由下式确定:
& x − p1 1 & x2 • = • • & x n 0
− p2 • • •
(1.8)
x1 x 2 • y = [c1 c2 Λ cn ] + bo u • • xn
《现代控制理论基础》第一章(讲义)
第一章 系统描述
1.1 引言
一个复杂系统可能有多个输入和多个输出, 并且以某种方式相互关联或耦合。 为了分析 这样的系统, 必须简化其数学表达式, 转而借助于计算机来进行各种大量而乏味的分析与计 算。从这个观点来看,状态空间法对于系统分析是最适宜的。 经典控制理论是建立在系统的输入-输出关系或传递函数的基础之上的,而现代控制理 论以 n 个一阶微方程来描述系统,这些微分方程又组合成一个一阶向量-矩阵微分方程。应 用向量-矩阵表示方法,可极大地简化系统的数学表达式。状态变量、输入或输出数目的增 多并不增加方程的复杂性。事实上,分析复杂的多输入-多输出系统,仅比分析用一阶纯量 微分方程描述的系统在方法上稍复杂一些。 本文将主要涉及控制系统的基于状态空间的描述、 分析与设计。 本章将首先给出状态空 间方法的描述部分。 将以单输入单输出系统为例, 给出包括适用于多输入多输出或多变量系 统在内的状态空间表达式的一般形式、 线性多变量系统状态空间表达式的标准形式(相变量、 对角线、Jordan、能控与能观测)、传递函数矩阵,以及利用 MATLAB 进行各种模型之间的 相互转换。 第二章将讨论状态反馈控制系统的分析方法。 第三章将给出几种主要的设计方法。 本章 1.1 节为控制系统状态空间分析的引言。1.2 节介绍传递函数的状态空间表达式, 并给出状态空间表达式的各种标准形。1.3 节讨论用 MATLAB 进行系统模型的转换(如从 传递函数变换为状态空间模型等) 。
现代控制理论 第一章 绪论
控制论之父— 控制论之父 —维纳 维纳
2.我国著名科学家钱学森将控制理论应用于工程实 2.我国著名科学家钱学森将控制理论应用于工程实 我国著名科学家钱学森 并与1954年出版了《工程控制论》 1954年出版了 践,并与1954年出版了《工程控制论》。
钱学森
从四十年代到五十年代末,经典控制理论的 发展与应用使整个世界的科学水平出现了巨大 的飞跃,几乎在工业、农业、交通运输及国防 建设的各个领域都广泛采用了自动化控制技术。 (可以说工业革命和战争促使了经典控制理论 的发展)。
闭环与开环控制系统的比较
优点 闭环 采用了反馈, 采用了反馈,因而使系统的响 应对外部干扰和内部系统的参 数变化均相当不敏感。 数变化均相当不敏感。 控制精度高 构造简单,维护容易; 构造简单,维护容易; 成本比相应的闭环系统低; 成本比相应的闭环系统低; 不存在不稳定性问题; 不存在不稳定性问题; 当输出量难于测量, 当输出量难于测量,或者要测 量输出量在经济上不允许时, 量输出量在经济上不允许时, 采用开环比较合适( 采用开环比较合适(比如洗衣 机)。 扰动和标定尺度的变化 将引起误差, 将引起误差,从而使系统 的输出量偏离希望的数值; 的输出量偏离希望的数值; 精度通常较低, 精度通常较低,无自动 纠偏能力。 纠偏能力。 缺点 存在稳定、振荡、超调等问题; 存在稳定、振荡、超调等问题; 系统性能分析和设计较麻烦。 系统性能分析和设计较麻烦。
1.5控制理论中的一些术语
(6)反馈控制 ) 是这样一种控制,它能够在存在扰动的情况下, 是这样一种控制,它能够在存在扰动的情况下,力图 减少系统的输出量与某种参考输入量之间的偏差, 减少系统的输出量与某种参考输入量之间的偏差,且 其工作原理是基于这种偏差。 其工作原理是基于这种偏差。 这里的扰动是指不可预测的扰动。 这里的扰动是指不可预测的扰动。对于可预测或已知 的扰动,总是可以在系统内部加以补偿。 的扰动,总是可以在系统内部加以补偿。
【现代控制理论】第一章+绪论
人类在20世纪所取得的巨大技 术成就,控制科学与技术的作 用非常显著。
引言
钱学森曾经从生产力,特别是技术革命 的进程分析了控制论的产生和发展。
他强调: “我们可以毫不含糊地说,从科学理论的 角度来看,20世纪上半叶的三大伟绩是相对 论、量子论和控制论,也许可以称它们为三 项科学革命,是人类认识客观世界的三大飞 跃。”
1.2 控制理论的分析比较
1.2.1 经典控制理论 1、形成和发展
① 在20世纪30-40年代,初步形成。 ② 在20世纪40年代形成体系。 2、主要研究对象:单机自动化,SISO线性定常系 统 3、主要数学工具:常微分方程、拉氏变换 4、主要研究方法:根轨迹法、频域法和传递函数
1.2.1 经典控制理论
引言
随着社会的发展和科学的进步,控制的必要性体现在方方 面面:
飞机的自动驾驶系统、宇宙飞船系统和导弹制导系统; 数控机床,工业过程中流量、压力、温度的控制; 机器人控制、城市交通控制、网络拥塞控制; 生物系统、生物医学系统、社会经济系统。
1.1 控制理论的发展历程
经典控制理论 现代控制理论 新发展——大系统理论 智能控制 1.1.1 经典控制理论 自动控制思想及其实践历史悠久,可以追溯到久远
1892年,俄国李雅普诺夫在《论运动稳定性的一 般问题》中建立了动力学系统的一般稳定性理论。
1932年,美国奈奎斯特Nyquist提出了 根据频率响应判断系统稳定性的准则, 奠定了频域法的基础。
1.1.1 经典控制理论
1945年,美国伯德Bode在《网络分析和反馈放大器设 计》中提出频率响应法-Bode图。
6、经典控制理论的局限性:
① 难以有效地应用于时变系统、多变量 系统
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
用矢量矩阵表示的状态空间表达式为:
n n 状态矩阵
n 1 维列向量
系统矩阵
系数矩阵
x Ax bu
d , y, u 为标量
n 1
控制矩阵 输入矩阵阵 输出矩阵
x x1
a11 a12 a 21 a22 A an1 an 2 a1n a2 n ann
可简写为
x Ax Bu
y Cx
0 A 1 L 1 C R L
式中,
0 B 1 L
C 1 0
•状态空间表达式:状态方程和输出方程合起来构成对 一个动态系统完整的描述,称为动态系统的状态空间 表达式。
图1所示电路, 若 uc (t ) 为输出,取 x1 (t ) uc (t ), x2 (t ) i(t ) 作为状态变量,则其状态空间表达式为
向量形式:
y(t ) g(x(t ),u(t ), t )
m 1 输出向量
R
例:建立如图所示的RCL 电路的状态方程和输出方 程。 解:
LCuc (t ) RC uc (t ) uc (t ) u (t )
U C ( s) 1 U ( s ) LCs 2 RCs 1
t0 时输入的时间函数 u(t ),那
•状态矢量:设 x1 (t ),, xn (t )是系统的一组状态变量, x 并将它们看做矢量 x(t ) 的分量, (t ) 就称为状态矢量, 记作:
x1 (t ) x2 (t ) x (t ) x (t ) n
uc 1 0 u 1 1 c i 0 C i C
P:非奇异矩阵
x Px
1 0 1 P 0 C
单输入单输出定常线性系统
其状态变量为 [ x1 , x2 ,, xn ],则一般形式的状态 空间描述写作:
即
1 x1 (t ) x2 (t ) C 状态方程 1 R 1 状态空间 x2 (t ) x1 (t ) x2 (t ) u (t ) L L L
y x1 (t )
输出方程
表达式
写成矩阵相乘的形式
1 x1 (t ) x2 (t ) C 1 R 1 x2 (t ) x1 (t ) x2 (t ) u (t ) L L L
求解包括三方面:
1. 系统建模 用数学模型描述系统 2. 系统分析 定性:稳定性、能控能观性 定量:时域指标、频域指标 3. 系统设计 控制器设计、满足给定要求 结构设计 参数设计
二、控制理论发展史(三个时期) • 1.古典控制理论: (从30年代~50年代)
(1)建模,传递函数 (2)分析法(基于画图),步骤特性,根轨迹, 描述建模,创造了许多经验模式。 分析法 状态空间 基于数字的精确分析。 几何法 (3)设计:带参数修正 1948年 美国数学家维纳《控制论》
2.现代控制理论: (50年代末~70年代初)
现代控制理论是以状态空间法为基础,研究 MIMO,时变参数结构,非线性、高精度、高 性能控制系统的分析与设计的领域。 现代控制理论发展的主要标志 (1)卡尔曼:状态空间法; (2)卡尔曼:能控性与能观性; (3)庞特里雅金:极大值原理;
现代控制理论的主要特点
• 从状态空间表达式求传递函数阵
系统描述中常用的基本概念
• 系统的外部描述
• 系统的内部描述
传递函数
状态空间描述
1.1 状态变量及状态空间表达式 •状态:是完全地描述动态系统运动状况的信息,系 统在某一时刻的运动状况可以用该时刻系统运动的 一组信息表征,定义系统运动信息的集合为状态。 •状态变量:是指足以完全描述系统运动状态的最小 个数的一组变量。
x2 x n
T
b1 b b 2 C [c1 c2 cn ] bn
d是标量,反映输出与输入的直接关联。
多输入多输出定常线性系统 x Ax bu x Ax Bu 写成矩阵形式有: y C x Du y Cx du T x x1 x2 xn , n 1维状态向量 T u u1 u2 ur , r 1维输入向量
4、控制理论发展趋势
• 企业:资源共享、因特网、信息集成、 信息技术+控制技术 (集成控制技术) • 网络控制技术 • 计算机集成制造CIMS:(工厂自动化)
三、现代控制理论与古典控制理论的对比
• 共同 对象-系统 主要内容 分析:研究系统的原理和性能 设计:改变系统的可能性(综合性能) 研究对象:单入单出(SIS0)系统,线性定常 工具:传递函数(结构图),已有初始条件为零时才适用 试探法解决问题 : PID串联、超前、滞后、反馈 研究对象:多入多出(MIMO)系统、 线性定常、非线性、时变、 工具:状态空间法、研究系统内部、 输入-状态(内部)-输出 改善系统的方法:状态反馈 、输出反馈
• 研究对象: 线性系统、非线性系统、时变系统、 多变量系统、连续与离散系统
• 数学上:状态空间法 • 方法上:研究系统输入/输出特性和内部性能 • 内容上:线性系统理论、系统辩识、最优控制、 自适应控制等
3.智能控制理论 (60年代末至今)
• 1970——1980 大系统理论 控制管理综合 • 1980——1990 智能控制理论 智能自动化 • 1990—— 集成控制理论 网络控制自动化 (1) 专家系统;(2)模糊控制,人工智能 (3) 神经网络,人脑模型;(4)遗传算法 控制理论与计算机技术相结合→计算机控制技术
y x1 (t )
x1 (t ) 0 x (t ) 1 2 L 1 x1 (t ) 0 C 1 u (t ) R x2 (t ) L L
x1 (t ) y 1 0 x2 (t )
古典
• 区别
现代
现代控制理论预览
建立
建模
可控性 可观性 稳定性
状态空间 表达式
求解 转换
分析
状态反馈
设计
状态观测器 最优控制
第一章
控制系统的状态空间表达式
主要内容: • 状态变量及状态空间表达式 • 状态变量及状态空间表达式的系统结构图 • 状态变量及状态空间表达式的建立 • 状态矢量的线性变换
L + uc(t) _
输出
+ u(t)
输入
+ y _
i(t)
图1
_
微分方程
传递函数
只反映外部情况,无法获知内部联系
定义状态变量
x1 (t ) uc (t )
x2 (t ) i(t )
二阶微分方程,选择两个状态变量 状态向量
x(t ) [ x1 (t ), x2 (t )]T
定义输出变量
duc (t) 1 i(t) dt C di(t) 1 R 1 uc (t ) i (t ) u (t ) dt L L L
选 x1 uc , x2 uc,则得到一阶微分方程组: x1 x2 2 1 x1 R x2 1 u x LC LC LC 即:
1 0 x1 x1 0 C 1 1u R x2 x2 L L L x1 y 1 0 x 2
状态变量选择不同,状态方程也不同。 若按照如下所示的微分方程:
么,系统在 t t0的任何瞬间的行为 x1 (t ),, xn (t )就完 全确定了。
最小个数:意味着这组变量是互相独立的。一个用 n 阶微分方程描述的含有 n 个独立变量的系统,当求 得 n 个独立变量随时间变化的规律时,系统状态可 完全确定。若变量数目多于 n ,必有变量不独立; 若少于 n ,又不足以描述系统状态。
或
x T (t ) [ x1 (t )
x2 (t ) xn (t )]
•状态空间:以状态变量 x1 (t ),, xn (t ) 为坐标轴所构成 的 n 维空间。
在某一特定时刻 t ,状态向量 x(t ) 是状态空间的一个点。
•状态轨迹:以 x(t ) x(t0 ) 为起点,随着时间的推移, 状态矢量的端点在状态空间不断的移动,所绘出的一 条轨迹。
x1 a11 x1 a12 x2 a1n xn b1u x2 a21 x1 a22 x2 a2 n xn b2u xn an1 x1 an 2 x2 ann xn bnu
y c1 x1 c2 x2 cn xn
向量形式:
n 1 状态向量
x(t ) f (x(t ), u(t ), t )
r 1 输入向量
•输出方程:在指定系统输出的情况下,该输出与状态 变量间的 m 个代数方程,称为系统的输出方程。
y1 (t ) g1 ( x1 , x2 ,, xn , u1 , u2 , ur , t ) y2 (t ) g 2 ( x1 , x2 , , xn , u1 , u2 , ur , t ) ym (t ) g m ( x1 , x2 , , xn , u1 , u2 ,ur , t )
•状态方程:描述系统状态变量与系统输入变量间关系 的 n个一阶微分方程组(连续系统)或一阶差分方程组 (离散系统)。
x1 (t ) f1 ( x1 , x2 , , xn , u1 , u2 , ur , t ) x2 (t ) f 2 ( x1 , x2 , , xn , u1 , u2 ,ur , t ) xn (t ) f n ( x1 , x2 ,, xn , u1 , u2 ,ur , t )
完全描述:如果给定了t t0 时刻这组变量值