化工原理设计原油换热器
化工原理课程设计换热器
化工原理课程设计换热器
换热器设计是化工原理课程设计中一个重要的部分。
下面将为您介绍步骤和注意事项。
一、设计步骤:
1. 确定换热器类型:根据工艺要求及介质性质,选择适合的换热器类型,如管壳式、板式、螺旋板式等。
2. 估算传热系数:根据换热器类型、流体类型、流量、温度等因素,估算出传热系数。
3. 计算传热面积:根据所需传热量和传热系数,计算指定温度下需求的传热面积。
4. 选择换热器管径及壳体规格:根据所需传热面积和换热器类型,选择合适的换热器管径及壳体规格。
5. 设计热损失:根据换热器使用环境,计算换热器热损失量,以确保能量转化的高效。
6. 设计流路:结合工艺流程及介质性质,确定换热器内部介质的流路和流速,
以确保传热效率。
二、注意事项:
1. 选用合适的换热器类型,以确保传热效率和占用空间的合理性。
2. 估算传热系数要考虑介质性质、流量、温度等因素,更加科学地估算传热系数。
3. 所需传热面积要根据实际需要,同时结合换热器的大小、材质等因素做出合理的选择。
4. 选择换热器管径及壳体规格要遵循一定的社会标准及安全规范,以确保换热器使用的稳定性和安全性。
5. 设计热损失要考虑换热器使用环境,以确保能量转化的高效。
同时,必须符合国家有关规定。
化工原理换热器课程设计(1)
重庆理工大学化工原理课程设计说明书题目:柴油预热原油的管壳式换热器学生班级:113150202学生姓名:余毛平学生学号:11315020232指导教师:白薇扬化学化工学院2016 年 7 月 4 日目录1.设计任务书 (1)2.概述 (2)3.设计条件及物性参数表 (2)4.方案设计和拟定 (3)5.设计计算 (7)6.参考文献 (11)1.设计任务书1.1设计题目用柴油预热原油的管壳式换热器1.2设计任务1.查阅文献资料,了解换热设备的相关知识,熟悉换热器设计的方法和步骤;2.根据设计任务书给定的生产任务和操作条件,进行换热器工艺设计及计算;3.根据换热器工艺设计及计算的结果,进行换热器结构设计;4.以换热器工艺设计及计算为基础,结合换热器结构设计的结果,绘制换热器装配图;5.编写设计说明书对整个设计工作的进行书面总结,设计说明书应当用简洁的文字和清晰的图表表达设计思想、计算过程和设计结果。
1.3操作条件2.概述在不同温度的流体间传递热能的装置称为热交换器,简称为换热器。
在换热器中至少要有两种温度不同的流体,一种流体温度较高,放出热量;另一种流体则温度较低,吸收热量在化工、石油、动力、制冷、食品等行业中广泛使用各种换热器,它们也是这些行业的通用设备,并占有十分重要的地位。
随着换热器在工业生产中的地位和作用不同,换热器的类型也多种多样,不同类型的换热器也各有优缺点,性能各异。
列管式换热器是最典型的管壳式换热器,它在工业上的应用有着悠久的历史,而且至今仍在所有换热器中占据主导地位。
3.设计条件及物性参数表3.1操作条件原油:入口温度60℃出口温度105℃质量流量:41416 kg/h加热介质柴油:入口温度170℃ 出口温度T2 质量流量:35320kg/h允许压降:不超过0.3×105Pa3.2物性参数表4.方案设计和拟订根据任务书给定的冷热流体的温度,来选择设计列管式换热器中的浮头式换热器;再依据冷热流体的性质,判断其是否易结垢,来选择管程走什么,壳程走什么。
化工原理课程设计模板-换热器
化工原理课程设计模板-换热器1. 引言换热器是化工过程中常用的设备之一,其主要功能是在流体之间进行热量传递,以实现温度控制、能量回收等目的。
本文将介绍化工原理课程设计中换热器的设计过程和要点。
2. 设计目标在进行换热器设计之前,首先要确定设计的目标。
设计目标包括但不限于以下几点:•确定需要传热的流体的进口温度和出口温度;•确定传热后流体的温度变化范围;•确定换热器的热传导面积;•确定换热器的传热系数。
3. 设计步骤换热器的设计过程可以分为以下几个步骤:3.1 确定流体的性质参数在设计换热器之前,需要明确流体的性质参数,包括流体的密度、比热容以及传热系数等。
这些参数可以通过实验测定或者查阅相关文献获得。
3.2 计算流体的传热量根据热传导定律,可以计算流体的传热量。
传热量的计算公式如下:Q = m * c * ΔT其中,Q表示传热量,m表示流体的质量,c表示流体的比热容,ΔT表示流体的温度变化。
3.3 确定换热器的传热面积根据热传导定律,可以计算换热器的传热面积。
传热面积的计算公式如下:A = Q / (U * ΔTlm)其中,A表示传热面积,U表示换热器的传热系数,ΔTlm表示对数平均温差。
3.4 选择换热器的类型和结构根据设计要求和实际情况,选择合适的换热器类型和结构。
常见的换热器类型包括管壳式换热器、板式换热器等。
3.5 进行换热器的细节设计在确定了换热器的类型和结构之后,进行换热器的细节设计,包括管道的布置、流体的流动方式以及换热器的材料选择等。
3.6 进行换热器的性能评价完成换热器的设计之后,进行性能评价,验证设计结果是否满足设计目标。
性能评价主要包括换热器的传热效率、压降以及经济性等方面。
4. 实例分析下面通过一个实例来说明换热器的设计过程。
实例:管壳式换热器假设需要设计一个管壳式换热器,用于将流体A的温度从40℃降至20℃,同时将流体B的温度从70℃升至90℃。
根据设计要求,我们可以计算出流体A和流体B的传热量,然后根据对数平均温差计算出传热面积,从而确定换热器的尺寸。
化工原理换热器课程设计(原创完整版)
华北科技学院课程设计报告题目列管式换热器的工艺设计课程名称化工原理课程设计专业化学工程与工艺班级学生姓名学号设计地点指导教师设计起止时间:2011 年5月2日至2011年5月13日课程设计任务书设计题目:列管式换热器的工艺设计和选用设计题目4、炼油厂用原油将柴油从175℃冷却至130℃,柴油流量为12500 kg/h;原油初温为70℃,经换热后升温到110℃。
换热器的热损失可忽略。
60kPa。
.℃/W管、壳程阻力压降均不大于30kPa。
污垢热阻均取0.0003㎡一、确定设计方案1、选择换热器类型俩流体温度变化情况:柴油进口温度175℃,出口温度110℃。
原油进口温度70℃,出口温度110℃从两流体的温度来看,估计换热器的管壁温度和壳体壁温之差不会很大,因此初步确定选用固定管板式换热器。
2、流程安排该任务的热流体为柴油,冷流体为原油,由于原油的黏度大,因此使原油走壳程,柴油走管程。
二、工艺结构设计(一)估算传热面积1.换热器的热流量(忽略热损失)1112312500() 2.4810(17530)38750003600m p Q q c T T W =-=⨯⨯⨯-= 2.冷却剂原油用量(忽略热损失)22123875004.40/()2200(11070)m p Q q kg s c t t ===-⨯-2.平均传热温差'1212(175110)(13070)62.5175110ln ln13070m t t t C t t ∆-∆---∆===︒∆--∆ 3.估K 值2220K W m C =⋅︒估() 4.由K 值估算传热面积A 估=2Q 38750028.2220m m K t ==⋅∆⨯62.5估(二)工艺结构尺寸1.管径、管长、管数○1管径选择 选用192mm ϕ⨯传热管(碳钢) ○2估算管内流速 取管内流速0.6/u m s =估 ○3计算管数 2212500360071545.8460.0150.644vsi q n d u ππ⨯===≈⨯⨯估(根)○4计算管长 28.2L 10.280.01946o s A m d n ππ===⨯⨯估 ○5确定管程 按单管程设计,传热管稍长,宜采用多管程结构。
化工原理设计(换热器设计)概要
广东石油化工学院化工原理课程设计说明书题目:柴油预热原油的管壳式换热器学生班级:学生姓名:学生学号:18指导教师:李燕化学化工学院年月日化工原理课程设计任务书一、设计题目:列管式换热器设计二、设计任务及操作条件某炼油厂用柴油将原油预热。
柴油和原油的有关参数如下表, 两侧的污垢热阻均可取1.72×10-4m2.K/W,要求两侧的阻力损失均不超过0.5×105Pa。
试选用一台适当型号的列管式换热器。
(x:学号)三、设计要求提交设计结果,完成设计说明书。
设计说明书包括:封面、目录、设计任务书、设计计算书、设计结果汇总表、参考文献及设计自评表、换热器装配图等。
(设计说明书及图纸均须手工完成)四、定性温度下流体物性数据物料温度℃质量流量kg/h比热kJ/kg.℃密度kg/m3导热系数W/m.℃粘度Pa.s入口出口柴油175 T234220 2.48 715 0.133 0.64×10-3原油70 110 44330 2.20 815 0.128 3.0×10-3推荐总K=45~280 W/m.℃注:若采用错流或折流流程,其平均传热温度差校正系数应大于0.8五、参考书目:1、姚玉英. 化工原理,上册,1版.天津:天津大学出版社,19992、柴诚敬.化工原理课程设计. 1版.天津:天津大学出版社,19943、匡国柱.化工单元过程及设备课程设计. 1版.北京:化学工业出版社,20024、李功祥.常用化工单元设备设计.1版.广州:华南理工大学出版社,2003目录1.设计任务书 (1)2.概述 (2)3.设计条件及物性参数表 (2)4.方案设计和拟定 (3)5.设计计算 (6)6.热量核算 (11)7.参考文献 (16)8.心得体会 (17)1.设计任务书1.1设计题目用柴油预热原油的管壳式换热器1.2设计任务1.查阅文献资料,了解换热设备的相关知识,熟悉换热器设计的方法和步骤;2.根据设计任务书给定的生产任务和操作条件,进行换热器工艺设计及计算;3.根据换热器工艺设计及计算的结果,进行换热器结构设计;4.以换热器工艺设计及计算为基础,结合换热器结构设计的结果,绘制换热器装配图;5.编写设计说明书对整个设计工作的进行书面总结,设计说明书应当用简洁的文字和清晰的图表表达设计思想、计算过程和设计结果。
原油预热器设计说明书分析
化工原理课程设计说明书设计题目:原油预热器设计学生姓名:所在班级:学号:002设计时间:2012.12.31—3013.01.11指导教师:罗建平审阅时间:设计成绩:设计任务书1.设计名称:原油预热器设计2.设计条件:炼油厂用柴油将原油预热,设计、操作条件如下表所示(1). 处理原油量:50400 Kg/h(2). 加热介质:进口温度175℃,出口温度40℃,质量流量40300 Kg/h(3). 原油:进口温度25℃(4). 允许压强降不大于0.3×106Pa(5). 两侧的污垢热阻均可取1.72×10-4m2.K/W(6). 每年按330天计,每天24小时连续运行3.设计任务(1).选择适宜的列管换热器并进行核算。
(2).画出工艺设备图及列管布置图。
(3).画出带控制点的换热装置工艺流程图4.基础数据目录一概述 (5)二设计标准 (5)三设计方案简介 (6)(一)换热器简介 (8)1、换热器概述 (8)2、换热器的分类 (9)(二)列管式换热器的结构 (13)1、管程结构 (13)2、壳程结构⑴壳体 (14)(三)各参数的确定 (17)(四)材料选用 (20)四工艺流程草图及说明 (21)五工艺计算及主要设备设计 (21)(一)换热器选型 (21)(二)物性数据确定 (22)(三)流程及流速的初步确定 (22)(四)总传热系数计算 (23)(五)传热面积的估算 (23)(六)工艺结构尺寸 (23)1.管径和管内流速的最终确定 (23)2.管程数和传热管数 (24)3.平均传热温差校正及壳程数 (24)4.传热管排列和分程方法 (25)5 .壳体内径 (25)6 .折流板数计算 (26)7 .接管 (26)8.其他附件 (27)(七)换热器核算 (27)1.热量核算 (27)2. 换热器内流体的流动阻力计算 (29)(八)壁温核算 (31)(九)壳体壁厚 (32)(十)水压校核 (32)(十一)年产量计算 (33)六辅助设备的计算和选型 (33)(一)离心泵选型 (33)1.管程输送离心泵选型 (33)2.壳程输送离心泵选型 (34)七设计一览表 (34)(一)换热器主要结构尺寸和计算结果 (34)八设计评述 (35)九附图 (37)十附录 (37)十一参考资料 (40)十二主要符号说明 (41)(一)英文字母 (41)(二)希腊字母 (42)(三)下标 (43)一概述列管式换热器是目前化工生产上应用最广的一种换热器。
化工原理课程设计-换热器设计任务书
题目一:用水冷却煤油产品的列管式换热器设计任务书《处理量为XXX吨/年XXXXXXXX的工艺设计》设计任务书一、设计名称用水冷却煤油产品的多程列管式换热器设计二、设计条件使煤油从140℃冷却到40℃,压力1bar ,冷却剂为水,水压力为3bar,处理量为10t/h,进口温度20 ℃,出口温度40 ℃三、设计任务1 合理的参数选择和结构设计2 传热计算和压降计算:设计计算和校核计算四、设计说明书内容1 传热面积2 管程设计包括:总管数、程数、管程总体阻力校核3 壳体直径4 结构设计包括壁厚5 主要进出口管径的确定包括:冷热流体的进出口管6流程图(以图的形式,并给出各部分尺寸)及结构尺寸汇总(以表的形式)7评价之8参考文献一、设计的目的通过对煤油产品冷却的列管式换热器设计,达到让学生了解该换热器的结构特点,并能根据工艺要求选择适当的类型,同时还能根据传热的基本原理,选择流程,确定换热器的基本尺寸,计算传热面积以及计算流体阻力。
总之,通过设计达到让学生自己动手进行设计的实践,获取从事工程技术工作的能力。
二、设计的指导思想1 结构设计应满足工艺要求2 结构简单合理,操作调节方便,运行安全可靠3 设计符合现行国家标准等4 安装、维修方便三、设计要求1 计算正确,分析认证充分,准确2 条理清晰,文字流畅,语言简炼,字迹工整3 图纸要求,图纸、尺寸标准,图框,图签字规范4 独立完成四、设计课题工程背景在石油化工生产过程中,常常需要将各种石油产品(如汽油、煤油、柴油等)进行冷却,本设计以某厂冷却煤油产品为例,让学生熟悉列管式换热器的设计过程。
五、参考文献1 化工过程及设备设计,华南工学院,19862 传热设备及工业炉,化学工程手册第8篇,19873 化工设备设计手册编写组. 金属设备,19754 尾范英郎(日)等,徐忠权译,热交换设计物册,19815 谭天恩等. 化工原理(上、下册)化学工业出版社.六、设计思考题1设计列管式换热器时,通常都应选用标准型号的换热器,为什么?2 为什么在化工厂使用列管式换热最广泛?3 在列管式换热器中,壳程有挡板和没有挡板时,其对流传热系数的计算方法有何不同?4 说明列管式换热器的选型计算步骤?5 在换热过程中,冷却剂的进出口温度是按什么原则确定的?6 说明常用换热管的标准规格(批管径和管长)。
原油-常二线浮头式换热器设计.doc
2012届毕业(设计)论文题目常二线-原油换热器设计专业班级过程装备与控制工程学号 0803020218 学生姓名石熠学院机电工程学院指导教师刘丽芳指导教师职称副教授完成日期: 2012 年6月3日目录摘要 (Ⅲ)ABSTRACT (Ⅳ)前言 (Ⅴ)第一章换热器基本知识 0第二章设计计算 (12)2.1 设计条件 (12)2.2 核算换热器传热面积 (13)2.3 压力降的计算 (20)2.4 换热器壁温计算 (22)第三章换热器结构设计与强度计算 (23)3.1 壳体与管箱厚度的确定 (23)3.2 开孔补强计算 (26)3.3 水压试验 (31)3.4 换热管 (32)3.5 管板设计 (35)3.6 折流板 (41)3.7 拉杆与定距管 (43)3.8 防冲板 (44)3.9 保温层 (44)3.10法兰与垫片 (44)3.11 钩圈式浮头 (49)3.12 分程隔板 (54)3.13 鞍座 (54)3.14 接管的最小位置 (56)第四章换热器的腐蚀、制造与检验 (57)4.1 换热器的腐蚀 (57)4.2 换热器的制造与检验 (58)第五章焊接工艺评定 (61)5.1 壳体焊接工艺 (61)5.2 换热管与管板的焊接 (62)5.3 法兰与筒体的焊接 (63)第六章换热器的安装、试车与维护 (63)6.1 安装 (63)6.2 试车 (64)6.3 维护 (64)总结 (64)参考文献 (66)附录A相关文献 (67)附录B等面积补强VB源程序 (74)摘要换热器是将热流体的部分热量传递给冷流体,实现化工生产过程中热量交换和传递不可缺少的设备。
本文以PN1.6 DN800浮头式换热器为研究对象,在查阅国内外众多文献的基础上,对换热器的发展、背景、分类和用途进行了探索和研究,以气气换热器的设计过程为主线,结构设计为主体,全面介绍换热器的设计全过程。
本文主要以常二线和原油为介质,按实际设计步骤依次进行热工计算、结构设计和强度设计,并画出换热器的CAD结构图。
原油预热器设计说明书
化工原理课程设计说明书设计题目:原油预热器设计学生姓名:所在班级:学号:002设计时间:2012.12.31—3013.01.11指导教师:罗建平审阅时间:设计成绩:设计任务书1.设计名称:原油预热器设计2.设计条件:炼油厂用柴油将原油预热,设计、操作条件如下表所示(1). 处理原油量:50400 Kg/h(2). 加热介质:进口温度175℃,出口温度40℃,质量流量40300 Kg/h(3). 原油:进口温度25℃(4). 允许压强降不大于0.3×106Pa(5). 两侧的污垢热阻均可取1.72×10-4m2.K/W(6). 每年按330天计,每天24小时连续运行3.设计任务(1).选择适宜的列管换热器并进行核算。
(2).画出工艺设备图及列管布置图。
(3).画出带控制点的换热装置工艺流程图4.基础数据目录一概述 (5)二设计标准 (5)三设计方案简介 (6)(一)换热器简介 (8)1、换热器概述 (8)2、换热器的分类 (9)(二)列管式换热器的结构 (13)1、管程结构 (13)2、壳程结构⑴壳体 (14)(三)各参数的确定 (17)(四)材料选用 (20)四工艺流程草图及说明 (21)五工艺计算及主要设备设计 (21)(一)换热器选型 (21)(二)物性数据确定 (22)(三)流程及流速的初步确定 (22)(四)总传热系数计算 (23)(五)传热面积的估算 (23)(六)工艺结构尺寸 (23)1.管径和管内流速的最终确定 (23)2.管程数和传热管数 (24)3.平均传热温差校正及壳程数 (24)4.传热管排列和分程方法 (25)5 .壳体内径 (25)6 .折流板数计算 (26)7 .接管 (26)8.其他附件 (27)(七)换热器核算 (27)1.热量核算 (27)2. 换热器内流体的流动阻力计算 (29)(八)壁温核算 (31)(九)壳体壁厚 (32)(十)水压校核 (32)(十一)年产量计算 (33)六辅助设备的计算和选型 (33)(一)离心泵选型 (33)1.管程输送离心泵选型 (33)2.壳程输送离心泵选型 (34)七设计一览表 (34)(一)换热器主要结构尺寸和计算结果 (34)八设计评述 (35)九附图 (37)十附录 (37)十一参考资料 (40)十二主要符号说明 (41)(一)英文字母 (41)(二)希腊字母 (42)(三)下标 (43)一概述列管式换热器是目前化工生产上应用最广的一种换热器。
3.8万吨原油换热器课程设计
课程设计任务书设计题目: 3.8万吨原油换热器设计学生姓名:专业班级:资源环境与城乡规划管理学号:指导教师:2012年 12月 13 日1. 概述与设计方案简介 (1)1.1. 换热器的类型 (1)1.2. 换热器 (1)1.2.1. 换热器类型 (2)1.2.2. 固定管板式换热器 (2)1.2.3. U型管换热器 (2)1.2.4. 浮头式换热器 (2)1.2.5. 填料函式换热器 (3)1.3. 换热器类型的选择 (3)1.4. 流径的选择 (3)1.5. 材质的选择 (4)1.6. 管程结构 (4)2. 换热器选型及工艺计算 (5)2.1. 确定基本操作参数 (5)2.2. 初算传热面积 (5)2.2.1. 传热量 (5)2.2.2. 平均温差 (6)2.2.3. 初算传热面积 (7)2.3. 换热器基本参数确定 (7)2.3.1. 换热管和管内流速 (7)2.3.2. 管程数和壳体内径 (8)2.3.3. 换热器工艺尺寸结构 (8)2.3.4. 换热器选型 (9)2.4. 总传热系数核算 (9)2.4.1. 管程传热膜系数 (9)2.4.2. 壳程传热系数 (10)2.4.3. 污垢系数 (11)2.4.4. 总传热系数 (11)2.4.5. 计算传热面积 (12)2.5. 换热器核算 (12)2.5.1. 壳程压降 (12)2.5.2. 管程压降 (12)3. 工艺设计表 (13)4. 换热器设备的计算 (14)4.1. 壳体壁厚设计 (14)4.1.1. 壁厚的计算 (14)4.1.2. 换热器校核水压试验强度 (15)4.2. 封头的设计 (16)4.3. 法兰的设计 (17)4.4. 支座的设计 (17)4.4.1. 质量核算 (17)4.4.2. 鞍座选型 (18)4.5. 管板的设计 (19)4.5.1. 管板尺寸确定 (19)4.5.2. 管板与管子连接 (20)4.5.3. 管板与壳体的连接 (20)4.6. 流体进、出口接管直径的计算 (21)4.7. 容器开孔补强 (21)5. 设备设计数据表 (22)设计心得 (23)参考文献 (24)1.概述与设计方案简介1.1. 换热器的类型列管式换热器又称为管壳式换热器,是最典型的间壁式换热器,历史悠久,占据主导作用,主要有壳体、管束、管板、折流挡板和封头等组成。
原油列管式换热器设计书
化工原理化工设备课程设计任务书设计题目:年处理2.4万吨的列管式换热器学生姓名:***专业班级:环境工程10级4班学号: 1 0 0 7 0 4 0 0 1指导教师:徐慎颖、张燕宜宾学院化学与化工学院2011年12月13 日列管式换热器设计任务书一、设计目的培养学生综合运用本门课程及有关选修课程基础理论和基本知识去完成换热单元操作设备设计任务的实践能力二、设计目标设计的设备必须在技术上是可行的,经济上是合理的,操作上是安全的,环境上是友好的三、设计题目列管式换热器设计四、设计任务及操作条件1. 设计任务设备型式:列管式处理任务:如下表所示:2. 操作条件(1)热流体:入口温度140℃; 出口温度40℃ (2)冷却介质:岷江水 (3)允许压降:不大于0.1MPa (4)物性数据原油定性温度下的物性数据()()C m W C kg kJ c sPa m kg o o opo o o ⋅=⋅=⋅⨯==-/128.0/2.2100.3/81533λμρ导热系数定压比热容粘度密度五、设计内容1. 设计方案的选择2. 设计计算(1)计算总传热系数(2)计算传热面积3. 主要设备工艺尺寸设计(1)管径尺寸和管内流速的确定(2)传热面积、管程数、管数和壳程数的确定4. 换热器核算5. 设计结果汇总6. 绘制换热器简图目录第一章概述 (1)1.1换热器的简单介绍 (1)1.2本设计的目的和意义 (1)第二章设计计算 (2)2.1确定设计方案 (2)2.2确定物性数据 ................................................ 错误!未定义书签。
2.3计算总传热系数 (3)2.4计算传热面积 ................................................ 错误!未定义书签。
2.5工艺结构尺寸 (8)2.6换热器核算 (8)设计图纸(附图纸) ................................................ 错误!未定义书签。
年柴油-原油换热器设计处理量2.7×105 吨年柴油原油换热器设计
吉林化工学院油气储运专业课程设计题目处理量2.7×105吨/年柴油-原油换热器设计课程设计任务书1.设计题目:处理量20万吨/年柴油-原油换热器设计2.操作条件:(1)原油:入口温度70°C;出口温度110°C;(2)采用柴油加热,入口温度170℃,出口温度124°C;(3)已知两侧污垢热阻为0.0002㎡·C/W,管程与壳程两侧降压小于或等于0.3at,热阻损失5%。
(4)相关物性数据:原油在90℃,1.2MPa下的有关物性数据如下:物性密度ρi(kg/m3)定压比热容c pi[kJ/(kg℃)]粘度μi(Pa·s)导热系数λi(W·m-1·℃-1)原油815 2.2 6.65×10-30.128 柴油在147℃的物性数据如下:物性密度ρo(kg/m3)定压比热容c po[kJ/(kg℃)]粘度μo(Pa·s)导热系数λo(W·m-1·℃-1)柴油718 2.46 0.66×10-3 0.139 (5)每年按330天计,每天24小时连续生产。
3.设计任务:(1)处理能力:2×105t/a原油;(2)设备型式:自选(3)选择适宜的换热器并进行核算;(4)绘制带控制点的工艺流程图和设备结构图,并编写设计说明书。
4.设计要求:为使学生独立完成课程设计,每个学生的原始数据均在处理量上不同,即学号在1~16号中,每上浮0.1×105t/a为一个学号的处理量(例如1号换热器处理量量为1.5×105 t/a;2号换热器处理量为1.6×105 t/a等依此类推);5.参考书:(1)《化工设计手册》上、下,上海医药设计院;(2)谭天恩.麦本熙,《化工原理》下册,化学工业出版社出版;(3)匡国柱.史启才,《化工单元过程及设备课程设计》;(4)《化工设计全书》编辑委员会,金国淼等编,《吸收设备》化学工业出版社;(5)陈敏恒等编《化工原理》下册,化学工业出版社出版;(6)其它参考书。
化工原理设计原油换热器
62、定性温度的确定......三.确定设计方案 ............ 选择换热器的类型… 流程安排.............. 估算传热面积 ....... 热流量 •…… 四. (4)1、 1、2、 平均传热温差 -3、 传热面积.. 五.工程结构尺寸••-1、管径和管内流速2、管程数和传热管数3、平均传热温差校正及壳数4、传热管的排列和分程方法 5•55 ••••5 .. 5 ••…6 .. 7目:原油加热器 固定式换热器指导教师: 李先生院国家特级院级:高分子材料与工程系学生姓名:目录.绪论 ................... 、设计条件及主要物性参数1、设计条件原理课程设计1.加热器简介1.1.固定管板式固定管板式换热器的两端管板和壳体制成一体,当两流体的温度差较大在外壳的适当位置上焊上一个补偿圈(或膨胀节)。
当壳体和管束热膨胀不同造价低廉,壳程清洗和检修困难,壳程必须是洁净不易结垢的物料1.2.U 形管式U 形管式换热器每根管子均弯成 U 形,流体进、出口分别安装在同一端的两 封头内用隔板分成两室,每根管子可自由伸缩,来解决热补偿问题。
特点: 结构简单,质量轻,适用于高温和高压的场合。
管程清洗困难,管程流体必须是洁 净和不易结垢的物料。
1.3. 浮头式换热器两端的管板,一端不与壳体相连,该端称浮头。
管子受热时,管束连 同浮头可以沿轴向自由伸缩,完全消除了温差应力。
特点:结构复杂、造价高, 便于清洗和检修,完全消除温差应力,应用普遍。
本实验采用的是浮头式加热器,包括输油管,输油管上套有密闭的外壳,外壳 的一段管道上设有加热体,该加热体用固定卡固定在外壳表面上,所述外壳的外表 面上包覆有保温层。
本实用新型具有传热速度快、均温性好的特点,避免了在输送 过程中热损失大而导致油品凝固难以输送的问题。
2. 设计目的培养学生综合运用本门课程及有关选修课程基础理论和基础知识完成某项单 元操作设备设计的实践操作能力。
化工原理课程设计换热器
化工原理课程设计换热器
本文设计一个换热器,实现化工过程中的能量传递。
换热器是一种常见的设备,用于将热量从一个介质传递到另一个介质。
首先,我们确定了换热器的工作原理和基本要求。
换热器采用了壳程和管程的设计,分别由外壳和管束组成。
热量通过管道中的热媒体流经管程,然后从外壳中的流体中吸收或释放热量。
接下来,我们选择了适用于该化工过程的换热介质。
在这个设计中,我们选择了水作为热媒体,因为水具有良好的热传导性能和可用性。
基于化工过程的热量需求,我们确定了换热器的热负荷。
热负荷是指单位时间内所需传递的热量。
我们计算了化工过程中的热负荷,并据此确定了设计换热器所需的换热面积。
为了提高换热效率,我们设计了合理的流体流动方式。
流体在外壳和管道中的流动方式可以影响换热器的传热性能。
我们通过合理设计管程和外壳的结构,以及选择合适的流道形式,来确保流体在换热器中的流动均匀且高效。
此外,我们还考虑了换热器的传热方式。
换热器可以通过对流、传导和辐射等方式进行传热。
根据化工过程的要求,我们选择了对流传热作为主要的传热方式。
最后,我们综合考虑了换热器的选材、工艺要求和安全性能。
我们选择了具有良好耐腐蚀性和导热性能的材料,并按照化工
过程的要求进行工艺设计。
在设计过程中,我们还充分考虑了换热器的安全性能,包括压力、温度和材料的选择等因素。
综上所述,本文设计了一个换热器,包括工作原理、基本要求、换热介质、热负荷、流体流动方式、传热方式、材料选材和安全性能等内容。
该设计旨在满足化工过程中的能量传递需求,并提高传热效率和安全性能。
化工原理课程设计换热器设计
化工原理课程设计换热器设计化工原理课程设计是化工专业学生必修的一门课程。
在该课程中,学生需要了解化工生产过程中涉及到的各种原理和技术,并根据所学知识进行实际的工程设计。
其中,换热器设计是该课程中的一个重要组成部分。
换热器是化工生产过程中常用的一种装置,它能够将热量从一种流体传递到另一种流体中,实现热能的转移和利用。
化工生产中的换热器种类繁多,包括壳管式换热器、板式换热器、螺旋板式换热器等。
而在换热器的设计中,需要考虑的关键因素包括传热面积、流体流量、温度差等。
设计一个换热器需要经过多个步骤,其中的关键步骤包括:确定热传递系数、计算换热面积、选择换热器类型、确定流体流量及温度等。
这些计算都需要基于化工原理这门学科的知识来进行。
具体来说,需要掌握传热原理和传热换热器的设计原理,以及流体动力学知识等。
在进行换热器的设计时,需要衡量各个指标的优先级。
例如,在流体流量和温度差的确定中,需要根据具体的工程需求来确定优先顺序。
若流量需要更精确的控制,则需要首先计算出所需的最小流量。
而若温度差更为关键,则需要考虑在设计中增加换热面积来加强热能传递效果。
此外,在设计过程中还需要考虑到实际操作中的各种特殊条件。
例如,在实际工厂中,换热器需要面临腐蚀、结垢等问题。
因此,在进行设计时需要在材料选择、清洗方式等方面进行综合考虑,以确保换热器的使用寿命和效能。
在完成换热器设计的过程中,需要采用计算机辅助设计软件,如HTRI软件、CHEMCAD软件,对设计结果进行验证和优化。
这些软件能够帮助工程师快速计算出各项关键参数,并进行实时计算和模拟,以确保设计的合理性和可行性。
总的来说,换热器设计是化工原理课程中的重要课程之一,同时也是化工生产中不可或缺的一部分。
在学习和掌握相关知识时,需要注重对理论知识的建立,并注重实践经验和操作技能的培养。
只有进行全面的学习和实践,才能更好的掌握换热器设计的技巧,提高设计的合理性和效率,为化工生产工艺的改进和优化做出贡献。
化工原理换热器课程设计
华北科技学院环境工程学院《化工原理》课程设计报告设计题目列管式换热器的工艺设计和选用学生姓名曹炎学号 201101034208 指导老师高丽花专业班级化工B112班教师评语设计时间:2013年12月9日至2013年 12月20日设计题目:列管式换热器的工艺设计和选用一、设计条件炼油厂用原油将柴油从175℃冷却到130℃。
柴油流量为12500kg/h;原油初温为70℃,经换热后升温到110℃。
换热器的热损失可忽略。
管、壳程阻力压降均不大于30kPa。
污垢热阻均取0.0003m2℃/W。
试设计能完成上述任务的列管式换热器。
二、设计说明书的内容1、目录;2、设计题目及原始数据(任务书);3、论述换热器总体结构(换热器型式、主要结构)的选择;4、换热器加热过程有关计算(物料衡算、热量衡算、传热面积、换热器型号、壳体直径等);5、设计结果概要(主要设备尺寸、衡算结果等);6、参考文献7、图纸(1张,A3、纸打印)目录1 确定设计方案 (2)1.1选择换热器类型 (2)1.2流径安排 (2)1.3 确定物性数据 (2)1.3.1定性温度的确定 (2)1.3.2流体有关物性数据 (2)2 估算传热面积 (3)2.1 热负荷的计算 (3)2.2 平均传热温差 (3)2.4由K值估算传热面积 (4)2.5冷流体用量 (4)3 工艺结构尺寸 (5)3.1 管径、管长、管数 (5)3.1.1管径的选取 (5)3.1.2管长及传热管数的确定 (5)3.2 确定管子在管板上的排列方式 (6)3.3 壳体内径的计算 (6)3.4 折流档板 (7)3.5 计算壳程流通面积及流速 (7)3.6 计算实际传热面积 (8)3.7 附件 (8)4 换热器型号确定 (9)5 换热器核算 (10)5.1热量核算 (10)5.1.1壳程表面对流传热系数 (10)5.1.2管程表面对流传热系数 (11)5.1.3污垢热阻和管壁热阻 (12)5.1.4总传热系数K (12)5.1.5 传热面积裕度 (12)5.2核算换热器内流体的压力降 (13)5.2.1管程压力降 (13)5.2.2壳程压力降: (14)5.3 壁温核算 (15)6 结果概要 (16)七、附件计算及选型 (17)7.1壳体、管箱壳体和封头的设计 (17)7.1.1壁厚的确定 (17)7.1.2 进出口设计 (17)7.1.3、排气、排液管 (17)7.2.管板尺寸 (18)7.3.换热管 (18)7.3.1换热管的规格 (18)7. 3.2换热管排列方式 (18)7.3.4管程分程 (18)7.4.壳体和管板、管板与换热管的连接 (19)7.5 折流板和防冲板 (19)7.5.1折流板的形式(见附图) (19)7.6拉杆和定距管 (19)7.6.1拉杆的尺寸和结构(附录五) (19)7.6.2定距管 (19)八、总结 (20)参考文献 (21)附录 (22)1 确定设计方案1.1选择换热器类型两流体的温度变化情况:热流体进口温度为175℃,出口温度为130℃;冷流体进口温度为70℃,出口温度为110℃。
化工原理课程设计说明书——列管式换热器设计
操作
情况
操作压力
p/MPa
合理的压力降
△p/MPa
操作
情况
操作压力
p/MPa
合理的压力降
△p/MPa
减压
0~0.1(绝压)
P/10
中压
1~3(表压)
0.035~0.18
低
压
0~0.07
0.07~1
P/2
0.035较高压3~8来自表压)0.07~0.25
3.
流速(3-1)
式中 为管内体积流量;
3.
多管程列管式换热器,管程压力降
(3-2)
式中: 为直管中摩擦阻力引起的压力降,Pa;
为回弯管中因摩擦阻力引起的压力降,Pa;可由经验公式 估算
为结垢校正系数,无因次, 的换热管取1.4; 的换热管取1.5;
为串联的壳程数;
为管程数。
管内阻力损失
(3-3)
回弯阻力损失
(3-4)
管程总损失
(3-5)
为单程管长,m。
可以求得单程管长(2-10)
若选用6m长的管,4管程,则一台该换热器的总管数为 根。从谭天恩主编的化工原理第三版上册附录十九可查得浮头式换热器的主要参数,整理得表2-3
表2-3初选浮头式换热器的主要参数
项目
数据
项目
数据
壳径D(DN)
600mm
管尺寸
管程数Np(N)
4
管长l(L )
6m
表2-2列管式换热器中K值的大致范围
进行换热的流体
传热系数K
W·m-2·K-1
进行换热的流体
传热系数K
W·m-2·K-1
由气体到气体
原油 预热器设计
X X X X X X X学院课程设计课程名称:化工原理课程设计题目:石油预热器设计专业:化学工艺学生姓名:xxxx班级:xxxxxxxx 学号:xxxxxxxx 指导教师姓名:xxxx设计完成时间:2014年12月12日化工原理课程设计任务书一、设计题目:石油预热器设计二、设计条件:1、处理能力:馏分Ⅱ46000 kg/h;石油56000 kg/h;2、设备型式:标准列管换热器;3、操作条件:1)原料油:入口温度70℃,出口温度110℃;馏分Ⅱ:入口温度175℃;2) 允许压强降:管、壳程压强降小于30kPa;4、物性参数:物性参数表流体t,℃ρ,kg/m3μ,mPa·s石油平均温度815 6.65馏分Ⅱ平均温度715 0.64流体Cp,kJ/(kg·℃)λ ,W/(m·℃)r,kJ/kg石油 2.2 0.128 -馏分Ⅱ 2.48 0.133 -三、设计计算内容:1、传热面积、换热管根数;2、确定管束的排列方式、程数、折流板的规格和数量等;3、壳体的内径;4、冷、热流体进、出口管径;5、核算总传热系数;6、管壳程流体阻力校核。
四、设计成果:设计说明书一份。
五、设计时间一周。
六、参考文献[1] 申迎华,郭晓刚.化工原理课程设计[M].北京:化学工业出版社,2009:[2] 柴城敬.化工原理课程设计指导[M].天津:天津大学出版社,1999:[3]林大钧,于传浩,杨静.化工制图[M].北京:高等教育出版社,2007:[4]中国石化集团.化工工艺设计手册[M].北京:化学工业出版社,2009:七、设计人:学号:xxxxxxxxxxx 姓名:xxxxx八、设计进程:指导教师布置实践题目0.5天设计方案确定0.5天工艺计算 2.0天绘图0.5天编写实践说明书 1.0天答辩0.5天化学工程教研室2014年12月10日目录化工原理课程设计任务书 (I)1 概述 (2)2估算传热面积 (3)2.1热流量 (3)2.2平均传热温差 (3)2.3传热面积 (3)3 选定换热器的型号 (4)3.1换热器初步确定 (4)3.2确定管数和管长 (4)3.3折流板 (5)3.4其他附件 (5)3.5接管 (5)3.5.1壳程流体进出口接管 (5)3.5.2管程流体进出口接管 (5)3.6数据核算 (5)4 阻力损失的计算 (7)4.1管程 (7)4.2 壳程 (7)5 传热计算 (9)5.1 管程给热系数 (9)5.2 壳程给热系数 (9)5.3 传热系数 (9)A (9)5.4 所需传热面积o5.5 换热器裕度 (9)设计结果汇总 (10)设计评述 (11)1 概述完善的换热器在设计或选型时应满足以下条件:1 合理地实现所规定的工艺条件2 安全可靠3 有利安装、操作与维修4 经济合理设计或选型时,如果几种换热器都能完成生产任务的需要,这一指标尤为重要。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
化工原理课程设计题目:原油加热器——固定式换热器指导教师: 李先生院士职称: 国家特级院士班级: 高分子材料与工程系学号:学生姓名:目录一.绪论 (3)二、设计条件及主要物性参数 (4)1、设计条件 (4)2、定性温度的确定 (4)三. 确定设计方案 (5)1、选择换热器的类型 (5)2、流程安排 (5)四.估算传热面积 (5)1、热流量 (5)2、平均传热温差 (5)3、传热面积 (5)五.工程结构尺寸 (6)1、管径和管内流速 (6)2、管程数和传热管数 (6)3、平均传热温差校正及壳数 (6)4、传热管的排列和分程方法······························ (7)5、折流板 (7)6、接管 (7)六、换热器核算 (8)1、壳程传热系数 (8)2、管程传热系数 (8)3、污垢热阻和管壁热阻 (9)4、总传热系数K (10)5、传热面积裕度 (10)7、管程流动阻力 (11)8、壳程流动阻力 (11)七、设计计算结果汇总 (12)一、绪论1.加热器简介.固定管板式固定管板式换热器的两端管板和壳体制成一体,当两流体的温度差较大时,在外壳的适当位置上焊上一个补偿圈(或膨胀节)。
当壳体和管束热膨胀不同时,补偿圈发生缓慢的弹性变形来补偿因温差应力引起的热膨胀。
特点:结构简单,造价低廉,壳程清洗和检修困难,壳程必须是洁净不易结垢的物料。
形管式U形管式换热器每根管子均弯成U形,流体进、出口分别安装在同一端的两侧,封头内用隔板分成两室,每根管子可自由伸缩,来解决热补偿问题。
特点:结构简单,质量轻,适用于高温和高压的场合。
管程清洗困难,管程流体必须是洁净和不易结垢的物料。
.浮头式换热器两端的管板,一端不与壳体相连,该端称浮头。
管子受热时,管束连同浮头可以沿轴向自由伸缩,完全消除了温差应力。
特点:结构复杂、造价高,便于清洗和检修,完全消除温差应力,应用普遍。
本实验采用的是浮头式加热器,包括输油管,输油管上套有密闭的外壳,外壳的一段管道上设有加热体,该加热体用固定卡固定在外壳表面上,所述外壳的外表面上包覆有保温层。
本实用新型具有传热速度快、均温性好的特点,避免了在输送过程中热损失大而导致油品凝固难以输送的问题。
2.设计目的培养学生综合运用本门课程及有关选修课程基础理论和基础知识完成某项单元操作设备设计的实践操作能力。
设计的设备必学在技术上是可行的,经济上是合理的,操作上是安全的,环境上是友好的。
二、设计条件及主要物性参数设计条件由设计任务书可得设计条件如下表:.定性温度的确定Wc: 原油流量(kg/h) Wh: 柴油流量(kg/h) C pc:原油比热容Cph:柴油比热容 t1,t2:原油的出、进口温度T1、T2:柴油的进、出口温度根据《夏清陈常贵化工原理(上)》P225,公式(4-33),热流量为Qc = WcCpc(t1-t2) =33000××(110-70)/=806667 W柴油出口温度:Q h = Q c = W h C ph (T1-T2)806667=34000××(175-T2)/T2= ℃可取流体进出口温度的平均值。
管程柴油的定性温度 T=(175+)/ 2=157.5 ℃壳程原油的定性温度为 t=(70+110) / 2=90℃三、确定设计方案选择换热器的类型由设计任务选择固定管板式换热器。
流程安排柴油温度高,走管程可减少热损失,原油黏度较大,走壳程在较低的Re数时即可达到湍流,有利于提高其传热膜系数。
四、估算传热面积热流量 平均传热温差根据《化工原理课程设计》P47,公式(3-9)m t ∆=2)()(1221t T t T -+-=2)705.140()110175(-+- =℃传热面积根据《夏清 陈常贵 化工原理(上)》P356表,初步设定K=160W·m -2·℃-1。
根据《化工原理课程设计》P47,公式(3-5)五.工程结构尺寸管径和管内流速选用φ25×2.5mm 的传热管(碳钢管)。
管程数和传热管数根据估算的传热面积,然后查JB1145-73得:传热面积 A=2m 外径 D=500mm 管程 N=2 单程传热管数 n=168 管程流通面积 S i =2m该换热器型号为G500Ⅱ 平均传热温差校正及壳程数根据《化工原理课程设计》P47,公式(3-12) 平均传热温差校正系数R =701105.1401751221--=--t t T T = P =70175701101112--=--t T t t = 根据《夏清 陈常贵 化工原理(上)》P231,公式(4-46) 平均传热差校正为 △t m =t ∆ϕ×△t m ’ =×=( ℃ )由于平均传热温差校正系数大于,同时壳程流体流量较大,故取单壳程合适。
传热管的排列和分程方法采用正三角形排列法,则管间距t=32mm折流板采用弓形折流板, 取折流板间距B=400 mm 。
折流板数 N B =折流板间距传热管长-1=4006000-1=14块折流板圆缺面水平装配。
接管(1)壳程流体进出口接管 取接管内液体流速u1=1.0m/s, 114.3)8153600/(330004411⨯⨯⨯==u vD π=圆整后取管内直径为120mm. (2) 管程流体进出口接管取接管内液体流速2u =s, 圆整后取管内直径为130mm六.换热器核算总传热系数核算6.1.1壳程传热系数根据《夏清 陈常贵 化工原理(上)》P253,公式94-77a) 得0α = 14.03/155.0)(Pr Re 36.0wo e o d μμλ 其中:①粘度校正为14.0)(wo μμ=②当量直径,管子为正方形旋转450形排列时,根据《化工原理(上)》P253,公式(4-78)得d e =oo d d t ππ)4(422-=()()025.014.3025.0414.310324223⨯⎥⎦⎤⎢⎣⎡-⨯⨯-=③壳程流通截面积,根据《化工原理(上)》P253,公式(4-80),得A o = BD(1-t d o )=××(1-0.0250.032)= 式中 B —两挡板间距离,m D —换热器间的外壳内径,m④壳程原油的流速及其雷诺数分别为u o =o o A V =044.0)8153600/(33000⨯= m/s Re o =oeo o d u μρ=31065.6027.026.0815-⨯⨯⨯=860 ⑤普朗特准数(<传热传质过程设备设计>P26,公式1-43)Pr =oopo c λμ =128.01065.6102.233-⨯⨯⨯=因此,壳程水的传热膜系数α0为α= 14.03/155.0)(Pr Re 36.0wo e o d μμλ =92.03.114860027.0128.036.03155.0⨯⨯⨯⨯=308W/(m 2·℃) 6.1.2管程传热系数根据《夏清 陈常贵 化工原理(上)》P248 ,公式(4-70a )得αi =iid λ 其中: ①管程流通截面积 S i = ②管程柴油的流速及其雷诺数分别为u i =i i S V =0264.0)7153600/(34000⨯= m/s Re =iii i d u μρ=31064.07155.002.0-⨯⨯⨯=11172 ③普兰特准数Pr =iipi c λμ =133.01064.01048.233-⨯⨯⨯=因此,管程空气的传热膜系数αi 为αi =××02.0133.0 6.1.3污垢热阻和管壁热阻查阅《夏清 陈常贵 化工原理(上)》P354,附录表20,得原油侧的热阻R so =·℃·W -1 柴油侧的热阻R si =·℃·W -1查阅《化工原理(上)》P354,附录表13,得碳钢的导热系数λ=50W·m -1·℃-16.1.4总传热系数K因此,查《夏清 陈常贵 化工原理(上)》P227,公式(4-40)K 1=oa 1+R so +m o d bd λ+i o si d d R +i i o d a d =3081++0225.050025.00025.0⨯⨯+020.0025.000034.0⨯ +02.0714025.0⨯ 解得:K =172W/ (m 2·℃)b: 管壁的厚度 d 0: 管的外径 dm: 管的平均直径 di: 管的内径6.1.5 传热面积裕度根据《化工原理课程设计》P47,公式(3-5)S i =Q i /(i K △t m )=8.67172806667⨯=该换热器的实际传热面积S pS p =T o lN d π=××6×168=依《化工单元过程及设备课程设计》P76,公式3-36 该换热器的面积裕度为%100⨯-=iip S S S H =2.692.691.79-=%传热面积裕度合适。
该换热器能够完成生产任务。
换热器内流体的流动阻力(压降)6.2.1管程流动阻力由R e =11172,传热管相对粗超度为=εmm ,内径d mm i 20=流速u=s,相对粗糙度0005.02001.0==id ε查《夏清 陈常贵 化工原理(上)》P54莫狄图得034.0=i λ91225.071502.06034.02=⨯⨯⨯=∆i p (pa)26825.07153222=⨯⨯==∆u p r ρξ(pa)总压降:∑△p i =(△p 1+△p 2)F t N s N p =(912+268)××1×2= < 80KPa (符合设计要求) 其中, F t 为结垢校正系数,取;N s 为串联壳程数,取1;N p 为管程数,取2。
6.2.2壳程流动阻力:根据《化工原理(上)》P284,公式(4-124)、(4-125) 得 流体横过管束的压降:其中:F= f o =×= N B =14 u o =s△’p 1=××16×(14+1)×(815×/2 =2823Pa△’p 2=N B (-DB2)22o o u ρ=14 ×(-500.0400.02⨯)×(815×/2=733 Pa总压降:∑△p o =(△’p 1+△’p 2)Fs Ns=(2823+733)××1 = < 80Kpa其中,Fs 为壳程压强降的校正系数,对于液体取;Ns 为串联的壳程数,取1。