第3讲 基本不等式

合集下载

第3讲 基本不等式

第3讲 基本不等式

第3讲 基本不等式一、知识梳理 1.基本不等式:ab ≤a +b2(1)基本不等式成立的条件:a ≥0,b ≥0. (2)等号成立的条件:当且仅当a =b 时取等号.(3)其中a +b2称为正数a ,b 的算术平均数,ab 称为正数a ,b 的几何平均数.[点拨] 应用基本不等式求最值要注意:“一正、二定、三相等”.忽略某个条件,就会出错.2.利用基本不等式求最值 已知x ≥0,y ≥0,则(1)如果积xy 是定值p ,那么当且仅当x =y 时,x +y 有最小值是2p .(简记:积定和最小)(2)如果和x +y 是定值s ,那么当且仅当x =y 时,xy 有最大值是s 24.(简记:和定积最大)[点拨] 在利用不等式求最值时,一定要尽量避免多次使用基本不等式.若必须多次使用,则一定要保证它们等号成立的条件一致.常用结论几个重要的不等式(1)a 2+b 2≥2ab (a ,b ∈R ),当且仅当a =b 时取等号.(2)ab ≤⎝ ⎛⎭⎪⎫a +b 22(a ,b ∈R ),当且仅当a =b 时取等号.(3)a 2+b 22≥⎝ ⎛⎭⎪⎫a +b 22(a ,b ∈R ),当且仅当a =b 时取等号. (4)b a +ab ≥2(a ,b 同号),当且仅当a =b 时取等号. 二、教材衍化1.设x >0,y >0,且x +y =18,则xy 的最大值为( ) A .80 B .77 C .81D .82解析:选C .xy ≤⎝ ⎛⎭⎪⎫x +y 22=⎝⎛⎭⎫1822=81,当且仅当x =y =9时等号成立,故选C . 2.若把总长为20 m 的篱笆围成一个矩形场地,则矩形场地的最大面积是________.解析:设矩形的长为x m ,宽为y m ,则x +y =10,所以S =xy ≤⎝ ⎛⎭⎪⎫x +y 22=25,当且仅当x =y =5时取等号.答案:25 m 2一、思考辨析判断正误(正确的打“√”,错误的打“×”) (1)函数y =x +1x 的最小值是2.( )(2)ab ≤⎝⎛⎭⎫a +b 22成立的条件是ab >0.( )(3)“x >0且y >0”是“x y +yx ≥2”的充要条件.( )(4)若a >0,则a 3+1a 2的最小值是2a .( )答案:(1)× (2)× (3)× (4)× 二、易错纠偏常见误区| (1)忽视不等式成立的条件a >0且b >0; (2)忽视定值存在; (3)忽视等号成立的条件. 1.若x <0,则x +1x ( )A .有最小值,且最小值为2B .有最大值,且最大值为2C .有最小值,且最小值为-2D .有最大值,且最大值为-2 解析:选D .因为x <0,所以-x >0,-x +1-x≥21=2,当且仅当x =-1时,等号成立,所以x +1x≤-2.2.若x >1,则x +4x -1的最小值为________.解析:x +4x -1=x -1+4x -1+1≥4+1=5.当且仅当x -1=4x -1,即x =3时等号成立.答案:53.设0<x <1,则函数y =2x (1-x )的最大值为________.解析:y =2x (1-x )≤2⎝ ⎛⎭⎪⎫x +1-x 22=12.当且仅当x =1-x ,即x =12时,等号成立.答案:12考点一 利用基本不等式求最值(基础型) 复习指导| 探索并了解基本不等式的证明过程,会用基本不等式解决简单的最大(小)值问题.核心素养:逻辑推理 角度一 通过配凑法求最值(1)已知0<x <1,则x (4-3x )取得最大值时x 的值为________. (2)已知x <54,则f (x )=4x -2+14x -5的最大值为________.【解析】 (1)x (4-3x )=13·(3x )(4-3x )≤13·⎣⎢⎡⎦⎥⎤3x +(4-3x )22=43, 当且仅当3x =4-3x , 即x =23时,取等号.(2)因为x <54,所以5-4x >0,则f (x )=4x -2+14x -5=-(5-4x +15-4x)+3≤-2(5-4x )15-4x+3≤-2+3=1.当且仅当5-4x =15-4x ,即x =1时,等号成立.故f (x )=4x -2+14x -5的最大值为1. 【答案】 (1)23(2)1通过拼凑法利用基本不等式求最值的策略拼凑法的实质在于代数式的灵活变形,拼系数、凑常数是关键,利用拼凑法求解最值应注意以下几个方面的问题:(1)拼凑的技巧,以整式为基础,注意利用系数的变化以及等式中常数的调整,做到等价变形;(2)代数式的变形以拼凑出和或积的定值为目标; (3)拆项、添项应注意检验利用基本不等式的前提. 角度二 通过常数代换法求最值已知a >0,b >0,a +b =1,则⎝⎛⎭⎫1+1a ⎝⎛⎭⎫1+1b 的最小值为________. 【解析】 ⎝⎛⎭⎫1+1a ⎝⎛⎭⎫1+1b =⎝ ⎛⎭⎪⎫1+a +b a ⎝ ⎛⎭⎪⎫1+a +b b =⎝⎛⎭⎫2+b a · ⎝⎛⎭⎫2+a b =5+2⎝⎛⎭⎫b a +a b ≥5+4=9.当且仅当a =b =12时,取等号.【答案】 9【迁移探究1】 (变问法)若本例中的条件不变,则1a +1b 的最小值为________.解析:因为a >0,b >0,a +b =1, 所以1a +1b =a +b a +a +b b =2+b a +a b ≥2+2b a ·a b =4,即1a +1b的最小值为4,当且仅当a =b =12时等号成立.答案:4【迁移探究2】 (变条件)若本例条件变为:已知a >0,b >0,4a +b =4,则⎝⎛⎭⎫1+1a ⎝⎛⎭⎫1+1b 的最小值为________.解析:由4a +b =4得a +b4=1,⎝⎛⎭⎫1+1a ⎝⎛⎭⎫1+1b=⎝ ⎛⎭⎪⎫1+a +b 4a ⎝ ⎛⎭⎪⎫1+a +b 4b =⎝⎛⎭⎫2+b 4a ⎝⎛⎭⎫54+a b =52+2a b +5b 16a +14≥114+258=114+102.当且仅当42a =5b 时取等号.答案:114+102常数代换法求最值的步骤(1)根据已知条件或其变形确定定值(常数); (2)把确定的定值(常数)变形为1;(3)把“1”的表达式与所求最值的表达式相乘或相除,进而构造和或积的形式; (4)利用基本不等式求解最值. 角度三 通过消元法求最值若正数x ,y 满足x 2+6xy -1=0,则x +2y 的最小值是( ) A .223B .23C .33D .233【解析】 因为正数x ,y 满足x 2+6xy -1=0,所以y =1-x 26x .由⎩⎪⎨⎪⎧x >0,y >0,即⎩⎪⎨⎪⎧x >0,1-x 26x >0,解得0<x <1.所以x +2y =x +1-x 23x =2x 3+13x ≥22x 3·13x =223,当且仅当2x 3=13x ,即x =22,y =212时取等号.故x +2y 的最小值为223. 【答案】 A通过消元法求最值的方法消元法,即根据条件建立两个量之间的函数关系,然后代入代数式转化为函数的最值求解.有时会出现多元的问题,解决方法是消元后利用基本不等式求解.但应注意保留元的范围.1.(2020·辽宁大连第一次(3月)双基测试)已知正实数a ,b 满足a +b =(ab )32,则ab 的最小值为( )A .1B . 2C .2D .4解析:选C .(ab )32=a +b ≥2ab =2(ab )12,所以ab ≥2,当且仅当a =b =2时取等号,故ab 的最小值为2,故选C .2.已知x ,y 为正实数,则4x x +3y +3yx的最小值为( ) A .53B .103C .32D .3解析:选D .由题意得x >0,y >0,4x x +3y +3y x =4xx +3y +x +3y x -1≥24x x +3y·x +3yx -1=4-1=3(当且仅当x =3y 时等号成立).3.已知x >0,y >0,且x +16y =xy ,则x +y 的最小值为________. 解析:已知x >0,y >0,且x +16y =xy .即16x +1y =1,则x +y =(x +y )·⎝⎛⎭⎫16x +1y =16+1+16y x +x y ≥17+2 16y x ·xy=25,当且仅当x =4y =20时等号成立,所以x +y 的最小值为25. 答案:25考点二 利用基本不等式解决实际问题(应用型) 复习指导| 利用基本不等式解决实际问题,关键是把实际问题抽象出数学模型,列出函数关系,然后利用基本不等式求最值.某单位在国家科研部门的支持下,进行技术攻关,采用了新工艺,把二氧化碳转化为一种可利用的化工产品.已知该单位每月的处理量最少为400吨,最多为600吨,月处理成本y (元)与月处理量x (吨)之间的函数关系可近似地表示为y =12x 2-200x +80 000,且每处理一吨二氧化碳得到可利用的化工产品价值为100元.(1)该单位每月处理量为多少吨时,才能使每吨的平均处理成本最低?(2)该单位每月能否获利?如果获利,求出最大利润;如果不获利,则需要国家至少补贴多少元才能使单位不亏损?【解】 (1)由题意可知,二氧化碳每吨的平均处理成本为y x =12x +80 000x-200≥212x ·80 000x-200=200, 当且仅当12x =80 000x ,即x =400时等号成立,故该单位月处理量为400吨时,才能使每吨的平均处理成本最低,最低成本为200元.(2)不获利.设该单位每月获利为S 元,则S =100x -y =100x -⎝⎛⎭⎫12x 2-200x +80 000=-12x 2+300x -80 000=-12(x -300)2-35 000,因为x ∈[400,600],所以S ∈[-80 000,-40 000].故该单位每月不获利,需要国家每月至少补贴40 000元才能不亏损.应用基本不等式解决实际问题的基本步骤(1)理解题意,设出变量,建立相应的函数关系式,把实际问题抽象为函数的最值问题; (2)在定义域内,利用基本不等式求出函数的最值; (3)还原为实际问题,写出答案.某游泳馆拟建一座平面图形为矩形且面积为200平方米的泳池,池的深度为1米,池的四周墙壁建造单价为每米400元,中间一条隔壁建造单价为每米100元,池底建造单价每平方米60元(池壁厚忽略不计),则泳池的长设计为多少米时,可使总造价最低.解:设泳池的长为x 米,则宽为200x 米,总造价f (x )=400×⎝⎛⎭⎫2x +2×200x +100×200x +60×200=800×⎝⎛⎭⎫x +225x +12 000≥1 600x ·225x +12 000=36 000(元),当且仅当x =225x(x >0),即x =15时等号成立.即泳池的长设计为15米时,可使总造价最低.[基础题组练]1.(2020·安徽省六校联考)若正实数x ,y 满足x +y =2,则1xy 的最小值为( )A .1B .2C .3D .4解析:选A .因为正实数x ,y 满足x +y =2, 所以xy ≤(x +y )24=224=1,所以1xy≥1.2.若2x +2y =1,则x +y 的取值范围是( ) A .[0,2] B .[-2,0] C .[-2,+∞)D .(-∞,-2]解析:选D .因为1=2x +2y ≥22x ·2y =22x +y ,(当且仅当2x =2y =12,即x =y =-1时等号成立)所以2x +y ≤12,所以2x +y ≤14,得x +y ≤-2.3.若实数a ,b 满足1a +2b =ab ,则ab 的最小值为( )A . 2B .2C .2 2D .4解析:选C .因为1a +2b =ab ,所以a >0,b >0,由ab =1a +2b≥21a ×2b=22ab, 所以ab ≥22(当且仅当b =2a 时取等号), 所以ab 的最小值为2 2.4.(多选)若a ,b ∈R ,且ab >0,则下列不等式中,恒成立的是( ) A .a +b ≥2ab B .1a +1b >1abC .b a +ab≥2D .a 2+b 2≥2ab解析:选CD .因为ab >0,所以b a >0,a b >0,所以b a +ab≥2b a ·ab=2,当且仅当a =b 时取等号.所以选项C 正确,又a ,b ∈R ,所以(a -b )2≥0,即a 2+b 2≥2ab 一定成立.5.已知x >0,y >0,lg 2x +lg 8y =lg 2,则1x +13y 的最小值是( )A .2B .2 2C .4D .2 3解析:选C .因为lg 2x +lg 8y =lg 2,所以lg(2x ·8y )=lg 2,所以2x +3y =2,所以x +3y =1.因为x >0,y >0,所以1x +13y =(x +3y )·⎝⎛⎭⎫1x +13y =2+3y x +x 3y ≥2+23y x ·x3y=4,当且仅当x =3y =12时取等号,所以1x +13y的最小值为4.故选C .6.设P (x ,y )是函数y =2x(x >0)图象上的点,则x +y 的最小值为________.解析:因为x >0,所以y >0,且xy =2.由基本不等式得x +y ≥2xy =22,当且仅当x =y 时等号成立.所以x +y 的最小值为2 2.答案:2 27.函数y =x 2x +1(x >-1)的最小值为________.解析:因为y =x 2-1+1x +1=x -1+1x +1=x +1+1x +1-2(x >-1),所以y ≥21-2=0,当且仅当x =0时,等号成立. 答案:08.(2020·湖南岳阳期末改编)若a >0,b >0,且a +2b -4=0,则ab 的最大值为________,1a +2b的最小值为________. 解析:因为a >0,b >0,且a +2b -4=0,所以a +2b =4,所以ab =12a ·2b ≤12×⎝ ⎛⎭⎪⎫a +2b 22=2,当且仅当a =2b ,即a =2,b =1时等号成立,所以ab 的最大值为2,因为1a +2b=⎝⎛⎭⎫1a +2b ·a +2b 4=14(5+2b a +2a b )≥14⎝⎛⎭⎫5+2·2b a ·2a b =94,当且仅当a =b 时等号成立,所以1a +2b 的最小值为94.答案:2 949.(1)当x <32时,求函数y =x +82x -3的最大值;(2)设0<x <2,求函数y =x (4-2x )的最大值. 解:(1)y =12(2x -3)+82x -3+32=-⎝ ⎛⎭⎪⎫3-2x 2+83-2x +32.当x <32时,有3-2x >0,所以3-2x 2+83-2x ≥23-2x 2·83-2x=4, 当且仅当3-2x 2=83-2x ,即x =-12时取等号.于是y ≤-4+32=-52,故函数的最大值为-52.(2)因为0<x <2,所以2-x >0, 所以y =x (4-2x )=2·x (2-x )≤2·x +2-x2=2,当且仅当x =2-x ,即x =1时取等号, 所以当x =1时,函数y =x (4-2x )的最大值为 2.10.已知x >0,y >0,且2x +8y -xy =0,求 (1)xy 的最小值; (2)x +y 的最小值. 解:(1)由2x +8y -xy =0, 得8x +2y =1, 又x >0,y >0, 则1=8x +2y ≥28x ·2y =8xy. 得xy ≥64,当且仅当x =16,y =4时,等号成立. 所以xy 的最小值为64.(2)由2x +8y -xy =0,得8x +2y =1,则x +y =⎝⎛⎭⎫8x +2y ·(x +y ) =10+2x y +8yx≥10+22x y ·8yx=18.当且仅当x =12,y =6时等号成立,所以x +y 的最小值为18.[综合题组练]1.设a >0,若关于x 的不等式x +a x -1≥5在(1,+∞)上恒成立,则a 的最小值为( ) A .16B .9C .4D .2解析:选C .在(1,+∞)上,x +a x -1=(x -1)+a x -1+1≥2 (x -1)×a (x -1)+1=2a +1(当且仅当x =1+a 时取等号).由题意知2a +1≥5,所以a ≥4.2.(2020·福建龙岩一模)已知x >0,y >0,且1x +1+1y =12,则x +y 的最小值为( ) A .3B .5C .7D .9解析:选C .因为x >0,y >0.且1x +1+1y =12,所以x +1+y =2⎝ ⎛⎭⎪⎫1x +1+1y (x +1+y )=2(1+1+y x +1+x +1y )≥2(2+2y x +1·x +1y )=8,当且仅当y x +1=x +1y ,即x =3,y =4时取等号,所以x +y ≥7,故x +y 的最小值为7,故选C .3.已知正实数x ,y 满足x +y =1,①则x 2+y 2的最小值为________;②若1x +4y≥a 恒成立,则实数a 的取值范围是________.解析:因为x +y =1,所以xy ≤⎝ ⎛⎭⎪⎫x +y 22=14,所以x 2+y 2=(x +y )2-2xy ≥1-14×2=12,所以x 2+y 2的最小值为12. 若a ≤1x +4y 恒成立,则a 小于等于⎝⎛⎭⎫1x +4y 的最小值,因为1x +4y =⎝⎛⎭⎫1x +4y (x +y )=5+y x +4x y≥5+2y x ×4x y =9,所以1x +4y的最小值为9,所以a ≤9,故实数a 的取值范围是(-∞,9]. 答案:12(-∞,9] 4.(2020·洛阳市统考)已知x >0,y >0,且1x +2y=1,则xy +x +y 的最小值为________.解析:因为1x +2y =1,所以2x +y =xy ,所以xy +x +y =3x +2y ,因为3x +2y =(3x +2y )·(1x+2y )=7+6x y +2y x,且x >0,y >0,所以3x +2y ≥7+43,所以xy +x +y 的最小值为7+4 3. 答案:7+4 35.已知x ,y ∈(0,+∞),x 2+y 2=x +y .(1)求1x +1y的最小值; (2)是否存在x ,y 满足(x +1)(y +1)=5?并说明理由.解:(1)因为1x +1y =x +y xy =x 2+y 2xy ≥2xy xy =2,当且仅当x =y =1时,等号成立,所以1x +1y的最小值为2.(2)不存在.理由如下:因为x 2+y 2≥2xy ,所以(x +y )2≤2(x 2+y 2)=2(x +y ).又x ,y ∈(0,+∞),所以x +y ≤2.从而有(x +1)(y +1)≤⎣⎢⎡⎦⎥⎤(x +1)+(y +1)22≤4, 因此不存在x ,y 满足(x +1)(y +1)=5.6.某厂家拟定在2020年举行促销活动,经调查测算,该产品的年销量(即该厂的年产量)x 万件与年促销费用m (m ≥0)万元满足x =3-k m +1(k 为常数).如果不搞促销活动,那么该产品的年销量只能是1万件.已知2020年生产该产品的固定投入为8万元,每生产1万件该产品需要再投入16万元,厂家将每件产品的销售价格定为每件产品平均成本的1.5倍(产品成本包括固定投入和再投入两部分资金).(1)将2020年该产品的利润y 万元表示为年促销费用m 万元的函数;(2)该厂家2020年的促销费用投入为多少万元时,厂家获取利润最大?解:(1)由题意知,当m =0时,x =1(万件),所以1=3-k ⇒k =2,所以x =3-2m +1(m ≥0), 每件产品的销售价格为1.5×8+16x x(元),所以2020年的利润y =1.5x ×8+16x x-8-16x -m =-⎣⎢⎡⎦⎥⎤16m +1+(m +1)+29(m ≥0). (2)因为m ≥0时,16m +1+(m +1)≥216=8, 所以y ≤-8+29=21,当且仅当16m +1=m +1⇒m =3(万元)时,y max =21(万元). 故该厂家2020年的促销费用投入为3万元时,厂家的利润最大,最大为21万元.。

第3讲 不等式及不等式组--尖子班

第3讲 不等式及不等式组--尖子班

第3讲不等式及不等式组知识点1 不等式1.不等式的定义不等式的概念:用“>”或“<”号表示大小关系的式子,叫做不等式,用“≠”号表示不等关系的式子也是不等式.注意:凡是用不等号连接的式子都叫做不等式.常用的不等号有“<”、“>”、“≤”、“≥”、“≠”.另外,不等式中可含未知数,也可不含未知数.2.不等式的性质(1)不等式的基本性质①不等式的两边同时加上(或减去)同一个数或同一个含有字母的式子,不等号的方向不变,即:若a>b,那么a±m>b±m;②不等式的两边同时乘以(或除以)同一个正数,不等号的方向不变,即:若a>b,且m>0,那么am>bm或am >bm;③不等式的两边同时乘以(或除以)同一个负数,不等号的方向改变,即:若a>b,且m<0,那么am<bm或am <bm;(2)不等式的变形:①两边都加、减同一个数,具体体现为“移项”,此时不等号方向不变,但移项要变号;②两边都乘、除同一个数,要注意只有乘、除负数时,不等号方向才改变.3.不等式的解和解集(1)不等式的解的:使不等式成立的未知数的值叫做不等式的解.(2)不等式的解集:能使不等式成立的未知数的取值范围,叫做不等式的解的集合,简称解集.(3)解不等式的:求不等式的解集的过程叫做解不等式.【典例】1.下列式子:①﹣3<0,②4x+3y>0,③x=3,④x2﹣y+1,⑤x≠5,⑥x﹣3<y+2,其中是不等式的有_______________.【答案】①②⑤⑥.【解析】解:①﹣3<0是用不等号连接的式子,故是不等式;②4x+3y>0,是用不等号连接的式子,故是不等式;③x=3,是等式;④x2﹣y+1不含有不等号,故不是不等式;⑤x≠5是用不等号连接的式子,故是不等式;⑥x﹣3<y+2是用不等号连接的式子,故是不等式.故答案为:①②⑤⑥.2.下列各数中,哪些是不等式2x﹣1>1的解?﹣9,2,﹣0.4,6,0,﹣5,27,5.1.【解析】解:∵x=-9时,不等式2x﹣1>1不成立,∴-9不是不等式2x﹣1>1的解;∵x=2时,不等式2x﹣1>1成立,∴2是不等式2x﹣1>1的解;同理可判断6,5.1是不等式2x﹣1>1的解;∴上述所给数中2,6,5.1是不等式2x﹣1>1的解;3.若a<b,用“>”或“<”填空(1)a﹣4____________b﹣4;(2)a5____________ b5;(3)﹣2a_____________﹣2b.【答案】(1)<; (2)<; (3)>.【解析】解:(1)∵a<b,∴a﹣4<b﹣4(不等式两边加(或减)同一个数(或式子),不等号的方向不变);(2)∵a<b,∴a 5<b5(不等式两边乘(或除以)同一个正数,不等号的方向不变);(3)∵a<b,∴﹣2a>﹣2b(不等式两边乘(或除以)同一个负数,不等号的方向改变),故答案为:<,<,>.4.不等式x﹣4<0的解集是____________;不等式﹣2x﹣1<﹣1的解集是____________.【答案】x<4;x>0.【解析】解:将不等式x﹣4<0的两边同时加4,得x﹣4+4<0+4,∴x<4,∴不等式x﹣4<0解集为:x<4;将不等式﹣2x﹣1<﹣1的两边同时加1得,﹣2x﹣1+1<﹣1+1,即﹣2x<0,将不等式﹣2x<0的两边同时除以-2得,x>0.∴不等式﹣2x﹣1<﹣1的解集为:x>0.【方法总结】1.不等式的判定方法用“<,>,≤,≥,≠”连接的式子叫做不等式.2.不等式的基本性质①不等式两边加(或减)同一个数(或式子),不等号的方向不变.②不等式两边乘(或除以)同一个正数,不等号的方向不变.③不等式两边乘(或除以)同一个负数,不等号的方向改变.3.判断某个数是否为不等式的解法思路将某个数代入不等式,如果不等式成立,那么这个数是该不等式的解;否则,这个数不是不等式的解.4.求不等式的解集的依据解不等式的依据是不等式的基本性质,要熟练掌握不等式的基本性质.【随堂练习】1.如果一元一次方程的根是一元一次不等式组的解,则称该一元一次方程为该不等式组的关联方程.(1)在方程①3x﹣1=0,②x+1=0,③x﹣(3x+1)=﹣5中,不等式组的关联方程是___;(填序号)(2)若不等式组的一个关联方程的根是整数,则这个关联方程可以是______________;(写出一个即可)(3)若方程3﹣x=2x,3+x=2(x+)都是关于x的不等式组的关联方程,直接写出m的取值范围.【解答】解:(1)解方程3x﹣1=0得:x=,解方程x+1=0得:x=﹣,解方程x﹣(3x+1)=﹣5得:x=2,解不等式组得:<x<,所以不等式组的关联方程是③,故答案为:③;(2)解不等式组得:<x<,这个关联方程可以是x﹣1=0,故答案为:x﹣1=0(答案不唯一);(3)解方程3﹣x=2x得:x=1,解方程3+x=2(x+)得:x=2,解不等式组得:m<x≤2+m,∵方程3﹣x=2x,3+x=2(x+)都是关于x的不等式组的关联方程,∴0≤m<1,即m的取值范围是0≤m<1.2.(1)①如果a﹣b<0,那么a___b;②如果a﹣b=0,那么a___b;③如果a﹣b>0,那么a___b;(2)由(1)你能归纳出比较a与b大小的方法吗?请用文字语言叙述出来.(3)用(1)的方法你能否比较3x2﹣3x+7与4x2﹣3x+7的大小?如果能,请写出比较过程.【解答】解:(1)①<②=③>(2)比较a,b两数的大小,如果a与b的差大于0,则a大于b;a与b的差等于0,则a等于b;如果a与b的差小于0,则a小于b.(3)(3x2﹣3x+7)﹣(4x2﹣3x+7)=﹣x2≤0,∴3x2﹣3x+7≤4x2﹣3x+7.3.对于任意实数m,n定义一种新运算m※n=mn﹣m+3,等式的右边是通常的加减法和乘法运算,例如:3※5=3×5﹣3+3=15.请根据上述定义解决问题:若a<2※x<7,且解集中恰有两个整数解,求a的取值范围.【解答】解:由题意可知:2※x=2x﹣2+3=2x+1,∵a<2※x<7,∴a<2x+1<7,∴<x<3,∵该不等式的解集有两个整数解,∴该整数解为1或2,∴0≤<1,∴1≤a<3.4.有一个两位数,个位上的数字为a,十位上的数字为b,如果把这个两位数的个位与十位上的数字对调,得到的两位数大于原来的两位数,那么a与b哪个大?【解答】解:根据题意,得10b+a<10a+b,所以,9b<9a,所以,b<a,即a>b.知识点2 一元一次不等式1.一元一次不等式的定义(1)一元一次不等式的定义含有一个未知数,未知数的次数是1的不等式,叫做一元一次不等式.(2)概念解析一方面:它与一元一次方程相似,即都含一个未知数且未知项的次数都是一次,但也有不同,即它是用不等号连接,而一元一次方程是用等号连接.另一方面:它与不等式有区别,不等式中可含、可不含未知数,而一元一次不等式必含未知数.但两者也有联系,即一元一次不等式属于不等式.2.解一元一次不等式解一元一次不等式步骤如下①去分母;②去括号;③移项;④合并同类项;⑤化系数为1.以上步骤中,只有①去分母和⑤化系数为1可能用到不等式性质3,即可能改变不等号方向,其他都不会改变不等号方向.注意:符号“≥”和“≤”分别比“>”和“<”各多了一层相等的含义,它们是不等号与等号合写形式.3.在数轴上表示不等式的解集用数轴表示不等式的解集时,要注意“两定”:一是定界点,一般在数轴上只标出原点和界点即可.定边界点时要注意,点是实心还是空心,若边界点含于解集为实心点,不含于解集即为空心点;二是定方向,定方向的原则是:“小于向左,大于向右”.【典例】1.若3x2a+3﹣9>6是关于x的一元一次不等式,则a= .【答案】-1.【解析】解:∵3x2a+3﹣9>6是关于x的一元一次不等式,∴2a+3=1,解得a=﹣1.2.解不等式(1)8x﹣1≥5x﹣6(2)﹣3(x+2)﹣1<5﹣2(x﹣2)﹣1,并把解集在数轴上表示出来.(3)解不等式2(1﹣2x)≥2x−13【解析】解:(1)移项,得8x﹣5x≥﹣6+1,合并同类项,得3x≥﹣5,系数化为1,得x≥﹣5;3;∴不等式8x﹣1≥5x﹣6的解集为x≥﹣53(2)去括号,得﹣3x﹣6﹣1<5﹣2x+4,移项,得﹣3x+2x<5+4+6+1,合并同类项,得﹣x<16,系数化为1,得x>﹣16;∴不等式﹣3(x+2)﹣1<5﹣2(x﹣2)的解集为x>﹣16;(3)去分母,得6(1﹣2x)≥(2x﹣1)﹣3去括号,得6﹣12x≥2x﹣1﹣3,移项,得﹣12x-2x≥﹣1-3-6,合并同类项,得﹣14x ≥﹣10, 系数化为1,得x ≤57,∴不等式2(1﹣2x )≥2x−13﹣1的解集为x ≤57,表示在数轴上如下:3.若不等式5(x ﹣2)+8<6(x ﹣1)+7的最小整数解是方程2x ﹣ax=3的解,求4a −14a的值.【解析】解:∵5(x ﹣2)+8<6(x ﹣1)+7, ∴去括号,得5x ﹣10+8<6x ﹣6+7, 移项,得5x ﹣6x <﹣6+7+10-8, 合并同类项,得-x <3, 系数化为1,得x >﹣3,∴不等式5(x ﹣2)+8<6(x ﹣1)+7的解集为x >﹣3, ∴不等式5(x ﹣2)+8<6(x ﹣1)+7的最小整数解是﹣2, ∵x=﹣2是方程2x ﹣ax=3的解, ∴2×(-2)-a ×(-2)=3,,解得a=72. ∴4a −14a=10. ∴4a −14a的值为10.【方法总结】1.一元一次不等式常考查一元一次不等式的定义,解答这类题目要记住以下两个关键点:①含有一个未知数,②未知数的次数是1.2.解一元一次不等式解一元一次不等式关键在于掌握其解题步骤:①去分母,②去括号,③移项,④合并同类项,⑤系数化为1.注意:以上步骤中,只有①去分母和⑤化系数为1可能用到不等式的性质3,即可能变不等号方向,其他都不会改变不等号方向.3.求一元一次不等式的整数解的解题思路①求一元一次不等式的解集;②结合题目所给条件,然后在一元一次不等式解集内找出相应的整数,从而解答此类题目.【随堂练习】1.定义一种新运算“a☆b”的含义为:当a≥b时,a☆b=a+b;当a<b时,a☆b=a﹣b.例如:3☆(﹣4)=3+(﹣4)=﹣1,(﹣6)☆=(﹣6)﹣=﹣6.(1)填空:(﹣4)☆3=____;(2)如果(3x﹣4)☆(2x+8)=(3x﹣4)﹣(2x+8),求x的取值范围;(3)填空:(x2﹣2x+3)☆(﹣x2+2x﹣5)=____;(4)如果(3x﹣7)☆(3﹣2x)=2,求x的值.【解答】解:(1)(﹣4)☆3=﹣4﹣3=﹣7,故答案为:﹣7;(2)由题意得3x﹣4<2x+8,解得:x<12,∴x的取值范围是x<12;(3)∵x2﹣2x+3﹣(﹣x2+2x﹣5)=x2﹣2x+3+x2﹣2x+5=2x2﹣4x+8=2(x2﹣2x)+8=2(x﹣1)2+6>0,∴x2﹣2x+3>﹣x2+2x﹣5,则原式=x2﹣2x+3+(﹣x2+2x﹣5)=x2﹣2x+3﹣x2+2x﹣5=﹣2,故答案为:﹣2;(4)当3x﹣7≥3﹣2x,即x≥2时,由题意得:(3x﹣7)+(3﹣2x)=2,解得x=6;当3x﹣7<3﹣2x,即x<2时,由题意得:(3x﹣7)﹣(3﹣2x)=2,解得x=(舍).∴x的值为6.2.已知:,求:|x﹣1|﹣|x﹣3|的最大值和最小值.【解答】解:,∴8x+1﹣12≤12x﹣6x﹣6,移项、合并同类项得:2x≤5,∴x≤,当x≤1时,|x﹣1|﹣|x﹣3|=1﹣x﹣(3﹣x)=﹣2,当1<x≤时,|x﹣1|﹣|x﹣3|=x﹣1﹣(3﹣x)=2x﹣4,x=时,2x﹣4=1,∴当x≤时,|x﹣1|﹣|x﹣3|的最大值是1,最小值是﹣2.知识点3 一元一次不等式组1.一元一次不等式组的概念由几个含有同一个未知数的一元一次不等式组成的不等式组,叫做一元一次不等式组.不等式组中所有不等式的解集的公共部分叫做这个不等式组的解集.求不等式组的解集的过程叫做解不等式组.注意:一个一元一次不等式组的几个不等式必须符合三个条件:(1)这里的几个可以是两个、三个、…;(2)每个不等式都是一元一次不等式;(3)必须都含有同一个未知教.2.解一元一次不等式组(1)一元一次不等式组的解集:几个一元一次不等式的解集的公共部分,叫做由它们所组成的不等式组的解集.(2)解不等式组:求不等式组的解集的过程叫解不等式组.(3)一元一次不等式组的解法:解一元一次不等式组时,一般先求出其中各不等式的解集,再求出这些解集的公共部分,利用数轴可以直观地表示不等式组的解集.方法与步骤:①求不等式组中每个不等式的解集;②利用数轴求公共部分.解集的规律:同大取大;同小取小;大小小大中间夹;大大小小无解答.【典例】1.解不等式组{x −3(x −2)<42x+13≥x −1,并将解集在数轴上表示出来. 【解析】解:{x −3(x −2)<4①2x+13≥x −1 ②, 由不等式①,解得x >1,由不等式②,解得x ≤4,故此不等式组的解集为:1<x≤4.在数轴上表示为:2.解不等式组{2x+5≤3(x+2)2x−1+3x2<1把它的解集在数轴上表示出来,并写出不等式组的非负整数解.【解析】解:{2x+5≤3(x+2)①2x−1+3x2<1 ②,由不等式①,解得x≥﹣1,由不等式②,解得x<3,∴原不等式组的解集为﹣1≤x<3,在数轴上表示,如图所示,则其非负整数解为0,1,2.【方法总结】1.解一元一次不等式组方法与步骤:①求不等式组中每个不等式的解集;②利用数轴求公共部分.解集的规律:大大取最大;小小取最小;大小小大中间夹;大大小小无解答.解集的规律如下图所示:2.一元一次不等式组的整数解①求出一元一次不等式组的解集;②在数轴上表示出一元一次不等式组的解集;③结合题目所给条件,然后在一元一次不等式组的解集内确定一元一次不等式组的整数解,从而解答此类题目.【随堂练习】1.解不等式(组),并把解集在数轴上表示出来:(1).(2).【解答】解:(1).去分母,得:7(1﹣x)≤3(1﹣2x),去括号,得:7﹣7x≤3﹣6x,移项,得:﹣7x+6x≤3﹣7,合并同类项,得:﹣x≤﹣4,系数化为1,得:x≥4,将不等式解集表示在数轴上如下:(2).解不等式①,得x<11,解不等式②,得x≤12,把不等式①②在数轴上表示如图:不等式组的解集是:x<11.2.解下列不等式组.(1)(2)(3)﹣8≤﹣6﹣<﹣5.【解答】(1)解:由①得:x>1,由②得:x≤2,∴原不等式组的解集为:1<x≤2;(2)解:由①得:x≤7,由②得:x<4,∴原不等式组的解集为:x<4;(3)由题意得:,由①得:x≤,由②得:x>﹣,所以不等式组的解集为﹣≤x≤.综合运用1.有下列数学式子:①3>0;②4x+5>0;③x=3;④x2+x;⑤x≠﹣4;⑥x+2>x+1,其中是不等式的有_________________个.【答案】4.【解析】解:∵①3>0中含有不等号;∴①3>0是不等式;同理可判断:②4x+5>0是不等式;③x=3不是不等式;④x2+x不是不等式;⑤x≠﹣4是不等式;⑥x+2>x+1是不等式,∵④x2+x是代数式,没有不等式号∴④x2+x不是不等式;∴上述式子中,共有4个不等式.故答案为:4.2.已知2﹣3x3+2k>1,关于x的一元一次不等式,则k=_________________.【答案】﹣1.【解析】解:∵2﹣3x 3+2k >1,关于x 的一元一次不等式,∴3+2k=1,解得k=﹣1,故答案为:﹣1.3.不等式2x ﹣5<7﹣(x ﹣5)的解集是_________________.【答案】x <173.【解析】解:2x ﹣5<7﹣(x ﹣5)去括号,得2x ﹣5<7﹣x+5,移项,得2x+x <7+5+5,合并同类项,得3x <17系数化为1,得x <173,故答案为:x <173.4.不等式3﹣x−14≥2+3(x−1)8的非负整数解是_______________.【答案】0,1,2.【解析】解:3﹣x−14≥2+3(x−1)8,去分母,得24﹣2(x ﹣1)≥16+3(x ﹣1),去括号,得24﹣2x+2≥16+3x ﹣3,移项,得﹣2x ﹣3x ≥16﹣3﹣24﹣2,合并同类项,得﹣5x ≥﹣13,系数化为1,得x ≤2.6,∴不等式的非负整数解是0,1,2,故答案为:0,1,2.5.若x=﹣3是关于x 的方程x=m+1的解,则关于x 的不等式2(1﹣2x )≤1+m 的最小整数解为_________________.【答案】2.【解析】解:∵x=﹣3是关于x 的方程x=m+1的解,∴﹣3=m+1,解得:m=﹣4,∵2(1﹣2x )≤1+m ,∴2﹣4x ≤1﹣4,解得x ≥54,故最小整数解为2.故答案为:2.6.不等式组{2x +1>−3−x +3≥0的解集为_________________.【答案】﹣2<x ≤3.【解析】解:{2x +1>−3①−x +3≥0②,由不等式①,解得x >﹣2;由不等式②,解得x ≤3,所以不等式组的解为﹣2<x ≤3,故答案为﹣2<x ≤3.7.不等式组{x −1<1x+12>2的解集是_________________.【答案】无解.【解析】解:{x −1<1①x+12>2②,由不等式①,解得x <2,由不等式②,解得x >3,所以不等式组无解.故答案为:无解.8.不等式组{x +5>24−x ≥3的最小整数解是_________________.【答案】﹣2.【解析】解:{x +5>2①4−x ≥3②∵由不等式①,解得x >﹣3,由不等式②,解得x ≤1,∴不等式组的解集为﹣3<x ≤1,∴不等式组的最小整数解是﹣2,故答案为:﹣2.9.不等式组{5−x >−13x ≥x−12的整数解的和为_________________.【答案】15.【解析】解:{5−x >−1①3x ≥x−12②, 由不等式①,解得x <6,由不等式②,解得x ≥−15,故原不等式组的解集是﹣15≤x <6,∴不等式组{5−x >−13x ≥x−12的整数解为:0、1、2、3、4、5,∴不等式组{5−x >−13x ≥x−12的整数解的和为:0+1+2+3+4+5=15,故答案为:15.10.若x <y ,比较2﹣3x 与2﹣3y 的大小,并说明理由.【答案】略.【解析】解:∵x <y ,∴﹣x >﹣y ,∴﹣3x >﹣3y ,∴2﹣3x >2﹣3y .11.解不等式:x+40.2﹣x−30.5≤2,并把它的解集在数轴上表示出来.【答案】略.【解析】解:去分母,得5(x+4)﹣2(x ﹣3)≤2 去括号,得5x+20﹣2x+6≤2移项,得5x ﹣2x ≤2-20-6合并同类项,得3x ≤﹣24系数化为1,得x ≤﹣8∴不等式x+40.2﹣x−30.5≤2的解集为x ≤﹣8,在数轴上表示为12.已知方程ax+12=0的解是x=3,求满足关于y 的不等式(a+2)y <7的最小整数解.【答案】略.【解析】解:将x=3代入ax+12=0,得3a+12=0,解得a=﹣4.把a=﹣4代入不等式,得﹣2y <7,解得y >﹣3.5,所以关于y 的不等式(a+2)y <7的最小整数解为﹣3.13.解下列不等式和不等式组.(1)3x−26﹣1≥2x−13(2){2(2x −1)−3(5x +1)≤65x −1<3(x +1)【答案】略.【解析】解:(1)去分母,得3x ﹣2﹣6≥2(2x ﹣1),去括号,得3x ﹣2﹣6≥4x ﹣2,移项,得﹣4x+3x ≤﹣2+2+6合并同类项,得﹣x ≤﹣6,系数化为1,得x ≥6;∴不等式3x−26﹣1≥2x−13的解集为x ≥6;(2){2(2x −1)−3(5x +1)≤6①5x −1<3(x +1)②由不等式①,解得x ≥1,由不等式②,解得x <2,∴不等式组的解集为1≤x <2.14.解不等式组:{4x >2x −6x+13≥x −1,并把解集表示在数轴上.【答案】略.【解析】解:由不等式4x >2x ﹣6,解得x >﹣3, 由不等式x+13≥x ﹣1,解得x ≤2,∴不等式组的解集为:﹣3<x ≤2,将不等式组解集表示在数轴上如图:15. 解不等式组{2x +1<5x−12−1≤2x 并判断x=﹣√2是否为该不等式组的解.【答案】略.【解析】解:{2x +1<5①x−12−1≤2x②,∵由不等式①,解得x <2,由不等式②,解得x ≥﹣1,∴此不等式组的解集为:﹣1≤x <2,∵﹣√2<﹣1,∴x=﹣√2不是该不等式组的解.16.解不等式组{x −3(x −2)<82x+13≥x −1,并求其整数解,【答案】略.【解析】解:由不等式x ﹣3(x ﹣2)<8,解得x >﹣1, 由不等式2x+13≥x ﹣1,解得x ≤4,则原不等式组的解集为﹣1<x ≤4,∴原不等式组的整数解为0、1、2、3、4.。

基本不等式

基本不等式

3.4基本不等式教材分析本节课选自人教版高中数学必修五第三章不等式《3.4基本不等式》,是在系统的学习了不等关系和不等式性质,掌握了不等式性质的基础上展开的。

作为重要的基本不等式之一,为后续的学习奠定基础。

要进一步了解不等式的性质及运用,研究最值问题,此时基本不等式是必不可缺的。

它在知识体系中起了承上启下的作用,同时在生活及生产实际中有着广泛的应用,例如在“求面积一定,周长最小;周长一定,面积最大”等实际问题的计算中就经常涉及到。

同时它也是对学生进行情感价值观教育的好素材,引导学生主体参与、揭示本质、经历过程探索等,所以基本不等式应重点研究。

课程目标分析依据《新课程标准》对《不等式》学段的目标要求和学生的实际情况,特确定如下目标:1、知识与技能了解基本不等式的证明过程。

会用基本不等式解决简单的最大(小)值问题。

2、过程与方法探索并了解基本不等式的证明过程,体验基本不等式在实际中的应用。

3、情感、态度与价值观通过实例,体验数学与日常生活的联系,感受数学的实用价值,增强应用意识,提高实践能力。

教学重、难点分析重点:应用数形结合的思想理解基本不等式,2a b +的证明过程及应用。

难点:1、基本不等式成立时的三个限制条件(简称一正、二定、三相等);2、利用基本不等式求解实际问题中的最大值和最小值。

教法分析本节课采用观察——感知——抽象——归纳——探究;启发诱导、讲练结合的教学方法,以学生为主体,以基本不等式为主线,从实际问题出发,放手让学生探究思索。

以现代信息技术多媒体课件作为教学辅助手段,加深学生对基本不等式的理解。

教学过程(一)创设情景,提出问题:2a b +≤的几何背景: 上图是在北京召开的第24届国际数学家大会的会标,会标是根据中国古代数学家赵爽的弦图设计的,颜色的明暗使它看上去像一个风车,代表中国人民热情好客。

[问]:你能在这个图中找出一些相等关系或不等关系吗?【本背景意图在于利用图中相关面积间存在的数量关系,抽象出不等式222a b ab +≥。

高三数学(理科)二轮复习-不等式

高三数学(理科)二轮复习-不等式

2014届高三数学第二轮复习第3讲 不等式一、本章知识结构:实数的性质二、高考要求(1)理解不等式的性质及其证明。

(2)掌握两个(不扩展到三个)正数的算术平均数不小于它们的几何平均数定理,并会简单应用。

(3)分析法、综合法、比较法证明简单的不等式。

(4)掌握某些简单不等式的解法。

(5)理解不等式|a|﹣|b| ≤|a+b|≤|a| +|b|。

三、热点分析1.重视对基础知识的考查,设问方式不断创新.重点考查四种题型:解不等式,证明不等式,涉及不等式应用题,涉及不等式的综合题,所占比例远远高于在课时和知识点中的比例.重视基础知识的考查,常考常新,创意不断,设问方式不断创新,图表信息题,多选型填空题等情景新颖的题型受到命题者的青眯,值得引起我们的关注.2.突出重点,综合考查,在知识与方法的交汇点处设计命题,在不等式问题中蕴含着丰富的函数思想,不等式又为研究函数提供了重要的工具,不等式与函数既是知识的结合点,又是数学知识与数学方法的交汇点,因而在历年高考题中始终是重中之重.在全面考查函数与不等式基础知识的同时,将不等式的重点知识以及其他知识有机结合,进行综合考查,强调知识的综合和知识的内在联系,加大数学思想方法的考查力度,是高考对不等式考查的又一新特点.3.加大推理、论证能力的考查力度,充分体现由知识立意向能力立意转变的命题方向.由于代数推理没有几何图形作依托,因而更能检测出学生抽象思维能力的层次.这类代数推理问题常以高中代数的主体内容——函数、方程、不等式、数列及其交叉综合部分为知识背景,并与高等数学知识及思想方法相衔接,立意新颖,抽象程度高,有利于高考选拔功能的充分发挥.对不等式的考查更能体现出高观点、低设问、深入浅出的特点,考查容量之大、功能之多、能力要求之高,一直是高考的热点.4.突出不等式的知识在解决实际问题中的应用价值,借助不等式来考查学生的应用意识.不等式部分的内容是高考较为稳定的一个热点,考查的重点是不等式的性质、证明、解法及最值方面的应用。

第三讲柯西不等式的基本方法与排序不等式(排序不等式)

第三讲柯西不等式的基本方法与排序不等式(排序不等式)
设a1 a 2 a 3 a n,b1 b2 b S1 S S 2 + a nc (乱序和) n + a nb (反序和) 1 bn + a nb (顺序和) n a n 或b1 b2 b bn , bn 为两组实数,c1,c 2,c3, ,c n 是b1 , b 2 , b, 的任一排列,那么 S = a1c1 + a 2c2 + a 3c3 + S2 = a1b1 + a 2 b2 + a 3 b3 + 当且仅当a1 a 2 a 3 时,反序和等于顺序和
S1 = a1b n + a 2 b n-1 + a 3 b n-2 +
问题:有10人各拿一只水桶去接水,设水龙头注 满第i(i = 1,2,3, ,10)个人的水桶需要ti分,假 定这些ti各不相同。 问只有一个水龙头时, 应 安排10人的顺序,使他们等候的总时间最少?这 个最少的总时间等于多少?
第三讲 不等式
柯西不等式与排序 排序不等式
ห้องสมุดไป่ตู้
一:引入概念 设 a1,a2,a3,…,an,,b1,b2,b3,…,bn∈R
且 a1≤a2 ≤ a3 ≤ … ≤ an,;
b1 ≤ b2 ≤ b3 ≤ …

bn
设 c1 ,c2 ,c3 , ,cn 是数组b1,b2,b3,…,bn的 任何一个排列。 则将 S = a1c1 + a 2c2 + a 3c3 + + a ncn
问题 : 设a1 ,a 2 , ,a n 是n个互不相同的正数, 1 1 求证1+ + 2 3 1 a2 a3 + ≤ a1 + 2 + 2 + n 2 3 an + 2 n

第3讲 不等式及线性规划

第3讲 不等式及线性规划

第3讲不等式及线性规划本资料分享自千人教师QQ 群323031380 期待你的加入与分享「考情研析」 1.对不等式的性质及不等式解法的考查一般不单独命题,常与集合、函数图象与性质等相结合命题,也常渗透在三角函数、数列、解析几何、导数等题目中. 2.基本不等式主要渗透在其他知识点中求最值. 3.简单的线性规划常以选填题形式呈现,一般难度不大.核心知识回顾1.不等式的一些常用性质(1)a>b,c>0⇒;a>b,c<0⇒.(2)a>b,c>d⇒a++d.(3)a>b>0,c>d>0⇒.(4)a>b>0,n∈N*⇒a n.(5)a>b>0n∈N,n≥2).(6)a>b,ab>0a<0<b a>b>0,d>c>02.不等式的解法(1)一元二次不等式的解法先化为一般形式ax2+bx+c>0(a≠0),再求相应一元二次方程ax2+bx+c=0(a≠0)的根,最后根据相应二次函数图象与x轴的位置关系,确定一元二次不等式的解集.(2)简单分式不等式的解法f(x) g(x)>0(<0)⇔f(x)g(x)>0(<0);f(x)g(x)≥0(≤0)⇔f(x)g(x)≥0(≤0)且g(x)≠0.3.基本不等式ab≤a+b 2(1)(2) 4.几个重要的不等式(1)a 2+b 2a ,b ∈R );(2)b a +ab ≥a ,b 同号); (3)ab ≤⎝⎛⎭⎪⎫a +b 22(a ,b ∈R ); (4)a 2+b 22≥⎝⎛⎭⎪⎫a +b 22(a ,b ∈R ). 5.利用基本不等式求最值问题 已知x >0,y >0,则(1)如果积xy 是定值P ,x +y 2P .(简记:积定和最小)(2)如果和x +y 是定值P ,xy 大值是P 24.(简记:和定积最大)6.二元一次不等式表示的平面区域一般地,在平面直角坐标系中,二元一次不等式Ax +By +C >0表示直线Ax +By +C =0某一侧所有点组成的平面区域.我们把直线画成虚线以表示区域不包括边界直线.当我们在坐标系中画不等式Ax +By +C ≥0所表示的平面区域时,此区域包括边界直线,则把边界直线画成实线.对于直线Ax +By +C =0同一侧的所有点,把坐标(x ,y )代入Ax +By +C 中,所得实数的符号都相同,所以只需在此直线的某一侧取一个特殊点(x 0,y 0),由Ax 0+By 0+C 的正负即可判断Ax +By +C >0表示直线哪一侧的平面区域.说明:直线同侧同号,异侧异号.热点考向探究考向1 不等式的性质及解法例1 (1)(多选)十六世纪中叶,英国数学家雷科德在《砺智石》一书中首先把“=”作为等号使用,后来英国数学家哈利奥特首次使用“<”和“>”符号,并逐渐被数学界接受,不等号的引入对不等式的发展影响深远.若a ,b ,c ∈R ,则下列命题正确的是( )A .若ab ≠0且a <b ,则1a >1b B .若0<a <1,则a 3<a C .若a >b >0,则b +1a +1>baD .若c <b <a 且ac <0,则cb 2<ab 2 答案 BC解析 A 项,取a =-2,b =1,则1a >1b 不成立;B 项,若0<a <1,则a 3-a =a (a 2-1)<0,∴a 3<a ,因此正确;C 项,若a >b >0,则a (b +1)-b (a +1)=a -b >0,∴a (b +1)>b (a +1),∴b +1a +1>ba ,正确;D 项,若c <b <a 且ac <0,则a >0,c <0,而b 可能为0,因此cb 2<ab 2不正确.故选BC .(2)已知平面向量a ,b 满足|a |=1,|b |=2,|a -b |=7,若对于任意实数k ,不等式|k a +t b |>1恒成立,则实数t 的取值范围是( )A .(-∞,-3)∪(3,+∞)B .⎝ ⎛⎭⎪⎫-∞,-33∪⎝ ⎛⎭⎪⎫33,+∞C .(3,+∞)D .⎝ ⎛⎭⎪⎫33,+∞答案 B解析 ∵|a |=1,|b |=2,|a -b |=7,∴(a -b )2=a 2+b 2-2a ·b =7,∴a ·b =-1,又|k a +t b |>1,∴(k a +t b )2>1,即k 2a 2+t 2b 2+2kt a ·b =k 2+4t 2-2kt >1对于任意实数k 恒成立,∴k 2-2kt +4t 2-1>0对于任意实数k 恒成立,∴Δ=(-2t )2-4(4t 2-1)<0,∴t <-33或t >33,故选B .(3)(2020·四川省成都模拟)已知f (x )是定义在R 上的奇函数,当x >0时,f (x )=x 2-2x ,则不等式f (x )>x 的解集用区间表示为________.答案 (-3,0)∪(3,+∞)解析 设x <0,则-x >0,由题意可得f (-x )=-f (x )=(-x )2-2(-x )=x 2+2x , ∴f (x )=-x 2-2x ,故当x <0时,f (x )=-x 2-2x . 由不等式f (x )>x ,可得⎩⎨⎧ x >0,x 2-2x >x 或⎩⎨⎧x <0,-x 2-2x >x ,求得x >3或-3<x <0.即不等式f (x )>x 的解集为(-3,0)∪(3,+∞).(1)利用不等式的性质解决问题常用两种方法:一是直接使用不等式的性质逐个验证;二是利用特殊值法排除错误答案.利用不等式的性质判断不等式是否成立时要特别注意前提条件.(2)一元二次不等式的常见解法是利用“三个二次”之间的关系,借助二次函数图象得到其解集.1.(多选)(2020·海南省高三三模)设a ,b ,c 为实数且a >b ,则下列不等式一定成立的是( )A .1a >1b B .2020a -b >1 C .ln a >ln b D .a (c 2+1)>b (c 2+1)答案 BD解析 对于A ,若a >b >0,则1a <1b ,所以A 错误;对于B ,因为a -b >0,所以2020a -b >1,故B 正确;对于C ,函数y =ln x 的定义域为(0,+∞),而a ,b 不一定是正数,所以C 错误;对于D ,因为c 2+1>0,所以a (c 2+1)>b (c 2+1),所以D正确.故选BD.2.(多选)(2020·山东省淄博模拟)设[x]表示不小于实数x的最小整数,则满足关于x的不等式[x]2+[x]-12≤0的解可以为()A.10 B.3C.-4.5 D.-5答案BC解析不等式[x]2+[x]-12≤0可化为([x]+4)·([x]-3)≤0,解得-4≤[x]≤3,又[x]表示不小于实数x的最小整数,且[10]=4,[3]=3,[-4.5]=-4,[-5]=-5,所以满足不等式[x]2+[x]-12≤0的解可以为B,C.故选BC.3.定义:区间[a,b],(a,b],(a,b),[a,b)的长度均为b-a,若不等式1x-1+2x-2≥m(m≠0)的解集是互不相交区间的并集,设该不等式的解集中所有区间的长度之和为l,则()A.当m>0时,l=m2+2m+9mB.当m>0时,l=3 mC.当m<0时,l=-m2+2m+9mD.当m<0时,l=-3 m答案 B解析①当m>0时,∵1x-1+2x-2≥m⇔mx2-(3+3m)x+2m+4(x-1)(x-2)≤0,令f(x)=mx2-(3+3m)x+2m+4=0的两根为x1,x2,且x1<x2,则m(x-x1)(x-x2) (x-1)(x-2)≤0,且x1+x2=3+3mm=3+3m.∵f(1)=m-3-3m+2m+4=1>0,f(2)=4m-6-6m+2m+4=-2<0,∴1<x1<2<x2,∴不等式的解集为(1,x 1]∪(2,x 2], ∴l =x 1-1+x 2-2=x 1+x 2-3=3+3m -3=3m . ②当m <0时,由(1)知f (1)>0,f (2)<0, 可得x 1<1<x 2<2.∴不等式的解集为(-∞,x 1]∪(1,x 2]∪(2,+∞). ∴解集中所有区间的长度之和无穷大. 综上,故选B .考向2 基本不等式的应用例2 (1)(2020·四川省内江市、广安市等九市二诊)在△ABC 中,点P 为BC的中点,过点P 的直线与AB ,AC 所在直线分别交于点M ,N ,若AM →=λAB →,AN →=μAC→(λ>0,μ>0),则λ+μ的最小值为( ) A .54 B .2 C .3 D .72答案 B解析 如图,连接AP ,∵P 为BC 的中点,AM→=λAB →,AN →=μAC →,且λ>0,μ>0,∴AP→=12AB →+12AC →=12λAM →+12μAN →,且M ,P ,N 三点共线,∴12λ+12μ=1,∴λ+μ=(λ+μ)⎝ ⎛⎭⎪⎫12λ+12μ=12+λ2μ+μ2λ+12≥1+2λ2μ·μ2λ=2,当且仅当λ2μ=μ2λ,即λ=μ=1时取等号,∴λ+μ的最小值为2.故选B .(2)若曲线y =x 3-2x 2+2在点A 处的切线方程为y =4x -6,且点A 在直线mx +ny -1=0(其中m >0,n >0)上,则1m +2n 的最小值为( )A .4 2B .3+2 2C .6+4 2D .8 2答案 C解析 设A (x 0,y 0),则y ′=3x 2-4x ⇒3x 20-4x 0=4,∴x 0=2或x 0=-23,分别将x 0的值代入方程y =x 3-2x 2+2,得⎩⎨⎧x 0=2,y 0=2或⎩⎪⎨⎪⎧x 0=-23,y 0=2227.因为A (x 0,y 0)在y =4x -6上,所以⎩⎨⎧x 0=2,y 0=2,即2m +2n -1=0,m +n =12,从而1m +2n =2⎝ ⎛⎭⎪⎫1m +2n (m +n )=2⎝ ⎛⎭⎪⎫3+n m +2m n ≥2⎝⎛⎭⎪⎫3+2n m ·2m n =6+42,当且仅当n =2m ,即m =2-12,n =2-22时取等号,即1m +2n 的最小值为6+42,故选C .(3)(2020·江苏省七市高三第三次调研)已知x >1,y >1,xy =10,则1lg x +4lg y 的最小值是________.答案 9解析 因为x >1,y >1,xy =10,所以lg x +lg y =1,则1lg x +4lg y =⎝ ⎛⎭⎪⎫1lg x +4lg y (lg x +lg y )=5+lg y lg x +4lg xlg y ≥5+2lg y lg x ·4lg x lg y =9,当且仅当lg y lg x =4lg xlg y ,即lg y=2lg x 且xy =10,即x =310,y =3100时取等号.利用基本不等式求最值的方法(1)利用基本不等式求最值的关键是构造和为定值或积为定值.(2)有些题目并不满足直接用基本不等式求最值的条件,但可以通过添项、分离常数、平方等手段使之能运用基本不等式,常用方法还有:拆项法、变系数法、凑因子法、换元法、整体代换法等.1.设x >0,y >0,且2x +y =6,则9x +3y 有( )A .最大值27B .最小值27C .最大值54D .最小值54答案 D解析 因为x >0,y >0,且2x +y =6,所以9x +3y ≥29x ·3y =232x +y =236=54,当且仅当x =32,y =3时,9x +3y 有最小值54.2.(2020·湖南省郴州市高三一模)已知函数f (x )=x +sin x ,若正实数a ,b 满足f ⎝ ⎛⎭⎪⎫1a +f ⎝ ⎛⎭⎪⎫2b -1=0,则3a a -1+4b b -2的最小值为( )A .7B .7+4 3C .5+4 3D .7+2 3答案 B解析 ∵f (x )=x +sin x ,∴f (-x )=-x -sin x =-f (x ),即f (x )+f (-x )=0,∵正实数a ,b 满足f ⎝ ⎛⎭⎪⎫1a +f ⎝ ⎛⎭⎪⎫2b -1=0,∴1a +2b =1,∴b =2a a -1>0,∴a >1,则3a a -1+4b b -2=7+3a -1+8b -2=7+3a -1+82a a -1-2=7+3a -1+4(a -1)≥7+43,当且仅当4(a -1)=3a -1,即a =1+32时取等号,所以3a a -1+4bb -2的最小值为7+4 3.故选B .3.(2020·山东威海模拟)若∀x ∈(0,+∞),4x 2+1x ≥m ,则实数m 的取值范围为__________.答案 (-∞,4]解析 因为x >0,则4x 2+1x =4x +1x ≥24x ·1x =4,当且仅当4x =1x ,即x =12时取等号,因为4x 2+1x ≥m ,所以4≥m ,即实数m 的取值范围为(-∞,4].考向3 线性规划问题例3 (1)(2020·安徽六安一中3月模拟)已知实数x ,y 满足⎩⎨⎧x -2y +1≥0,|x |-y -1≤0,则z =2x +y +2x的取值范围为( )A .⎣⎢⎡⎦⎥⎤0,103B .(-∞,2]∪⎣⎢⎡⎭⎪⎫103,+∞C .⎣⎢⎡⎦⎥⎤2,103D .(-∞,0]∪⎣⎢⎡⎭⎪⎫103,+∞答案 D解析原不等式组可以等价转化为⎩⎪⎨⎪⎧x -2y +1≥0,x ≥0,x -y -1≤0或⎩⎪⎨⎪⎧x -2y +1≥0,x <0,x +y +1≥0.画出不等式组所表示的平面区域,如图中阴影部分所示,其中点A (-1,0),点B (3,2),而z =2x +y +2x =2+y +2x 的几何意义为区域内的点(x ,y )与点M (0,-2)连线的斜率k 加上2,结合图形可知k ≥43或k ≤-2,因此z ≥43+2=103或z ≤-2+2=0.即z 的取值范围为(-∞,0]∪⎣⎢⎡⎭⎪⎫103,+∞,故选D .(2)设x ,y 满足约束条件⎩⎪⎨⎪⎧x +2y ≤1,2x +y ≥-1,x -y ≤0,则z =3x -2y 的最小值为________.答案 -5解析 解法一:(图解法)由约束条件作出可行域,如图中阴影部分所示.平移直线3x -2y =0可知,目标函数z =3x -2y 在A 点处取最小值, 由⎩⎨⎧ x +2y =1,2x +y =-1,解得⎩⎨⎧x =-1,y =1,即A (-1,1),所以z min =3×(-1)-2×1=-5. 解法二:(界点定值法)由题意知,约束条件 ⎩⎪⎨⎪⎧x +2y ≤1,2x +y ≥-1,x -y ≤0所表示的平面区域为三角形及其内部,三角形的顶点分别为(-1,1),⎝ ⎛⎭⎪⎫-13,-13,⎝ ⎛⎭⎪⎫13,13.将三点的坐标分别代入z =3x -2y ,得z min =-5.(3)(2020·广州市综合检测)已知关于x ,y 的不等式组⎩⎪⎨⎪⎧2x -y +1≥0,x +m ≤0,y +2≥0表示的平面区域内存在点P (x 0,y 0),满足x 0-2y 0=2,则m 的取值范围是________.答案 ⎝ ⎛⎦⎥⎤-∞,43解析作出不等式组⎩⎪⎨⎪⎧2x -y +1≥0,x +m ≤0,y +2≥0表示的平面区域如图中阴影部分所示,由⎩⎨⎧2x -y +1=0,y =-2,可得⎩⎪⎨⎪⎧x =-32,y =-2.故A ⎝ ⎛⎭⎪⎫-32,-2,所以-m ≥-32,解得m ≤32.作出直线x -2y =2,由⎩⎨⎧2x -y +1=0,x -2y -2=0,可得⎩⎪⎨⎪⎧x =-43,y =-53,即B ⎝ ⎛⎭⎪⎫-43,-53,因为存在点P (x 0,y 0),使得x 0-2y 0-2=0,即直线x -2y -2=0与平面区域有交点,则需满足-m ≥-43,所以m ≤43,所以m 的取值范围是⎝ ⎛⎦⎥⎤-∞,43.二元一次不等式表示的平面区域的判断方法方法一:特殊点法只需在直线的某一侧任取一点(x 0,y 0),根据Ax 0+By 0+C 的正负即可判断Ax +By +C >0(或<0)表示直线的哪一侧区域.若直线不过原点(即C ≠0),常把原点(0,0)作为特殊点.若直线经过原点(即C =0),常选(1,0),(-1,0),(0,1),(0,-1)等特殊点代入判断.方法二:一般式(A >0),大为右,小为左当A >0时,Ax +By +C >0表示直线右方区域;Ax +By +C <0表示直线左方区域.方法三:一般式,“同”为上,“异”为下观察B 的符号与不等式的符号,若B 的符号与不等式的符号“相同”,则表示直线上方的区域;若B 的符号与不等式的符号“相异”,则表示直线下方的区域.1.(2020·湖南长郡中学第二次适应性考试)已知实数x ,y 满足不等式组⎩⎪⎨⎪⎧x -y ≥0,2x +y ≤6,x +y ≥2,则点(x ,y )构成平面区域的面积是( )A .3B .52 C .2D .32答案 A解析 根据题意作出不等式组所表示的平面区域,分别求得A (2,2),B (4,-2),C (1,1),求出点B 到直线y =x 的距离d =|4-(-2)|12+(-1)2=32,AC =(2-1)2+(2-1)2=2,∴S △ABC =12AC ·d =12×2×32=3.故选A .2.若变量x ,y 满足⎩⎪⎨⎪⎧3x -y -1≥0,3x +y -11≤0,y ≥2,且z =ax -y 的最小值为-1,则实数a 的值为________.答案 2解析 画出不等式组表示的平面区域,如图中阴影部分所示,由图知,若a ≥3,则直线z =ax -y 经过点B (1,2)时,z 取得最小值,由a -2=-1,得a =1,与a ≥3矛盾;若0<a <3,则直线z =ax -y 经过点A (2,5)时,z 取得最小值,由2a -5=-1,解得a =2;若a ≤0,则直线z =ax -y 经过点A (2,5)或C (3,2)时,z 取得最小值,此时2a -5=-1或3a -2=-1,解得a =2或a =13,与a ≤0矛盾.综上可知,实数a 的值为2.3.某高科技企业生产产品A和产品B需要甲、乙两种新型材料.生产一件产品A需要甲材料1.5 kg,乙材料1 kg,用5个工时,生产一件产品B需要甲材料0.5 kg,乙材料0.3 kg,用3个工时.生产一件产品A的利润为2100元,生产一件产品B的利润为900元.该企业现有甲材料150 kg,乙材料90 kg,则在不超过600个工时的条件下,生产产品A、产品B的利润之和的最大值为________元.答案216000解析设生产产品A x件,产品B y件,依题意,得⎩⎪⎨⎪⎧x≥0,y≥0,x∈N,y∈N,1.5x+0.5y≤150,x+0.3y≤90,5x+3y≤600,设生产产品A、产品B的利润之和为E元,则E=2100x+900y.画出可行域(如图中阴影区域内的整点),易知最优解为⎩⎨⎧x=60,y=100(满足x∈N,y∈N),则E max =216000.真题押题『真题检验』1.(多选)(2020·新高考卷Ⅰ)已知a >0,b >0,且a +b =1,则( ) A .a 2+b 2≥12 B .2a -b >12 C .log 2a +log 2b ≥-2 D .a +b ≤ 2答案 ABD解析 对于A ,a 2+b 2=a 2+(1-a )2=2a 2-2a +1=2⎝ ⎛⎭⎪⎫a -122+12≥12,当且仅当a =b =12时,等号成立,故A 正确;对于B ,a -b =2a -1>-1,所以2a -b >2-1=12,故B 正确;对于C ,log 2a +log 2b =log 2ab ≤log 2⎝⎛⎭⎪⎫a +b 22=log 214=-2,当且仅当a =b =12时,等号成立,故C 不正确;对于D ,因为(a +b )2=1+2ab ≤1+a +b =2,所以a +b ≤ 2,当且仅当a =b =12时,等号成立,故D 正确.故选ABD .2.(2020·全国卷Ⅲ)已知55<84,134<85.设a =log 53,b =log 85,c =log 138,则( ) A .a <b <c B .b <a <c C .b <c <a D .c <a <b答案 A解析 ∵a ,b ,c ∈(0,1),a b =log 53log 85=lg 3lg 5·lg 8lg 5<1(lg 5)2·⎝ ⎛⎭⎪⎫lg 3+lg 822=⎝ ⎛⎭⎪⎫lg 3+lg 82lg 52=⎝ ⎛⎭⎪⎫lg 24lg 252<1,∴a <b .由b =log 85,得8b =5,由55<84,得85b <84,∴5b <4,可得b <45.由c =log 138,得13c =8,由134<85,得134<135c ,∴5c >4,可得c>45.综上所述,a <b <c .故选A .3.(2020·浙江高考)已知a ,b ∈R 且ab ≠0,若(x -a )·(x -b )(x -2a -b )≥0在x ≥0上恒成立,则( )A .a <0B .a >0C .b <0D .b >0答案 C解析 因为ab ≠0,所以a ≠0且b ≠0,设f (x )=(x -a )·(x -b )(x -2a -b ),则f (x )的零点为x 1=a ,x 2=b ,x 3=2a +b .当a >0时,x 2<x 3,x 1>0,要使f (x )≥0,必有2a +b =a ,且b <0,即b =-a ,且b <0,所以b <0;当a <0时,x 2>x 3,x 1<0,要使f (x )≥0,必有b <0.综上可得b <0.故选C .4.(2020·全国卷Ⅰ)若x ,y 满足约束条件⎩⎪⎨⎪⎧2x +y -2≤0,x -y -1≥0,y +1≥0,则z =x +7y 的最大值为________.答案 1解析 画出不等式组表示的平面区域如图阴影部分所示,由z =x +7y ,得y =-17x +17z ,平移直线y =-17x ,由图可得当直线y =-17x +17z 过点A 时,目标函数z =x +7y 取得最大值.联立直线方程,得⎩⎨⎧2x +y -2=0,x -y -1=0,得A (1,0),所以z max=1+7×0=1.5.(2020·江苏高考)已知5x 2y 2+y 4=1(x ,y ∈R ),则x 2+y 2的最小值是________.答案 45解析 ∵5x 2y 2+y 4=1,∴y ≠0且x 2=1-y 45y 2.∴x 2+y 2=1-y 45y 2+y 2=15y 2+4y 25≥215y 2·4y 25=45,当且仅当15y 2=4y 25,即x 2=310,y 2=12时取等号.∴x 2+y 2的最小值为45.6.(2020·天津高考)已知a >0,b >0,且ab =1,则12a +12b +8a +b 的最小值为________.答案 4解析 ∵a >0,b >0,∴a +b >0,又ab =1,∴12a +12b +8a +b =ab 2a +ab 2b +8a +b =a +b 2+8a +b≥2a +b 2×8a +b=4,当且仅当a +b =4,即a =2-3,b =2+3,或a =2+3,b =2-3时,等号成立.故12a +12b +8a +b的最小值为4.『金版押题』7.已知函数f (x )=|lg (x -1)|,若1<a <b 且f (a )=f (b ),则实数2a +b 的取值范围是( )A .[3+22,+∞)B .(3+22,+∞)C .[6,+∞)D .(6,+∞)答案 A解析 作出函数f (x )=|lg (x -1)|的图象如图所示.∵1<a <b 且f (a )=f (b ),则b >2,1<a <2,∴-lg (a -1)=lg (b -1),即1a -1=b -1, 可得ab -a -b =0,则a =b b -1. 2a +b =2b b -1+b =(2b -2)+2b -1+b -1+1=(b -1)+2b -1+3≥22+3,当且仅当b =2+1时取等号.满足b >2,故选A .8.定义域为[a ,b ]的函数y =f (x )图象的两个端点为A ,B ,向量ON →=λOA →+(1-λ)OB →,M (x ,y )是f (x )图象上任意一点,其中x =λa +(1-λ)b ,若不等式|MN |≤k 恒成立,则称函数f (x )在[a ,b ]上满足“k 范围线性近似”,其中最小正实数k 称为该函数的线性近似阈值.若函数y =2x 定义在[1,2]上,则该函数的线性近似阈值是( )A .2- 2B .3-2 2C .3+2 2D .2+ 2答案 B解析 作出函数y =2x 的图象,它的图象在[1,2]上的两个端点分别为A (1,2),B (2,1).所以直线AB 的方程为x +y -3=0, 设M (x ,y )是曲线y =2x 上的一点,x ∈[1,2], 其中x =λ×1+(1-λ)×2=2-λ, 故M 点的坐标为⎝ ⎛⎭⎪⎫2-λ,22-λ.由ON →=λOA →+(1-λ)OB →,可知A ,B ,N 三点共线, 所以N 点的坐标满足直线AB 的方程x +y -3=0,又OA→=(1,2),OB →=(2,1),则ON →=(λ+2(1-λ),2λ+(1-λ)), 故N 点的坐标为(2-λ,λ+1). M ,N 两点的横坐标相等, 故|MN |=|22-λ-(λ+1)|,结合图象, 知|MN |=λ+1-22-λ. 因为1≤2-λ≤2,所以0≤λ≤1. 故|MN |=λ+1-22-λ=-(2-λ)-22-λ+3 =-⎣⎢⎡⎦⎥⎤(2-λ)+22-λ+3≤-22+3. 故当且仅当2-λ=22-λ,即λ=2-2时等号成立. 故|MN |≤3-22恒成立.所以该函数的线性近似阈值是3-2 2.故选B .专题作业一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的. 1.已知不等式x 2-2x -3<0的解集为A ,不等式x 2+x -6<0的解集为B ,不等式x 2+ax +b <0的解集为A ∩B ,则a +b 等于( )A .-3B .1C .-1D .3答案 A解析 由题意,得A ={x |-1<x <3},B ={x |-3<x <2},所以A ∩B ={x |-1<x <2},由根与系数的关系可知a =-1,b =-2,则a +b =-3.2.(2020·四川省凉山州高三第三次诊断检测)若a ,b ∈R ,则“a -b >0”是“⎝⎛⎭⎪⎫a +b 22>ab ”的( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件 D .既不充分也不必要条件答案 A解析 若a -b >0,则⎝ ⎛⎭⎪⎫a +b 22-ab =a 2+b 2-2ab 4=(a -b )24>0,即⎝⎛⎭⎪⎫a +b 22>ab ;若⎝ ⎛⎭⎪⎫a +b 22>ab ,即⎝ ⎛⎭⎪⎫a +b 22-ab =a 2+b 2-2ab 4=(a -b )24>0,则a -b >0或a -b <0,所以若a ,b ∈R ,则“a -b >0”是“⎝⎛⎭⎪⎫a +b 22>ab ”的充分不必要条件.故选A . 3.若正实数x ,y 满足x +2y +2xy -8=0,则x +2y 的最小值为( ) A .4 B .92 C .5 D .112答案 A解析 ∵正实数x ,y 满足x +2y +2xy -8=0,∴x +2y +⎝⎛⎭⎪⎫x +2y 22-8≥0,当且仅当x =2y 时取等号.设x +2y =t >0,∴t +14t 2-8≥0,∴t 2+4t -32≥0,即(t +8)·(t -4)≥0,∴t ≥4,故x +2y 的最小值为4.故选A .4.(2020·陕西省汉中二模)已知直线2ax -by +2=0(a >0,b >0)平分圆C :x 2+y 2+2x -4y +1=0的圆周长,则1a +2b 的最小值为( )A .4 2B .3+2 2C .4D .6 答案 B解析 由题意,得圆的圆心(-1,2)在直线2ax -by +2=0(a >0,b >0)上,∴-2a -2b +2=0(a >0,b >0),∴a +b =1,∴1a +2b =(a +b )⎝ ⎛⎭⎪⎫1a +2b =3+b a +2a b ≥3+2b a ·2ab =3+22,当且仅当b a =2a b ,即a =2-1,b =2-2时,1a +2b 的最小值为3+2 2.故选B .5.已知二次函数f (x )=ax 2-(a +2)x +1(a ∈Z ),且函数f (x )在(-2,-1)上恰有一个零点,则不等式f (x )>1的解集为( )A .(-∞,-1)∪(0,+∞)B .(-∞,0)∪(1,+∞)C .(-1,0)D .(0,1)答案 C解析 ∵f (x )=ax 2-(a +2)x +1,Δ=(a +2)2-4a =a 2+4>0,∴函数f (x )=ax 2-(a +2)x +1必有两个不同的零点,又f (x )在(-2,-1)上有一个零点,则f (-2)f (-1)<0,∴(6a +5)(2a +3)<0,解得-32<a <-56.又a ∈Z ,∴a =-1.不等式f (x )>1,即-x 2-x >0,解得-1<x <0.6.若实数x ,y 满足不等式组⎩⎪⎨⎪⎧x +y -1≥0,x -y +1≥0,x ≤a ,且目标函数z =ax -2y 的最大值为1,则实数a 的值是( )A .2-1B .1C .2+1D .3答案 B解析 作出不等式组表示的平面区域,如图中阴影部分所示,其中A (0,1),B (a,1-a ),C (a,1+a ).对z =ax -2y 变形,得y =a 2x -z2,由图知a >0,当直线y =a 2x -z 2经过点B 时,z 取得最大值,所以a 2-2(1-a )=1,解得a =-3(舍去)或a =1,故选B .7.(2020·山东济南模拟)一个圆锥的轴截面是边长为4的等边三角形,在该圆锥中有一个内接圆柱(下底面在圆锥底面上,上底面的圆周在圆锥侧面上),则当该圆柱侧面积取最大值时,该圆柱的高为( )A .1B .2C .3D . 3答案 D解析 由题意,可得P A =PB =AB =4,故圆锥的高PO =23,∠APO =30°,设圆柱的高为h ,底面半径为r ,则PD =23-h ,故r 23-h =13,所以h =23-3r ,圆柱侧面积S =2πrh =2πr ·(23-3r )=23πr ·(2-r )≤23π·⎝ ⎛⎭⎪⎫r +2-r 22=23π,当且仅当r =2-r ,即r =1时取得最大值,此时h = 3.故选D .8.(2020·杭州期末)已知不等式2ax 2+ax -3>0对任意的a ∈[1,3]恒成立的x 的取值集合为A ,不等式mx 2+(m -1)x -m >0对任意的x ∈[1,3]恒成立的m 的取值集合为B ,则有( )A .A ⊆∁R BB .A ⊆BC .B ⊆∁R AD .B ⊆A 答案 D解析 令f (a )=(2x 2+x )a -3,则关于a 的一次函数必单调,则⎩⎨⎧f (3)>0,f (1)>0,解得x <-32或x >1,即A =⎝⎛⎭⎪⎫-∞,-32∪(1,+∞).m (x 2+x -1)>x 对任意的x ∈[1,3]恒成立⇒m >x x 2+x -1对任意的x ∈[1,3]恒成立,又y =x x 2+x -1=1x -1x +1(1≤x ≤3)单调递减,故y max =1,故m >1,即B =(1,+∞).综上B ⊆A ,故选D .二、选择题:在每小题给出的选项中,有多项符合题目要求.9.若1a <1b <0,则下列不等式正确的是( )A .1a +b<1ab B .|a |+b >0 C .a -1a >b -1bD .ln a 2>ln b 2答案 AC解析 由1a <1b <0,可知b <a <0.A 中,因为a +b <0,ab >0,所以1a +b<1ab ,故A 正确;B 中,因为b <a <0,所以-b >-a >0,故-b >|a |,即|a |+b <0,故B 错误;C 中,因为b <a <0,又1a <1b <0,则-1a >-1b >0,所以a -1a >b -1b ,故C 正确;D 中,因为b <a <0,根据y =x 2在(-∞,0)上为减函数,可得b 2>a 2>0,而y =ln x 在定义域(0,+∞)上为增函数,所以ln b 2>ln a 2,故D 错误.故选AC .10.《九章算术》中“勾股容方”问题:“今有勾五步,股十二步,问勾中容方几何?”魏晋时期数学家刘徽在其《九章算术注》中利用出入相补原理给出了这个问题的一般解法:如图1,用对角线将长和宽分别为b 和a 的矩形分成两个直角三角形,每个直角三角形再分成一个内接正方形(黄)和两个小直角三角形(朱、青).将三种颜色的图形进行重组,得到如图2所示的矩形,该矩形长为a +b ,宽为内接正方形的边长d .由刘徽构造的图形可以得到许多重要的结论,如图3.设D 为斜边BC 的中点,作直角三角形ABC 的内接正方形对角线AE ,过点A 作AF ⊥BC 于点F ,则下列推理正确的是( )A.由图1和图2面积相等可得d=a+b abB.由AE≥AF可得a2+b22≥a+b2C.由AD≥AE可得a2+b22≥21a+1bD.由AD≥AF可得a2+b2≥2ab答案BCD解析由题图1和题图2面积相等,得ab=(a+b)d,则d=aba+b,A错误;由题意知题图3面积为12ab=12a2+b2·AF,AF=aba2+b2,AD=12BC=12a2+b2,设题图3中正方形的边长为x,由三角形相似,得a-xx=xb-x,解得x=ab a+b ,则AE=2aba+b,可以化简判断B,C,D正确.故选BCD.11.(2020·武汉部分学校联考)若0<a<b<c,且abc=1,则()A.2a+2b>4 B.lg a+lg b<0C.a+c2>2 D.a2+c>2答案BC解析解法一:因为0<a<b<c,abc=1,所以0<a<1,c>1,a+b>0,0<ab<1,对于A,2a+2b≥22a+b>2×1=2,所以A错误;对于B,lg a+lg b=lg ab<0,所以B正确;对于C,a+c2≥2ac2>2abc=2,所以C正确;对于D,因为0<a<b<c,abc =1,所以0<a b <1,c =1ab ,所以a 2+c ≥2a 2c =2a b ,因为2a b <2,所以D错误.故选BC . 解法二:(特殊值法)因为0<a <b <c ,abc =1,令a =12,b =1,c =2,则212+21=2+2<4,A 错误;令a =23,b =1,c =32,则⎝ ⎛⎭⎪⎫232+32=3518<2,D 错误.故选BC .12.(2020·山东部分重点中学联考)若a <b <-1,c >0,则下列不等式一定成立的是( )A .a -1a >b -1bB .a -1b <b -1aC .ln (b -a )>0D .⎝ ⎛⎭⎪⎫a b c >⎝ ⎛⎭⎪⎫b a c 答案 BD解析 解法一:对于A ,设函数g (x )=x -1x ,x ∈(-∞,-1),则g ′(x )=1+1x 2>0,所以函数g (x )在(-∞,-1)上为增函数,所以当a <b <-1时,a -1a <b -1b ,故A 错误;对于B ,设函数f (x )=x +1x ,x ∈(-∞,-1),则f ′(x )=1-1x 2,因为x ∈(-∞,-1),所以f ′(x )>0,所以函数f (x )在(-∞,-1)上为增函数,所以当a <b <-1时,a +1a <b +1b ,即a -1b <b -1a ,故B 正确;对于C ,因为a <b ,所以b -a >0,但不能确定b -a 与1的大小关系,故ln (b -a )与0的大小关系不能确定,故C 错误;对于D ,由a <b <-1可知a b >1,0<b a <1,而c >0,所以⎝ ⎛⎭⎪⎫a b c >1>⎝ ⎛⎭⎪⎫b a c >0,故D 正确.故选BD .解法二:(利用取特殊值法)令a =-3,b =-2,代入各选项,验证可得正确的选项为B ,D .三、填空题13.若1<α<3,-4<β<2,则α-|β|的取值范围是________.答案 (-3,3)解析 ∵-4<β<2,∴0≤|β|<4,∴-4<-|β|≤0,∴-3<α-|β|<3.14.函数y =x 2+2x -1(x >1)的最小值是________. 答案 23+2解析 ∵x >1,∴x -1>0,∴y =x 2-1+3x -1=(x -1)(x +1)+3x -1=x +1+3x -1=x -1+3x -1+2≥23+2(当且仅当x =1+3时取“=”),即函数y =x 2+2x -1(x >1)的最小值是23+2.15.设a <0,若不等式-cos 2x +(a -1)cos x +a 2≥0对于任意的x ∈R 恒成立,则a 的取值范围是________.答案 a ≤-2解析 令t =cos x ∈[-1,1],则不等式f (t )=t 2-(a -1)t -a 2≤0对t ∈[-1,1]恒成立,因此⎩⎨⎧ f (-1)≤0,f (1)≤0⇒⎩⎨⎧a -a 2≤0,2-a -a 2≤0,∵a <0,∴a ≤-2. 16.已知A (-2,1),B (2,2),C (1,4).若点P (x ,y )在△ABC 区域(包含边界)内运动,则x 2+y 2+2x 的取值范围为________.答案 ⎣⎢⎡⎦⎥⎤817,19 解析 点P 所在平面区域如图中阴影部分所示.x 2+y 2+2x =(x +1)2+y 2-1,其中(x +1)2+y 2=[x -(-1)]2+(y -0)2,表示点P (x ,y )到点Q (-1,0)的距离的平方.令t =x 2+y 2+2x ,则t =|PQ |2-1.由图可知|PQ |max =|QC |=(1+1)2+42=2 5.由A (-2,1),B (2,2)知直线AB 的方程为x -4y+6=0,所以|PQ |min =d =517,其中d 表示点Q 到直线AB 的距离,所以t max =(25)2-1=19,t min =⎝ ⎛⎭⎪⎫5172-1=817,所以x 2+y 2+2x 的取值范围为⎣⎢⎡⎦⎥⎤817,19.。

高中数学人教A版三维设计浙江专版必修讲义第三章 基本不等式含答案

高中数学人教A版三维设计浙江专版必修讲义第三章 基本不等式含答案

求实际问题中最值的解题 4 步骤
(1)先读懂题意,设出变量,理清思路,列出函数关系式.
(2)把实际问题抽象成函数的最大值或最小值问题.
(3)在定义域内,求函数的最大值或最小值时,一般先考虑基本不等式,当基本不等式
求最值的条件不具备时,再考虑函数的单调性.
(4)正确写出答案.
[活学活用]
某公司购买一批机器投入生产,据市场分析,每台机器生产的产品可获得的总利润
a+b 基本不等式: ab ≤
2
预习课本 P97~100,思考并完成以下问题
(1)基本不等式的形式是什么?需具备哪些条件?
(2)在利用基本不等式求最值时,应注意哪些方面?
(3)一般按照怎样的思路来求解实际问题中的最值问题?
1.重要不等式
[新知初探]
当 a,b 是任意实数时,有 a2+b2≥2ab,当且仅当 a=b 时,等号成立.
3
2 所以 a2+b2≥ (a+b),
2
2
2
同理 b2+c2≥ (b+c), c2+a2≥ (c+a),
2
2
2 所以 a2+b2+ b2+c2+ c2+a2≥ [(a+b)+(b+c)+(c+a)],
2
即 a2+b2+ b2+c2+ c2+a2≥ 2(a+b+c),当且仅当 a=b=c 时,等号成立.
b≥2 ab成立.
4
4
(2)错误.只有当 a>0 时,根据基本不等式,才有不等式 a+ ≥2 a· =4 成立.
a
a
( ) a+b
a+b
(3)正确.因为 ab≤ ,所以 ab≤
2.
2
2
答案:(1)× (2)× (3)√
2.若 a>b>0,则下列不等式成立的是( )

基本不等式

基本不等式

3.1基本不等式本节是必修五第三章第三节的内容。

不等的现象在我们生活中是很常见的,而数学式恰好可以解释这种现象。

在本章前面两节的我们已经接触到不等关系和不等式,那不等关系的一些基本规律正是这节课的内容。

一.教学目标1.知识与技能(1)理解和掌握不等式的证明过程(2)初步使用不等式解决问题2.过程与方法培养学生观察、归纳、总结、判断的思维能力。

3.情感态度价值观让学生进一步体会数与形的和谐统一。

二.教学重难点重点:基本不等式的定义;难点:对基本不等式的理解。

三.学情分析学生通过一年多高中数学的学习,现在已经基本掌握了数学学习中的一些方法,教师引导学生观察,试验,归纳,判断,并且得出结论。

学生之间互相探究,提高学生的学习兴趣。

四.教学方法讲练结合,启示法,合作交流。

五.教学过程(一)复习回顾,引入课题1.让学生回忆初中学习过的完全平方公式是什么?(x−y)2=x2−2xy+y2,(x−y)2≥02.如果用√a,√b代替上式中的x,y,会出现什么样的结论。

(二)新课学习,合作探究1.抽象概括如果a,b都是非负数,那么a+b2≥√ab,当且仅当a=b时,等号成立。

我们称上述不等式为基本不等式,其中a+b2称为算术平均数,√ab称为a,b的几何平均数。

因此基本不等式又称为均值不等式。

2.定义引申基本不等式在几何中也是成立的。

如图:AB是⊙O的直径,AC=a,CB=b,过点C作CD⊥AB交⊙O上半圆于D,连接AD,BD,由射影定理可知CD=√ab ,而OD=a+b 2.因为 OD > CD,所以a+b 2> √ab .3.合作探究(1)设a,b 均为正数,证明不等式√ab ≥21a +1b.证明:因a,b 均为正数,由基本不等式,可知1a +1b2≥√ab也即√ab ≥21a +1b.,当且仅当a=b 时,等号成立.(2)几何解释 如图:设AC=a,CB=b,CD ⊥AB, 交⊙O 上半圆于D,过C 作CE ⊥OD 交OD 于E,在RT △OCD 中,由射影定理可知,DC 2=DE ⋅OD,即DE =DC 2OD=ab a+b 2=21a +1b.由DC ≥DE,得√ab ≥21a +1b,当且仅当a=b时,等号成立. 4. 思考交流 如图:在⊙O上半圆中,设AC=a,CB=b,OF⊥AB上半圆于F,请你利用FC≥OF得出一个关于a,b的不等式,将这个不等式与基本不等式和例一中的不等式进行比较。

高考数学第3讲 不等式性质与线性规划、基本不等式

高考数学第3讲 不等式性质与线性规划、基本不等式
核心知识 核心考点 高考押题 限时规范训练
大二轮复习 数学(文)
得 f(2a)-12(2a+2)2<f(12-a)-12(12-a+2)2, 即 g(2a)<g(12-a),所以 2a>12-a,所以 a>4, 又 2a>-2,12-a>-2,所以 4<a<14. 故选 B.
核心知识 核心考点 高考押题 限时规范训练
核心知识 核心考点 高考押题 限时规范训练
大二轮复习 数学(文)
考点一 不等式性质及求解
——清楚条件,等价转化
(1)[考题打磨]设 a=2ln 3,b=2-0.1,c=ln 8,则 a,b,c
的大小关系是( A )
A.a>c>b
B.a>b>c
C.b>a>c
D.c>a>b
解析:选 A.a=2ln 3=ln 9>ln 8>1. b=2-0.1<1,∴a>c>b,选 A.
的最大值为 的最小值为
___2__S______.
核心知识 核心考点 高考押题 限时规范训练
大二轮复习 数学(文)
3.不等式 y>kx+b 表示直线 y=kx+b 上方的区域;y<kx+b 表示 直线 y=kx+b 下方的区域.
4.绝对值不等式:|x|>a(a>0)⇔ __x_>__a__或__x_<__-__a___, |x|<a(a>0)⇔ _-__a_<__x_<__a__.
(5)形如 y=ax+bx(a>0,b>0),x∈(0,+∞)取最小值时,ax=bx⇒x b
=______a_____,即“对号函数”单调变化的分界点;
__P2__2_(6_)_a_>_0_,_ ;b>若0,a若b =a
+b=P,当且仅当 S,当且仅当 a=
a b

2022年高考数学(文)一轮复习文档:第六章 不等式 第3讲基本不等式 Word版含答案

2022年高考数学(文)一轮复习文档:第六章 不等式 第3讲基本不等式 Word版含答案

第3讲 基本不等式,)1.基本不等式ab ≤a +b2(1)基本不等式成立的条件:a ≥0,b ≥0. (2)等号成立的条件:当且仅当a =b 时取等号. 2.算术平均数与几何平均数 设a >0,b >0,则a ,b 的算术平均数为a +b2,几何平均数为ab ,基本不等式可叙述为:两个正实数的算术平均数不小于它们的几何平均数.3.利用基本不等式求最值问题 已知x >0,y >0,则(1)假如积xy 是定值p ,那么当且仅当x =y 时,x +y 有最小值是2p .(简记:积定和最小) (2)假如和x +y 是定值p ,那么当且仅当x =y 时,xy 有最大值是p 24.(简记:和定积最大)1.辨明两个易误点(1)使用基本不等式求最值,“一正,二定,三相等”三个条件缺一不行; (2)连续使用基本不等式求最值要求每次等号成立的条件全都. 2.活用几个重要的不等式a 2+b 2≥2ab (a ,b ∈R );b a +ab≥2(a ,b 同号且都不为0);ab ≤⎝ ⎛⎭⎪⎫a +b 22(a ,b ∈R );⎝ ⎛⎭⎪⎫a +b 22≤a 2+b 22(a ,b ∈R ). 3.巧用“拆”“拼”“凑”在运用基本不等式时,要特殊留意“拆”“拼”“凑”等技巧,使其满足基本不等式中“正”“定”“等”的条件.1.教材习题改编 将正数m 分成两个正数a 与b 之和,则ab 的范围为( )A .(0,m 22]B .(0,m 24]C .[m 22,+∞)D .[m 24,+∞)B a +b =m ≥2ab , 所以ab ≤m 24,故选B.2.教材习题改编 函数f (x )=x +1x的值域为( )A .B .∪ 当x >0时,x +1x≥2x ·1x=2.当x <0时,-x >0. -x +1-x≥2(-x )·1(-x )=2.所以x +1x≤-2.所以f (x )=x +1x的值域为(-∞,-2]∪ 设折成的矩形的两边分别为x ,y (x >0,y >0).则x +y =a2.由于x +y ≥2xy , 所以xy ≤14(x +y )2=a 216,即S 矩形≤a 216. 当且仅当x =y =a 4时,(S 矩形)max =a 216.故选D.4.若x >1,则x +4x -1的最小值为________. x +4x -1=x -1+4x -1+1≥4+1=5. 当且仅当x -1=4x -1, 即x =3时等号成立. 55.若实数x ,y 满足xy =1,则x 2+2y 2的最小值为______.由于xy =1,所以y =1x,所以x 2+2y 2=x 2+2x2≥2x 2·2x2=2 2.即x 2+2y 2的最小值为2 2. 2 2利用基本不等式求最值(高频考点)利用基本不等式求最值是高考的常考内容,题型主要为选择题、填空题. 高考对利用基本不等式求最值的考查主要有以下三个命题角度: (1)知和求积的最值; (2)知积求和的最值; (3)求参数的值或范围.(1)(2021·安徽合肥二模)若a ,b 都是正数,则⎝⎛⎭⎪⎫1+b a ⎝⎛⎭⎪⎫1+4a b 的最小值为( )A .7B .8C .9D .10(2)(2021·安徽安庆二模)已知a >0,b >0,a +b =1a +1b ,则1a +2b的最小值为( )A .4B .2 2C .8D .16【解析】 (1)由于a ,b 都是正数,所以⎝ ⎛⎭⎪⎫1+b a ⎝ ⎛⎭⎪⎫1+4a b=5+b a +4a b≥5+2b a ·4ab=9,当且仅当b =2a >0时取等号.故选C.(2)由a >0,b >0,a +b =1a +1b =a +b ab ,得ab =1,则1a +2b≥21a ·2b =2 2.当且仅当1a =2b ,即a =22,b =2时等号成立.故选B.【答案】 (1)C (2)B角度一 知和求积的最值1.若实数a ,b 满足1a +2b=ab ,则ab 的最小值为( )A . 2B .2C .2 2D .4C 由1a +2b =ab 知a >0,b >0,所以ab =1a +2b ≥22ab,即ab ≥22, 当且仅当⎩⎪⎨⎪⎧1a =2b ,1a +2b =ab ,即a =42,b =242时取“=”, 所以ab 的最小值为2 2. 角度二 知积求和的最值 2.已知函数y =ax +3-2(a >0,a ≠1)的图象恒过定点A ,若点A 在直线x m +y n=-1上,且m ,n >0,则3m+n 的最小值为________.易知函数y =ax +3-2(a >0,a ≠1)恒过定点(-3,-1),所以A (-3,-1).又由于点A 在直线x m +yn=-1上,所以3m +1n=1.所以3m +n =(3m +n )·⎝ ⎛⎭⎪⎫3m +1n=10+3m n +3n m≥10+23m n ·3nm=16,当且仅当m =n 时,等号成立, 所以3m +n 的最小值为16. 16角度三 求参数的值或范围 3.已知不等式(x +y )⎝ ⎛⎭⎪⎫1x +a y ≥9对任意的正实数x ,y 恒成立,则正实数a 的最小值为________.(x +y )⎝ ⎛⎭⎪⎫1x +a y =1+a +y x+ax y≥1+a +2a =(a +1)2(x ,y ,a >0),当且仅当y =ax 时取等号, 所以(x +y )·⎝ ⎛⎭⎪⎫1x +a y 的最小值为(a +1)2,于是(a +1)2≥9恒成立. 所以a ≥4. 4利用基本不等式解决实际问题小王高校毕业后,打算利用所学专业进行自主创业.经过市场调查,生产某小型电子产品需投入年固定成本为3万元,每生产x 万件,需另投入流淌成本为W (x )万元,在年产量不足8万件时,W (x )=13x2+x (万元).在年产量不小于8万件时,W (x )=6x +100x-38(万元).每件产品售价为5元.通过市场分析,小王生产的商品能当年全部售完.(1)写出年利润L (x )(万元)关于年产量x (万件)的函数解析式;(注:年利润=年销售收入-固定成本-流淌成本)(2)年产量为多少万件时,小王在这一商品的生产中所获利润最大?最大利润是多少? 【解】 (1)由于每件商品售价为5元,则x 万件商品销售收入为5x 万元, 依题意得,当0<x <8时,L (x )=5x -⎝ ⎛⎭⎪⎫13x 2+x -3=-13x 2+4x -3;当x ≥8时,L (x )=5x -⎝ ⎛⎭⎪⎫6x +100x -38-3=35-⎝ ⎛⎭⎪⎫x +100x .所以L (x )=⎩⎪⎨⎪⎧-13x 2+4x -3,0<x <8,35-⎝ ⎛⎭⎪⎫x +100x ,x ≥8.(2)当0<x <8时,L (x )=-13(x -6)2+9.此时,当x =6时,L (x )取得最大值L (6)=9万元,当x ≥8时,L (x )=35-⎝⎛⎭⎪⎫x +100x ≤35-2x ·100x=35-20=15,此时,当且仅当x =100x,即x =10时,L (x )取得最大值15万元.由于9<15,所以当年产量为10万件时,小王在这一商品的生产中所获利润最大,最大利润为15万元.某商品每件成本价为80元,售价为100元,每天售出100件.若售价降低x 成(1成=10%),售出商品数量就增加85x 成.要求售价不能低于成本价.(1)设该商店一天的营业额为y ,试求y 与x 之间的函数关系式y =f (x ),并写出定义域. (2)若要求该商品一天营业额至少为10 260元,求x 的取值范围.(1)由题意得y =100⎝ ⎛⎭⎪⎫1-x 10·100⎝ ⎛⎭⎪⎫1+850x . 由于售价不能低于成本价,所以100⎝ ⎛⎭⎪⎫1-x 10-80≥0,得x ≤2.所以y =f (x )=20(10-x )(50+8x ),定义域为.(2)由题意得20(10-x )(50+8x )≥10 260,化简得8x 2-30x +13≤0.解得12≤x ≤134.所以x 的取值范围是⎣⎢⎡⎦⎥⎤12,2.,)——忽视最值取得的条件致误(1)已知x >0,y >0,且1x +2y=1,则x +y 的最小值是________.(2)函数y =1-2x -3x(x <0)的最小值为________.【解析】 (1)由于x >0,y >0,所以x +y =(x +y )⎝ ⎛⎭⎪⎫1x +2y=3+y x+2xy≥3+22(当且仅当y =2x 时取等号),所以当x =2+1,y =2+2时,(x +y )min =3+2 2. (2)由于x <0,所以y =1-2x -3x =1+(-2x )+(-3x)≥1+2(-2x )·3-x=1+26,当且仅当x =-62时取等号,故y 的最小值为1+2 6. 【答案】 (1)3+2 2 (2)1+2 6(1)利用基本不等式求最值,肯定要留意应用条件,如本例(2)易忽视条件x <0而误用基本不等式得2x +3x≥2 6.(2)尽量避开多次使用基本不等式,若必需多次使用,肯定要保证等号成立的条件全都.当3<x <12时,函数y =(x -3)(12-x )x的最大值为________.y =(x -3)(12-x )x=-x 2+15x -36x=-⎝⎛⎭⎪⎫x +36x +15≤-2x ·36x+15=3.当且仅当x =36x, 即x =6时,y max =3. 3,)1.(2021·海口调研)已知a ,b ∈(0,+∞),且a +b =1,则ab 的最大值为( ) A .1B .14C .12D .22B 由于a ,b ∈(0,+∞), 所以1=a +b ≥2ab , 所以ab ≤14,当且仅当a =b =12时等号成立.2.已知f (x )=x +1x-2(x <0),则f (x )有( )A .最大值为0B .最小值为0C .最大值为-4D .最小值为-4C 由于x <0,所以f (x )=-⎣⎢⎡⎦⎥⎤(-x )+1(-x )-2≤-2-2=-4, 当且仅当-x =1-x,即x =-1时取等号.3.(2021·安徽省六校联考)若正实数x ,y 满足x +y =2,且1xy≥M 恒成立,则M 的最大值为( )A .1B .2C .3D .4A 由于正实数x ,y 满足x +y =2, 所以xy ≤(x +y )24=224=1,所以1xy ≥1;又1xy≥M 恒成立,所以M ≤1,即M 的最大值为1.4.已知函数y =x -4+9x +1(x >-1),当x =a 时,y 取得最小值b ,则a +b 等于( ) A .-3 B .2 C .3D .8C y =x -4+9x +1=x +1+9x +1-5, 由于x >-1,所以x +1>0,9x +1>0. 所以由基本不等式, 得y =x +1+9x +1-5≥2(x +1)·9x +1-5=1, 当且仅当x +1=9x +1,即(x +1)2=9,即x +1=3,x =2时取等号, 所以a =2,b =1,a +b =3.5.已知x >0,y >0,x +3y +xy =9,则x +3y 的最小值为( ) A .2 B .4 C .6D .8C 由已知得x +3y =9-xy , 又由于x >0,y >0,所以x +3y ≥23xy ,所以3xy ≤⎝ ⎛⎭⎪⎫x +3y 22,当且仅当x =3y 时,即x =3,y =1时取等号,(x +3y )2+12(x +3y )-108≥0. 令x +3y =t ,则t >0且t 2+12t -108≥0, 得t ≥6即x +3y ≥6.6.某车间分批生产某种产品,每批产品的生产预备费用为800元,若每批生产x 件,则平均仓储时间为x8天,且每件产品每天的仓储费用为1元.为使平均到每件产品的生产预备费用与仓储费用之和最小,每批应生产产品( )A .60件B .80件C .100件D .120件B 若每批生产x 件产品,则每件产品的生产预备费用是800x 元,仓储费用是x 8元,总的费用是800x +x8≥2800x ·x8=20, 当且仅当800x =x8,即x =80时取等号.7.(2021·郑州检测)已知a >0,b >0,a +2b =3,则2a +1b的最小值为________.由a +2b =3得13a +23b =1,所以2a +1b =⎝ ⎛⎭⎪⎫13a +23b ⎝ ⎛⎭⎪⎫2a +1b=43+a 3b +4b 3a ≥43+2a 3b ·4b 3a =83. 当且仅当a =2b =32时取等号.838.已知函数f (x )=4x +a x(x >0,a >0)在x =3时取得最小值,则a =________. f (x )=4x +a x≥24x ·a x =4a ,当且仅当4x =a x,即a =4x 2时取等号,则由题意知a =4×32=36.369.正实数x ,y 满足x +2y =2,则3x +9y的最小值是______. 利用基本不等式可得3x +9y =3x +32y ≥23x ·32y =23x +2y.由于x +2y =2, 所以3x +9y ≥232=6,当且仅当3x =32y,即x =1,y =12时取等号.610.不等式x 2+x <a b +b a对任意a ,b ∈(0,+∞)恒成立,则实数x 的取值范围是________.依据题意,由于不等式x 2+x <a b +b a对任意a ,b ∈(0,+∞)恒成立,则x 2+x <⎝ ⎛⎭⎪⎫a b +b a min,由于a b +ba ≥2a b ·b a=2,当且仅当a =b 时等号成立,所以x 2+x <2,求解此一元二次不等式可知-2<x <1,所以x 的取值范围是(-2,1).(-2,1)11.已知x >0,y >0,且2x +8y -xy =0,求 (1)xy 的最小值; (2)x +y 的最小值. (1)由2x +8y -xy =0, 得8x +2y=1,又x >0,y >0,则1=8x +2y ≥28x ·2y=8xy.得xy ≥64,当且仅当x =16,y =4时,等号成立. 所以xy 的最小值为64.(2)由2x +8y -xy =0,得8x +2y=1,则x +y =⎝⎛⎭⎪⎫8x +2y·(x +y )=10+2x y +8yx≥10+22x y ·8yx=18.当且仅当x =12且y =6时等号成立, 所以x +y 的最小值为18.12.(2021·东北育才学校模拟)设OA →=(1,-2),OB →=(a ,-1),OC →=(-b ,0)(a >0,b >0,O 为坐标原点),若A ,B ,C 三点共线,则2a +1b的最小值是( )A .4B .92C .8D .9D 由于AB →=OB →-OA →=(a -1,1), AC →=OC →-OA →=(-b -1,2),若A ,B ,C 三点共线, 则有AB →∥AC →,所以(a -1)×2-1×(-b -1)=0,所以2a +b =1, 又a >0,b >0,所以2a +1b =⎝ ⎛⎭⎪⎫2a +1b ·(2a +b )=5+2b a+2ab≥5+22b a ·2ab=9,当且仅当⎩⎪⎨⎪⎧2b a =2a b ,2a +b =1,即a =b =13时等号成立.13.已知x >0,y >0,且2x +5y =20. 求:(1)u =lg x +lg y 的最大值; (2)1x +1y的最小值.(1)由于x >0,y >0,所以由基本不等式,得2x +5y ≥210xy . 由于2x +5y =20,所以210xy ≤20,xy ≤10, 当且仅当2x =5y 时,等号成立.因此有⎩⎪⎨⎪⎧2x +5y =20,2x =5y ,解得⎩⎪⎨⎪⎧x =5,y =2,此时xy 有最大值10.所以u =lg x +lg y =lg(xy )≤lg 10=1.所以当x =5,y =2时,u =lg x +lg y 有最大值1. (2)由于x >0,y >0,所以1x +1y =⎝ ⎛⎭⎪⎫1x +1y ·2x +5y 20=120⎝ ⎛⎭⎪⎫7+5y x +2x y ≥120⎝⎛⎭⎪⎫7+2 5y x ·2x y =7+21020. 当且仅当5y x =2xy时,等号成立.由⎩⎪⎨⎪⎧2x +5y =20,5y x =2x y ,解得⎩⎪⎨⎪⎧x =1010-203,y =20-4103.所以1x +1y 的最小值为7+21020.14.(2021·常州期末调研)某学校为了支持生物课程基地争辩植物生长,方案利用学校空地建筑一间室内面积为900 m 2的矩形温室,在温室内划出三块全等的矩形区域,分别种植三种植物,相邻矩形区域之间间隔1 m ,三块矩形区域的前、后与内墙各保留1 m 宽的通道,左、右两块矩形区域分别与相邻的左右内墙保留3 m 宽的通道,如图.设矩形温室的室内长为x (单位:m),三块种植植物的矩形区域的总面积为S (单位:m 2).(1)求S 关于x 的函数关系式; (2)求S 的最大值. (1)由题设,得S =(x -8)⎝ ⎛⎭⎪⎫900x -2=-2x -7 200x +916,x ∈(8,450).(2)由于8<x <450, 所以2x +7 200x≥22x ×7 200x=240.当且仅当x =60时等号成立,从而S ≤676.故当矩形温室的室内长为60 m 时,三块种植植物的矩形区域的总面积最大,最大为676 m 2.。

拔高学习----不等式之第3讲:基本不等式及应用 (学生版)

拔高学习----不等式之第3讲:基本不等式及应用 (学生版)

第3讲 基本不等式及应用最新考纲 1.了解基本不等式的证明过程;2.会用基本不等式解决简单的最大(小)值问题.知 识 梳 理1.基本不等式:ab ≤a +b 2(1)基本不等式成立的条件:a >0,b >0.(2)等号成立的条件:当且仅当a =b 时取等号.(3)其中a +b 2称为正数a ,b 的算术平均数,ab 称为正数a ,b 的几何平均数.2.几个重要的不等式(1)a 2+b 2≥2ab (a ,b ∈R ),当且仅当a =b 时取等号.(2)ab ≤⎝ ⎛⎭⎪⎫a +b 22(a ,b ∈R ),当且仅当a =b 时取等号. (3)a 2+b 22≥⎝ ⎛⎭⎪⎫a +b 22(a ,b ∈R ),当且仅当a =b 时取等号. (4)b a +a b ≥2(a ,b 同号),当且仅当a =b 时取等号.3.利用基本不等式求最值已知x >0,y >0,则(1)如果积xy 是定值p ,那么当且仅当x =y 时,x +y 有最小值是简记:积定和最小).(2)如果和x +y 是定值s ,那么当且仅当x =y 时,xy 有最大值是s 24(简记:和定积最大).诊 断 自 测1.判断正误(在括号内打“√”或“×”) 精彩PPT 展示(1)当a≥0,b≥0时,a+b2≥ab.()(2)两个不等式a2+b2≥2ab与a+b2≥ab成立的条件是相同的.()(3)函数y=x+1x的最小值是2.()(4)函数f(x)=sin x+4sin x的最小值为2.()(5)x>0且y>0是xy+yx≥2的充要条件.()2.若a,b∈R,且ab>0,则下列不等式中,恒成立的是()A.a2+b2>2abB.a+b≥2abC.1a+1b>2abD.ba+ab≥23.若直线xa+yb=1(a>0,b>0)过点(1,1),则a+b的最小值等于()A.2B.3C.4D.54.(2015·湖南卷)若实数a,b满足1a+2b=ab,则ab的最小值为()A. 2B.2C.2 2D.45.(人教A必修5P100A2改编)一段长为30 m的篱笆围成一个一边靠墙的矩形菜园,墙长18 m,则这个矩形的长为________m,宽为________m时菜园面积最大.考点一配凑法求最值【例1】(1)已知x<54,求f(x)=4x-2+14x-5的最大值;(2)已知x为正实数且x2+y22=1,求x1+y2的最大值;(3)求函数y=x-1x+3+x-1的最大值.【训练1】(1)设0<x<52,则函数y=4x(5-2x)的最大值为________.(2)设x>-1,则函数y=(x+5)(x+2)x+1的最小值为________.考点二 常数代换或消元法求最值【例2】 (1)已知x >0,y >0且x +y =1,则8x +2y 的最小值为________.(2)(2016·南昌模拟)已知x >0,y >0,x +3y +xy =9,则x +3y 的最小值为________.【训练2】 (1)若正数x ,y 满足x +3y =5xy ,则3x +4y 的最小值是( )A.245B.285C.5D.6(2)(2016·浙江十校联考)若正数x ,y 满足4x 2+9y 2+3xy =30,则xy 的最大值是( ) A.43 B.53 C.2 D.54(3)设x ,y 为实数. 若4x 2+y 2+xy =1,则2x +y 的最大值是________.考点三 基本不等式在实际问题中的应用【例3】 某项研究表明:在考虑行车安全的情况下,某路段车流量F (单位时间内经过测量点的车辆数,单位:辆/时)与车流速度v (假设车辆以相同速度v 行驶,单位:米/秒),平均车长l (单位:米)的值有关,其公式为F =76 000v v 2+18v +20l . (1)如果不限定车型,l =6.05,则最大车流量为______辆/时;(2)如果限定车型,l =5,则最大车流量比(1)中的最大车流量增加________辆/时.【训练3】 要制作一个容积为4 m 3,高为1 m 的无盖长方体容器.已知该容器的底面造价是每平方米20元,侧面造价是每平方米10元,则该容器的最低总造价是( )A.80元B.120元C.160元D.240元解析 设底面矩形的长和宽分别为a m ,b m ,则ab =4(m 2).容器的总造价为20ab +2(a +b )×10=80+20(a +b )≥80+40ab =160(元)(当且仅当a =b 时等号成立).故选C. 答案 C基础巩固题组(建议用时:40分钟)一、选择题1.下列不等式一定成立的是( )A.lg ⎝ ⎛⎭⎪⎫x 2+14>lg x (x >0) B.sin x +1sin x ≥2(x ≠k π,k ∈Z )C.x 2+1≥2|x |(x ∈R )D.1x 2+1>1(x ∈R ) 2.已知a >0,b >0,a +b =2,则y =1a +4b 的最小值是( )A.72B.4C.92D.53.(2016·南昌一模)若a >0,b >0,且a +b =4,则下列不等式恒成立的是( )A.1ab >12B.1a +1b ≤1C.ab ≥2D.1a 2+b 2≤184.已知x ,y ∈(0,+∞),且log 2x +log 2y =2,则1x +1y 的最小值是( )A.4B.3C.2D.15.小王从甲地到乙地往返的时速分别为a 和b (a <b ),其全程的平均时速为v ,则( )A.a <v <abB.v =abC.ab <v <a +b 2D.v =a +b 2 二、填空题6.设x ,y ∈R ,且xy ≠0,则⎝ ⎛⎭⎪⎫x 2+1y 2⎝ ⎛⎭⎪⎫1x 2+4y 2的最小值为________. 7.(2015·东北师大附中三模)已知x >0,y >0,lg 2x +lg 8y =lg 2,则1x +13y 的最小值是________.8.若对于任意x >0,x x 2+3x +1≤a 恒成立,则a 的取值范围是________. 三、解答题9.已知x >0,y >0,且2x +5y =20.(1)求u =lg x +lg y 的最大值;(2)求1x +1y 的最小值.10.运货卡车以每小时x 千米的速度匀速行驶130千米,按交通法规限制50≤x ≤100(单位:千米/时).假设汽油的价格是每升2元,而汽车每小时耗油⎝ ⎛⎭⎪⎫2+x 2360升,司机的工资是每小时14元.(1)求这次行车总费用y关于x的表达式;(2)当x为何值时,这次行车的总费用最低,并求出最低费用的值.能力提升题组(建议用时:20分钟)11.设正实数x,y,z满足x2-3xy+4y2-z=0,则当xyz取得最大值时,2x+1y-2z的最大值为()A.0B.1C.94 D.312.(2015·江西五校联考)已知x>0,y>0,且4xy-x-2y=4,则xy的最小值为()A.22 B.2 2 C. 2 D.213.(2016·唐山一模)已知x,y∈R且满足x2+2xy+4y2=6,则z=x2+4y2的取值范围为________.14.某造纸厂拟建一座底面图形为矩形且面积为162平方米的三级污水处理池,池的深度一定(平面图如图所示),如果池四周围墙建造单价为400元/米,中间两道隔墙建造单价为248元/米,池底建造单价为80元/平方米,水池所有墙的厚度忽略不计.(1)试设计污水处理池的长和宽,使总造价最低,并求出最低总造价;(2)若由于地形限制,该池的长和宽都不能超过16米,试设计污水处理池的长和宽,使总造价最低,并求出最低总造价.。

第3讲 不等式的性质和基本不等式学生(新高一培优十六讲系列)

第3讲 不等式的性质和基本不等式学生(新高一培优十六讲系列)

第3讲 不等式的性质和基本不等式[玩前必备]1.不等式的基本性质2.两个实数比较大小的方法 (1)作差法⎩⎪⎨⎪⎧a -b >0⇔a >b a -b =0⇔a =ba -b <0⇔a <b(a ,b ∈R )(2)作商法⎩⎪⎨⎪⎧ab>1⇔a >b ab =1⇔a =ba b<1⇔a <b (a ∈R ,b >0)3.基本(均值)不等式ab ≤a +b2(1)基本(均值)不等式成立的条件:a >0,b >0. (2)等号成立的条件:当且仅当a =b 时取等号. 4.几个重要的不等式(1)a 2+b 2≥2ab (a ,b ∈R ).(2)b a +ab≥2(a ,b 同号).(3)ab ≤⎝⎛⎭⎫a +b 22(a ,b ∈R ).(4)a 2+b 22≥⎝⎛⎭⎫a +b 22(a ,b ∈R ). 5.算术平均数与几何平均数设a >0,b >0,则a ,b 的算术平均数为a +b2,几何平均数为ab ,基本(均值)不等式可叙述为:两个正数的算术平均数不小于它们的几何平均数. 6.利用基本(均值)不等式求最值问题 已知x >0,y >0,则:(1)如果积xy 是定值p ,那么当且仅当x =y 时,x +y 有最小值是2p .(简记:积定和最小) (2)如果和x +y 是定值p ,那么当且仅当x =y 时,xy 有最大值是p 24.(简记:和定积最大)[玩转典例]题型一 不等式的性质应用例1 (1)给出下列命题: ①若ab >0,a >b ,则1a <1b ;②若a >b ,c >d ,则a -c >b -d ;③对于正数a ,b ,m ,若a <b ,则a b <a +mb +m.其中真命题的序号是________.(2)已知a ,b ,c 为不全相等的实数,P =a 2+b 2+c 2+3,Q =2(a +b +c ),那么P 与Q 的大小关系是( )A .P >QB .P ≥QC .P <QD .P ≤Q(3)已知12<a <60,15<b <36.求a -b 和ab 的取值范围.【玩转跟踪】1.下列命题中一定正确的是( ) A .若a >b ,且1a >1b ,则a >0,b <0B .若a >b ,b ≠0,则ab >1C .若a >b ,且a +c >b +d ,则c >dD .若a >b ,且ac >bd ,则c >d2.已知1≤a -b ≤2且2≤a +b ≤4,求4a -2b 的取值范围.3.已知实数a ,b ,c 满足b +c =6-4a +3a 2,c -b =4-4a +a 2,则a ,b ,c 的大小关系是( ) A .c ≥b >a B .a >c ≥b C .c >b >aD .a >c >b题型二 基本不等式求最值角度一:通过配凑法利用基本(均值)不等式求最值例2 (1)已知0<x <1,则x (3-3x )取得最大值时x 的值为( ) A.13 B.12 C.34 D.23 (2)若函数f (x )=x +1x -2(x >2)在x =a 处取最小值,则a 等于( ) A .1+ 2 B .1+3 C .3 D .4 (3)①已知x <54,求f (x )=4x -2+14x -5的最大值;②已知x 为正实数且x 2+y 22=1,求x 1+y 2的最大值; ③求函数y =x -1x +3+x -1的最大值.角度二:通过常数代换法利用基本(均值)不等式求最值例3 已知a >0,b >0,a +b =1,则1a +1b 的最小值为________.[探究1] 本例的条件不变,则⎝⎛⎭⎫1+1a ⎝⎛⎭⎫1+1b 的最小值为________. [探究2] 本例的条件和结论互换即:已知a >0,b >0,1a +1b =4,则a +b 的最小值为________.[探究3] 若将本例中的“a +b =1”换为“a +2b =3”,如何求解?题型三 均值不等式实际应用例4 某车间分批生产某种产品,每批产品的生产准备费用为800元,若每批生产x 件,则平均仓储时间为x8天,且每件产品每天的仓储费用为1元.为使平均到每件产品的生产准备费用与仓储费用之和最小,每批应生产产品( )A .60件B .80件C .100件D .120件 [玩转跟踪]1.某公司购买一批机器投入生产,据市场分析,每台机器生产的产品可获得的总利润y (单位:万元)与机器运转时间x (单位:年)的关系为y =-x 2+18x -25(x ∈N *),则该公司年平均利润的最大值是________万元.[玩转练习]1.如果a <0,b >0,那么下列不等式中正确的是( ) A.1a <1b B.-a <b C .a 2<b 2D .|a |>|b |2.若a ,b ,c ∈R ,且a >b ,则下列不等式一定成立的是( ) A .a +c ≥b -c B .ac >bc C.c 2a -b>0 D .(a -b )c 2≥03.给出下列条件:①ab >0;②ab <0;③a >0,b >0;④a <0,b <0. 其中可使b a +ab ≥2成立的个数是( )A .1B .2C .3D .44.若a ,b ∈R 且ab >0,则下列不等式中恒成立的是( ) A .a 2+b 2>2ab B .a +b ≥2ab C.1a +1b >2abD.b a +a b ≥2 5.设x >0,则3-3x -1x 的最大值是( )A .3B .3-22C .-1D .3-236.已知x 2-x +1x -1(x >1)在x =t 时取得最小值,则t 等于( )A .1+ 2B .2C .3D .47.已知正数a ,b 满足a +2b =2,则2a +1b的最小值为________.8.已知a >0,b >0,2a +1b =16,若不等式2a +b ≥9m 恒成立,则m 的最大值为( )A .8B .7C .6D .59.设a >b >c >0,x =a 2+(b +c )2,y =b 2+(c +a )2,z =c 2+(a +b )2,则x ,y ,z 的大小顺序是________.10.在如图所示的锐角三角形空地中,欲建一个面积最大的内接矩形花园(阴影部分),则其边长x 为________m.11.若-1<a +b <3,2<a -b <4,求2a +3b 的取值范围.12.已知x >0,y >0且2x +5y =20. (1)求xy 的最大值; (2)求1x +1y 的最小值.13.某人准备租一辆车从孝感出发去武汉,已知从出发点到目的地的距离为100 km ,按交通法规定:这段公路车速限制在40~100(单位:km /h)之间.假设目前油价为7.2元/L ,汽车的耗油率为⎝⎛⎭⎫3+x2360L /h ,其中x (单位:km/h)为汽车的行驶速度,耗油率指汽车每小时的耗油量.租车需付给司机每小时的工资为76.4元,不考虑其他费用,这次租车的总费用最少是多少?此时的车速x 是多少?(注:租车总费用=耗油费+司机的工资)。

基本不等式(经典)

基本不等式(经典)
解:
【例3】某工厂要建造一个长方体无盖贮水池,其容积为4800m3, 深为3m,如果池底每1m2的造价为150元,池壁每1m2的造价为 120元,问怎样设计水池能使总造价最低,最低总造价是多少元?
设水池底面一边的长度为xm, 则水池的宽为 ,水池的总造价为y元,根据题意,得
因此,当水池的底面是边长为40m的正方形时,水池
二、新课讲解
2.代数意义:几何平均数小于等于算术平均数
3.几何意义:半弦长小于等于半径
(当且仅当a=b时,等号成立)
从数列角度看:两个正数的等比中项小于等于它们的等差中项
1.思考:如果当 用 去替换 中的 ,能得到什么结论?
当且仅当 时等号成立
思考:如何证明?
当且仅当 时, 此时
证明:
平方
01
当且仅当a=b时,取“=”号
02
能否用不等式的性质进行证明?
小组合作:
P98探究
在右图中,AB是圆的直径, 点C是AB上的一点, 设 AC = a , BC = b 。 过点C作垂直于AB的弦DE, 连接AD、BD。 基本不等式的几何意义是:“半径不小于半弦。” E
01
答:使用10年后,年平均费用最少。
02
变式训练
课堂总结
知识要点: 基本不等式的条件: 结构特征: 思想方法技巧: (1)数形结合思想 (2)换元法
一正、二定、三相等
和、积
.理解均值不等式的关系:
基本不等式
基本不等式:
当且仅当a =b时,等号成立.
当且仅当a=b时,等号成立.
重要不等式:
注意: (1)不同点:两个不等式的适用范围不同。
(2)相同点:当且仅当a=b时,等号成立。

《基本不等式》教案

《基本不等式》教案

《基本不等式》教学设计教材:人教版中学数学必修5第三章一、教学目标1.通过两个探究实例,引导学生从几何图形中获得两个基本不等式,了解基本不等式的几何背景,体会数形结合的思想:2.进•步提炼、完善其本不等式,并从代数角度给出不等式的证明,组织学生分析证明方法,加深对基木不等式的相识,提高逻辑推理论证实力:3.结合课本的探究图形,引导学生进•步探究基本不等式的几何说明,强化数形结合的思想:4.借助例1尝试用其本不等式解决简洁的增值问题,通过例2与其变式引导学生领悟运用基本不等式向“空的三个限制条件(一正二定三相等)在解决最值中的作用,提升解决问题的实力,体会方法与策略.以上教学目标结合了教学实际,将学问与实力、过程与方法、情感看法价值观的三维目标融入各个教学环节.二、教学重点和难点内<a+b K点,应用数形结合的思想理解基本不等式,并从不同角度探究不等式"T的证明过程;难点:在几何背景下抽象出基本不等式,并理解基本不等式.三、教学过程:1.动手操作,几何引入如图是2002年在北京召开的第24届国际数学家大会会标,会标是依据我国古代数学家赵爽的“弦图”设计的,该图给出了迄今为止对勾股定理最早、最简洁的证明,体现/以形证数、形数统一、代数和几何是紧密结合、互不行分的.探究一:在这张“弦图”中能找出•些相等关系和不等关系吗?在正方形48CD中有4个全等的直角三处形.设直角三角形两条直角边长为40,则正方形的边长为"于是,4个直角三角形的面积之和S L.,正方形的面积S?=/+从.由图可知乡>$,即3产>加探究二;先将两张正方形纸片沿它们的对角线折成两个等腰直角三角形,再用这两个三角形拼接构造出一个矩形(两边分别等于两个直角三角形的直角边,多余部分折春).假设两个正方形的面积分别为。

和b(αNb),考察两个直角三角形的面积与矩形的面积,你能发觉一个不等式吗?加4a+b通过学生动手操作,探究发觉:22.代数证明,得出结论依据上述两个几何背景,初步形成不等式结论:若aMJΓ,则/+从>2曲.若如尤,则匹吟学生探讨等号取到状况,老师演示几何画板,通过展示图形动画,使学生直•观感受不等关系中的相等条件,从而进一步完善不等式结论:KVa+b(1)若aMR.,则/.乂工9;(2)若aMR.,则“~请同学们用代数方法给出这两个不等式的证明.证法一(作差法>:炉♦户之2而,“初”时取等号.(在该过程中,可发觉久》的取值可以是全体实数)证法二(分析法):由FaMR.,「是要证明毕而只要证明a+b≥.汨,即证Ja+√⅛-2√afc>0f。

第03讲 基本不等式 (精讲+精练)(学生版)

第03讲 基本不等式 (精讲+精练)(学生版)

第03讲基本不等式 (精讲+精练)目录第一部分:思维导图(总览全局)第二部分:知识点精准记忆第三部分:课前自我评估测试第四部分:典型例题剖析高频考点一:利用基本不等式求最值①凑配法②“1”的代入法③二次与二次(一次)商式(换元法)④条件等式求最值高频考点二:利用基本不等式求参数值或取值范围高频考点三:利用基本不等式解决实际问题高频考点四:基本不等式等号不成立,优先对钩函数第五部分:高考真题感悟第六部分:第03讲基本不等式(精练)1、基本不等式(一正,二定,三相等,特别注意“一正”,“三相等”这两类陷阱)①如果0a >,0b >2a b+≤,当且仅当a b =时,等号成立. ②叫做正数a ,b 的几何平均数;2a b+叫做正数a ,b 的算数平均数. 2、两个重要的不等式①222a b ab +≥(,a b R ∈)当且仅当a b =时,等号成立. ②2()2a b ab +≤(,a b R ∈)当且仅当a b =时,等号成立. 3、利用基本不等式求最值①已知x ,y 是正数,如果积xy 等于定值P ,那么当且仅当x y =时,和x y +有最小值;②已知x ,y 是正数,如果和x y +等于定值S ,那么当且仅当x y =时,积xy 有最大值24S;4、常用技巧利用基本不等式求最值的变形技巧——凑、拆(分子次数高于分母次数)、除(分子次数低于分母次数))、代(1的代入)、解(整体解). ①凑:凑项,例:()1123x x a a a x a x a x a+=-++≥+=>--; 凑系数,例:()()2112121112212022282x x x x x x x +-⎛⎫⎛⎫-=⋅-≤⋅=<< ⎪ ⎪⎝⎭⎝⎭;②拆:例:()2244442244822223x x x x x x x x x -+==++=-++≥=>----;③除:例:()2221011x x x x x=≤>++; ④1的代入:例:已知0,0,1a b a b >>+=,求11a b+的最小值. 解析:1111()()24b aa b a b a b a b+=++=++≥. ⑤整体解:例:已知a ,b 是正数,且3ab a b =++,求a b +的最小值.解析:22,322a b a b ab a b ++⎛⎫⎛⎫≤∴≥++ ⎪ ⎪⎝⎭⎝⎭,即()()21304a b a b +-+-≥,解得()62a b a b +≥+≤-舍去.一、判断题1.(2022·江西·贵溪市实验中学高二期末)当0,2x π⎛⎤∈⎥⎝⎦时,4sin sin x x +的最小值为4 ( )2.(2021·江西·贵溪市实验中学高二阶段练习)已知102x <<,则()12x x -的最大值为18( ) 二、单选题1.(2022·江西·高一阶段练习)当0x >时,92x x+的最小值为( ) A .3B .32C .D .2.(2022·湖南湖南·二模)函数()122y x x x =+>-+的最小值为( ) A .3B .2C .1D .03.(2022·湖南·高一阶段练习)已知0a >,0b >且2510a b +=,则ab 的最大值为( ) A .2B .5C .32D .524.(2022·新疆·乌苏市第一中学高一开学考试)下列函数,最小值为2的函数是( ) A .1y x x=+B .222y x x -=+C .3y x =+D .2y =高频考点一:利用基本不等式求最值①凑配法1.(2022·北京大兴·高一期末)当02x <<时,(2)x x -的最大值为( ) A .0B .1C .2D .42.(2022·山西·怀仁市第一中学校二模(文))函数413313y x x x ⎛⎫⎪⎝=>-⎭+的最小值为( ) A .8B .7C .6D .53.(2022·安徽省蚌埠第三中学高一开学考试)已知x >3,则对于43y x x =+-,下列说法正确的是( ) A .y 有最大值7B .y 有最小值7C .y 有最小值4D .y 有最大值44.(2022·江苏省天一中学高一期末)设实数x 满足1x >-,则函数41y x x =++的最小值为( ) A .3B .4C .5D .65.(2022·上海虹口·高一期末)已知04x <<,则()4x x -的最大值为______.②“1”的代入法1.(2022·河南·夏邑第一高级中学高二期末(文))已知x ,y 均为正数,若261x y+=,则当3x y +取得最小值时,x y +的值为( ) A .16B .4C .24D .122.(2022·安徽·高三阶段练习(文))已知0x >,0y >,22x y +=,则12x y+的最小值是( )A .1B .2C .4D .63.(2022·四川·泸县五中高二开学考试(文))已知,x y 为正实数,且2x y +=,则212x y+的最小值为__________.4.(2022·广西桂林·高一期末)已知0,0a b >>,若31a b +=,则31a b+的最小值是___________.5.(2022·天津·南开中学高一期末)已知110, 0, 4a b a b>>+=,则4a b +的最小值为_______________.③二次与二次(一次)商式1.(2022·全国·高三专题练习(理))若11x -<< ,则22222x x y x -+=-有( )A .最大值1-B .最小值1-C .最大值1D .最小值12.(2022·全国·高三专题练习)函数233(1)1x x y x x ++=<-+的最大值为( ) A .3 B .2 C .1 D .-13.(2022·江西南昌·高一期末)当2x >-时,函数2462++=+x x y x 的最小值为___________.4.(2022·上海·高三专题练习)若1x >,则函数211x x y x -+=-的最小值为___________.5.(2021·江西·宁冈中学高一阶段练习(理))()21147x x x x ->-+的最大值为______.6.(2022·全国·高三专题练习)求下列函数的最小值 (1)21(0)x x y x x ++=>;(2)226(1)1x x y x x ++=>-.④条件等式求最值1.(2022·陕西咸阳·高二期末(文))已知0x >,0y >,若28x y xy +=,则xy 的最小值是( )A B C .18D .142.(2022·全国·高三专题练习)已知0,0a b >>,且3ab a b =++,则a b +的最小值为( ) A .4B .8C .7D .63.(2022·江苏·高三专题练习)已知0a >,0b >且满足2a b ab +=,则2+a b 的最小值为( ) A .4B .6C .8D .104.(2022·安徽芜湖·高一期末)已知正数x ,y 满足8xy x y =++,则x y +的最小值为_________ 5.(2022·全国·高三专题练习)已知2,1a b >>,且满足21ab a b =++,则2a b +的最小值为_______. 6.(2022·重庆·高一期末)已知0x >,0y >,24xy x y =++,则x y +的最小值为______. 7.(2022·广东广州·高一期末)已知0a >,0b >,且3a b ab +=-,则a b +的最小值为______.高频考点二:利用基本不等式求参数值或取值范围1.(2022·全国·高三专题练习)当2x >时,不等式12+≥-x a x 恒成立,则实数a 的取值范围是( ) A .(],2-∞B .[)2,+∞C .[)4,+∞D .(],4-∞2.(2022·浙江·高三专题练习)若关于 x 的不等式220x ax -+>在区间[]1,5上恒成立,则a 的取值范围为( )A .()+∞B .(-∞C .(),3-∞D .27,5⎛⎫-∞ ⎪⎝⎭3.(2022·全国·高三专题练习)已知0a >,0b >,若不等式41ma b a b+≥+恒成立,则m 的最大值为( ) A .10B .12C .16D .94.(2022·全国·高三专题练习)已知x ,()0,y ∈+∞,且1x y +=,若不等式2221124x y xy m m ++>+恒成立,则实数m 的取值范围是( ) A .3,12⎛⎫- ⎪⎝⎭B .3,12⎡⎤-⎢⎥⎣⎦C .()2,1-D .()3,1,2⎛⎫-∞-⋃+∞ ⎪⎝⎭5.(2022·全国·高三专题练习)若对任意220,1xx a x x >≥++恒成立,则实数a 的取值范围是( )A .[1,)-+∞B .[3,)+∞C .2,3⎡⎫+∞⎪⎢⎣⎭D .(,1]-∞6.(2022·甘肃·无高二期末(文))已知正实数a ,b 满足191a b+=,若不等式2418a b x x m +≥-++-对任意的实数x 恒成立,则实数m 的取值范围是( ) A .[)3,+∞B .(],3-∞C .(],6-∞D .[)6,+∞7.(2022·全国·高三专题练习)若对任意0x >,231xa x x ≤++恒成立,则实数a 的取值范围是( ) A .1,5⎡⎫+∞⎪⎢⎣⎭B .1,5⎛⎫+∞ ⎪⎝⎭C .1,5⎛⎫-∞ ⎪⎝⎭D .1,5⎛⎤-∞ ⎥⎝⎦高频考点三:利用基本不等式解决实际问题1.(2022·北京市十一学校高二期末)某公司要建造一个长方体状的无盖箱子,其容积为48m 3,高为3m ,如果箱底每1m 2的造价为15元,箱壁每1m 2造价为12元,则箱子的最低总造价为( ) A .72元B .300元C .512元D .816元2.(2022·河南开封·高一期末)中国宋代的数学家秦九韶曾提出“三斜求积术”,即假设在平面内有一个三角形,边长分别为a ,b ,c ,三角形的面积S 可由公式S =p 为三角形周长的一半,这个公式也被称为海伦秦九韶公式,现有一个三角形的边长满足14a b +=,6c =,则此三角形面积的最大值为( )A .6B .C .12D .3.(2022·江苏常州·高一期末)2021年初,某地区甲、乙、丙三位经销商出售钢材的原价相同.受钢材进价普遍上涨的影响,甲、乙计划分两次提价,丙计划一次提价.设0p q <<,甲第一次提价%p ,第二次提价%q ;乙两次均提价%2p q+;丙一次性提价()%p q +.各经销商提价计划实施后,钢材售价由高到低的经销商依次为( ) A .乙、甲、丙 B .甲、乙、丙 C .乙、丙、甲D .丙、甲、乙4.(2022·全国·高三专题练习(文))已知k ∈R ,则“对任意,a b ∈R ,22a b kab +≥”是“k 2≤”的( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件D .既不充分也不必要条件5.(2022·河南·模拟预测(理))一家商店使用一架两臂不等长的天平称黄金.一位顾客到店里购买10g 黄金,售货员先将5g 的砝码放在天平左盘中,取出一些黄金放在天平右盘中使天平平衡;再将5g 的砝码放在天平右盘中,再取出一些黄金放在天平左盘中使天平平衡;最后将两次称得的黄金交给顾客.若顾客实际购得的黄金为g m ,则( ) A .10m >B .10m =C .10m <D .以上都有可能6.(2022·全国·高一)如图所示,将一矩形花坛ABCD 扩建为一个更大的矩形花坛AMPN ,要求点B 在AM 上,点D 在AN 上,且对角线MN 过点C ,已知4AB =米,3AD =米,当BM =_______时,矩形花坛AMPN 的面积最小.高频考点四:基本不等式等号不成立,优先对钩函数1.(2022·重庆南开中学模拟预测)已知命题p :“21,4,402x x ax ⎡⎤∃∈-+>⎢⎥⎣⎦”为真命题,则实数a 的取值范围是( ) A .4a < B .172a <C .133a <D .5a >2.(2022·浙江·高三专题练习)若不等式210x ax ++≥对一切10,2x ⎛⎤∈ ⎥⎝⎦恒成立,则a 的取值范围是( )A .0a ≥B .2a ≤-C .52a ≥-D .3a ≤-3.(2022·全国·高三专题练习)函数2y =)A .2B .52C .1D .不存在4.(2022·新疆·石河子第二中学高二阶段练习)已知函数4()f x x x =+,()2x g x a =+,若11,12x ⎡⎤∀∈⎢⎥⎣⎦,2[2,3]x ∃∈,使得()()12f x g x ,则实数a 的取值范围是( ) A .1,2⎡⎫+∞⎪⎢⎣⎭B .9,2⎡⎫+∞⎪⎢⎣⎭C .[3,)-+∞D .[1,)+∞5.(2022·全国·高二课时练习)函数()3421x xf x x x -=++在区间[]1,3上( )A0 B .有最大值为2491,最小值为0 CD .有最大值为2491,无最小值1.(2021·江苏·高考真题)已知奇函数()f x 是定义在R 上的单调函数,若正实数a ,b 满足()()240f a f b +-=则121a b++的最小值是( ) A .23B .43C .2D .42.(2021·全国·高考真题(文))下列函数中最小值为4的是( ) A .224y x x =++ B .4sin sin y x x=+ C .222x x y -=+D .4ln ln y x x=+3.(2021·天津·高考真题)若0 , 0a b >>,则21ab ab ++的最小值为____________. 4.(2021·江苏·高考真题)某化工厂引进一条先进生产线生产某种化工产品,其生产的总成本y 万元与年产量x 吨之间的函数关系可以近似地表示为22420005x y x =-+,已知此生产线的年产量最小为60吨,最大为110吨.(1)年产量为多少吨时,生产每吨产品的平均成本最低?并求最低平均成本;(2)若每吨产品的平均出厂价为24万元,且产品能全部售出,则年产量为多少吨时,可以获得最大利润?并求最大利润.一、单选题1.(2022·江西·赣州市赣县第三中学高一开学考试)下列说法正确的为( )A .12x x+≥ B .函数224x y += 4C .若0,x >则(2)x x -最大值为1D .已知3a >时,43+≥-a a 43=-a a 即4a =时,43+-a a 取得最小值8 2.(2022·福建·莆田一中高一期末)函数2455()()22x x f x x x -+=≥-有( ) A .最大值52 B .最小值52 C .最大值2 D .最小值23.(2022·河南·郏县第一高级中学高二开学考试(理))正实数ab 满足121a b+=,则()()24a b ++的最小值为( )A .16B .24C .32D .404.(2022·江西抚州·高二期末(文))若命题“对任意(),0x ∈-∞,使得2240x ax -+≥成立”是真命题,则实数a 的取值范围是( )A .[)2,-+∞B .[)2,+∞C .(],2-∞-D .(],2-∞5.(2022·河南·驻马店市基础教学研究室高二期末(理))中国大运河项目成功人选世界文化遗产名录,成为中国第46个世界遗产项目,随着对大运河的保护与开发,大运河已成为北京城市副中心的一张亮丽的名片,也成为众多旅游者的游览目的地.今有一旅游团乘游船从奥体公园码头出发顺流而下至漕运码头,又立即逆水返回奥体公园码头,已知游船在顺水中的速度为1V ,在逆水中的速度为()212V V V ≠,则游船此次行程的平均速度V 与122V V +的大小关系是( ) A .122V V V +<B .122V V V +≤C .122V V V +>D .122V V V += 6.(2022·浙江温州·二模)已知正数a ,b 和实数t 满足221a tab b ++=,若a b +存在最大值,则t 的取值范围是( )A .(],2-∞B .()2,-+∞C .(]2,2-D .[)2,+∞7.(2022·广东·高三阶段练习)在足球比赛中,球员在对方球门前的不同的位置起脚射门对球门的威胁是不同的,出球点对球门的张角越大,射门的命中率就越高.如图为室内5人制足球场示意图,设球场(矩形)长BC 大约为40米,宽AB 大约为20米,球门长PQ 大约为4米.在某场比赛中有一位球员欲在边线BC 上某点M 处射门(假设球贴地直线运行),为使得张角PMQ ∠最大,则BM 大约为( )(精确到1米)A .8米B .9米C .10米D .11米8.(2022·江苏无锡·模拟预测)已知实数a ,b 满足如下两个条件:(1)关于x 的方程2320x x ab --=有两个异号的实根;(2)211a b+=,若对于上述的一切实数a ,b ,不等式222a b m m +>+恒成立,则实数m 的取值范围是( )A .()4,2-B .()2,4-C .][(),42,-∞-⋃+∞D .][(),24,-∞-⋃+∞二、填空题9.(2022·陕西西安·高三阶段练习(文))已知0x >,0y >,334x y x y +--=.则x y +的取值范围为__________. 10.(2022·上海·二模)已知对()0,x ∀∈+∞,不等式1x m x>-恒成立,则实数m 的最大值是_________. 11.(2022·浙江·高三阶段练习)已知函数()29x f x x+=,()2log g x x a =+,若存在[]13,4x ∈,任意[]24,8x ∈,使得()()12f x g x ≥,则实数a 的取值范围是___________.12.(2022·安徽合肥·高一期末)如图所示,某农科院有一块直角梯形试验田ABCD ,其中//,AB CD AD AB ⊥.某研究小组计则在该试验田中截取一块矩形区域AGEH 试种新品种的西红柿,点E 在边BC 上,则该矩形区域的面积最大值为___________.三、解答题13.(2022·湖南·高一课时练习)(1)把36写成两个正数的积,当这两个正数取什么值时,它们的和最小? (2)把18写成两个正数的和,当这两个正数取什么值时,它们的积最大?14.(2022·辽宁朝阳·高一开学考试)如图,设矩形()ABCD AB AD >的周长为8cm ,将△ABC 沿AC 向△ADC 折叠,AB 折过去后交DC 于点P ,设AB xcm =,求ADP △面积的最大值及相应x 的值.15.(2022·贵州·赫章县教育研究室高一期末)已知关于x 的不等式220ax ax ++>的解集为R ,记实数a 的所有取值构成的集合为M .(1)求M ;(2)若0t >,对a M ∀∈,有245321a t t a --≤+-+,求t 的最小值.16.(2022·山西·怀仁市第一中学校高一期末)党中央国务院对节能减排高度重视,各地区认真贯彻党中央国务院关于“十三五”节能减排的决策部署,把节能减排作为转换发展方式,新能源汽车环保节能以电代油,减少排放,既符合我国国情,也代表了汽车产业发展的方向.为了响应国家节能减排的号召,2022年某企业计划引进新能源汽车生产设备.通过市场分析:全年需投入固定成本2500万元.每生产x (百辆)新能源汽车,需另投入成本()C x 万元,且()210500,040,64009016300,40.x x x C x x x x ⎧+<<⎪=⎨+-≥⎪⎩由市场调研知,每辆车售价9万元,且生产的车辆当年能全部销售完.(1)请写出2022年的利润()L x (万元)关于年产量x (百辆)的函数关系式;(利润=售价-成本)(2)当2022年的总产量为多少百辆时,企业所获利润最大?并求出最大利润.。

不等式第3讲基本不等式讲义理-高考数学一轮复习资料

不等式第3讲基本不等式讲义理-高考数学一轮复习资料

第3讲 基本不等式1.基本不等式设a >0,b >0,则a 、b 的算术平均数为□05a +b 2,几何平均数为□06ab ,基本不等式可叙述为□07两个正数的算术平均数不小于它们的几何平均数. 2.利用基本不等式求最值问题 已知x >0,y >0,则:(1)如果积xy 是定值p ,那么当且仅当x =y 时,x +y 有□01最小值是2p (简记:□02积定和最小).(2)如果和x +y 是定值p ,那么当且仅当x =y 时,xy 有□03最大值是p 24(简记:□04和定积最大).注:应用基本不等式求最值时,必须考察“一正、二定、三相等”,忽略某个条件,就会出现错误.3.几个重要的不等式 (1)a 2+b 2≥2ab (a ,b ∈R ). (2)b a +a b≥2(a ,b 同号). (3)ab ≤⎝⎛⎭⎪⎫a +b 22(a ,b ∈R ).(4)⎝ ⎛⎭⎪⎫a +b 22≤a 2+b 22(a ,b ∈R ), 2(a 2+b 2)≥(a +b )2(a ,b ∈R ). (5)a 2+b 22≥a +b24≥ab (a ,b ∈R ). (6)a 2+b 22≥a +b2≥ab ≥21a +1b(a >0,b >0).1.概念辨析(1)两个不等式a 2+b 2≥2ab 与a +b2≥ab 成立的条件是相同的.( )(2)函数y =x +1x的最小值是2.( )(3)函数f (x )=sin x +4sin x 的最小值为2.( )(4)x >0且y >0是x y +y x≥2的充要条件.( ) 答案 (1)× (2)× (3)× (4)×2.小题热身(1)已知f (x )=x +1x-2(x <0),则f (x )有( )A .最大值0B .最小值0C .最大值-4D .最小值-4答案 C解析 因为x <0,所以-x >0, 所以-x +1-x≥2-x1-x =2,当且仅当-x =1-x即x =-1时等号成立.所以x +1x ≤-2.所以f (x )=x +1x-2≤-4.即f (x )有最大值-4.(2)设x >0,y >0,且x +y =18,则xy 的最大值为( ) A .80 B .77 C .81 D .82 答案 C解析 由基本不等式18=x +y ≥2xy ⇔9≥xy ⇔xy ≤81,当且仅当x =y 时,xy 有最大值81,故选C.(3)已知lg a +lg b =2,则lg (a +b )的最小值为( ) A .1+lg 2 B .2 2 C .1-lg 2 D .2 答案 A解析 由lg a +lg b =2,可知a >0,b >0, 则lg (ab )=2,即ab =100. 所以a +b ≥2ab =2100=20, 当且仅当a =b =10时取等号, 所以lg (a +b )≥lg 20=1+lg 2. 故lg (a +b )的最小值为1+lg 2.(4)一段长为30 m 的篱笆围成一个一边靠墙的矩形菜园,墙长18 m ,则这个矩形的长为________m ,宽为________m 时菜园面积最大.答案 15152解析 设矩形的长为x m ,宽为y m .则x +2y =30,所以S =xy =12x ·(2y )≤12⎝ ⎛⎭⎪⎫x +2y 22=2252,当且仅当x =2y ,即x =15,y =152时取等号.题型 一 利用基本不等式求最值角度1 直接应用1.(2019·沈阳模拟)已知a >b >0,求a 2+1ba -b的最小值. 解 ∵a >b >0,∴a -b >0. ∴a 2+1ba -b ≥a 2+1⎝ ⎛⎭⎪⎫b +a -b 22=a 2+4a 2 ≥2a 2·4a 2=4,当且仅当b =a -b ,a 2=2,a >b >0,即a =2,b =22时取等号.∴a 2+1ba -b的最小值是4.角度2 拼凑法求最值2.求f (x )=4x -2+14x -5⎝ ⎛⎭⎪⎫x <54的最大值.解 因为x <54,所以5-4x >0,则f (x )=4x -2+14x -5=-⎝ ⎛⎭⎪⎫5-4x +15-4x +3≤-2+3=1,当且仅当5-4x =15-4x ,即x =1时,等号成立.故f (x )=4x -2+14x -5的最大值为1.角度3 构造不等式求最值(多维探究)3.已知x >0,y >0,x +2y +2xy =8,则x +2y 的最小值为( ) A .3 B .4 C.92 D.112答案 B解析 因为x >0,y >0,且x +2y +2xy =8, 所以x +2y =8-2xy ≥8-⎝⎛⎭⎪⎫x +2y 22.整理得(x +2y )2+4(x +2y )-32≥0,解得x +2y ≥4或x +2y ≤-8.又x +2y >0,所以x +2y ≥4.故x +2y 的最小值为4. 条件探究 把举例说明3的条件“x +2y +2xy =8”改为“4xy -x -2y =4”,其他条件不变,求xy 的最小值.解 因为x >0,y >0且4xy -x -2y =4,所以4xy -4=x +2y ≥22xy . 整理可得2xy -2xy -2≥0.解得2xy ≥2即xy ≥2,所以xy 的最小值为2.角度4 常数代换法求最值(多维探究)4.若直线x a +y b=1(a >0,b >0)过点(1,1),则a +b 的最小值等于( ) A .2 B .3 C .4 D .5 答案 C解析 解法一:因为直线x a +y b=1(a >0,b >0)过点(1,1), 所以1a +1b=1.所以a +b =(a +b )·⎝ ⎛⎭⎪⎫1a +1b =2+a b +b a≥2+2a b ·ba=4,当且仅当a =b =2时取“=”,所以a +b 的最小值为4.解法二:因为直线x a +y b=1(a >0,b >0)过点(1,1), 所以1a +1b=1,所以b =aa -1>0,所以a >1,a -1>0,所以a +b =a +aa -1=a +a -1+1a -1=a -1+1a -1+2≥2a -1a -1+2=4. 当且仅当a -1=1a -1即a =2时等号成立,所以a +b 的最小值为4. 条件探究 将举例说明4条件变为“x >0,y >0且1x +9y=1”,求x +y 的最小值.解 ∵x >0,y >0,∴y >9且x =yy -9.∴x +y =yy -9+y =y +y -9+9y -9=y +9y -9+1=(y -9)+9y -9+10. ∵y >9,∴y -9>0. ∴y -9+9y -9+10≥2y -9y -9+10=16. 当且仅当y -9=9y -9,即y =12时取等号. 又1x +9y=1,则x =4.∴当x =4,y =12时,x +y 取最小值16.1.拼凑法求解最值应注意的问题(1)拼凑的技巧,以整式为基础,注意利用系数的变化以及等式中常数的调整,做到等价变形;(2)代数式的变形以拼凑出和或积的定值为目标; (3)拆项、添项应注意检验利用基本不等式的条件. 2.通过消元法求最值的方法消元法,即根据条件建立两个量之间的函数关系,然后代入代数式转化为函数的最值求解.有时会出现多元的问题,解决方法是消元后利用基本不等式求解.如举例说明4解法二.3.常数代换法求最值的步骤(1)根据已知条件或其变形确定定值(常数); (2)把确定的定值(常数)变形为1;(3)把“1”的表达式与所求最值的表达式相乘或相除,进而构造和或积的形式.如举例说明4解法一.(4)利用基本不等式求解最值.1.若正数x ,y 满足x 2+3xy -1=0,则x +y 的最小值是( )A.23 B.223 C.33 D.233答案 B解析 对于x 2+3xy -1=0可得y =13⎝ ⎛⎭⎪⎫1x -x ,∴x +y =2x 3+13x≥229=223(当且仅当x =22时等号成立).故选B. 2.(2018·天津高考)已知a ,b ∈R ,且a -3b +6=0,则2a+18b 的最小值为________.答案 14解析 因为a -3b +6=0,所以a -3b =-6,2a +18b =2a +123b =2a +2-3b ≥22a ·2-3b=22a -3b=22-6=14⎝ ⎛⎭⎪⎫当且仅当2a =18b =18,即a =-3,b =1时取等号,所以2a +18b的最小值为14. 题型 二 基本不等式的综合应用角度1 基本不等式中的恒成立问题1.当x ∈⎝⎛⎭⎪⎫0,π2时,2sin 2x -a sin2x +1≥0恒成立,则实数a 的取值范围是________.答案 (-∞,3]解析 当x ∈⎝⎛⎭⎪⎫0,π2时,sin2x >0,原不等式可化为a sin2x ≤2sin 2x +1, a ≤2sin 2x +1sin2x.设f (x )=2sin 2x +1sin2x,则f (x )=2sin 2x +sin 2x +cos 2x 2sin x cos x =32tan x +12tan x.因为x ∈⎝⎛⎭⎪⎫0,π2,所以tan x >0. 所以f (x )=32tan x +12tan x≥232tan x ·12tan x=3, 当且仅当32tan x =12tan x ,即tan x =33时等号成立,所以f (x )min =3,所以a ≤ 3.角度2 基本不等式与其他知识的综合问题2.(2018·西安模拟)若△ABC 的内角满足sin A +2sin B =2sin C ,则cos C 的最小值是( )A.6-24 B.6+24 C.6-22D.6+22答案 A解析 由正弦定理,得a +2b =2c .所以cos C =a 2+b 2-c22ab=a 2+b 2-⎝⎛⎭⎪⎫a +2b 222ab=3a 2+2b 2-22ab 8ab ≥26ab -22ab 8ab =6-24.当且仅当3a 2=2b 2,即3a =2b 时,等号成立. 所以cos C 的最小值为6-24.基本不等式的综合运用常见题型及求解策略(1)应用基本不等式判断不等式的成立性或比较大小,有时也与其他知识进行综合命题,结合函数的单调性进行大小的比较.(2)利用基本不等式研究恒成立问题,以求参数的取值范围为主,如举例说明1. (3)与其他知识综合考查求最值问题,此时基本不等式作为求最值时的一个工具,常出现于解三角形求最值、解析几何求最值问题等.如举例说明2.1.已知f (x )=32x -(k +1)3x+2,当x ∈R 时,f (x )恒为正值,则k 的取值范围是( ) A .(-∞,-1) B .(-∞,22-1) C .(-1,22-1) D .(-22-1,22-1)答案 B解析 由32x -(k +1)3x +2>0恒成立,得k +1<3x+23x .∵3x+23x ≥22,∴k +1<22,即k <22-1.2.设等差数列{a n }的公差是d ,其前n 项和是S n ,若a 1=d =1,则S n +8a n的最小值是( ) A.92B.72C .22+12D .22-12答案 A解析 a n =a 1+(n -1)d =n ,S n =n+n2, ∴S n +8a n=n n +2+8n=12⎝ ⎛⎭⎪⎫n +16n +1≥12⎝⎛⎭⎪⎫2n ·16n +1=92,当且仅当n =4时取等号. ∴S n +8a n 的最小值是92.故选A.题型 三 基本不等式在实际问题中的应用某厂家拟在2017年举行促销活动,经调查测算,该产品的年销售量(即该厂的年产量)x 万件与年促销费用m 万元(m ≥0)满足x =3-km +1(k 为常数),如果不搞促销活动,那么该产品的年销售量只能是1万件.已知生产该产品的固定投入为8万元,每生产一万件该产品需要再投入16万元,厂家将每件产品的销售价格定为每件产品年平均成本的1.5倍(产品成本包括固定投入和再投入两部分资金).(1)将2017年该产品的利润y 万元表示为年促销费用m 万元的函数; (2)该厂家2017年的促销费用投入多少万元时,厂家的利润最大? 解 (1)由题意知,当m =0时,x =1(万件), ∴1=3-k ,∴k =2,∴x =3-2m +1. 由题意可知每件产品的销售价格为1.5×8+16xx(元),∴2017年的利润y =1.5x ·8+16xx-8-16x -m=-⎣⎢⎡⎦⎥⎤16m +1+m ++29(m ≥0). (2)∵当m ≥0时,16m +1+(m +1)≥216=8, ∴y ≤-8+29=21, 当且仅当16m +1=m +1,即m =3(万元)时,y max =21(万元). 故该厂家2017年的促销费用投入3(万元)时,厂家的利润最大为21万元.利用基本不等式求解实际问题的求解策略(1)根据实际问题抽象出目标函数的表达式,再利用基本不等式求得函数的最值. (2)设变量时一般要把求最大值或最小值的变量定义为函数. (3)解应用题时,一定要注意变量的实际意义及其取值范围.(4)在应用基本不等式求函数最值时,若等号取不到,可利用函数的单调性求解.提醒:利用基本不等式求最值时,一定要结合变量的实际意义验证等号是否成立.(2018·成都诊断)某工厂需要建造一个仓库,根据市场调研分析,运费与工厂和仓库之间的距离成正比,仓储费与工厂和仓库之间的距离成反比,当工厂和仓库之间的距离为4千米时,运费为20万元,仓储费为5万元,当工厂和仓库之间的距离为________千米时,运费与仓储费之和最小,最小为________万元.答案 2 20解析 设工厂和仓库之间的距离为x 千米,运费为y 1万元,仓储费为y 2万元,则y 1=k 1x (k 1≠0),y 2=k 2x(k 2≠0),∵工厂和仓库之间的距离为4千米时,运费为20万元,仓储费用为5万元, ∴k 1=5,k 2=20,∴运费与仓储费之和为⎝ ⎛⎭⎪⎫5x +20x 万元,∵5x +20x≥25x ×20x =20,当且仅当5x =20x,即x =2时,运费与仓储费之和最小,为20万元.。

第03讲 基本不等式(含新定义解答题) (分层精练)(解析版)-备战2025年高考新结构数学一轮复习

第03讲 基本不等式(含新定义解答题) (分层精练)(解析版)-备战2025年高考新结构数学一轮复习

上·河北沧州·高一统考期末)已知正数
x,y
满足 3x
2y
2
,则
3 2x
1 y
的最小值
为( )
A.6 【答案】B
B.
25 4
C. 13 2
D. 25 2
【分析】借助基本不等式计算即可得.
【详解】 3 2x
1 y
1
2
3 2x
1 y
(3x 2 2
3y x
3x y
1 2
13 2
所以 a b 的最大值为 4.
故选:B
8.(2024 上·湖南·高一校联考期末)已知 a2 b2 4ab 1,则 ab 的最小值为( )
A.
1 2
B. 1 3
C.2
D.3
【答案】A
【分析】利用重要不等式列出不等式求解即可.
【详解】由重要不等式得 a2 b2 4ab 1 2ab ,当且仅当 a b 时取等,
2ab
,即 0
ab
1 8

当且仅当 a 2b ,即 a 1 ,b 1 时等号成立. 24
故选:C
5.(2024 上·山东滨州·高三统考期末)若不等式 x2 ax 4 0 对任意 x 1,3恒成立,则实
数 a 的取值范围是( )
A.0, 4
B. , 4
C.
,
13 3
D. ,5
【答案】B
4x2 1 x2
,即 x2
1 时,取到等号,D 正确. 3
故选:BD.
10.(2024 上·山东临沂·高一山东省临沂第一中学期末)下列命题中正确的是( )
A.若 x 0 ,则 x 1 2 x
B. x2 3 2 x2 2
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第3讲 基本不等式一、知识梳理 1.基本不等式:ab ≤a +b2(1)基本不等式成立的条件:a ≥0,b ≥0. (2)等号成立的条件:当且仅当a =b 时取等号.(3)其中a +b2称为正数a ,b 的算术平均数,ab 称为正数a ,b 的几何平均数.[点拨] 应用基本不等式求最值要注意:“一正、二定、三相等”.忽略某个条件,就会出错.2.利用基本不等式求最值 已知x ≥0,y ≥0,则(1)如果积xy 是定值p ,那么当且仅当x =y 时,x +y 有最小值是2p .(简记:积定和最小)(2)如果和x +y 是定值s ,那么当且仅当x =y 时,xy 有最大值是s 24.(简记:和定积最大)[点拨] 在利用不等式求最值时,一定要尽量避免多次使用基本不等式.若必须多次使用,则一定要保证它们等号成立的条件一致.常用结论几个重要的不等式(1)a 2+b 2≥2ab (a ,b ∈R ),当且仅当a =b 时取等号.(2)ab ≤⎝ ⎛⎭⎪⎫a +b 22(a ,b ∈R ),当且仅当a =b 时取等号.(3)a 2+b 22≥⎝ ⎛⎭⎪⎫a +b 22(a ,b ∈R ),当且仅当a =b 时取等号. (4)b a +ab ≥2(a ,b 同号),当且仅当a =b 时取等号. 二、教材衍化1.设x >0,y >0,且x +y =18,则xy 的最大值为( ) A .80 B .77 C .81D .82解析:选C .xy ≤⎝ ⎛⎭⎪⎫x +y 22=⎝⎛⎭⎫1822=81,当且仅当x =y =9时等号成立,故选C . 2.若把总长为20 m 的篱笆围成一个矩形场地,则矩形场地的最大面积是________.解析:设矩形的长为x m ,宽为y m ,则x +y =10,所以S =xy ≤⎝ ⎛⎭⎪⎫x +y 22=25,当且仅当x =y =5时取等号.答案:25 m 2一、思考辨析判断正误(正确的打“√”,错误的打“×”) (1)函数y =x +1x 的最小值是2.( )(2)ab ≤⎝⎛⎭⎫a +b 22成立的条件是ab >0.( )(3)“x >0且y >0”是“x y +yx ≥2”的充要条件.( )(4)若a >0,则a 3+1a 2的最小值是2a .( )答案:(1)× (2)× (3)× (4)× 二、易错纠偏常见误区| (1)忽视不等式成立的条件a >0且b >0; (2)忽视定值存在; (3)忽视等号成立的条件. 1.若x <0,则x +1x ( )A .有最小值,且最小值为2B .有最大值,且最大值为2C .有最小值,且最小值为-2D .有最大值,且最大值为-2 解析:选D .因为x <0,所以-x >0,-x +1-x≥21=2,当且仅当x =-1时,等号成立,所以x +1x≤-2.2.若x >1,则x +4x -1的最小值为________.解析:x +4x -1=x -1+4x -1+1≥4+1=5.当且仅当x -1=4x -1,即x =3时等号成立.答案:53.设0<x <1,则函数y =2x (1-x )的最大值为________.解析:y =2x (1-x )≤2⎝ ⎛⎭⎪⎫x +1-x 22=12.当且仅当x =1-x ,即x =12时,等号成立.答案:12考点一 利用基本不等式求最值(基础型) 复习指导| 探索并了解基本不等式的证明过程,会用基本不等式解决简单的最大(小)值问题.核心素养:逻辑推理 角度一 通过配凑法求最值(1)已知0<x <1,则x (4-3x )取得最大值时x 的值为________. (2)已知x <54,则f (x )=4x -2+14x -5的最大值为________.【解析】 (1)x (4-3x )=13·(3x )(4-3x )≤13·⎣⎢⎡⎦⎥⎤3x +(4-3x )22=43, 当且仅当3x =4-3x , 即x =23时,取等号.(2)因为x <54,所以5-4x >0,则f (x )=4x -2+14x -5=-(5-4x +15-4x)+3≤-2(5-4x )15-4x+3≤-2+3=1.当且仅当5-4x =15-4x ,即x =1时,等号成立.故f (x )=4x -2+14x -5的最大值为1. 【答案】 (1)23(2)1通过拼凑法利用基本不等式求最值的策略拼凑法的实质在于代数式的灵活变形,拼系数、凑常数是关键,利用拼凑法求解最值应注意以下几个方面的问题:(1)拼凑的技巧,以整式为基础,注意利用系数的变化以及等式中常数的调整,做到等价变形;(2)代数式的变形以拼凑出和或积的定值为目标; (3)拆项、添项应注意检验利用基本不等式的前提. 角度二 通过常数代换法求最值已知a >0,b >0,a +b =1,则⎝⎛⎭⎫1+1a ⎝⎛⎭⎫1+1b 的最小值为________. 【解析】 ⎝⎛⎭⎫1+1a ⎝⎛⎭⎫1+1b =⎝ ⎛⎭⎪⎫1+a +b a ⎝ ⎛⎭⎪⎫1+a +b b =⎝⎛⎭⎫2+b a · ⎝⎛⎭⎫2+a b =5+2⎝⎛⎭⎫b a +a b ≥5+4=9.当且仅当a =b =12时,取等号.【答案】 9【迁移探究1】 (变问法)若本例中的条件不变,则1a +1b 的最小值为________.解析:因为a >0,b >0,a +b =1, 所以1a +1b =a +b a +a +b b =2+b a +a b ≥2+2b a ·a b =4,即1a +1b的最小值为4,当且仅当a =b =12时等号成立.答案:4【迁移探究2】 (变条件)若本例条件变为:已知a >0,b >0,4a +b =4,则⎝⎛⎭⎫1+1a ⎝⎛⎭⎫1+1b 的最小值为________.解析:由4a +b =4得a +b4=1,⎝⎛⎭⎫1+1a ⎝⎛⎭⎫1+1b=⎝ ⎛⎭⎪⎫1+a +b 4a ⎝ ⎛⎭⎪⎫1+a +b 4b =⎝⎛⎭⎫2+b 4a ⎝⎛⎭⎫54+a b =52+2a b +5b 16a +14≥114+258=114+102.当且仅当42a =5b 时取等号.答案:114+102常数代换法求最值的步骤(1)根据已知条件或其变形确定定值(常数); (2)把确定的定值(常数)变形为1;(3)把“1”的表达式与所求最值的表达式相乘或相除,进而构造和或积的形式; (4)利用基本不等式求解最值. 角度三 通过消元法求最值若正数x ,y 满足x 2+6xy -1=0,则x +2y 的最小值是( ) A .223B .23C .33D .233【解析】 因为正数x ,y 满足x 2+6xy -1=0,所以y =1-x 26x .由⎩⎪⎨⎪⎧x >0,y >0,即⎩⎪⎨⎪⎧x >0,1-x 26x >0,解得0<x <1.所以x +2y =x +1-x 23x =2x 3+13x ≥22x 3·13x =223,当且仅当2x 3=13x ,即x =22,y =212时取等号.故x +2y 的最小值为223. 【答案】 A通过消元法求最值的方法消元法,即根据条件建立两个量之间的函数关系,然后代入代数式转化为函数的最值求解.有时会出现多元的问题,解决方法是消元后利用基本不等式求解.但应注意保留元的范围.1.(2020·辽宁大连第一次(3月)双基测试)已知正实数a ,b 满足a +b =(ab )32,则ab 的最小值为( )A .1B . 2C .2D .4解析:选C .(ab )32=a +b ≥2ab =2(ab )12,所以ab ≥2,当且仅当a =b =2时取等号,故ab 的最小值为2,故选C .2.已知x ,y 为正实数,则4x x +3y +3yx的最小值为( ) A .53B .103C .32D .3解析:选D .由题意得x >0,y >0,4x x +3y +3y x =4xx +3y +x +3y x -1≥24x x +3y·x +3yx -1=4-1=3(当且仅当x =3y 时等号成立).3.已知x >0,y >0,且x +16y =xy ,则x +y 的最小值为________. 解析:已知x >0,y >0,且x +16y =xy .即16x +1y =1,则x +y =(x +y )·⎝⎛⎭⎫16x +1y =16+1+16y x +x y ≥17+2 16y x ·xy=25,当且仅当x =4y =20时等号成立,所以x +y 的最小值为25. 答案:25考点二 利用基本不等式解决实际问题(应用型) 复习指导| 利用基本不等式解决实际问题,关键是把实际问题抽象出数学模型,列出函数关系,然后利用基本不等式求最值.某单位在国家科研部门的支持下,进行技术攻关,采用了新工艺,把二氧化碳转化为一种可利用的化工产品.已知该单位每月的处理量最少为400吨,最多为600吨,月处理成本y (元)与月处理量x (吨)之间的函数关系可近似地表示为y =12x 2-200x +80 000,且每处理一吨二氧化碳得到可利用的化工产品价值为100元.(1)该单位每月处理量为多少吨时,才能使每吨的平均处理成本最低?(2)该单位每月能否获利?如果获利,求出最大利润;如果不获利,则需要国家至少补贴多少元才能使单位不亏损?【解】 (1)由题意可知,二氧化碳每吨的平均处理成本为y x =12x +80 000x -200≥212x ·80 000x-200=200,当且仅当12x =80 000x ,即x =400时等号成立,故该单位月处理量为400吨时,才能使每吨的平均处理成本最低,最低成本为200元.(2)不获利.设该单位每月获利为S 元,则S =100x -y =100x -⎝⎛⎭⎫12x 2-200x +80 000=-12x 2+300x -80 000=-12(x -300)2-35 000,因为x ∈[400,600],所以S ∈[-80 000,-40 000].故该单位每月不获利,需要国家每月至少补贴40 000元才能不亏损.应用基本不等式解决实际问题的基本步骤(1)理解题意,设出变量,建立相应的函数关系式,把实际问题抽象为函数的最值问题; (2)在定义域内,利用基本不等式求出函数的最值; (3)还原为实际问题,写出答案.某游泳馆拟建一座平面图形为矩形且面积为200平方米的泳池,池的深度为1米,池的四周墙壁建造单价为每米400元,中间一条隔壁建造单价为每米100元,池底建造单价每平方米60元(池壁厚忽略不计),则泳池的长设计为多少米时,可使总造价最低.解:设泳池的长为x 米,则宽为200x 米,总造价f (x )=400×⎝⎛⎭⎫2x +2×200x +100×200x +60×200=800×⎝⎛⎭⎫x +225x +12 000≥1 600x ·225x +12 000=36 000(元),当且仅当x =225x(x >0),即x =15时等号成立.即泳池的长设计为15米时,可使总造价最低.[基础题组练]1.(2020·安徽省六校联考)若正实数x ,y 满足x +y =2,则1xy 的最小值为( )A .1B .2C .3D .4解析:选A .因为正实数x ,y 满足x +y =2, 所以xy ≤(x +y )24=224=1,所以1xy ≥1.2.若2x +2y =1,则x +y 的取值范围是( ) A .[0,2]B .[-2,0]C .[-2,+∞)D .(-∞,-2]解析:选D .因为1=2x +2y ≥22x ·2y =22x +y ,(当且仅当2x =2y =12,即x =y =-1时等号成立)所以2x +y ≤12,所以2x +y ≤14,得x +y ≤-2.3.若实数a ,b 满足1a +2b =ab ,则ab 的最小值为( )A . 2B .2C .2 2D .4解析:选C .因为1a +2b =ab ,所以a >0,b >0,由ab =1a +2b≥21a ×2b=22ab, 所以ab ≥22(当且仅当b =2a 时取等号), 所以ab 的最小值为2 2.4.(多选)若a ,b ∈R ,且ab >0,则下列不等式中,恒成立的是( ) A .a +b ≥2ab B .1a +1b >1abC .b a +ab≥2D .a 2+b 2≥2ab解析:选CD .因为ab >0,所以b a >0,a b >0,所以b a +ab≥2b a ·ab=2,当且仅当a =b 时取等号.所以选项C 正确,又a ,b ∈R ,所以(a -b )2≥0,即a 2+b 2≥2ab 一定成立.5.已知x >0,y >0,lg 2x +lg 8y =lg 2,则1x +13y 的最小值是( )A .2B .2 2C .4D .2 3解析:选C .因为lg 2x +lg 8y =lg 2,所以lg(2x ·8y )=lg 2,所以2x +3y =2,所以x +3y =1.因为x >0,y >0,所以1x +13y =(x +3y )·⎝⎛⎭⎫1x +13y =2+3y x +x 3y ≥2+23y x ·x3y=4,当且仅当x =3y =12时取等号,所以1x +13y的最小值为4.故选C .6.设P (x ,y )是函数y =2x(x >0)图象上的点,则x +y 的最小值为________.解析:因为x >0,所以y >0,且xy =2.由基本不等式得x +y ≥2xy =22,当且仅当x=y 时等号成立.所以x +y 的最小值为2 2.答案:2 27.函数y =x 2x +1(x >-1)的最小值为________.解析:因为y =x 2-1+1x +1=x -1+1x +1=x +1+1x +1-2(x >-1),所以y ≥21-2=0,当且仅当x =0时,等号成立. 答案:08.(2020·湖南岳阳期末改编)若a >0,b >0,且a +2b -4=0,则ab 的最大值为________,1a +2b的最小值为________. 解析:因为a >0,b >0,且a +2b -4=0,所以a +2b =4,所以ab =12a ·2b ≤12×⎝ ⎛⎭⎪⎫a +2b 22=2,当且仅当a =2b ,即a =2,b =1时等号成立,所以ab 的最大值为2,因为1a +2b=⎝⎛⎭⎫1a +2b ·a +2b 4=14(5+2b a +2a b )≥14⎝⎛⎭⎫5+2·2b a ·2a b =94,当且仅当a =b 时等号成立,所以1a +2b 的最小值为94.答案:2 949.(1)当x <32时,求函数y =x +82x -3的最大值;(2)设0<x <2,求函数y =x (4-2x )的最大值. 解:(1)y =12(2x -3)+82x -3+32=-⎝ ⎛⎭⎪⎫3-2x 2+83-2x +32.当x <32时,有3-2x >0,所以3-2x 2+83-2x≥23-2x 2·83-2x=4,当且仅当3-2x 2=83-2x ,即x =-12时取等号.于是y ≤-4+32=-52,故函数的最大值为-52.(2)因为0<x <2,所以2-x >0, 所以y =x (4-2x )=2·x (2-x )≤2·x +2-x2=2,当且仅当x =2-x ,即x =1时取等号, 所以当x =1时,函数y =x (4-2x )的最大值为 2.10.已知x >0,y >0,且2x +8y -xy =0,求 (1)xy 的最小值; (2)x +y 的最小值. 解:(1)由2x +8y -xy =0, 得8x +2y =1, 又x >0,y >0, 则1=8x +2y ≥28x ·2y =8xy. 得xy ≥64,当且仅当x =16,y =4时,等号成立. 所以xy 的最小值为64.(2)由2x +8y -xy =0,得8x +2y =1,则x +y =⎝⎛⎭⎫8x +2y ·(x +y ) =10+2x y +8yx≥10+22x y ·8yx=18. 当且仅当x =12,y =6时等号成立, 所以x +y 的最小值为18.[综合题组练]1.设a >0,若关于x 的不等式x +a x -1≥5在(1,+∞)上恒成立,则a 的最小值为( ) A .16B .9C .4D .2解析:选C .在(1,+∞)上,x +a x -1=(x -1)+a x -1+1≥2 (x -1)×a (x -1)+1=2a +1(当且仅当x =1+a 时取等号).由题意知2a +1≥5,所以a ≥4.2.(2020·福建龙岩一模)已知x >0,y >0,且1x +1+1y =12,则x +y 的最小值为( ) A .3B .5C .7D .9解析:选C .因为x >0,y >0.且1x +1+1y =12,所以x +1+y =2⎝ ⎛⎭⎪⎫1x +1+1y (x +1+y )=2(1+1+y x +1+x +1y )≥2(2+2y x +1·x +1y )=8,当且仅当y x +1=x +1y ,即x =3,y =4时取等号,所以x +y ≥7,故x +y 的最小值为7,故选C .3.已知正实数x ,y 满足x +y =1,①则x 2+y 2的最小值为________;②若1x +4y≥a 恒成立,则实数a 的取值范围是________.解析:因为x +y =1,所以xy ≤⎝ ⎛⎭⎪⎫x +y 22=14,所以x 2+y 2=(x +y )2-2xy ≥1-14×2=12,所以x 2+y 2的最小值为12. 若a ≤1x +4y 恒成立,则a 小于等于⎝⎛⎭⎫1x +4y 的最小值,因为1x +4y =⎝⎛⎭⎫1x +4y (x +y )=5+y x +4x y≥5+2y x ×4x y =9,所以1x +4y的最小值为9,所以a ≤9,故实数a 的取值范围是(-∞,9]. 答案:12(-∞,9] 4.(2020·洛阳市统考)已知x >0,y >0,且1x +2y=1,则xy +x +y 的最小值为________. 解析:因为1x +2y =1,所以2x +y =xy ,所以xy +x +y =3x +2y ,因为3x +2y =(3x +2y )·(1x+2y )=7+6x y +2y x,且x >0,y >0,所以3x +2y ≥7+43,所以xy +x +y 的最小值为7+4 3. 答案:7+4 35.已知x ,y ∈(0,+∞),x 2+y 2=x +y .(1)求1x +1y的最小值; (2)是否存在x ,y 满足(x +1)(y +1)=5?并说明理由.解:(1)因为1x +1y =x +y xy =x 2+y 2xy ≥2xy xy =2,当且仅当x =y =1时,等号成立,所以1x +1y的最小值为2.(2)不存在.理由如下:因为x 2+y 2≥2xy ,所以(x +y )2≤2(x 2+y 2)=2(x +y ).又x ,y ∈(0,+∞),所以x +y ≤2.从而有(x +1)(y +1)≤⎣⎢⎡⎦⎥⎤(x +1)+(y +1)22≤4, 因此不存在x ,y 满足(x +1)(y +1)=5.6.某厂家拟定在2020年举行促销活动,经调查测算,该产品的年销量(即该厂的年产量)x 万件与年促销费用m (m ≥0)万元满足x =3-k m +1(k 为常数).如果不搞促销活动,那么该产品的年销量只能是1万件.已知2020年生产该产品的固定投入为8万元,每生产1万件该产品需要再投入16万元,厂家将每件产品的销售价格定为每件产品平均成本的1.5倍(产品成本包括固定投入和再投入两部分资金).(1)将2020年该产品的利润y 万元表示为年促销费用m 万元的函数;(2)该厂家2020年的促销费用投入为多少万元时,厂家获取利润最大?解:(1)由题意知,当m =0时,x =1(万件),所以1=3-k ⇒k =2,所以x =3-2m +1(m ≥0), 每件产品的销售价格为1.5×8+16x x(元), 所以2020年的利润y =1.5x ×8+16x x-8-16x -m=-⎣⎢⎡⎦⎥⎤16m +1+(m +1)+29(m ≥0). (2)因为m ≥0时,16m +1+(m +1)≥216=8, 所以y ≤-8+29=21,当且仅当16m +1=m +1⇒m =3(万元)时,y max =21(万元). 故该厂家2020年的促销费用投入为3万元时,厂家的利润最大,最大为21万元.。

相关文档
最新文档