(江苏卷)已知双曲线中心在原点且一个焦点为F

合集下载

双曲线的标准方程与性质(优质课)教案

双曲线的标准方程与性质(优质课)教案
x2 y2 程,求双曲线的标准方程,可设有公共渐近线的双曲线方程为a2-b2=λ(λ≠0),再由条件求出λ 的值即可.
练习 2:根据下列条件,求双曲线的标准方程: 5
(1)虚轴长为 12,离心率为4; (2)焦距为 26,且经过点 M(0,12); (3)经过两点 P(-3,2 7)和 Q(-6 2,-7). 【答案】(1)设双曲线的标准方程为
D. x2 − y2 = 1 34
2.【2015 高考新课标 2,理 11】已知 A,B 为双曲线 E 的左,右顶点,点 M 在 E 上,∆ABM 为 等腰三角形,且顶角为 120°,则 E 的离心率为( )
A. 5
B. 2
C. 3
D. 2
【答案】D
3.【2015
高考福建,理
3】若双曲线 E
:
x2 9
【答案】根据题意可以知道椭圆
的焦点在 y 轴上,且
,故焦点坐标为
由双曲线的定义可得
,故
,
,故所求双曲线的标准方程为
因此,本题正确答案是:
规律方法 待定系数法求双曲线方程具体过程是先定形,再定量,即先确定双曲线标准方程的 形式,然后再根据 a,b,c,e 及渐近线之间的关系,求出 a,b 的值.如果已知双曲线的渐近线方
分别是双曲线左、右焦点,若|PF1|=9,则
|PF2|=( )
A.1
B.17
C.1 或 17
D.以上答案均不对
【答案】B
练习
3:已知
F
x2 y2 是双曲线 4 -12=1
的左焦点,A(1,4),P
是双曲线右支上的动点,则|PF|+
|PA|的最小值为( )
A.5 【答案】D
B.5+4 3

江苏省2025届高三数学第二次百校联考试题

江苏省2025届高三数学第二次百校联考试题

2025届高三数学其次次考试试题留意事项:1.答卷前,考生务必将自己的姓名、考生号、考场号和座位号填写在答题卡上。

将条形码横贴在答题卡“条形码粘贴处”。

2.作答选择题时,选出每小题答案后,用2B 铅笔在答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。

答案不能答在试卷上。

3.非选择题必需用黑色字迹的钢笔或签字笔作答,答案必需写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准运用铅笔和涂改液。

不按以上要求作答无效。

4.考生必需保持答题卡的整齐。

考试结束后,将试卷和答题卡一并交回。

一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合A ={x |x 2-x -2<0},B ={-2,-1,0,1,2},则A ∩B =( )A .{0}B .{0,1}C .{-1,0}D .{-1,0,1,2} 2.若复数z =(m +1)-2m i(m ∈R )为纯虚数,则z 的共轭复数是( )A .-2iB .-iC .iD .2i 3.设函数错误!未指定书签。

则f (f (-3))=()A .14B .2C .4D .8 4.《九章算术》中记载了公元前344年商鞅督造的一种标准量器----商鞅铜方升,其外形由圆柱和长方体组合而成.已知某组合体由圆柱和长方体组成,如图所示,圆柱的底面直径为1寸,长方体的长、宽、高分别为3.8寸,3寸,1寸,该组合体的体积约为12.6立方寸,若π取3.14,则圆柱的母线长约为()A .0.38寸B .1.15寸C .1.53寸D .4.59寸5.已知函数f (x )=A sin(ωx +φ)(A >0,ω>0,0<φ<π2),现有如下四个命题:甲:该函数的最大值为2;乙:该函数图象可以由y =sin2x +cos2x 的图象平移得到; 丙:该函数图象的相邻两条对称轴之间的距离为π;丁:该函数图象的一个对称中心为(2π3,0). 假如只有一个假命题,那么该命题是( )A .甲B .乙C .丙D .丁 6.“0<x sin x <π2”是“0<x <π2”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件7.已知双曲线C 的左、右焦点分别是为F 1,F 2,过F 2的直线与C 交于A ,B 两点.若→AF 2=3→F 2B ,|→AB |=|→AF 1|,则C 的离心率为( )A .2B .3C .4D .58.已知角α与角β的顶点均与原点O 重合,始边均与x 轴的非负半轴重合,它们的终边关于y 轴对称.若sin α=35,则cos(α+β)cos(α-β)=( )A .725B .15C .15D .-725二、选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求,全部选对得5分,部分选对得2分,有选错的得0分.9.已知x +y >0,且x <0,则( )A .x 2>-xy B .|x |<|y | C .lg x 2>lg y2D .y x +x y<-210.已知两点A (-4,3),B (2,1),曲线C 上存在点P 满意|PA |=|PB |,则曲线C 的方程可以是( )A .3x -y +1=0B .x 2+y 2=4 C .x 22-y 2=1 D .y 2=3x11.设错误!未指定书签。

第08讲 直线与椭圆、双曲线、抛物线 (精讲)-2(含答案解析)

第08讲 直线与椭圆、双曲线、抛物线  (精讲)-2(含答案解析)

第08讲直线与椭圆、双曲线、抛物线(精讲)-2第08讲直线与椭圆、双曲线、抛物线(精讲)角度2:由中点弦确定曲线方程典型例题例题1.(2022·四川南充·高二期末(文))1.过椭圆C :()222210x y a b a b+=>>右焦点F 的直线l :20x y --=交C 于A ,B 两点,P 为AB 的中点,且OP 的斜率为12-,则椭圆C 的方程为()A .22184x y +=B .22195x y +=C .22173x y +=D .221106x y +=例题2.(2022·全国·高二课时练习)2.已知双曲线的中心在原点且一个焦点为F ,直线1y x =-与其相交于M ,N 两点,若MN 中点的横坐标为23-,则此双曲线的方程是A .22134x y -=B .22143x y -=C .22152x y -=D .22125x y -=例题3.(2022·江苏南京·模拟预测)3.已知椭圆C :22221x y a b +=(0a b >>)过点1,2⎛ ⎝⎭,直线l :y x m =+与椭圆C 交于,A B 两点,且线段AB 的中点为M ,O 为坐标原点,直线OM 的斜率为0.5-,求椭圆C 的标准方程;例题4.(2022·安徽省亳州市第一中学高二开学考试)4.斜率为1的直线交抛物线()2:20C y px p =>于A ,B 两点,且弦AB 中点的纵坐标为2.求抛物线C 的标准方程;同类题型归类练(2022·四川南充·二模(文))5.已知椭圆2222:1(0)x y C a b a b+=>>的左焦点为F ,过点F 的直线0x y -与椭圆C相交于不同的两点,A B ,若P 为线段AB 的中点,O 为坐标原点,直线OP 的斜率为12-,则椭圆C 的方程为()A .2213x y +=B .22142x y +=C .22153x y +=D .22163x y +=(2022·全国·高三专题练习(理))6.已知椭圆C :22221(>0)>x y a b a b +=的左、右焦点分别为1F ,2F ,离心率为2,过点1F 的直线l 交椭圆C 于,A B 两点,AB 的中点坐标为21(,)33-.求椭圆C 的标准方程;(2022·重庆巴蜀中学高三阶段练习)7.已知椭圆C ∶22221(0)x y a b a b+=>>经过点3)2P ,O 为坐标原点,若直线l 与椭圆C 交于A ,B 两点,线段AB 的中点为M ,直线l 与直线OM 的斜率乘积为14-.求椭圆C的标准方程;(2022·全国·高三专题练习)8.已知抛物线2:2(0)C y px p =>的焦点为F ,过F 且斜率为1的直线与抛物线C 交于A ,B 两点,且AB 的中点的纵坐标为2.求C 的方程.题型三:弦长问题典型例题例题1.(2022·海南·琼海市嘉积第二中学高二期中)9.已知椭圆22:143x y C +=的左、右焦点分别为1F 、2F ,过2F 且斜率为1的直线l 交椭圆C 于A 、B 两点,则AB 等于()A .247B .127C .7D .7例题2.(2022·全国·高三专题练习)10.经过双曲线2213y x -=的左焦点F 1作倾斜角为6π的直线AB ,分别交双曲线的左、右支为点A 、B .求弦长|AB |=_____例题3.(2022·贵州遵义·高二期末(理))11.椭圆C :()222210x y a b a b +=>>左右焦点为1F ,2F 2M ⎛ ⎝⎭在椭圆C 上.(1)求椭圆C 的标准方程;(2)经过点()2,3A ,倾斜角为π4直线l 与椭圆交于B ,C 两点,求BC .例题4.(2022·云南·丽江市教育科学研究所高二期末)12.已知椭圆2222:1(0)x y C a b a b +=>>的离心率为2,且过点(2,1)P -.(1)求C 的方程;(2)若,A B 是C 上两点,直线AB 与圆222x y +=相切,求AB 的取值范围.例题5.(2022·内蒙古赤峰·高二期末)13.已知动圆C 过定点()0,1F ,且与直线1:1l y =-相切,圆心C 的轨迹为E .(1)求动点C 的轨迹方程;(2)已知直线2l 交轨迹E 于两点P ,Q ,且PQ 中点的纵坐标为2,则PQ 的最大值为多少?同类题型归类练(2022·重庆市青木关中学校高二阶段练习)14.已知双曲线C :22221(0,0)x y a b a b-=>>的一条渐近线方程是y =,过其左焦点(F 作斜率为2的直线l 交双曲线C 于A ,B 两点,则截得的弦长||AB =()A .7B .8C .9D .10(2022·四川·遂宁中学高二期中(文))15.已知椭圆的中心在原点,焦点在x12P ⎛⎫ ⎪⎝⎭,(1)求椭圆的标准方程;(2)倾斜角为45°的直线l 过椭圆的右焦点F 交椭圆于A 、B 两点,求AB (2022·河北·衡水市第二中学高二期中)16.(1)已知A ,B 两点的坐标分别是()6,0-,()6,0,直线AM ,BM 相交于点M ,且它们的斜率之积是29.求点M 的轨迹方程,并判断轨迹的形状:(2)已知过双曲线22136x y -=上的右焦点2F ,倾斜角为30 的直线交双曲线于A ,B 两点,求AB .(2022·安徽·六安一中高二开学考试)17.已知点()2,0A -,()2,0B ,动点(),M x y 满足直线AM 与BM 的斜率之积为12,记M的轨迹为曲线C .(1)求C 的方程;(2)若直线l :3y x =-和曲线C 相交于E ,F 两点,求EF .(2022·黑龙江·鸡西市第四中学三模(理))18.已知抛物线C :()220x py p =>,圆O :221x y +=.(1)若抛物线C 的焦点F 在圆O 上,且A 为C 和圆O 的一个交点,求AF ;(2)若直线l 与抛物线C 和圆O 分别相切于点M ,N ,求MN 的最小值及相应p 的值.(2022·安徽省舒城中学三模(文))19.已知抛物线C :22y px =(p >0),抛物线C 的焦点为F ,点P 在抛物线上,且PF 的最小值为1.(1)求p ;(2)设O 为坐标原点,A ,B 为抛物线C 上不同的两点,直线OA ,OB 的斜率分别为1k ,2k ,且满足123k k OA OB <⋅=-,求|AB |的取值范围.参考答案:1.A【分析】由l 与x 轴交点横坐标可得半焦距c ,设出点A ,B 坐标,利用点差法求出22,a b 的关系即可计算作答.【详解】依题意,焦点(2,0)F ,即椭圆C 的半焦距2c =,设1122(,),(,)A x y B x y ,00(,)P x y ,则有2222221122222222b x a y a b b x a y a b ⎧+=⎨+=⎩,两式相减得:2212121212()()a ()()0b x x x x y y y y +-++-=,而1201202,2x x x y y y +=+=,且0012y x =-,即有2212122()()0b x x a y y --+-=,又直线l 的斜率12121y y x x -=-,因此有222a b =,而2224a b c -==,解得228,4a b ==,经验证符合题意,所以椭圆C 的方程为22184x y +=.故选:A 2.D【分析】根据点差法得2225a b=,再根据焦点坐标得227a b +=,解方程组得22a =,25b =,即得结果.【详解】设双曲线的方程为22221(0,0)x y a b a b-=>>,由题意可得227a b +=,设()11,M x y ,()22,N x y ,则MN 的中点为25,33⎛⎫-- ⎪⎝⎭,由2211221x y a b -=且2222221x y a b-=,得()()12122x x x x a +-=()()12122y y y y b +-,2223a ⨯-=()2523b ⨯-(),即2225a b=,联立227a b +=,解得22a =,25b =,故所求双曲线的方程为22125x y -=.故选D .【点睛】本题主要考查利用点差法求双曲线标准方程,考查基本求解能力,属于中档题.3.22142x y +=【分析】由离心率得,a b 的一个关系式,设()()1122,,,A x y B x y ,代入椭圆方程,相减后利用斜率关系得关于,a b 的另一等式,联立可求得22,a b 得椭圆标准方程.【详解】设()11,A x y ,()22,B x y ,则1212,22x x y y M ++⎛⎫ ⎪⎝⎭,即121212OM y y k x x +==-+.因为A ,B 在椭圆C 上,所以2211221x y a b +=,2222221x y a b+=,两式相减得()()()()12121212220x x x x y y y y a b +-+-+=,即()()()()121222121210y y y y a b x x x x +-+=+-,又12121AB y y k x x -==-,所以221102a b-=,即222a b =.又因为椭圆C过点⎛ ⎝⎭,所以221123a b +=,解得24a =,22b =,所以椭圆C 的标准方程为22142x y +=;4.24y x=【分析】设()()1122,,,A x y B x y ,代入抛物线方程相减,利用弦中点坐标,直线斜率求得p ,得抛物线方程.【详解】设()()1122,,,A x y B x y ,12122,42y y y y +=+=,21122222y px y px ⎧=⎨=⎩,两式相减并化简得1212122y y p x x y y -=-+,21,24pp ==,所以抛物线方程为24y x =.5.B【分析】先求得焦点,也即求得c ,然后利用点差法求得22ba,从而求得,a b ,也即求得椭圆C 的方程.【详解】直线0x y -=过点()F,所以c =设()()1122,,,A x y B x y ,由2222112222221,1x y x y a b a b +=+=两式相减并化简得2121221212y y y y b a x x x x +--=⋅+-,即22222222111,,222b b a b bc a a ⎛⎫-=-⋅===+ ⎪⎝⎭,所以2b c a ===,所以椭圆C 的方程为22142x y +=.故选:B 6.2212x y +=【分析】设()()1122,,,A x y B x y ,代入椭圆方程,相减后利用中点坐标、离心率求得直线AB 的斜率得直线方程,从而求得焦点坐标,求出,,c a b 得椭圆标准方程.【详解】设1(A x ,1)y ,2(B x ,2)y ,可得2211221x y a b +=,2222221x y a b+=,两式相减得22221212221x x y y a b--+=,2221222212y y b x x a -=--,2121221212()()()()y y y y b x x x x a -+=--+,将1243x x +=-,1223y y +=代入上式,得2221(12AB b k e a ⋅-=-=-,又2=e ,∴=1AB k ,∴直线l 的方程为1233y x -=+,即1y x =+,即()11,0F -,∴1c =,1a b ==,∴椭圆C 的标准方程2212x y +=;7.221123x y +=【分析】已知点的坐标代入得,a b 的一个关系式,设()()1122,,,A x y B x y ,代入椭圆方程,相减后利用斜率关系得,a b 的另一等式,联立可求得22,a b 得椭圆标准方程.【详解】解:因为椭圆经过点3)2P ,所以223914a b +=(1),设()()1122,,,A x y B x y ,因为直线l 与椭圆C 交于A ,B 两点,所以22112222222211x y a b x y a b ⎧+=⎪⎪⎨⎪+=⎪⎩,两式相减得2121221212y y x x b x x a y y -+=-⋅-+,因为线段AB 的中点为M ,且直线l 与直线OM 的斜率乘积为-14,所以2214b a -=-(2),由(1)(2)解得223,12b a ==,所以椭圆方程为:221123x y +=;8.24y x =.【分析】中点弦问题利用点差法进行处理.【详解】解:设点()()1122,,A x y B x y ,,则12+22y y =,所以12+4y y =,又因为直线AB 的斜率为1,所以21211y y x x -=-,将A 、B 两点代入抛物线方程中得:21122222y px y px ⎧=⎨=⎩,将上述两式相减得,()2212122y y p x x -=-,即()()()121212+2y y y y p x x -=-,所以12121221+y y p y y x x -==-,即214p=,所以2p =,因此,抛物线的方程为24y x =.9.A【分析】利用弦长公式求解即可.【详解】设直线AB 方程为1y x =-,联立椭圆方程22143x y+=整理可得:27880x x --=,设()()1122,,,A x y B x y ,则1287x x +=,1287x x ⋅=-,根据弦长公式有:AB =247.故B ,C ,D 错误.故选:A.10.3【分析】直线AB的方程可设为2)y x =+,联立方程,利用弦长公式可得结果.【详解】∵双曲线的左焦点为F 1(﹣2,0),设A (x 1,y 1),B (x 2,y 2),直线AB的方程可设为2)y x =+,代入方程2213y x -=得,8x 2﹣4x ﹣13=0,∴1212113,28x x x x +==-,∴12||||3AB x x =-==.故答案为:3.11.(1)2214x y +=(2)5BC =【分析】(1)利用椭圆的离心率,过点1,2M ⎛ ⎝⎭,及222a b c =+,列方程解出,a b 即可得椭圆方程;(2)由已知可得直线l 的方程,与椭圆方程联立,利用根与系数的关系及弦长公式求解.【详解】(1)解:由题意得222c e a a b c ⎧==⎪⎨⎪=+⎩,解得224a b =,又因为点1,2M ⎛⎫⎪ ⎪⎝⎭在椭圆C 上,带入222214x y b b+=得21b =,所以椭圆的标准方程为2214x y +=.(2)解:易得直线l 的解析式为1y x =+,设()11,B x y ,()22,C x y 联立椭圆的方程22441x y y x ⎧+=⎨=+⎩得2580x x +=1285x x +=,120x x =12BC x=-=所以5BC =.12.(1)22163x y+=(2)【分析】(1)根据已知条件求得,,a b c ,由此可求得椭圆的方程.(2)对直线AB 斜率分成不存在、直线AB 的斜率为0、直线AB 的斜率不为0三种情况进行分类讨论,结合弦长公式、基本不等式求得AB 的取值范围.【详解】(1)由题意得,222222411c aa b a b c ⎧=⎪⎪⎪+=⎨⎪=+⎪⎪⎩,解得a b c ===,所以C 的方程为22163x y +=.(2)圆222x y +=的圆心为(0,0),半径圆r =①当直线AB的斜率不存在时,方程为x =x =于是有22163x x y ⎧⎪⎨+=⎪⎩或22163x x y ⎧=⎪⎨+=⎪⎩解得y =所以AB =②当直线AB 的斜率为0时,方程为y =或y =,于是有22163y x y ⎧⎪⎨+=⎪⎩或22163y x y ⎧=⎪⎨+=⎪⎩解得x =所以AB =③当直线AB 的斜率不为0时,设斜率为k ,方程为y kx t =+,0kx y t -+=因为直线AB 与圆222x y +==222(1)t k =+建立方程组22163y kx t x y =+⎧⎪⎨+=⎪⎩,消y 并化简得222(21)4260k x ktx t +++-=,2222222Δ164(21)(26)488243280k t k t k t k =-+-=-+=+>.设11(,)A x y ,22(,)B x y ,则122421kt x x k +=-+,21222621t x x k -⋅=+,所以AB ===>而2214448kk++≥+=,当且仅当2214kk=,即22k=时,等号成立.所以3AB=,所以3AB<≤.综上所述,AB的取值范围是.13.(1)24x y=(2)6【分析】(1)利用抛物线的定义直接可得轨迹方程;(2)设直线方程,联立方程组,结合根与系数关系可得PQ,再根据二次函数的性质可得最值.(1)由题设点C到点F的距离等于它到1l的距离,∴点C的轨迹是以F为焦点,1l为准线的抛物线,∴所求轨迹的方程为24x y=;(2)由题意易知直线2l的斜率存在,设PQ中点为(),2t,直线2l的方程为()2y k x t-=-,联立直线与抛物线()242x yy k x t⎧=⎪⎨-=-⎪⎩,得24480x kx kt-+-=,()()()2244481620k kt k kt ∆=---=-+>,且124x x k +=,1248x x kt =-,又PQ 中点为(),2t ,即1242x x k t +==,2t k =,故()24280t t ∆=-+>恒成立,122x x t +=,21228x x t =-,所以PQ ,当22t =时,PQ 取最大值为6.【点睛】(1)直线与抛物线的位置关系和直线与椭圆、双曲线的位置关系类似,一般要用到根与系数的关系;(2)有关直线与抛物线的弦长问题,要注意直线是否过抛物线的焦点,若过抛物线的焦点,可直接使用公式|AB |=x 1+x 2+p ,若不过焦点,则必须用一般弦长公式.14.D【分析】根据渐近线方程和焦点坐标可解得22,a b ,再将直线方程代入双曲线方程消元,由韦达定理和弦长公式可得.【详解】 双曲线C :22221(0,0)x y a b a b -=>>的一条渐近线方程是y =,b a∴,即.b =左焦点()F,c ∴=222233c a b a ∴=+==,21a ∴=,22b =,∴双曲线C 的方程为22 1.2y x -=易知直线l 的方程为(2=y x ,设11(,)A x y ,22(,)Bx y ,由(22212y x y x ⎧=+⎪⎨⎪-=⎩,消去y 可得270++=x,12x x ∴+=-127.10.x x AB =∴==故选:D15.(1)2214x y +=;(2)85.【分析】(1)根据椭圆的离心率公式,结合代入法、椭圆中的,,a b c 关系进行求解即可;(2)根据椭圆弦长公式进行求解即可.【详解】(1)因为椭圆的中心在原点,焦点在x 轴上,所以设椭圆的标准方程为:22221(0)x y a b a b+=>>,因为椭圆的离心率为2且过点12P ⎛⎫ ⎪⎝⎭,所以2222222231144123a b a c b a c a b c ⎧+=⎪⎧⎪=⎪⎪=⇒=⎨⎨⎪⎪=⎩=+⎪⎪⎩,所以椭圆的标准方程为:2214x y +=;(2)由(1)可知:F ,所以直线l的方程为:0tan 45(y x y x ︒-=⇒=2224(40580x x x +--=⇒-+=,设1122(,),(,)A x y B x y ,所以121285x x x x +==,因此85AB =.16.(1)轨迹方程为()2216368x y x -=≠±,轨迹为焦点在x 轴上的双曲线,不含左右顶点;(2)5AB =.【分析】(1)设(),M x y ,根据题意列出等式,化简即可得轨迹方程,判断轨迹形状,即得答案;(2)求出直线方程,并和双曲线方程联立,得到根与系数的关系式,根据弦长公式求出弦长即得答案.【详解】(1)设(),M x y ,因为()6,0A -,()6,0B ,所以()2,6669AM BM y y k k x x x ⋅=⋅=≠±+-,整理得()2216368x y x -=≠±,故点M 的轨迹方程为()2216368x y x -=≠±,轨迹为焦点在x 轴上的双曲线,不含左右顶点.(2)由22136x y -=得,23a =,26b =,所以2229c a b =+=,即3c =,所以右焦点()23,0F ,因为直线AB 的倾斜角是30 ,且直线经过右焦点()23,0F ,所以直线AB的方程为)3y x =-,由)223136y x x y ⎧=-⎪⎪⎨⎪-=⎪⎩可得:256270x x +-=,所以1265x x +=-,12275x x =-,所以245AB ====17.(1)22142x y -=(2x ≠±)(2)【分析】(1)设(),M x y ,用坐标表示AM ,BM 的斜率,由已知可得曲线方程,注意斜率有意义;(2)直线方程与曲线方程联立,消元后应用韦达定理,由弦长公式计算弦长.(1)设(),M x y ,则AM ,BM 的斜率分别为12y k x =+,22y k x =-,由已知得1222y y x x ⋅=+-,化简得22142x y -=(2x ≠±),即曲线C 的方程为22142x y -=(2x ≠±);(2)联立221423x y y x ⎧-=⎪⎨⎪=-⎩消去y 整理得212220x x -+=,设()11,E x y ,()22,F x y ,则1212x x +=,1222x x =,12EF x -===18.1(2)最小值为p =【分析】(1)由()0,1F 得出抛物线方程,并与圆方程联立,求出A y ,最后由抛物线定义得出AF ;(2)由导数的几何意义得出切线l 的方程,由点O 到切线l 的距离等于1结合勾股定理得出2MN =20204411y y ++--,再由基本不等式得出MN 的最小值及相应p 的值.(1)由题意,得()0,1F ,从而C :24x y =.解方程组22241x y x y ⎧=⎨+=⎩,整理得,2410y y +-=,解得2A y所以11A AF y +==.(2)设()00,M x y ,由212y x p =得 x y p '=,故切线l 的方程为()000x y x x y p=-+,注意到2002x py =,故整理得000x x py py --=由1ON =且ON l ⊥,即点O 到切线l 的距离等于11=所以0py ==,整理,得02021y p y =-且201y ->0,所以2222200001121MN OM x y py y =-=+-=+-22200022004414142811y y y y y =+-=++-≥+--,当且仅当0y =.所以MN 的最小值为p ==19.(1)2(2)4AB ≥【分析】(1)由于2p PF ≥,即可求得12p =,从而得2p =;(2)设221212,,,44y y A y B y ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭,由123k k OA OB <⋅=- 得124y y =-,设AB 直线方程为y kx b =+,代入抛物线方程结合韦达定理得出b k =-,从而y kx b =+过焦点()1,0,即可求解AB 的取值范围.【详解】(1)因为2p PF ≥,则12p =,所以2p =;(2)由(1)得24y x =,设221212,,,44y y A y B y ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭,则221212,,,44y y OA y OB y ⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭ 则121244,k k y y ==,由123k k OA OB <⋅=- 得()212121216316y y y y y y <+=-,所以124y y =-,设AB 直线方程为y kx b=+联立方程组24y kx b y x =+⎧⎨=⎩得204k y y b -+=,所以1244b y y k ==-则b k =-故()1y kx b kx k k x =+=-=-过焦点()1,0所以24AB p ≥=.。

江苏省2024届高二上数学期末统考试题含解析

江苏省2024届高二上数学期末统考试题含解析

江苏省2024届高二上数学期末统考试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。

用2B 铅笔将试卷类型(B)填涂在答题卡相应位置上。

将条形码粘贴在答题卡右上角"条形码粘贴处"。

2.作答选择题时,选出每小题答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。

答案不能答在试题卷上。

3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。

不按以上要求作答无效。

4.考生必须保证答题卡的整洁。

考试结束后,请将本试卷和答题卡一并交回。

一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知双曲线22221(0,0)x y a b a b-=>>的左、右焦点分别为12,F F ,半焦距为c ,过点2F 作一条渐近线的垂线,垂足为P ,若12PF F △的面积为22c ,则该双曲线的离心率为()A.3B.2D.2.如图,样本A 和B 分别取自两个不同的总体,它们的平均数分别为A x 和B x ,标准差分别为A S 和B S ,则()A .A B A B x x S S >>B.,A B A Bx x S S <>C.A B A Bx x S S ><D.,A B A Bx x S S <<3.变量x ,y 满足约束条件10,1,1,x y y x -+⎧⎪⎨⎪-⎩则65z x y =+的最小值为()A.6- B.8-C.1- D.54.函数()210x y x x+=>的值域为()A.[1,)+∞ B.(1,)+∞C.[2,)+∞ D.(2,)+∞5.已知等差数列{}n a 的公差0d <,若3721a a =,2810a a +=,则该数列的前n 项和n S 的最大值为()A.30B.35C.40D.456.程大位是明代著名数学家,他的《新编直指算法统宗》是中国历史上一部影响巨大的著作.它问世后不久便风行宇内,成为明清之际研习数学者必读的教材,而且传到朝鲜、日本及东南亚地区,对推动汉字文化圈的数学发展起了重要的作用.卷八中第33问是:“今有三角果一垛,底阔每面七个.问该若干?”如图是解决该问题的程序框图.执行该程序框图,求得该垛果子的总数S 为()A.120B.84C.56D.287.设x ∈R ,则x <3是0<x <3的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分又不必要条件8.某一电子集成块有三个元件a ,b ,c 并联构成,三个元件是否有故障相互独立.已知至少1个元件正常工作,该集成块就能正常运行.若每个元件能正常工作的概率均为45,则在该集成块能够正常工作的情况下,有且仅有一个元件出现故障的概率为()A.1231 B.48125C.1625 D.161259.已知O 为坐标原点,(1,2,2),(2,1,4),(1,1,4)OA OB OC =-=-= ,点P 是OC 上一点,则当PA PB ⋅ 取得最小值时,点P 的坐标为()A.114,,333⎛⎫ ⎪⎝⎭ B.11,,222⎛⎫ ⎪⎝⎭C.11,,144⎛⎫ ⎪⎝⎭ D.()2,2,810.下列事件:①连续两次抛掷同一个骰子,两次都出现2点;②某人买彩票中奖;③从集合{1,2,3}中任取两个不同元素,它们的和大于2;④在标准大气压下,水加热到90℃时会沸腾.其中是随机事件的个数是()A.1B.2C.3D.411.下面四个条件中,使a b >成立的充分而不必要的条件是A.1a b +> B.1a b ->C.22a b > D.33a b >12.2020年12月4日,嫦娥五号探测器在月球表面第一次动态展示国旗.1949年公布的《国旗制法说明》中就五星的位置规定:大五角星有一个角尖正向上方,四颗小五角星均各有一个角尖正对大五角星的中心点.有人发现,第三颗小星的姿态与大星相近.为便于研究,如图,以大星的中心点为原点,建立直角坐标系,1OO ,2OO ,3OO ,4OO 分别是大星中心点与四颗小星中心点的联结线,16α≈o ,则第三颗小星的一条边AB 所在直线的倾斜角约为()A.0B.1C.2D.3 二、填空题:本题共4小题,每小题5分,共20分。

(完整版)圆锥曲线离心率专题历年真题

(完整版)圆锥曲线离心率专题历年真题

1.(福建卷)已知双曲线12222=-by a x (a >0,b <0)的右焦点为F ,若过点F 且倾斜角为60°的直线与双曲线的右支有且只有一个交点,则此双曲线离心率的取值范围是A.( 1,2)B. (1,2]C.[2,+∞)D.(2,+∞)2.(湖南卷)过双曲线M:2221y x b-=的左顶点A 作斜率为1的直线l ,若l 与双曲线M 的两条渐近线分别相交于B 、C,且|AB|=|BC|,则双曲线M 的离心率是 ( )3.(辽宁卷)方程22520x x -+=的两个根可分别作为()A.一椭圆和一双曲线的离心率 B.两抛物线的离心率 C.一椭圆和一抛物线的离心率D.两椭圆的离心率4.(全国II )已知双曲线x 2a 2-y 2b 2=1的一条渐近线方程为y =43x ,则双曲线的离心率为( )(A )53 (B )43 (C )54 (D )325.(陕西卷)已知双曲线x 2a 2 - y 22 =1(a>2)的两条渐近线的夹角为π3 ,则双曲线的离心率为A.2B. 3C.263D.2336. (全国卷)设椭圆的两个焦点分别为F 1、、F 2,过F 2作椭圆长轴的垂线交椭圆于点P ,若△F 1PF 2为等腰直角三角形,则椭圆的离心率是( )(A (B )12(C )2 (D 1 7. (广东卷)若焦点在x 轴上的椭圆2212x y m +=的离心率为12,则m=( )(B)32(C)83(D)238.(福建卷)已知F 1、F 2是双曲线)0,0(12222>>=-b a by a x 的两焦点,以线段F 1F 2为边作正三角形MF 1F 2,若边MF 1的中点在双曲线上,则双曲线的离心率是( ) A .324+B .13-C .213+D .13+9.[全国]设双曲线的焦点在x 轴上,两条渐近线为x y 21±=,则该双曲线的离心率=e ( )A .5 B . 5 C .25 D .45 10.( 福建理)已知F 1、F 2是椭圆的两个焦点,过F 1且与椭圆长轴垂直的直线交椭圆于A 、B 两点,若△ABF 2是正三角形,则这个椭圆的离心率是( )A .33B .32 C .22 D .2311.( 重庆理)已知双曲线22221,(0,0)x y a b a b-=>>的左,右焦点分别为12,F F ,点P 在双曲线的右支上,且12||4||PF PF =,则此双曲线的离心率e 的最大值为:( )A .43B .53C .2D .7312.(福建卷11)又曲线22221x y a b==(a >0,b >0)的两个焦点为F 1、F 2,若P 为其上一点,且|PF 1|=2|PF 2|,则双曲线离心率的取值范围为( )A.(1,3)B.(]1,3 C.(3,+∞)D.[)3,+∞13.(江西卷 7)已知1F 、2F 是椭圆的两个焦点,满足120MF MF ⋅=u u u u r u u u u r的点M 总在椭圆内部,则椭圆离心率的取值范围是( )A .(0,1) B .1(0,]2C .(0,2D .,1)2 14.(全国二9)设1a >,则双曲线22221(1)x y a a -=+的离心率e 的取值范围是( )A .B .C .(25),D .(215.(陕西卷8)双曲线22221x y a b-=(0a >,0b >)的左、右焦点分别是12F F ,,过1F 作倾斜角为30o的直线交双曲线右支于M 点,若2MF 垂直于x 轴,则双曲线的离心率为( )ABC D16.(天津卷(7)设椭圆22221x y m n+=(0m >,0n >)的右焦点与抛物线28y x =的焦点相同,离心率为12,则此椭圆的方程为( )(A )2211216x y += (B )2211612x y += (C )2214864x y += (D )2216448x y +=17.(江苏卷12)在平面直角坐标系中,椭圆2222x y a b+=1( a b >>0)的焦距为2,以O 为圆心,a 为半径的圆,过点2,0a c ⎛⎫⎪⎝⎭作圆的两切线互相垂直,则离心率e = . 18.(全国一15)在ABC △中,AB BC =,7cos 18B =-.若以A B ,为焦点的椭圆经过点C ,则该椭圆的离心率e= .19、(全国2理11)设F 1,F 2分别是双曲线22221x y a b-=的左、右焦点。

高中数学圆锥曲线点差法

高中数学圆锥曲线点差法

点差法及其应用一、方法背景弦的中点问题是解析几何中的一类经典问题,除了联立方程组,利用韦达定理并借助设而不求的方法实现问题的求解外,还可以借助点差法进行求解.点差法是解析几何中一种非常经典的思想方法,是体现解析几何核心思想——设而不求的另一重要载体,在解题中占有重要地位,这种方法将直线与曲线的两个交点代入曲线方程,然后作差并进行因式分解运算,借助斜率与中点公式进行求解,这种方法尤其适用于解决圆锥曲线中涉及弦的中点问题通过研究可发现,点差法不仅可以解决弦的中点问题,对其它相关问题也能较为圆满的解决,如涉及圆锥曲线弦的垂直平方线问题、圆锥曲线直径的斜率问题、切线问题等,并且可以类比点差法的思想方法,得到点乘法,解决一些圆锥曲线中的面积问题 二、方法介绍 1.椭圆中的点差法(1)设点B A ,是椭圆)0(12222>>=+b a by a x 上两点,点),(00y x P 为弦AB 的中点,若直线AB ,OP 的斜率存在,则=⋅OP AB k k证明:设),(),,(2211y x B y x A ,则2212122121222222221221))(())((11b y y y y a x x x x b y a x b y a x +--=+-⇒⎪⎪⎩⎪⎪⎨⎧=+=+ 2221212121ab x x y y x x y y -=++⋅--⇒=⋅⇒OP AB k k同理可得:(2)设点B A ,是椭圆)0(12222>>=+b a bx a y 上两点,点),(00y x P 为弦AB 的中点,若直线AB ,OP 的斜率存在,则=⋅OP AB k k 2.双曲线中的点差法(1)设点B A ,是双曲线)0,0(12222>>=-b a by a x 上两点,点),(00y x P 为弦AB 的中点,若直线AB ,OP 的斜率存在,则=⋅OP AB k k(2)设点B A ,是双曲线)0,0(12222>>=-b a bx a y 上两点,点),(00y x P 为弦AB 的中点,若直线AB ,OP 的斜率存在,则=⋅OP AB k k 3.抛物线中的点差法(1)设点B A ,是抛物线px y 22=上两点,点),(00y x P 为弦AB 的中点,若直线AB 的斜率存在,则=AB k(2)设点B A ,是抛物线py x 22=上两点,点),(00y x P 为弦AB 的中点,若直线AB 的斜率存在,则=AB k 三.典例分析例1.(2014年江西卷理15)过点)1,1(M 作斜率为21-的直线,与椭圆C :)0(12222>>=+b a b y a x相交于B A ,两点,若M 是线段AB 的中点,则椭圆C 的离心率等于例2.(2013年全国Ⅰ卷理10)已知椭圆E :)0(12222>>=+b a by a x 的右焦点为)0,3(F ,过点F 的直线交E 于B A ,两点,若AB 的中点坐标为)1,1(-P ,则E 的方程为( )A.1364522=+y x B.1273622=+y x C.1182722=+y x D.191822=+y x例3.(2003年江苏卷文10理8)已知双曲线中心在原点且一个焦点为)0,7(F ,直线1-=x y 与其相交于N M ,两点,MN 的中点的横坐标为32-,则此双曲线的方程是( ) A.14322=-y x B.1342=-x C.12522=-y x D.15222=-y x例4.(2014年浙江卷理6)设直线)0(03≠=+-m m y x 与双曲线)0,0(12222>>=-b a by a x 的两条渐近线分别交于点B A ,,若点)0,(m P 满足PB PA =,则双曲线的离心率是例5.(2012年浙江卷理8)如图所示,21,F F 分别是双曲线C :)0,0(12222>>=-b a by a x 的左、右焦点,B 是虚轴的端点,直线B F 1与C 的两条渐近线分别交于Q P ,两点,线段PQ 的垂直平分线与x 轴交于点M ,若221MF F F =,则C 的离心率是( )A.332 B.26C.2D.3例6.已知椭圆13422=+y x 上存在两点关于直线m x y +=2对称,则实数m 的取值范围为例7.已知双曲线1322=-y x 上存在两点B A ,关于直线l :4+=kx y 对称,则实数k 的取值范围为例8.(1992年全国卷理28)已知椭圆C :)0(12222>>=+b a b y a x ,B A ,是椭圆上的两点,线段AB 的垂直平分线l 与x 轴交于点)0,(0x P ,求证:ab a x a b a 22022-<<--例9.(2006年福建卷理20)已知椭圆1222=+y x 的左焦点为F ,O 为坐标原点 (1)求过点F O ,且与椭圆的左准线l 相切的圆的方程(2)如图所示,设过点F 且不与坐标轴垂直的直线交椭圆于B A ,两点,线段AB 的垂直平分线与x 轴交于点G ,求点G 的横坐标的取值范围例10.(2010年天津卷文理21)已知椭圆)0(12222>>=+b a by a x 的离心率23=e ,连接椭圆的四个顶点得到的菱形的面积为4(1)求椭圆的方程(2)设直线l 与椭圆相交于不同的两点B A ,,已知点A 的坐标为)0,(a -,),0(0y Q 在线段AB 的垂直平分线上,且4=⋅QB QA ,求0y 的值例11.已知椭圆C :)0(12222>>=+b a by a x 的左右焦点分别为21,F F ,离心率为21,A 为椭圆上一动点(异于左右顶点),21F AF ∆的面积的最大值为3 (1)求椭圆C 的方程(2)设过点1F 的直线l (l 的斜率存在且不为0)与椭圆C 相交于B A ,两点,线段AB 的垂直平分线交x 轴于点P ,试判断ABPF 1是否为定值?若是,求出该定值;若不是,说明理由注:设圆锥曲线Γ的离心率为e ,过其焦点F 且不与轴垂直的弦AB 的垂直平分线交焦点所在的轴于点P ,则=ABFP例12.(2011年江苏卷文理18)在平面直线坐标系xOy 中,N M ,是椭圆12422=+y x 的顶点,过坐标原点的直线交椭圆于A P ,两点,其中P 在第一象限,过P 作x 轴的垂线,垂足为C ,连接AC 并延长,交椭圆于点B ,设直线PA 的斜率为k(1)当直线PA 平分线段MN 时,求k 的值 (2)当2=k 时,求点P 到直线AB 的距离d (3)对任意0>k ,求证:PB PA ⊥例13.(2015年上海卷理21)已知椭圆1222=+y x ,过原点的两条直线1l 和2l 分别与椭圆交于点B A ,和D C ,,记得到的平行四边形ACBD 的面积为S(1)设),(),,(2211y x C y x A ,用C A ,的坐标表示点C 到直线1l 的距离,并证明:12212y x y x S -=(2)设21,l l 的斜率之积为21-,求S 的值例14.(2013年山东卷文22)在平面直角坐标系xOy 中,已知椭圆C 的中心在原点O ,焦点在x 轴上,短轴长为2,离心率为22 (1)求椭圆C 的方程(2)B A ,为椭圆C 上满足AOB ∆的面积为46的任意两点,E 为线段AB 的中点,射线OE 交椭圆C 于点P ,设OE t OP =,求实数t 的值例15.(2011年山东卷理21)已知动直线l 与椭圆C :12322=+y x 交于两不同点),(11y x P ,),(22y x Q ,且OPQ ∆的面积26=∆OPQ S ,其中O 为坐标原点 (1)证明:2221x x +和2221y y +均为定值(2)设线段PQ 的中点为M ,求PQ OM ⋅的最大值(3)椭圆C 上是否存在点G E D ,,,使得26===∆∆∆OEG ODG ODE S S S ?若存在,判断DEG ∆的形状;若不存在,请说明理由练习:例1.(2010年全国新课标卷理12)已知双曲线E 的中心为原点,)0,3(F 是E 的焦点,过F 的直线l 与E 相交于B A ,两点,且AB 的中点为)15,12(--N ,则E 的方程为( ) A.16322=-y x B.15422=-y x C.13622=-y x D.14522=-y x例2.(2006年北京卷文19)椭圆C :)0(12222>>=+b a by a x 的两个焦点为21,F F ,点P 在椭圆C 上,且211F F PF ⊥,341=PF ,3142=PF (1)求椭圆C 的方程(2)若直线l 过圆02422=-++y x y x 的圆心M ,交椭圆C 于B A ,两点,且B A ,关于点M 对称,求直线l 的方程例3.(2014年浙江卷理21)如图所示,设椭圆C :)0(12222>>=+b a by a x ,动直线l 与椭圆C 只有一个公共点P ,且点P 在第一象限(1)已知直线l 的斜率为k ,用k b a ,,表示点P 的坐标(2)若过原点O 的直线1l 与l 垂直,证明:点P 到直线1l 的距离的最大值为b a -例4.(2015年陕西卷理20)已知椭圆E :)0(12222>>=+b a by a x 的半焦距为c ,原点O 到经过两点),0(),0,(b c 的直线的距离为c 21 (1)求椭圆E 的离心率(2)如图所示,AB 是圆M :25)1()2(22=-++y x 的一条直径,若椭圆E 经过B A ,两点,求椭圆E 的方程例5.(2019年全国II 卷理21)已知),(),0,2(),0,2(y x M B A -为坐标系内任意一点,且满足直线MA 和MB 的斜率之积为21-,设M 的轨迹为曲线C (1)求C 的方程,并说明表示什么曲线(2)过坐标原点的直线交C 于Q P ,,点P 在第一象限,⊥PE x 轴,垂足为E ,连接QE 并延长交C 于点G(i )证明:PQG ∆为直角三角形(ii )求PQG ∆面积的最大值例6.(2012年湖北卷文理21)设A 是单位圆122=+y x 上的任意一点,l 是过点A 与x 轴垂直的直线,D 是直线l 与x 轴的交点,点M 在直线l 上,且满足0(>=m DA m DM ,且)1≠m ,当点A 在圆上运动时,记点M 的轨迹为曲线C(1)求曲线C 的方程,判断曲线C 为何种圆锥曲线,并求其焦点坐标(2)过原点且斜率为k 的直线交曲线C 于Q P ,两点,其中P 在第一象限,它在y 轴上的射影为点N ,直线QN 交曲线C 于另一点H ,是否存在m ,使得对任意的0>k ,都有PH PQ ⊥若存在,求m 的值;若不存在,请说明理由。

江苏省南通市如皋市2022-2023学年高三上学期9月诊断测试数学试题含答案

江苏省南通市如皋市2022-2023学年高三上学期9月诊断测试数学试题含答案

如皋市2023届高三上学期9月诊断测试数学试题一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.集合{}320223,nA n n n Z =∈<<的所有元素之积为(▲).A.8648640B.55440C.665280D.02.已知复数z 满足3i i z z -+为负实数,31z z -+为纯虚数,则z =(▲).A.B.1C.D.13.抛物线28y x =的焦点为F ,设11(,)A x y ,22(,)B x y 是抛物线上的两个动点,若124||3x x AB ++=,则AFB ∠的最大值为(▲).A.3π B.34π C.56π D.23π4.“人有悲欢离合,月有阴晴圆缺”,这里的圆缺就是指“月相变化”,即地球上所看到的月球被日光照亮部分的不同形象,随着月球与太阳的相对位置的不同,便会呈现出各种形状,如图所示,古代中国的天象监测人员发现并记录了月相变化的一个数列,记为{}n a ,其中115n 且*n N ∈,将满月分成240部分,从新月开始,每天的月相数据如下表所示(部分数据),15a =是指每月的第1天可见部分占满月的5240,8128a =是指每月的第8天可见部分占满月的128240,15240a =是指每月的第15天(即农历十五)会出现满月.已知在月相数列{}n a 中,前5项构成等比数列,第5项到第15项构成等差数列,则第3天可见部分占满月的(▲).A.124B.112C.16D.135.在平面直角坐标系中,椭圆E :2214x y +=,P 为E 上的动点,,A B 为两个定点,其中B 点坐标为()0,3.若PAB △的面积最小值为1,最大值为5,则线段AB 的长为(▲).A.5B.26C.6D.76.已知函数()y f x =的图像既关于点()1,1中心对称,又关于直线0x y +=轴对称.当()0,1x ∈时,()()2log 1f x x =+,则()2log 10f 的值为(▲).A.2log 6B.175C.3D.1457.通过研究正五边形和正十边形的作图,古希腊数学家毕达哥拉斯发现了黄金分割率,黄金分割率的值也可以用2sin18︒表示,即512sin18.2-=︒记2sin18m =︒,则21cos36(2)sin144m +︒=-⋅︒(▲).A.2- B.2- C.2D.51-8.若,(0,)x y ∈+∞,ln sin y x x e y +=+,则(▲).A.ln()0x y -< B.ln()0y x -> C.e yx < D.ln y x<二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.9.下列关于复数的命题中(i 为虚数单位),说法正确的是(▲).A.若关于x 的方程2(1i)14i 0(R)x ax a +++-=∈有实根,则52a =±B.复数z 满足2020(1i)i 1z +==,则z 在复平面对应的点位于第二象限C.12i +是关于x 的方程20x px q ++=的一个根,其中p 、q 为实数,则5q =D.已知1i z a b =+,2i z c d =+,且12z z =,则,a c b d==10.已知抛物线C :24y x =的焦点为F ,抛物线C 上存在n 个点1P ,2P ,…,(2n P n 且*)n N ∈满足1223112n n n PFP P FP P FP P FP nπ-∠=∠=⋅⋅⋅=∠=∠=,则下列结论中正确的是(▲).A.2n =时,12112||||PF P F +=B.3n =时,123||||||PF P F P F ++的最小值为9C.4n =时,1324111||||||||4PF P F P F P F +=++D.4n =时,1234||||||||PF P F P F P F +++的最小值为811.在平面直角坐标系中,O 是坐标原点,n M ,n N 是圆222:O x y n +=上两个不同的动点,n P 是n nM N 的中点,且满足2*20().n n n OM ON OP n N ⋅+=∈ 设n M ,n N到直线20l y n n +++=的距离之和的最大值为n a ,则下列说法中正确的是(▲).A.向量n OM 与向量n ON所成角为120︒B.||n OP n= C.22n a n n =+D.若2nn a b n =+,则数列的前n 项和为11121n +--12.画法几何的创始人——法国数学家加斯帕尔⋅蒙日发现:椭圆的两条切线互相垂直,则两切线的交点位于一个与椭圆同中心的圆上,称此圆为该椭圆的蒙日圆.已知椭圆C :22221(0)x y a b a b+=>>的离心率为22,1F 、2F分别为椭圆的左、右焦点,点A 在椭圆上,直线l :220bx ay a b +--=,则(▲).A.直线l 与蒙日圆相切B.C 的蒙日圆的方程为2222x y a +=C.记点A 到直线l 的距离为d ,则2||d AF -D.若矩形MNGH 的四条边均与C 相切,则矩形MNGH 的面积的最大值为28b三、填空题:本题共4小题,每小题5分,共20分.13.已知1,0,0x y y x +=>>,则121x x y ++的最小值为▲.14.在平面直角坐标系xOy 中,已知点(1,2)P ,直线l :y kx m =+与圆O :225x y +=交于A ,B 两点,若PAB △为正三角形,则实数m 的值是▲.15.已知()00,P x y 是抛物线24y x =000210x y +-+的最小值为▲.16.函数())f x x R =∈的值域为▲.四、解答题:本题共6小题,共70分.请在答题卡指定区域内作答..........,解答时应写出文字说明、证明过程或演算步骤.17.(本小题满分10分)若ABC △的内角,,A B C 满足sin cos tan A B C ==.(1)若π12B =,求C 的大小;(2)求32cos cos cos A A A +-的值.18.(本小题满分12分)正项数列{}n a 的前n 项和n S 满足:222(1)()0.n n S n n S n n -+--+=(1)求数列{}n a 的通项公式n a ;(2)令221(2)n nn b n a +=+,数列的前n 项和为n T ,证明对于任意的*n N ∈,都有5.64n T <郑州中原福塔的外立面呈双曲抛物面状,造型优美,空中俯瞰犹如盛开的梅花绽放在中原大地,是现代建筑与艺术的完美结合.双曲抛物面又称马鞍面,其在笛卡儿坐标系中的方程与在平面直角坐标系中的双曲线方程类似.双曲线在物理学中具有很多应用,比如波的干涉图样为双曲线、反射式天文望远镜利用了其光学性质等等.(1)已知A ,B 是在直线l 两侧且到直线l 距离不相等的两点,P 为直线l 上一点.试探究当点P 的位置满足什么条件时,||PA PB -取最大值;(2)若光线在平滑曲线上发生反射时,入射光线与反射光线关于曲线在入射点处的切线在该点处的垂线对称.证明:由双曲线一个焦点射出的光线,在双曲线上发生反射后,反射光线的反向延长线交于双曲线的另一个焦点.20.(本小题满分12分)已知等差数列{}n a 满足621S =,728S =,其中n S 是数列{}n a 的前n 项和.(1)求数列{}n a 的通项;(2)令14(1)(21)(21)n n n n n b a a -=--+,证明:12b b ++ (22).21n n b n +++已知点B A 、分别是椭圆22:143x y Γ+=的左、右顶点,过Γ的右焦点F 作直线l 交Γ于,M N 两点,(1)设直线,,AM AN BM 的斜率分别为123,,k k k ,求12k k 和23k k 的值;(2)若直线,AM AN 分别交椭圆Γ的右准线于,P Q 两点,证明:以PQ 为直径的圆经过定点.22.(本小题满分12分)已知函数()()ln ,e x x x f x g x x==.(1)求()f x 和()g x 的极值;(2)证明:存在直线y a =,其与曲线()y f x =和曲线()y g x =共有三个不同的交点,并且从左到右的三个交点的横坐标成等比数列.如皋市2023届高三上学期9月诊断测试数学参考答案及评分标准2022.09一、选择题:本题共8小题,每小题5分,共40分.题号12345678答案CCDBDBAC二、选择题:本题共4小题,每小题5分,共20分.全部选对得5分,部分选对得2分,有选错得0分.题号9101112答案ACBCACDAC三、填空题:本题共4小题,每小题5分,共20分.四、解答题:本题共6小题,共70分.解答时应写出文字说明、证明过程或演算步骤.17.(1)所以π3C =.………………………………………………4分17.(2)………………………10分18.(1)因为数列{}n a 的前n 项和n S 满足:222(1)()0n n S n n S n n -+--+=,所以当1n =时,22211(111)(11)0S S -+--+=,即21120S S --=,解得12S =或11S =-,因为数列{}n a 都是正项,所以12S =,因为222(1)()0n n S n n S n n -+--+=,则2[()](1)0n n S n n S -++=,则2n S n n =+或1n S =-,因为数列{}n a 都是正项,所以2n S n n =+,.………………………………………………2分当2n 时,有1n n n a S S -=-,所以22[(1)(1)]n a n n n n =+--+-,解得2n a n =,2n ,当1n =时,112a S ==,符合2n a n =,所以数列{}n a 的通项公式2n a n =,*;n N ∈.………………………………………………5分18.(2)证明:由222211(2)(2)4n n n n b n a n n ++==++⋅,.……………8分所以115(1)16464<+=,所以对于任意*n N ∈,都有5.64n T <.………………………………………………12分19.(1)不妨设A 点到直线l 的距离比B 点到直线l 的距离大,作A 点关于直线l 的对称点.A '当l 为APB ∠的平分线时,A ',B ,P 三点共线,故PA PB PA PB A B -='-=',.…………2分当l 不是APB ∠的平分线时,取这样的点P ',则A ',B ,P '能构成一个三角形,故P A P B P A P B A B '-'=''-'<',因此,当且仅当P 的位置使得l 为APB ∠的平分线时,||PA PB -取最大值..…………………5分19.(2)证明:不妨设双曲线的焦点在x 轴上,半实轴长为a ,左右焦点分别为1F ,2F ,入射光线1l 从2F 出射,入射点Q ,反射光线2l ,双曲线在Q 点处的切线3l ,3l 在Q 点处的垂线4l ,由光的反射定律,1l ,2l 关于4l 对称,故1l ,2l 关于3l 对称,要证:反射光线2l 过点1F ,只要证:3l 是12F QF ∠的角平分线,.………………………………………………7分定义双曲线焦点所在区域为内部,渐近线所在区域为外部,由双曲线的定义,122F Q F Q a -=,对于双曲线内部的一点Q '有12||2F Q F Q a '-'>,对于双曲线外部的一点Q ''有12||2F Q F Q a ''-''<,又3l 是双曲线在Q 点处的切线,故在3l 上有且仅有一点Q 使得122F Q F Q a -=,3l 上其他点Q '''均有122F Q F Q a '''-'''<,故Q 是3l 上唯一使得12F Q F Q -取最大值的点,又1F ,2F 到直线3l 距离不相等,根据(1)中结论,可知3l 是12F QF ∠的角平分线,故反射光线2l 过点1F ,命题得证..………………………………………………12分20.(1)数列{}n a 为等差数列,依题意有117212861521a d a d +=⎧⎨+=⎩,解得:11a =,1d =,.………………………………………………2分所以1(1)1n a n =+-⨯,所以n a n =,.………………………………………………4分20.(2)证明:111411(2)(1)(1)(1)(21)(21)2121n n n n n n n b a a n n ---=-=-+--+-+,.……………8分1123111111(1(()[(1)3355721n n b b b b n -+++⋅⋅⋅+=++--+++⋅⋅⋅+--1111122(1)1(1)1.21212121n n n n n n n --++-=+-+=++++ .………………………………………………12分21.(1)1294k k =-………………………………………………3分233k k =………………………………………………6分21.(2)此圆恒过定点()()7,01,0,………………………………………………12分22.(1)()f x 极大值1e,无极小值;………………………………………………2分()g x 极大值1e,无极小值;………………………………………………4分22.(2)证明略.………………………………………………12分。

江苏省南京市某高级中学2021-2022学年高二上学期第一次月考数学试卷 Word版含答案

江苏省南京市某高级中学2021-2022学年高二上学期第一次月考数学试卷 Word版含答案

2021-2022学年第一学期第一次月考高二数学(总分160分,考试时间120分钟)一、填空题:共14小题,每小题5分,共70分.把答案填在答题卡中相应题的横线上.1.抛物线24y x =的准线方程为____________. 【答案】1x =-【解析】抛物线)0(22>=p px y 的准线方程为2p x =-2.双曲线29x -24y =1的渐近线方程是 .【答案】 230x y ±=.【解析】由29x -24y =0得230x y ±=.3.若()xf x e x =-,则=)0('f ____________. 【答案】0【解析】由于'()()'()'11x x xf x e x e e =-=-=-,所以=)0('f 1-1=0.4.在平面直角坐标系xOy 中,若曲线y =ln x 在x =e(e 为自然对数的底数)处的切线与直线ax -y +3=0垂直,则实数a 的值为________. 【答案】-e【解析】由于y ′=1x ,所以曲线y =ln x 在x =e 处的切线的斜率k =y ′x =e =1e.又该切线与直线ax -y +3=0垂直,所以a ·1e =-1,所以a =-e.5.圆心在直线x =2上的圆C 与y 轴交于两点A (0,-4),B (0,-2),则圆C 的方程为________. 【答案】(x -2)2+(y +3)2=5【解析】由圆的几何意义知圆心坐标为(2,-3),半径r =(2-0)2+(-3+2)2= 5. ∴圆的方程为(x -2)2+(y +3)2=5.6.已知实数,x y 满足⎪⎩⎪⎨⎧≥≤+-≤-1255334x y x y x ,则2z x y =+的最小值 .【答案】3【解析】如图:作出可行域yABx目标函数:y x z +=2,则 z x y +-=2当目标函数的直线过点B(1,1)时,Z 有最小值32min =+=y x Z .7.已知p :0322≤-+x x ,q :a x ≥.若p 是q 的充分不必要条件,则实数a 的最大值为__________.【答案】3-【解析】由0322≤-+x x 知13≤≤-x ,当3-≤a 时p 是q 的充分不必要条件,所以实数a 的最大值为3-.8.已知椭圆192522=+y x 上一点P 到左焦点的距离为4,则点P 到右准线的距离为_________.【答案】215【解析】由题102=a ,由于点P 到左焦点的距离为4,所以点P 到右焦点的距离为6.设点P 到右准线的距离为d ,则有546==e d,即215=d . 9.设M 是圆22(5)(3)9x y -+-=上一点,则M 到直线l :3420x y +-=的距离的最大值为 .【答案】8【解析】圆心到直线距离为2555d ==,最大距离为538d r +=+=.10.若命题“存在x ∈R ,ax 2+4x +a ≤0”为假命题,则实数a 的取值范围是________. 【答案】(2,+∞)【解析】“存在x ∈R ,ax 2+4x +a ≤0”为假命题,则其否定“对任意x ∈R ,ax 2+4x +a >0”为真命题,当a=0,4x >0不恒成立,故不成立;当a ≠0时,⎩⎪⎨⎪⎧a >0,Δ=16-4a 2<0,解得a >2,所以实数a 的取值范围是(2,+∞).11.x ,y 满足约束条件20220220x y x y x y +-≤⎧⎪--≤⎨⎪-+≥⎩,则22x y +的取值范围为____________.【答案】[]0,8【解析】作出可行域如图:22x y +表示可行域内的点与原点的距离的平方,由图可知2208x y ≤+≤.12.如图,已知1F ,2F 是椭圆的左右两个焦点,过1F 且与椭圆 长轴垂直的直线交椭圆与A ,B 两点.若2ABF ∆是正三角形, 则椭圆的离心率为 .【答案】33【解析】设m AF =1,则m AF 22=,a m 23=,即m a 23=,又c m F F 2321==,即mc 23=,所以33==a c e .13.已知圆C :(x -3)2+(y -4)2=1和两点A (-m ,0),B (m ,0)(m >0).若圆C 上存在点P ,使得∠APB =90°,则m 的最大值为 . 【答案】6【解析】由图可知,圆C 上存在点P 使∠APB =90°,即圆C 与以AB 为直径的圆有公共点,所以32+42-1≤m ≤32+42+1,即4≤m ≤6.14.如图,在平面直角坐标系xOy 中,已知椭圆x 2a 2+y 2b 2=1(a >b >0)的离心率为22,长轴长为4,过椭圆的左顶点A 作直线l ,分别交椭圆和圆x 2+y 2=a 2于相异两点P ,Q . 若PQ =λAP ,则实数λ的取值范围为 .【答案】0<λ<1【解析】 解法1 λ=PQ AP =AQ -AP AP =AQAP-1,设直线l :y =k (x +2),由⎩⎪⎨⎪⎧x 2+2y 2=4,y =k (x +2)得(2k 2+1)x 2+8k 2x +8k 2-4=0, 即(x +2)[](2k 2+1)x +(4k 2-2)=0,所以x A =-2, x P =2-4k 22k 2+1,得P ⎝ ⎛⎭⎪⎫2-4k 22k 2+1,4k 2k 2+1.所以AP 2=⎝ ⎛⎭⎪⎫2-4k 22k 2+1+22+⎝⎛⎭⎫4k 2k 2+12=16+16k 2(2k 2+1)2,即AP =4k 2+12k 2+1.同理AQ =4k 2+1.所以λ=AQ AP -1=4k 2+14k 2+12k 2+1-1=1-1k 2+1.由于k 2>0,所以0<λ<1. 解法2 由⎩⎪⎨⎪⎧x 2+y 2=4,y =k (x +2)消去x 得(k 2+1)y 2-4ky =0,所以y Q =4k k 2+1,同理y P =4k2k 2+1,由解法1知,λ=AQ AP -1=y Q y P -1=4kk 2+14k 2k 2+1-1=1-1k 2+1. 由于k 2>0,所以0<λ<1。

十年数学2003年高考试题答案解析

十年数学2003年高考试题答案解析

2003年高考数学试题(新课程卷、江苏卷、辽宁卷)新课程卷·理工农医类第Ⅰ卷(选择题 共60一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.2)3(31i i+-等于(A.i 4341+B.i 4341--C.i 2321+D.i 2321--2.已知x ∈(-2π,0),cos x =54,则tan2x 等于( ) A.247 B.-247C.724 D.-724 3.设函数f (x )=⎪⎩⎪⎨⎧>≤--.0 ,,0,1221x x x x 若f (x 0)>1,则x 0的取值范围是( )A.(-1,1)B.(-1,+∞)C.(-∞,-2)∪(0,+∞)D.(-∞,-1)∪(1,+∞)4.O 是平面上一定点,A 、B 、C 是平面上不共线的三个点,动点P 满足λ+=OA OP (+,λ∈[0,+∞),则P 的轨迹一定通过△ABC 的( )A.外心B.内心C.重心D.垂心5.函数y =ln11-+x x ,x ∈(1,+∞)的反函数为( ) A.y =11+-x x e e ,x ∈(0,+∞)B.y =11-+x x e e ,x ∈(0,+∞)C.y =11+-x x e e ,x (-∞,0)D.y =11-+x x e e ,x ∈(-∞,0)6.棱长为a 的正方体中,连结相邻面的中心,以这些线段为棱的八面体的体积为( )A.33aB.43aC.63aD.123a 7.设a >0,f (x )=ax 2+bx +c ,曲线y =f (x )在点P (x 0,f (x 0))处切线的倾斜角的取值范围为[0,4π],则P 到曲线y =f (x )对称轴距离的取值范围为( )A.[0,a1] B.[0,a21] C.[0,|ab2|] D.[0,|ab 21-|] 8.已知方程(x 2-2x +m )(x 2-2x +n )=0的四个根组成一个首项为41的等差数列,则 |m -n |等于( )A.1B.43C.21D.83 9.已知双曲线中心在原点且一个焦点为F (7,0),直线y =x -1与其相交于M 、N 两点,MN 中点的横坐标为-32,则此双曲线的方程是( ) A.14322=-y xB.13422=-y x C.12522=-y xD.15222=-y x 10.已知长方形的四个顶点A (0,0)、B (2,0)、C (2,1)和D (0,1),一质点从AB 的中点P 0沿与AB 夹角为θ的方向射到BC 上的点P 1后,依次反射到CD 、DA 和AB 上的点P 2、P 3和P 4(入射角等于反射角).设P 4的坐标为(x 4,0).若1<x 4<2,则tan θ的取值范围是( )A.(31,1) B.(32,31) C.(21,52) D.(32,52) 11.)C C C C (C C C C lim 11413122242322nnn ++++++++∞→ 等于( ) A.3B.31C.61 D.612.一个四面体的所有棱长都为2,四个顶点在同一球面上,则此球的表面积为( )A.3πB.4πC.33πD.6π第Ⅱ卷(非选择题 共90分)二、填空题:本大题共4小题,每小题4分,共16分.把答案填在题中横线上. 13.(x 2-x21)9展开式中x 9的系数是_____. 14.某公司生产三种型号的轿车,产量分别为1200辆、6000辆和2000辆,为检验该公司的产品质量,现用分层抽样的方法抽取46辆进行检验,这三种型号的轿车依次应抽取_____、_____、_____辆.15.某城市在中心广场建造一个花圃,花圃分为6个部分(如图).现要栽种4种不同颜色的花,每部分栽种一种且相邻部分不能栽种同样颜色的花,不同的栽种方法有_____种.(以数字作答)16.下列五个正方体图形中,l 是正方体的一条对角线,点M 、N 、P 分别为其所在棱的中点,能得出l ⊥面MNP 的图形的序号是_____.(写出所有符合要求的图形序号)三、解答题:本大题共6小题,共74分.解答应写出文字说明、证明过程或演算步骤. 17.(本小题满分12分)已知函数f (x )=2sin x ·(sin x +cos x ). (Ⅰ)求函数f (x )的最小正周期和最大值;(Ⅱ)在给出的直角坐标系中,画出函数y =f (x )在区间[-2,2ππ]上的图象.18.(本小题满分12分)如图,在直三棱柱ABC —A 1B 1C 1中,底面是等腰直角三角形,∠ACB =90°,侧棱AA 1=2,D 、E 分别是CC 1与A 1B 的中点,点E 在平面ABD 上的射影是△ABD 的重心G .(Ⅰ)求A 1B 与平面ABD 所成角的大小(结果用反三角函数值表示);(Ⅱ)求点A 1到平面AED 的距离.19.(本小题满分12分)设a >0,求函数f (x )=x -ln (x +a )(x ∈(0,+∞))的单调区间.20.(本小题满分12分)A 、B 两个代表队进行乒乓球对抗赛,每队三名队员,A 队队员是A 1,A 2,A 3,B 队队员是B 1,B 2,B 3,按以往多次比赛的统计,对阵队员之间胜负概率如下:现按表中对阵方式出场,每场胜队得1分,负队得0分.设A 队、B 队最后所得总分分别为ξ、η.(Ⅰ)求ξ、η的概率分布; (Ⅱ)求E ξ,E η.21.(本小题满分12分)已知常数a >0,向量c =(0,a ),i =(1,0),经过原点O 以c +λi 为方向向量的直线与经过定点A (0,a ),以i -2λc 为方向向量的直线相交于点P .其中λ∈R .试问:是否存在两个定点E 、F ,使得|PE |+|PF |为定值.若存在,求出E 、F 的坐标;若不存在,说明理由.22.(本小题满分14分)设a 0为常数,且a n =3n -1-2a n -1(n ∈N +).(Ⅰ)证明对任意n ≥1,a n =51[3n +(-1)n -1·2n ]+(-1)n ·2n a 0; (Ⅱ)假设对任意n ≥1有a n >a n -1,求a 0的取值范围. ●答案解析 1.答案:B 解析:)60sin 60(cos 2)60sin 60(cos 2)30sin 30(cos 2)60sin 60(cos 2)3(31222︒+︒︒-︒=︒+︒︒-︒=+-i i i i i i .4341)2321(21)]120sin()120[cos(21i i i --=--=︒-+︒-=.2.答案:D 解法一:∵x ∈(-2π,0),cos x =54,∴sin x =-53,tan x =-43,∴tan2x =724tan 1tan 22-=-x x .解法二:在单位圆中,用余弦线作出cos x =54,x ∈(-2π,0),判断出2x ∈Ⅳ且tan2x =A T<-1.3.答案:D解法一:因为f (x 0)>1,当x ≤0时,,∴x 0<-1,当x 0>0时,210x >1,∴x 0>1.综上,所以x 0的取值范围为(-∞,-1)∪(1,+∞).解法二:首先画出函数y =f (x )与y =1的图象.由图中易得f (x )>1时,所对应的x 的取值范围.4.答案:B解析:设B A AB '=||为AB 上的单位向量C A =为上的单位向量,||||AC ACAB AB +的方向为∠BAC 的角平分线AD 的方向. 又λ∈[0,+∞],∴λ||||AC AC AB AB +||||AC ACAB AB +的方向相同. 而||||AC ACAB AB OA OP ++=λ,∴点P 在AD 上移动,∴P 的轨迹一定通过△ABC 的内心.5.答案:B解法一:y =ln 11,11-+-+x x x x =l y ,∴x =11-+y y l l ,又12112111-+=-+-=-+x x x x x 而x >1,∴11-+x x >1,∴ln 11-+x x >0,因此y =ln 11-+x x 的反函数为y =11-+x x l l (x >0) 解法二:因原函数的定义为(1,+∞),而y =1121121|1<+-=+-+=+-x x x x x l l l l l .因此排除A 、C ,又原函数的值域为(0,+∞),排除D.6.答案:C解析:如图,此八面体可以分割为两个正四棱锥,而AB 2=(2a )2+(2a )2=21a 2,∴V 八面体=32612131a a a =⋅⋅.7.答案:B解析:f (x )的导数为f ′(x )=2ax +b ,由已知y =f (x )在点P (x 0,f (x 0))处切线的倾斜角的取值范围为[0,4π].因此有0≤2ax 0+b ≤1.而P 到曲线y =f (x )的对称轴的距离为ab ax a b ax a b x 2|2||22||2|000+=+=+. 8.答案:C 解析:设a 1=41,a 2=41+d ,a 3=41+2d ,a 4=41+3d ,而方程x 2-2x +m =0中的两根之和为2,x 2-2x +n =0中的两根之和也是2.∴a 1+a 2+a 3+a 4=1+6d =4,∴d =21,∴a 1=41,a 4=47是一个方程的两个根,a 2=43,a 3=45是一个方程的两个根,∴1615,167为m 或n .∴|m -n |=21. 9.答案:D解法一:设所求双曲线方程为172222=--a y a x 由⎪⎩⎪⎨⎧-==--1172222x y a y a x 得17)1(2222=---ax a x ,(7-a 2)x 2-a 2(x -1)2=a 2(7-a 2) 整理得:(7-2a 2)x 2+2a 2x -8a 2+a 4=0.又MN 中点横坐标为-32, ∴x 0=32)7(2222221-=--=+a a x x 即3a 2=2(7-2a 2),∴a 2=2. 故所求双曲线方程为15222=-y x . 解法二:因所求双曲线与直线y =x -1的交点的中点横坐标为-32<0,故双曲线的渐近线的斜率(k >0)时,为k >1,因此,排除B 、C.经检验⎪⎩⎪⎨⎧-==-115222x y y x 的交点的中点横坐标为-32. 解法三:由已知MN 中点横坐标x 0=-32,可得中点纵坐标y 0=x 0-1=-35,设MN 与双曲线交点分别为M (x 1,y 1)、N (x 2,y 2),则有221221by a x -=1 ①,222222b ya x -=1 ②则②-①得:0))(())((2211221212=+--+-by y y y a x x x x , ∴2211222112))(())((by y y y a x x x x +-=+-,∴25))(())((2112211222=+-+-=x x x x y y y y a b . 10.答案:C 解析:设P 1B =x ,∠P 1P 0B =θ,则CP 1=1-x ,∠P 1P 2C 、∠P 3P 2D 、∠AP 4P 3均为θ,所以tan θ=B P B P 01=x ,又tan θ=2211CP x CP CP -==x , ∴CP 2=x x x 11=--1,而tan θ=x xDP x DP D P D P =-=--=13)11(23323, ∴DP 3=x (3-x 1)=3x -1,又tan θ=444332)13(1AP x AP x AP AP -=--==x , ∴AP 4=x x x 232=--3,依题设1<AP 4<2,即1<x2-3<2, ∴4<x 2<5,51241>>x ,∴5221>>x .11.答案:B 解析:∵mn m n m n 113322C C C ,1C C +-=+== ∴2243422423332242322C C C C C C C C C C C n n n +++=++++=++++31C +=n ,1C C C C C C 21115141312-=++++++n n31]12)1([123)1()1(lim )1C (C lim )C C C (C C C lim 21311131222322=-+⋅⋅-+=-=++++++∞→++∞→∞→n n n n n n n n n n n n n n 12.答案:A 解法一:,3632,26===AD AO AD 33222=-=AO SA SO . ∴R 2=32)332(2+-R ,∴R = 23.∴球的表面积为3π.解法二:构造棱长为1的正方体,则C 1A 1BD 为棱长为2的正四面体,正方体的外接球体也为正四面体的外接球.此时球的直径为3,因此球的表面积为4π(23)2=3π. 13.答案:-221 解析:(x 2-x 21)9的展开式中,T r +1=r 9C ·(x 2)9-r (-x 21)r =(-21)r r r r x x --2189C , rr r x 3189C )21(-⋅-=由题意得18-3r =9,∴r =3,因此x 9的系数为(-21)3·12378981C 39⋅⋅⋅⋅-=221-=. 14.答案:6 30 10解析:因总轿车数为9200辆,而抽取46辆进行检验,抽样比例为2001920046=,而三种型号的轿车有显著区别.根据分层抽样分为三层按2001比例抽样分别有6、30、10辆. 15.答案:120解法一:先排1区,有4种方法,把其余四个区视为一个圆环(如图1),沿着圆环的一个边界剪开并把圆环拉直,得到如图2的五个空格,在五个空格中放3种不同元素,且①相同元素不能相邻.②两端元素不能相同.共有15种不同方法.然后再把图2粘成圆形即可.下面解决两端元素相同的情况.在这种情况下我们在六个空格如图 3.要求①相同元素不能相邻.②两端元素必须相同,共有15种不同方法.然后再把图3粘成圆环形,把两端的两格粘在一起看成一个格即可.综上,共有4(15+15)=120种方法.图2 图316.答案:①④⑤解析:①、④易判断,⑤中△PMN 是正三角形且AM =AP =AN ,因此,三棱锥A —PMN 是正三棱锥.所以图⑤中l ⊥平面MNP ,由此法,还可否定③.∵AM ≠AP ≠AN .也易否定②.17.解:(Ⅰ)f (x )=2sin 2x +2sin x cos x =1-cos2x +sin2x =1+2(sin2x cos4π-cos2x sin4π)=1+2sin (2x -4π),所以函数f (x )的最小正周期为π,最大值为1+2.(Ⅱ)由(Ⅰ)知故函数y =f (x )在区间[-2π,2π]上的图象是18.解法一:(Ⅰ)连结BG ,则BG 是BE 在面ABD 的射影,即∠EBG 是A 1B 与平面ABD 所成的角.设F 为AB 中点,连结EF 、FC ,∵D 、E 分别是CC 1、A 1B 的中点,又DC ⊥平面ABC , ∴CDEF 为矩形.连结DF ,G 是△ADB 的重心,∴G ∈DF .在直角三角形EFD 中,EF 2=FG ·FD =31FD 2, ∵EF =1,∴FD =3.于是ED =2,EG =36321=⨯. ∵FC =ED =2,∴AB =22,A 1B =23,EB =3.∴sin EBG =323136=⋅=EB EG .∴A 1B 与平面ABD 所成的角是arcsin 32. (Ⅱ)连结A 1D ,有E AA D ADEA V V 11--=.∵ED ⊥AB ,ED ⊥EF ,又EF ∩AB =F ,∴ED ⊥平面A 1AB , 设A 1到平面AED 的距离为h ,则S △AED ·h =AE A S 1∆·E D. 又2621,24121111=⋅==⋅==∆∆∆ED AE S AB A A S S AED AB A AEA . ∴3622622=⨯=h .即A 1到平面AED 的距离为362. 解法二:(Ⅰ)连结BG ,则BG 是BE 在面ABD 的射影,即∠A 1BG 是A 1B 与平面ABD 所成的角.如图所示建立坐标系,坐标原点为O .设CA =2a , 则A (2a ,0,0),B (0,2a ,0),D (0,0,1),A 1(2a ,0,2),E (a ,a ,1),G (31,32,32a a ). ∴BD a a GE ),32,3,3(==(0,-2a ,1). ∴032322=+-=⋅a BD GE , 解得a =1. ∴)31,34,32(),2,2,2(1-=-=BA .∴cos A 1BG 3721313231411=⋅=.A 1B 与平面ABD 所成角是arccos37. (Ⅱ)由(Ⅰ)有A (2,0,0),A 1(2,0,2),E (1,1,1),D (0,0,1).ED AE ⋅=(-1,1,1)·(-1,-1,0)=0,AA ⋅1=(0,0,2)·(-1,-1,0)=0, ∴ED ⊥平面AA 1E ,又ED ⊂平面AED , ∴平面AED ⊥平面AA 1E ,又面AED ∩面AA 1E =AE .∴点A 1在平面AED 的射影K 在AE 上. 设AK =λ,则K A A A K A 111+==(-λ,λ,λ-2).由K A 1·AE =0,即λ+λ+λ-2=0,解得λ=32. ∴)34,32,32(1--=KA . ∴362||1=A .故A 1到平面AED 的距离为362. 19.解:f ′(x )=ax x+-121(x >0). 当a >0,x >0时,f ′(x )>0⇔x 2+(2a -4)x +a 2>0, f ′(x )<0⇔x 2+(2a -4)x +a 2<0.(i )当a >1时,对所有x >0,有x 2+(2a -4)x +a 2>0, 即f ′(x )>0,此时f (x )在(0,+∞)内单调递增. (ii )当a =1时,对x ≠1,有x 2+(2a -4)x +a 2>0,即f ′(x )>0,此时f (x )在(0,1)内单调递增,在(1,+∞)内单调递增. 又知函数f (x )在x =1处连续,因此,函数f (x )在(0,+∞)内单调递增. (iii )当0<a <1时,令f ′(x )>0,即x 2+(2a -4)x +a 2>0, 解得x <2-a -2a -1,或x >2-a +2a -1.因此,函数f (x )在区间(0,2-a -2a -1)内单调递增,在区间(2-a +2a -1,+∞)内也单调递增.令f ′(x )<0,即x 2+(2a -4)x +a 2<0,解得2-a -2a -1<x <2-a +2a -1.因此,函数f (x )在区间(2-a -2a -1,2-a +2a -1)内单调递减.20.解:(Ⅰ)ξ、η的可能取值分别为3,2,1,0. P (ξ=3)=758525232=⨯⨯,P (ξ=2)=7528525332525231535232=⨯⨯+⨯⨯+⨯⨯, P (ξ=1)=52525331535231535332=⨯⨯+⨯⨯+⨯⨯, P (ξ=0)=253535331=⨯⨯; 根据题意知ξ+η=3,所以 P (η=0)=P (ξ=3)=758,P (η=1)=P (ξ=2)=7528, P (η=2)=P (ξ=1)=52,P (η=3)=P (ξ=0)=253.(Ⅱ)E ξ=15222530521752827583=⨯+⨯+⨯+⨯; 因为ξ+η=3,所以E η=3-E ξ=1523. 21.解:根据题设条件,首先求出点P 坐标满足的方程.据此再判断是否存在两定点,使得点P 到两定点距离的和为定值.∵i =(1,0),c =(0,a ),∴c +λi =(λ,a ),i -2λc =(1,-2λa ). 因此,直线OP 和AP 的方程分别为λy =ax 和y -a =-2λax .消去参数λ,得点P (x ,y )的坐标满足方程y (y -a )=-2a 2x 2,整理得1)2()2(81222=-+aa y x ①因为a >0,所以得: (i )当a =22时,方程①是圆方程,故不存在合乎题意的定点E 和F ; (ii )当0<a <22时,方程①表示椭圆,焦点E (2,21212aa -)和F (-⋅21 2,212aa -)为合乎题意的两个定点; (iii )当a >22时,方程①也表示椭圆,焦点E ))21(21,0(2-+a a 和F (0,21(a-212-a ))为合乎题意的两个定点. 22.(Ⅰ)证法一:(i )当n =1时,由已知a 1=1-2a 0.等式成立; (ii )假设当n =k (k ≥1)等式成立,即a k =51[3k +(-1)k -12k ]+(-1)k 2k a 0, 那么a k +1=3k -2a k =3k -52[3k +(-1)k -1·2k ]-(-1)k 2k +1a 0=51[3k +1+(-1)k 2k +1]+(-1)k +12k +1a 0,也就是说,当n =k +1时,等式也成立. 根据(i )和(ii ),可知等式对任何n ∈N +成立.证法二:如果设a n -a 3n =-2(a n -1-a 3n -1),用a n =3n -1-2a n -1代入,可解出a =51. 所以{a n -53n }是公比为-2,首项为a 1-53的等比数列,∴a n -53n =(1-2a 0-53)(-2)n -1(n ∈N +),即a n =52)1(31nn n --++(-1)n 2n a 0.(Ⅱ)解法一:由a n 通项公式a n -a n -1=523)1(32111---⨯-+⨯n n n +(-1)n 3×2n -1a 0,∴a n >a n -1(n ∈N +)等价于(-1)n -1(5a 0-1)<(23)n -2(n ∈N +). ① (i )当n =2k -1,k =1,2,…时,①式即为(-1)2k -2(5a 0-1)<(23)2k -3, 即为a 0<51(23)2k -3+51. ②②式对k =1,2,…都成立,有a 0<51×(23)-1+51=31. (ii )当n =2k ,k =1,2,…时,①式即为(-1)2k -1(5a 0-1)<(23)2k -2,即为a 0>-51×(23)2k -2+51. ③③式对k =1,2,…都成立,有 a 0>-51×(23)2×1-2+51=0. 综上,①式对任意n ∈N +成立,有0<a 0<31. 故a 0的取值范围为(0,31). 解法二:如果a n >a n -1(n ∈N +)成立,特别取n =1,2有a 1-a 0=1-3a 0>0, a 2-a 1=6a 0>0,因此0<a 0<31. 下面证明当0<a 0<31时,对任意n ∈N +,有a n -a n -1>0. 由a n 通项公式5(a n -a n -1)=2×3n -1+(-1)n -13×2n -1+(-1)n 5×3×2n -1a 0. (i )当n =2k -1,k =1,2,…时,5(a n -a n -1)=2×3n -1+3×2n -1-5×3×2n -1a 0>2×2n -1+3×2n -1-5×2n -1=0. (ii )当n =2k ,k =1,2,…时,5(a n -a n -1)=2×3n -1-3×2n -1+5×3×2n -1a 0>2×3n -1-3×2n -1≥0. 故a 0的取值范围为(0,31). 新课程卷·文史类(与理工农医类不同的部分)●试题部分 1.不等式24x x <x 的解集是( )A.(0,2)B.(2,+∞)C.(2,4]D.(-∞,0)∪(2,+∞)2.抛物线y =ax 2的准线方程是y =2,则a 的值为( ) A.81B.-81 C.8 D.-85.等差数列{a n }中,已知a 1=31,a 2+a 5=4,a n =33,则n 为( )A.48B.49C.50D.516.双曲线虚轴的一个端点为M ,两个焦点为F 1、F 2,∠F 1MF 2=120°,则双曲线的离心率为( )A.3B.26 C.36 D.33 11.已知长方形的四个顶点A (0,0)、B (2,0)、C (2,1)和D (0,1),一质点从AB 的中点P 0沿与AB 夹角为θ的方向射到BC 上的点P 1后,依次反射到CD 、DA 和AB 上的点P 2、P 3和P 4(入射角等于反射角).若P 4与P 0重合,则tan θ等于( )A.31 B.52C.21D.115.在平面几何里,有勾股定理:“设△ABC 的两边AB 、AC 互相垂直,则AB 2+AC 2=BC 2.”拓展到空间,类比平面几何的勾股定理,研究三棱锥的侧面面积与底面面积间的关系,可以得出的正确结论是:“设三棱锥A —BCD 的三个侧面ABC 、ACD 、ADB 两两相互垂直,则 .16.将3种作物种植在如图的5块试验田里,每块种植一种作物且相邻的试验田不能种17.已知正四棱柱11111=2,点E 为CC 1中点,点F 为BD 1中点.(Ⅰ)证明EF 为BD 1与CC 1的公垂线; (Ⅱ)求点D 1到面BDE 的距离.18.已知抛物线C 1:y =x 2+2x 和C 2:y =-x 2+a ,如果直线l 同时是C 1和C 2的切线,称l 是C 1和C 2的公切线.公切线上两个切点之间的线段,称为公切线段.(Ⅰ)a 取什么值时,C 1和C 2有且仅有一条公切线?写出此公切线的方程;(Ⅱ)若C 1和C 2有两条公切线,证明相应的两条公切线段互相平分.19.已知数列{a n }满足a 1=1,a n =3n -1+a n -1(n ≥2). (Ⅰ)求a 2、a 3;(Ⅱ)证明a n =231-n .20.有三种产品,合格率分别是0.90、0.95和0.95,各抽取一件进行检验. (Ⅰ)求恰有一件不合格的概率;(Ⅱ)求至少有两件不合格的概率.(精确到0.001) 21.已知函数f (x )=sin (ωx +ϕ)(ω>0,0≤ϕ≤π)是R 上的偶函数,其图象关于点M (43π,0)对称,且在区间[0,2π]上是单调函数,求ϕ和ω的值.22.已知常数a >0,向量c =(0,a ),i =(1,0),经过原点O 以c +λi 为方向向量的直线与经过定点A (0,a ),以i -2λc 为方向向量的直线相交于点P .其中λ∈R .试问:是否存在两个定点E 、F ,使得|PE |+|PF |为定值.若存在,求出E 、F 的坐标;若不存在,说明理由.●答案解析 1.答案:C解法一:⎪⎩⎪⎨⎧>≤<≥≤⇒⎪⎩⎪⎨⎧>≥≤-⇒⎪⎩⎪⎨⎧->≥≥-242,0442004400422222x x x x x x x x x x x x x x x 解法二:由于5不满足4x -x 2≥0排除B 、D.1不满足24x x -<x 排除A 故选C.2.答案:B 解析:y =ax 2⇒81,241,12-=-==a a y a x . 5.答案:C解析:∵a 1=31设a n =a 1+(n -1)d =31+(n -1)d ,a 2+a 5=a 1+d +a 1+4d =4,32+5d =4,d =32,a n =a 1+(n -1)d =31+(n -1)32=33,n =50.6.答案:B解析:设双曲线为2222by a x -=1,∵△MF 1F 2为等腰三角形,∠F 1MF 2=120°,∴∠MF 1F 2=30°,∴tan30°=23)(,32)(,31)(1,31,3322222222===-=-==a c c a c a c a c c b c b , ∴26=e . 11.答案:C解析:因为P 4与P 0重合,∴P 1为BC 中点,P 2为CD 中点,P 3为AD 中点.∴tan θ=21. 15.答案:2222BCD ADB ACD ABCS S S S ∆∆∆∆=++解析:过A 作BC 垂线AE 与BC 交于E ,连接DE ,则BC ⊥DE ,∵S △ABC 2=41AB 2·AC 2,S △DAB 2=41AB 2·DA 2,S △DAC 2=41AC 2·DA 2,S △DBC 2=41BC 2·DE 2 =41BC 2(AE 2+DA 2)=41(AB 2+AC 2)(AE 2+DA 2) =41AB 2·DA 2+41AC 2·AD 2+41BC 2·AE 2, ∴S △DBC 2=S △DAB 2+S △DAC 2+S △ABC 2. 16.答案:42解析:分别用a 、b 、c 代表3种作物,先安排第一块田,有3种方法,不妨设放入a ,再安排第二块田有b 或c 2种方法.不妨设放入b .第三块田也有2种方法a 或c . (Ⅰ)若第三块田放c :,则第四、五块田分别有2种方法,共2·2种方法.(Ⅱ)若第三块田放a :,第四块田仍有b 或c 2种放法. (i )若第四块田放c :,第五块田仍有2种方法.(ii )若第四块田放b :,则第五块田只能放c ,共有3种方法.综上,共有3·2(2·2+3)=42种方法.17.(Ⅰ)证法一:取BD 中点M ,连结MC 、FM .∵F 为BD 1中点,∴FM ∥D 1D 且FM =21D 1D. 又EC =21CC 1且EC ⊥M C. ∴四边形EFMC 是矩形,∴EF ⊥CC 1.又CM ⊥面DBD 1,∴EF ⊥面DBD 1,∵BD 1 面DBD 1, ∴EF ⊥BD 1.故EF 为BD 1与CC 1的公垂线. 证法二: 建立如图的坐标系,得B (0,1,0),D 1(1,0,2),F (21,21,1), C 1(0,0,2),E (0,0,1). ∴EF =(21,21,0),1CC =(0,0,2).1BD =(1,-1,2).∴EF ·1CC =0,1BD ·EF =0. 即EF ⊥CC 1,EF ⊥BD 1.故EF 是CC 1与BD 1的公垂线. (Ⅱ)解:连结ED 1,有DBE D DBD E V V --=11.由(Ⅰ)知EF ⊥面DBD 1,设点D 1到面BDE 的距离为d , 则S △DBE ·d =1DBD S ∆·EF .∵AA 1=2,AB =1.∴BD =BE =ED =2,EF =22. ∴23)2(2321.2222121=⋅⋅==⋅⋅=∆∆DBE DBD S S . ∴33223222=⨯=d.故点D 1到平面BDE 的距离为332. 18.解:函数y =x 2+2x 的导数y ′=2x +2.曲线C 1在点P (x 1,x 12+2x 1)的切线方程是y -(x 12+2x 1)=(2x 1+2)(x -x 1). 即y =(2x 1+2)x -x 12 ① 函数y =-x 2+a 的导数y ′=-2x ,曲线C 2在点Q (x 2,-x 22+a )的切线方程是y -(-x 22+a )=-2x 2(x -x 2), 即y =-2x 2x +x 22+a . ②如果直线l 是过P 和Q 的公切线,则①式和②式都是l 的方程,所以⎩⎨⎧+=--=+.,1222121a x x x x 消去x 2得方程2x 12+2x 1+1+a =0.若判别式Δ=4-4×2(1+a )=0时,即a =-21时解得x 1=-21.此时点P 与Q 重合. 即当a =-21时C 1和C 2有且仅有一条公切线.由①得公切线方程为y =x -41.(Ⅱ)证明:由(Ⅰ)可知,当a <-21时C 1和C 2有两条公切线.设一条公切线上切点为P (x 1,y 1),Q (x 2,y 2). 其中P 在C 1上,Q 在C 2上,则有x 1+x 2=-1,y 1+y 2=x 12+2x 1+(-x 22+a )=x 12+2x 1-(x 1+1)2+a =-1+a . 线段PQ 的中点为(21,21a +--). 同理,另一条公切线段P ′Q ′的中点也是(21,21a+--). 所以公切线段PQ 和P ′Q ′互相平分.19.(Ⅰ)解:∵a 1=1,∴a 2=3+1=4,a 3=32+4=13.(Ⅱ)证法一:由已知a n -a n -1=3n -1,故a n =(a n -a n -1)+(a n -1-a n -2)+…+(a 2-a 1)+a 1=3n -1+3n -2+…+3+1=213-n .所以证得a n =213-n .证法二:(1)当n =1时,命题成立.(2)假设n =k 时,命题成立.即a k =213-k ,那么n =k +1时,a k +1=3k +a k =3k +213-k21321)12(3213321-=-+=-+⋅=+k k k k 即n =k +1时命题成立.综合(1)(2),命题对n ∈N 均成立.20.解:设三种产品各抽取一件,抽到合格产品的事件分别为A 、B 和C .(Ⅰ)P (A )=0.90,P (B )=P (C )=0.95.P (A )=0.10,P (B )=P (C )=0.05. 因为事件A 、B 、C 相互独立,恰有一件不合格的概率为P (A ·B ·C )+P (A ·B ·C )+P (A ·B ·C )=P (A )·P (B )·P (C )+P (A )· P (B )·P (C )+P (A )·P (B )·P (C )=2×0.90×0.95×0.05+0.10×0.95×0.95=0.176.答:恰有一件不合格的概率为0.176.(Ⅱ)解法一:至少有两件不合格的概率为P (A ·B ·C )+P (A ·B ·C )+P (A ·B ·C )+P (A ·B ·C )=0.90×0.052+ 2×0.10×0.05×0.95+0.10×0.052=0.012.答:至少有两件不合格的概率为0.012. 解法二:三件产品都合格的概率为 P (A ·B ·C )=P (A )·P (B )·P (C )=0.90×0.952=0.812.由(Ⅰ)知,恰有一件不合格的概率为0.176,所以至少有两件不合格的概率为1-[P (A ·B ·C )+0.176]=1-(0.812+0.176)=0.012.答:至少有两件不合格的概率为0.012.21.解:由f (x )是偶函数,得f (-x )=f (x ) 即sin (-ωx +ϕ)=sin (ωx +ϕ). 所以-cos ϕsin ωx =cos ϕsin ωx对任意x 都成立,且ω>0,所以得cos ϕ=0. 依题设0≤ϕ≤π,所以解得ϕ=2π.由f (x )的图象关于点M 对称,得f (43π-x )=-f (43π+x ). 取x =0,得f (43π)=-f (43π),所以f (43π)=0. ∵f (43π)=sin (243πωπ+)=cos 43ωπ, ∴cos43ωπ=0,又ω>0,得243πωπ++k π,k =0,1,2,…. ∴ω=32(2k +1),k =0,1,2,…. 当k =0时,ω=32,f (x )=sin (232π+x ) 在[0,2π]上是减函数;当k =1时,ω=2,f (x )=sin (2x +2π)在[0,2π]上是减函数;当k ≥2时,ω≥310,f (x )=sin (ωx +2π)在[0,2π]上不是单调函数. 所以,综合得ω=32或ω=2. 22.解:根据题设条件,首先求出点P 坐标满足的方程.据此再判断是否存在两定点,使得点P 到两定点距离的和为定值.∵i =(1,0),c =(0,a ),∴c +λi =(λ,a ),i -2λc =(1,-2λa ). 因此,直线OP 和AP 的方程分别为λy =ax 和y -a =-2λax .消去参数λ,得点P (x ,y )的坐标满足方程y (y -a )=-2a 2x 2,整理得1)2()2(81222=-=aa y x ①因为a >0,所以得: (ⅰ)当a =22时,方程①是圆方程,故不存在合乎题意的定点E 和F ; (ⅱ)当0<a <22时,方程①表示椭圆,焦点E (2,21212a a -)和 F (-212,212aa -)为合乎题意的两个定点; (ⅲ)当a >22时,方程①也表示椭圆,焦点E (0,21(a +212-a ))和F (0,21(a -212-a ))为合乎题意的两个定点.江苏卷(与新课程卷不同的部分)●试题部分1.如果函数y =ax 2+bx +a 的图象与x 轴有两个交点,则点(a ,b )在aOb 平面上的区域(不包含边界)为( )21.已知a >0,n 为正整数.(Ⅰ)设y =(x -a )n ,证明y ′=n (x -a )n -1;(Ⅱ)设f n (x )=x n -(x -a )n ,对任意n ≥a ,证明f n +1′(n +1)>(n +1)f n ′(n ). 22.设a >0,如图,已知直线l :y =ax 及曲线C :y =x 2,C 上的点Q 1的横坐标为a 1(0<a 1<a ).从C 上的点Q n (n ≥1)作直线平行于x 轴,交直线l 于点P n +1,再从点P n +1作直线平行于y 轴,交曲线C 于点Q n +1.Q n (n =1,2,3,…)的横坐标构成数列{a n }.(Ⅰ)试求a n +1与a n 的关系,并求{a n }的通项公式;(Ⅱ)当a =1,a 1≤21时,证明321)(11<-+=∑k nk k a a ;(Ⅲ)当a =1时,证明31)(211<-++=∑k k nk ka a a. ●答案解析 1.答案:C解析:∵函数的图象与x 轴有两个交点.所以有b 2-4a 2>0.即|b |>2|a |.对a 、b 的符号分情况讨论.①⎩⎨⎧>>00b a ②⎩⎨⎧<>00b a ③⎩⎨⎧><00b a ④⎩⎨⎧<<00b a 可得到C 选项.21.证明:(Ⅰ)因为(x -a )n=k k n nk knx a -=-∑)(C,所以y ′=1111111)()(C )(C---=----=-=-=-∑∑n k k n nk k n k kn nk k na x n x a n xa k . (Ⅱ)对函数f n (x )=x n -(x -a )n 求导数:f n ′(x )=nx n -1-n (x -a )n -1,所以f n ′(n )=n [n n -1-(n -a )n -1]. 当x ≥a >0时,f n ′(x )>0.∴当x ≥a 时,f n (x )=x n -(x -a )n 是关于x 的增函数. 因此,当n ≥a 时,(n +1)n -(n +1-a )n >n n -(n -a )n . ∴f n +1′(n +1)=(n +1)[(n +1)n -(n +1-a )n ]>(n +1)(n n -(n -a )n )>(n +1)(n n -n (n -a )n -1)=(n +1)f n ′(n ),即对任意n ≥a ,f n +1′(n +1)>(n +1)f n ′(n ).22.(Ⅰ)解:∵Q n (a n ,a n 2),P n +1(a 1·a n 2,a n 2),Q n +1(a 1·a n 2,21aa n 4), ∴a n +1=a1·a n 2, ∴a n =a 1·a n -12=a 1(a 1·a n -22)2=(a 1)1+2a n -222=(a 1)1+2(a1·a n -32)22 =(a 1)2221++a n -332=……=(a 1)111122121221221)()1(-----==+++n n n n n aa a a aa ∴a n =a (aa 1)12-n .(Ⅱ)证明:由a =1知a n +1=a n 2. ∵a 1≤21,∴a 2≤41,a 3≤161.∵当k ≥1时,a k +2≤a 3≤161,∴321)(161)(161)(1111111<-=-≤-++=++=∑∑n k n k k k k nk ka a a a a a a. (Ⅲ)证明:由(Ⅰ)知,当a =1时,a n =121-n a .因此2211112112121121211)()()(11++-==++=-≤-=-∑∑∑+-i i k ink k k nk ka a a a a a a a an k kk.3111)1()1(21151313121112131211<++=-⋅-<-=∑-=a a a a a a a aa a n k i辽宁卷(与新课程卷不同的部分)●试题部分 1.与曲线y =11-x 关于原点对称的曲线为( ) A.y =x+11B.y =-x+11 C.y =x-11D.y =-x-114.已知四边形ABCD 是菱形,点P 在对角线AC 上(不包括端点A 、C ),则AP 等于( ) A.λ(AD AB +),λ∈(0,1) B.λ(+),λ∈(0,22) C.λ(AD AB -),λ∈(0,1) D.λ(BC AB -),λ∈(0,22) 16.对于四面体ABCD ,给出下列四个命题①若AB =AC ,BD =CD ,则BC ⊥AD ②若AB =CD ,AC =BD ,则BC ⊥AD ③若AB ⊥AC ,BD ⊥CD ,则BC ⊥AD ④若AB ⊥CD ,BD ⊥AC ,则BC ⊥AD 其中真命题的序号是_____.(写出所有真命题的序号) ●答案解析 1.答案:A解法一:首先画出y =11-x ,利用特殊点的对称性,可以“找”到正确选项.令x =0,则y =-1,点(0,-1)在原曲线,其关于原点的对称点(0,1)只满足y =x+11. 解法二:已知曲线y =f (x )=11-x ,其关于原点对称的曲线为y =-f (-x ) =-xx +=--1111.4.答案:A解析:由向量的运算法则AD AB AC+=.而点P 在对角线AC 上,所以AP 与AC 同向,且|AP |<|AC |,∴AP =λ(+) λ∈(0,1).16.答案:①④解析:对于命题①,取BC 的中点E .连接AE 、DE .则BC ⊥AE ,BC ⊥DE .∴BC ⊥AD .对于命题④过A 向平面BCD 做垂线AO .连接BO 与CD 交于E .则CD ⊥BE .同理CF ⊥BD .∴O 为△BCD 垂心.连接DO ,则BC ⊥DO ,BC ⊥AO .∴BC ⊥AD .2003年高考数学试题(全国卷、河南卷)全国卷·理工农医类(与新课程卷不同的部分)●试题部分 2.圆锥曲线ρ=θθ2cos sin 8的准线方程是( ) A.ρcos θ=-2 B.ρcos θ=2 C.ρsin θ=-2 D.ρsin θ=2 4.函数y =2sin x (sin x +cos x )的最大值为( ) A.1+2B.2-1C.2D.25.已知圆C :(x -a )2+(y -2)2=4(a >0)及直线l :x -y +3=0,当直线l 被C 截得的弦长为23时,则a 等于( )A.2B.2-2C.2-1D.2+16.已知圆锥的底面半径为R ,高为3R ,在它的所有内接圆柱中,全面积的最大值是( ) A.2πR 2B.49πR 2 C.38πR 2 D.25πR 2 9.函数f (x )=sin x ,x ∈[23,2ππ]的反函数f -1(x )等于( )A.-arcsin x ,x ∈[-1,1]B.-π-arcsin x ,x ∈[-1,1]C.π+arcsin x ,x ∈[-1,1]D.π-arcsin x ,x ∈[-1,1] 14.使log 2(-x )<x +1成立的x 的取值范围是 .15.如图,一个地区分为5个行政区域,现给地图着色,要求相邻区域不得使用同一颜色.现有4种颜色可供选择,则不同的着色方法共有_____种.(以数字作答)17.已知复数z 的辐角为60°,且|z -1|是|z |和|z -2|的等比中项,求|z |.19.已知c >0,设P :函数y =c x 在R 上单调递减,Q :不等式x +|x -2c |>1的解集为R .如果P 和Q 有且仅有一个正确,求c 的取值范围.20.在某海滨城市附近海面有一台风,据监测,当前台风中心位于城市O (如图)的东偏南θ(θ=arccos102)方向300 km 的海面P 处,并以20 km/h 的速度向西偏北45°方向移动.台风侵袭的范围为圆形区域,当前半径为60 km ,并以10 km/h 的速度不断增大.问几小时后该城市开始受到台风的侵袭?21.已知常数a >0,在矩形ABCD 中,AB =4,BC =4a ,O 为AB 的中点.点E 、F 、G 分别在BC 、CD 、DA 上移动,且DADGCD CF BC BE ==,P 为CE 与OF 的交点(如图).问是否存在两个定点,使P 到这两点的距离的和为定值?若存在,求出这两点的坐标及此定值;若不存在,请说明理由.22.(Ⅰ)设{a n }是集合{2t +2s |0≤s<t ,且s ,t ∈Z }中所有的数从小到大排列成的数列,即a 1=3,a 2=5,a 3=6,a 4=9,a 5=10, a 6=12,….将数列{a n }各项按照上小下大,左小右大的原则写成如下的三角形数表:(i )写出这个三角形数表的第四行、第五行各数: (ii )求a 100. (Ⅱ)(本小题为附加题)设{b n }是集合{2t +2s +2r |0≤r <s <t ,且r ,s ,t ∈Z }中所有的数从小到大排列成的数列.已知b k =1160,求k .●答案解析 2.答案:C解析:变形后两边同时乘以ρ得:ρ2cos 2θ=8ρsin θ,∴y 2=8x ,其准线方程为x =-2,在极坐标系中方程为ρsin θ=-2.4.答案:A解析:y =2sin 2x +sin2x =1-cos2x +sin2x =1+2sin (2x -4π),∴y max =1+2.5.答案:C解析:由弦心距性质知,圆心C (a ,2)到直线l 的距离d =1,即d =2|32|+-a =1. ∴a =2-1,∵a >0,∴a =-2-1(舍去).6.答案:B解析:设内接圆柱的半径为r ,高为h ,则有⇒-=Rr R R h 3h =3(R -r ).∴S 全=2S 底+S 侧=2πr 2+2πrh =-4π(r -43R )2+49πR 2 ∴其最大值为49πR 2. 9.答案:D解法一:∵f -1(1)=2π,∴将x =1代入A 、B 、C 、D 各式中,只有D 等于2π,因此D 正确.解法二:利用函数f (x )的值域为[23,2ππ],∵arcsin x ∈[-2π,2π],∴只有D中式子范围是[23,2ππ].14.答案:(-1,0)解析:由图可知,x 的取值范围是(-1,0). 15.答案:72解析:先排1区,有4种方法,再排2区,有3种方法,如果3、5两区同色,则4区有2种方法,否则4区只剩一种方法.另外3、5两区本身还有两种选择,故共有4·3(2+1)·2=72.17.解法一:设z =r (cos60°+i sin60°),则复数z 的实部为2r. ∴z +z =r ,z z =r 2. 由题设|z -1|2=|z |·|z -2|, 即(z -1)(z -1)=|z |)2)(2(--z z ,∴r 2-r +1=r422+-r r ,整理得r 2+2r -1=0. 解得r =2-1,r =-2-1(舍去).即|z |=2-1.解法二:设z =a +bi ,a >0,∵tan60°=3=ab,∴b =3a .∴z =a +3ai (a >0), ∵|z -1|=223)1(a a +-,|z |=223a a +=2a ,|z -2|=223)2(a a +-,又∵|z -1|2=|z |·|z -2|,∴(a -1)2+3a 2=2a 223)2(a a +-⇒ 4a 2-2a +1=2a 1444422+-=+-a a a a a ⇒16a 4+4a 2+1-16a 3+8a 2-4a =16a 2(a 2-a +1)化简得4a 2=-4a +1⇒4a 2+4a -1=0⇒(2a +1)2=2⇒2a +1=2,∴a =212-.∴|z |=2-1 解法三:设z =r (cos60°+i s i n60°)=232+r ri 则z -1=(2r -1)+23ri ,z -2=(2r-2)+23ri 由题设:|z -1|2=|z |·|z -2|,∴(2r -1)2+43r 2=r 2243)22(r r +- ∴r 2-r +1=r ·422+-r r ,整理得:r 2+2r -1=0解得r =2-1,r =-2-1(舍去).∴|z |=2-1.19.解:函数y =c x 在R 上单调递减⇔0<c <1.不等式x +|x -2c |>1的解集为R ⇔函数y =x +|x -2c |在R 上恒大于1.∵x +|x -2c |=⎩⎨⎧<≥-,2 ,2,2 ,22c x c c x c x∴函数y =x +|x -2c |在R 上的最小值为2c .∴不等式x +|x -2c |>1的解集为R ⇔2c >1⇔c >21. 如果P 正确,且Q 不正确,则0<c ≤21. 如果P 不正确,且Q 正确,则c ≥1. 所以c 的取值范围为(0,21]∪[1,+∞). 20.解法一:设在时刻t (h )台风中心为Q ,此时台风侵袭的圆形区域半径为10t +60(km ). 若在时刻t 城市O 受到台风的侵袭,则OQ ≤10t +60. 由余弦定理知OQ 2=PQ 2+PO 2-2·PQ ·PO cos OPQ . 由于PO =300,PQ =20t ,cos OPQ =cos (θ-45°)=cos θcos45°+s i n θs i n45°=5422102122222=⨯-+⨯, 故OQ 2=(20t )2+3002-2×20t ×300×54=202t 2-9600t +3002. 因此202t 2-9600t +3002≤(10t +60)2, 即t 2-36t +288≤0,解得12≤t ≤24.答:12小时后该城市开始受到台风的侵袭.解法二:如图建立坐标系:以O 为原点,正东方向为x 轴正向.在时刻t (h )台风中心),(y x P 的坐标为⎪⎪⎩⎪⎪⎨⎧⨯+⨯-=⨯-⨯=.22201027300,2220102300t y t x此时台风侵袭的区域是(x -x )2+(y -y )2≤[r (t )]2, 其中r (t )=10t +60.若在t 时刻城市O 受到台风的侵袭,则有 (0-x )2+(0-y )2≤(10t +60)2,即(300×102-20×22t )2+(-300×1027+20×22t )2≤(10t +60)2,即t 2-36t +288≤0,解得12≤t ≤24.答:12小时后该城市开始受到台风的侵袭.21.解:根据题设条件,首先求出点P 坐标满足的方程,据此再判断是否存在两定点,使得点P 到两定点距离的和为定值.按题意有A (-2,0),B (2,0),C (2,4a ),D (-2,4a ).设DADGCD CF BC BE ===k (0≤k ≤1). 由此有E (2,4ak ),F (2-4k ,4a ),G (-2,4a -4ak ). 直线OF 的方程为:2ax +(2k -1)y =0, ① 直线GE 的方程为:-a (2k -1)x +y -2a =0. ②从①,②消去参数k ,得点P (x ,y )坐标满足方程2a 2x 2+y 2-2ay =0,整理得222)(21a a y x -+=1. 当a 2=21时,点P 的轨迹为圆弧,所以不存在符合题意的两点.当a 2≠21时,点P 轨迹为椭圆的一部分,点P 到该椭圆焦点的距离的和为定长. 当a 2<21时,点P 到椭圆两个焦点(-221a -,a ),(221a -,a )的距离之和为定值2.当a 2>21时,点P 到椭圆两个焦点(0,a -212-a ),(0,a +212-a )的距离之和为定值2a .22.(Ⅰ)解:(i )第四行 17 18 20 24 第五行 33 34 36 40 48(ii )解法一:设a 100=022s t+.只须确定正整数t 0,s 0.数列{a n }中小于02t的项构成的子集为{2t +2s |0≤s <t <t 0}, 其元素个数为2)1(C 002-=t t t , 依题意2)1(00-t t <100 满足上式的最大整数t 0为14,所以取t 0=14.因为100-214C =s 0+1,由此解得s 0=8.∴a 100=214+28=16640. 解法二:n 为a n 的下标三角形数表第一行第一个元下标为1, 第二行第一个元下标为2)12(2-⨯+1=2, ……第t 行第一个元下标为2)1(-t t +1,第t 行第s 个元下标为2)1(-t t +s ,该元等于2t +2s -1. 据此判断a 100所在的行. 因为2)115(151002)114(14-⨯≤<-⨯,所以a 100是三角形数表第14行的第9个元a 100=214+29-1=16640.(Ⅱ)解:b k =1160=210+27+23,令M ={c ∈B |c <1160}(其中B ={2t +2s +2r |0≤r <s <t }),因M ={c ∈B |c <210}∪{c ∈B |210<c <210+27}∪{c ∈B |210+27<c <210+27+23}.。

3.2.2双曲线的简单几何性质(知识解题达标测试)(原卷版)

3.2.2双曲线的简单几何性质(知识解题达标测试)(原卷版)

3.2.2 双曲线的简单几何性质【考点1:双曲线的方程、图形及性质】【考点2:离心率的值及取值范围】【考点3:根据顶点坐标、实轴、虚轴求双曲线的标准方程】【考点4:求共焦点的双曲线方程】【考点5:双曲线的渐近线】【考点6:等轴双曲线】【考点7:双曲线的实际应用】知识点1双曲线的标准方程和几何性质x≥a或x≤-a,y∈R y≤-a或y≥a,x∈R知识点2 双曲线中的几个常用结论(1)双曲线的焦点到其渐近线的距离为b.(2)若P 是双曲线右支上一点,F 1,F 2分别为双曲线的左、右焦点,则|PF 1|min =a +c ,|PF 2|min =c -a .(3)同支的焦点弦中最短的为通径(过焦点且垂直于长轴的弦),其长为2b 2a ,异支的弦中最短的为实轴,其长为2a .(4)设P ,A ,B 是双曲线上的三个不同的点,其中A ,B 关于原点对称,直线P A ,PB 斜率存在且不为0,则直线P A 与PB 的斜率之积为b 2a2.(5)P 是双曲线上不同于实轴两端点的任意一点,F 1,F 2分别为双曲线的左、右焦点,则,其中θ为∠F 1PF 2.(6)等轴双曲线①定义:中心在原点,以坐标轴为对称轴,实半轴长与虚半轴长相等的双曲线叫做等轴双曲线.②性质:a =b ;e =2;渐近线互相垂直;等轴双曲线上任意一点到中心的距离是它到两焦点距离的等比中项. (7)共轭双曲线①定义:若一条双曲线的实轴和虚轴分别是另一条双曲线的虚轴和实轴,那么这两条双曲线互为共轭双曲线.②性质:它们有共同的渐近线;它们的四个焦点共圆;它们的离心率的倒数的平方和等于1.【考点1: 双曲线的方程、图形及性质】【典例1】双曲线9x 2−4y 2=36的一个焦点坐标为( ) A .(√13,0)B .(0,√13)C .(√5,0)D .(0,√5)【变式11】已知双曲线C:x 25−y 2b 2=1的焦距为6,则双曲线C 的焦点到渐近线的距离为( )A .√3B .2C .4D .√31【变式12】若双曲线x 2m 2+1−y 2=1的实轴长为4,则正数m =( ) A .√3 B .2C .94D .72【考点2:离心率的值及取值范围】【典例2】已知双曲线x2−y2=4,则其离心率是()A.2B.√2C.√3D.√5【变式21】已知双曲线的两个焦点分别为(0,4),(0,−4),点(−6,4)在该双曲线上,则该双曲线的离心率为()A.4B.3C.2D.√2【变式22】已知双曲线x 2a2−y2b2=1(a>0,b>0)的一条渐近线的倾斜角为π3,则此双曲线的离心率e为()A.2B.2√33C.2或2√33D.√3或2【变式23】若双曲线x 2a2−y2=1(a>0)的离心率为√2,则a=()A.2B.√2C.1D.√22【考点3:根据顶点坐标、实轴、虚轴求双曲线的标准方程】【典例3】已知双曲线C经过点(0,1),离心率为√2,则C的标准方程为()A.x2−y2=1B.x2−y23=1C.y2−x2=1D.y2−x23=1【变式31】双曲线C的中心在原点,焦点在x轴上,离心率e=2,且点P(√6,3)在双曲线C上,则双曲线C的标准方程为()A.x24−y212=1B.x22−y26=1C.x23−y29=1D.x2−y23=1【变式32】已知双曲线x 2a2−y2b2=1的虚轴长为4,离心率为√2,则该双曲线的方程为()A.x2−y24=1B.x24−y2=1C.x24−y24=1D.x22−y22=1【变式33】以椭圆x 28+y24=1的长轴端点为焦点、以椭圆焦点为顶点的双曲线方程为()A.x24−y24=1B.x28−y24=1C.x24−y2=1D.x28−y2=1【考点4:双曲线的渐近线】【典例4】已知双曲线C:y 2a2−x2b2=1(a>0,b>0)的离心率为√6,则双曲线C的渐近线方程为()A.y=±√5x B.y=±√6x C.y=±√55x D.y=±√66x【变式41】双曲线x 23m −y26m=1的渐近线方程为()A.y=±√2x B.y=±√22xC.y=±2x D.y=±12x【变式42】双曲线y 24m −x22m=1的渐近线方程为()A.y=±√22x B.y=±√2x C.y=±2x D.y=±12x【变式43】已知双曲线C1:x2+y2m=1(m≠0)与C2:x2−y2=2共焦点,则C1的渐近线方程为().A.x±y=0B.√2x±y=0C.x±√3y=0D.√3x±y=0【变式44】双曲线x 24−y25=1的渐近线方程为.【考点5:等轴双曲线】【典例5】已知等轴双曲线C的对称轴为坐标轴,且经过点A(4√2,2),则双曲线C的标准方程为()A.x236−y236=1B.y236−x236=1C.x228−y228=1D.y228−x228=1【变式51】等轴双曲线的渐近线方程为()A.y=±√2x B.y=±√3x C.y=±x D.y=±√5x【变式52】若双曲线C:x 2m +y2m2−2=1为等轴双曲线,其焦点在y轴上,则实数m=()A.1B.−1C.2D.−2【变式53】中心在原点,实轴在x轴上,一个焦点在直线x−4y+2√2=0上的等轴双曲线方程是()A.x2−y2=8B.x2−y2=4C.y2−x2=8D.y2−x2=4【考点6:共焦点的双曲线】【典例6】多选题过点(3,2)且与椭圆x 28+y23=1有相同焦点的圆锥曲线方程为()A.x225+y220=1B.x215+y210=1C.x23−y22=1D.x22−y23=1【变式61】过点(2,3)且与椭圆5x2+9y2=45有相同焦点的双曲线的标准方程为()A.x2−y23=1B.x29−y2=1C.x22−y29=1D.x29−y25=1【变式62】与双曲线x 216−y24=1有公共焦点,且过点(3√2,2)的双曲线方程为.【考点7:双曲线的实际应用】【典例7】3D打印是快速成型技术的一种,它是一种以数字模型文件为基础,运用粉末状金属或塑料等可粘合材料,通过逐层打印的方式来构造物体的技术,如图所示的塔筒为3D 打印的双曲线型塔筒,该塔筒是由离心率为√10的双曲线的一部分围绕其旋转轴逐层旋转打印得到的,已知该塔筒(数据均以外壁即塔筒外侧表面计算)的上底直径为6√2cm,下底直径为9√2cm,喉部(中间最细处)的直径为8cm,则该塔筒的高为()A.272cm B.18cm C.27√22cm D.18√2cm【变式71】单叶双曲面是最受设计师青睐的结构之一,它可以用直的钢梁建造,既能减少风的阻力,又能用最少的材料来维持结构的完整.如图1,俗称小蛮腰的广州塔位于中国广州市,它的外形就是单叶双曲面,可看成是双曲线的一部分绕其虚轴旋转所形成的曲面.某市计划建造类似于广州塔的地标建筑,此地标建筑的平面图形是双曲线,如图2,最细处的直径为100m,楼底的直径为50√22m,楼顶直径为50√6m,最细处距楼底300m,则该地标建筑的高为()A.350m B.375m C.400m D.450m【变式72】祖暅是我国南北朝时期伟大的科学家,他于5世纪末提出了“幂势既同,则积不容异”的体积计算原理,即“夹在两个平行平面之间的两个几何体,被平行于这两个平面的任意平面所截,如果截得的两个截面的面积总相等,那么这两个几何体的体积相等”.某同学在暑期社会实践中,了解到火电厂的冷却塔常用的外形可以看作是双曲线的一部分绕其虚轴旋转所形成的曲面(如图).现有某火电厂的冷却塔设计图纸,其外形的双曲线方程为x2−y24=1(−2≤y≤1),内部虚线为该双曲线的渐近线,则该同学利用“祖暅原理”算得此冷却塔的体积为.【变式73】青花瓷,中华陶瓷烧制工艺的珍品,是中国瓷器的主流品种之一.如图是一个落地青花瓷,其外形称为单叶双曲面,且它的外形左右对称,可以看成是双曲线的一部分绕其虚轴旋转所形成的曲面.若该花瓶横截面圆的最小直径为16cm,上瓶口圆的直径为20cm,上瓶口圆与最小圆圆心间的距离为12cm,则该双曲线的离心率为.一、单选题1.已知等轴双曲线C的对称轴为坐标轴,且经过点A(4√2,2),则双曲线C的标准方程为()A.x236−y236=1B.y236−x236=1C.x228−y228=1D.y228−x228=12.等轴双曲线的渐近线方程为()A.y=±√2x B.y=±√3x C.y=±x D.y=±√5x3.若双曲线C:x2m +y2m2−2=1为等轴双曲线,其焦点在y轴上,则实数m=()A.1B.−1C.2D.−24.中心在原点,实轴在x轴上,一个焦点在直线x−4y+2√2=0上的等轴双曲线方程是()A.x2−y2=8B.x2−y2=4C.y2−x2=8D.y2−x2=45.设双曲线E的中心为O,一个焦点为F,过F作E的两条渐近线的垂线,垂足分别为A、B.若|BF|=√2|OA|,则E的离心率等于()A.√62B.√2C.√3D.36.若双曲线x25+y2m=1的离心率为2,则m的值为()A.−5B.−10C.−15D.−207.已知双曲线C:y2a2−x2b2=1(a>0,b>0)的实半轴长为√3,其上焦点到双曲线的一条渐近线的距离为3,则双曲线C的渐近线方程为()A.y=±√3x B.y=±√33x C.y=±√32x D.y=±2√33x8.双曲线E:x29−y236=1的渐近线方程为()A.y=±14x B.y=±12x C.y=±2x D.y=±4x9.已知双曲线C:x24−y23=1,以右顶点A为圆心,r为半径的圆上一点M(M不在x轴上)处的切线与C交于S、T两点,且M为ST中点,则r的取值范围为()A.r>2√217B.0<r<4√57C.r>67D.r>110.已知双曲线C:x2a2−y2b2=1(a>0,b>0),点B的坐标为(0,b),若C上存在点P使得|PB|<b成立,则C的离心率取值范围是()A.[√2+12,+∞)B.[√5+32,+∞)C.(√2,+∞)D.(√5+12,+∞)11.双曲线y23−x26=1的焦点坐标为()A.(±√3,0)B.(0,±√3)C.(±3,0)D.(0,±3)12.已知点A为双曲线x24−y2=1的左顶点,点B和点C在双曲线的左支上,若△ABC是等腰直角三角形,则△ABC的面积是()A.4B.89C.169D.329二、填空题13.双曲线x29−y27=1的右焦点坐标为.14.如果双曲线关于原点对称,它的焦点在y轴上,实轴的长为8,焦距为10.则双曲线的标准方程为.15.已知双曲线的左右焦点分别为F1,F2,过F1的直线与左支交于A,B两点,若|AB|=5,且双曲线的实轴长为8,则△ABF2的周长为.三、解答题16.已知双曲线C:x2a2−y2b2=1(a>0,b>0)的焦距为10,F为双曲线的右焦点,且点F到渐近线的距离为4.(1)求双曲线C的方程;(2)若点A(12,0),点P为双曲线C左支上一点,求|PA|+|PF|的最小值.17.已知双曲线C与椭圆x24+y2=1有公共焦点,其渐近线方程为y=±√22x.(1)求双曲线C的标准方程;(2)若直线y=x+m与双曲线C交于A,B两点,且|AB|=4√2,求实数m的值.。

2024届高考数学专项复习极点极线与调和点列,调和线束(高观点下的圆锥曲线拓展)含解析

2024届高考数学专项复习极点极线与调和点列,调和线束(高观点下的圆锥曲线拓展)含解析

极点极线与调和点列,调和线束专题(高观点拓展)近3年考情考题示例考点分析关联考点2023年全国乙卷卷,第22题,调和线束平行截取中点证明中点问定点2022年新高考I 卷,第21题调和线束平行截取中点已知中点与平行求定点2020年全国I 卷,第22题自极三角形问题证明直线过定点题型解读【题型1】极点极线【题型2】调和点列模型【题型3】自极三点形与a 2模型【题型4】斜率成等差模型【题型5】调和线束,平行截中点高考真题再现1(2023年全国乙卷)已知椭圆C :y 2a2+x 2b 2=1(a >b >0)的离心率是53,点A -2,0 在C 上.(1)求C 的方程;(2)过点-2,3 的直线交C 于P ,Q 两点,直线AP ,AQ 与y 轴的交点分别为M ,N ,证明:线段MN 的中点为定点.2024届高考数学专项复习极点极线与调和点列,调和线束(高观点下的圆锥曲线拓展)2(2020全国高考Ⅰ卷20)已知A 、B 分别为椭圆E :x 2a2+y 2=1(a >1)的左、右顶点,G 为E 的上顶点,AG ⋅GB =8,P 为直线x =6上的动点,PA 与E 的另一交点为C ,PB 与E 的另一交点为D .(1)求E 的方程;x 29+y 2=1(2)证明:直线CD 过定点.32,03(2022·全国乙卷高考真题)已知椭圆E 的中心为坐标原点,对称轴为x 轴、y 轴,且过A 0,-2 ,B 32,-1 两点.(1)求E 的方程;y 24+x 23=1(2)设过点P 1,-2 的直线交E 于M ,N 两点,过M 且平行于x 轴的直线与线段AB 交于点T ,点H 满足MT =TH.证明:直线HN 过定点.高考模拟·新题速递【题型1】极点极线二次曲线的极点极线(1).二次曲线Ax 2+By 2+Cxy +Dx +Ey +F =0极点P (x 0,y 0)对应的极线为Ax 0x +By 0y +Cx 0y +y 0x 2+D x 0+x2+E y 0+y 2+F =0x 2→x 0x ,y 2→y 0y ,xy →x 0y +y 0x 2,x →x 0+x2,y →y 0+y 2(半代半不代)(2)圆锥曲线的三类极点极线(以椭圆为例):椭圆方程x 2a 2+y 2b2=1①极点P (x 0,y 0)在椭圆外,PA ,PB 为椭圆的切线,切点为A ,B 则极线为切点弦AB :x 0xa 2+y 0yb 2=1;②极点P (x 0,y 0)在椭圆上,过点P 作椭圆的切线l ,则极线为切线l :x 0x a 2+y 0y b 2=1;③极点P (x 0,y 0)在椭圆内,过点P 作椭圆的弦AB ,分别过A ,B 作椭圆切线,则切线交点轨迹为极线x 0xa 2+y 0y b2=1;(3)圆锥曲线的焦点为极点,对应准线为极线.1过点(3,1)作圆(x -1)2+y 2=1的两条切线,切点分别为A 、B 则直线AB 的方程为()A.2x +y −3=0B.2x −y −3=0C.4x −y −3=0D.4x +y −3=02已知点P 为2x +y =4上一动点.过点P 作椭圆x 24+y 23=1的两条切线,切点分别A 、B ,当点P 运动时,直线AB 过定点,该定点的坐标是.3(2024·广东湛江·一模)已知点P 为直线x -y -3=0上的动点,过P 作圆O :x 2+y 2=3的两条切线,切点分别为A ,B ,若点M 为圆E :x +2 2+y -3 2=4上的动点,则点M 到直线AB 的距离的最大值为.4(2024·湖南衡阳·二模)(多选)已知圆C :x 2+y 2=4,P 是直线l :x +y -6=0上一动点,过点P 作直线PA ,PB 分别与圆C 相切于点A ,B ,则()A.圆C 上恰有一个点到l 的距离为22B.直线AB 恒过点23,23C.AB 的最小值是473D.四边形ACBP 面积的最小值为214【题型2】调和点列模型一、调和点列的充要条件如图,若A ,C ,B ,D 四点构成调和点列,则有(一般前2个出现较多)AC BC =AD BD ⇔2AB =1AD +1AC⇔OC 2=OB ⋅OA ⇔AC ⋅AD =AB ⋅AO ⇔AB ⋅OD =AC ⋅BD 二、调和点列与极点极线的联系如图,过极点P 作任意直线,与椭圆交于M ,N ,与极线交点M 则点M ,D ,N ,P 成调和点列,若点P 的极线通过另一点D ,则D 的极线也通过P .一般称P 、D 互为共轭点.1(2024江南十校联考)在平面直角坐标系xOy 中,已知双曲线C 的中心为坐标原点,对称轴是坐标轴,右支与x 轴的交点为1,0 ,其中一条渐近线的倾斜角为π3.(1)求C 的标准方程;x 2-y 23=1(2)过点T 2,0 作直线l 与双曲线C 的左右两支分别交于A ,B 两点,在线段AB 上取一点E 满足AE ⋅TB =EB ⋅AT ,证明:点E 在一条定直线上.2(安徽高考)设椭圆C :x 2a 2+y 2b2=1(a >b >0)过点M (2,1),且左焦点为F 1(-2,0).(1)求椭圆C 的方程;(2)当过点P (4,1)的动直线l 与椭圆C 相交于两不同点A ,B 时,在线段AB 上取点Q ,满足|AP |∙|QB |=|AQ |∙|PB |,证明:点Q 总在某定直线上.3已知F 1、F 2分别为椭圆C 1:y 2a 2+x 2b2=1(a >b >0)的上、下焦点,其中F 1也是抛物线C 2:x 2=4y 的焦点,点M 是C 1与C 2在第二象限的交点,且|MF 1|=53.(1)求椭圆C 1的方程;y 24+x 23=1(2)已知点P (1,3)和圆O :x 2+y 2=b 2,过点P 的动直线l 与圆O 相交于不同的两点A ,B ,在线段AB 上取一点Q ,满足:AP =-λPB ,AQ =λQB,(λ≠0且λ≠±1).求证:点Q 总在某定直线上. 答案:x +3y =3【题型3】自极三点形与a2模型如图, 设P是不在圆雉曲线上的一点, 过P点引两条割线依次交二次曲线于E,F,G,H四点, 连接对角线EH,FG交于N, 连接对边EG,FH交于M, 则直线MN为点P对应的极线. 若P为圆雉曲线上的点, 则过P 点的切线即为极线.同理, PM为点N对应的极线, PN为点M所对应的极线. 因而将△MNP称为自极三点形. 设直线MN交圆锥曲线于点A,B两点, 则PA, PB恰为圆锥曲线的两条切线.从直线x=t上任意一点P向椭圆E:x2a2+y2b2=1a>b>0的左右顶点A1,A2引两条割线PA1,PA2与椭圆交于M,N两点,则直线MN恒过定点a2t ,0.2024杭州二模1已知A,B是椭圆E:x24+y2=1的左,右顶点,点M m,0m>0与椭圆上的点的距离的最小值为1.(1)求点M的坐标.(2)过点M作直线l交椭圆E于C,D两点(与A,B不重合),连接AC,BD交于点G.(ⅰ)证明:点G在定直线上2已知椭圆C:x2a2+y2b2=1(a>b>0)的左焦点为F1(-3,0),且过点P32,134.(1)求椭圆C的标准方程;x24+y2=1(2)已知A1,A2分别为椭圆C的左、右顶点,Q为直线x=1上任意一点,直线A1Q,A2Q分别交椭圆C于不同的两点M,N.求证:直线MN恒过定点,并求出定点坐标.深圳二模1已知椭圆E:x2a2+y2b2=1(a>b>0)经过点M1,32,且焦距F1F2 =23,线段AB,CD分别是它的长轴和短轴.(1)求椭圆E的方程;x24+y2=1(2)若N(s,t)是平面上的动点,从下面两个条件中选一个,证明:直线PQ经过定点.①s=1,t≠±32,直线NA,NB与椭圆E的另一交点分别为P,Q;4,0②t=2,s∈R,直线NC,ND与椭圆E的另一交点分别为P,Q.0,1 22023广州白云区高三统考1已知双曲线的中心在原点且一个焦点为F2,0,直线y=x-1与其相交于A,B两点,若AB中点的横坐标为-1 2.(1)求双曲线的方程;(2)设A1,A2为双曲线实轴的两个端点,若过F的直线l与双曲线C交于M,N两点,试探究直线A1M与直线A2N的交点Q是否在某条定直线上?若在,请求出该定直线方程;如不在,请说明理由.2(2010江苏18)在平面直角坐标系xoy中,如图,已知椭圆x29+y25=1的左右顶点为A,B,右顶点为F,设过点T(t,m)的直线TA,TB与椭圆分别交于点M(x1,y1),N(x2,y2),其中m>0,y1>0,y2<0.(1)设动点P满足PF2-PB2=4, 求点P的轨迹;(2)设x1=2,x2=13,求点T的坐标;(3)设t=9,求证:直线MN必过x轴上的一定点.(其坐标与m无关)【题型4】斜率成等差模型如图,已知椭圆E :x 2a 2+y 2b2=1a >b >0 ,点P m ,0 ,直线l 过点P (极点)且与椭圆交于不同的两点A ,B ,与直线x =a 2m(极线)交于M ,显然A ,P ,B ,M 四点形成调和点列(1)点N 为直线x =m 上任意一点,则k AN +k BN =2k MN .(2)若点Q 为直线x =a 2m上一点,则k AQ +k BQ =2k PQ(3)若点P 0,m ,直线l 过点P (极点)且与椭圆交于不同的两点A ,B ,Q 为直线y =a 2m 上一点,则1k AQ+1k BQ =2k PQ2024·湖北十一校第二次联考1已知椭圆M:x2a2+y2b2=1(a>b>0)的离心率为12,A,B分别为椭圆的左顶点和上顶点,F1为左焦点,且△ABF1的面积为3 2.(1)求椭圆M的标准方程:答案:x24+y23=1(2)设椭圆M的右顶点为C、P是椭圆M上不与顶点重合的动点.(ii)若直线AB与直线CP交于点Q,直线BP交x轴于点N,求证:2k QN-k QC为定值,并求出此定值(其中k QN、k QC分别为直线QN和直线QC的斜率).2024届广东省四校联考1过原点O 的直线交椭圆E :x 29+y 2b2=1(b >0)于A ,B 两点,R 2,0 ,△ABR 面积的最大值为25.(1)求椭圆E 的方程x 29+y 25=1(2)连AR 交椭圆于另一个交点C ,又P 92,m (m ≠0),分别记PA ,PR ,PC 的斜率为k 1,k 2,k 3,求k 2k 1+k 3的值.2013江西卷1已知椭圆方程为x 24+y 23=1.设P 是直线x =4上任意一点,AB 是经过椭圆右焦点F 的一条弦.记直线PA ,PF ,PB 的斜率依次为k 1,k 2,k 3.问:是否存在常数λ,使得k 1+k 3=λk 2.若存在,求λ的值;若不存在,说明理由.【题型5】调和线束,平行截中点(1)调和线束:如图,若A,C,B,D构成调和点列,O为直线AB外任意一点,则直线OA,OC,OB,OD称为调和线束。

高中数学双曲线的标准方程精选题

高中数学双曲线的标准方程精选题

双曲线的标准方程一.选择题(共17小题) 1.已知方程22221(,)3x y m n R mnmn-=∈+-表示双曲线,且该双曲线两焦点间的距离为4,则n 的取值范围是()A .(1,3)-B .(-C .(0,3)D .(02.已知双曲线E 的中心为原点,(3,0)P 是E 的焦点,过P 的直线l 与E 相交于A ,B 两点,且A B 的中点为(12,15)N --,则E 的方程式为( )A .22136xy-= B .22145xy-=C .22163xy-= D .22154xy-=3.已知双曲线22212x ya-=的一条渐近线的倾斜角为6π,则双曲线的离心率为()A 3B 3CD .24.已知双曲线2222:1x y Cab-=的焦距为10,点(2,1)P 在C 的渐近线上,则C 的方程为()A .221205xy-=B .221520xy-=C .2218020xy-=D .2212080xy-=5.双曲线22221124xymm-=+-的焦距是()A .4B .6C .8D .与m 有关6.已知双曲线C 的一个焦点为(0,5),且与双曲线2214xy-=的渐近线相同,则双曲线C 的标准方程为()A .2214yx-= B .2214xy-= C .221205xy-= D .221520yx-=7.一动圆P 过定点(4,0)M-,且与已知圆22:(4)16Nx y-+=相切,则动圆圆心P 的轨迹方程是()A .221(2)412xyx -=… B .221(2)412xyx -=…C .221412xy-=D .221412yx-=8.已知双曲线中心在原点且一个焦点为F ,0),直线1y x =-与其相交于M 、N 两点,M N 中点的横坐标为23-,则此双曲线的方程是()A .22134x y-= B .22143xy-=C .22152xy-= D .22125xy-=9.焦点在x 轴上,虚轴长为12,离心率为54的双曲线标准方程是( )A .22164144xy-=B .2213664xy-= C .2216416yx-=D .2216436xy-=10.已知椭圆2222135xym n+=和双曲线2222123xym n-=有公共的焦点,那么双曲线的渐近线方程是()A .2xy=±B .2y=±C .4xy=±D .4y=±11.命题p :“35m <<”是命题q :“曲线22135xym m-=--表示双曲线”的()A .充要条件B .充分不必要条件C .必要不充分条件D .既不充分也不必要条件12.已知双曲线方程为:2212yx-=,则下列叙述正确的是()A .焦点(1,0)F ±B .渐近线方程:y =C D .实轴长为13.设3(4πθ∈,)π,则关于x 、y 的方程221s in c o s xyθθ-=所表示的曲线是( )A .焦点在y 轴上的双曲线B .焦点在x 轴上的双曲线C .焦点在y 轴上的椭圆D .焦点在x 轴上的椭圆14.以椭圆22143xy+=的焦点为顶点,顶点为焦点的双曲线方程为( )A .2213yx -=B .2213yx-= C .22143xy-= D .22134xy-=15.已知点(3,0)A -和点(3,0)B ,动点M 满足||||4M A M B-=,则点M 的轨迹方程是()A .221(0)45xyx -=< B .221(0)45xyx -=>C .221(0)95xyx -=<D .221(0)95xyx -=>.16.以原点为中心,焦点在y 轴上的双曲线C 的一个焦点为(0F ,,一个顶点为(0,2)A -,则双曲线C的方程为( )A .22122yx-=B .221412yx-= C .22144yx-= D .22142yx-=17.若方程22112xym m+=--表示双曲线,则实数m 的取值范围是()A .2m > B .1m <或2m> C .12m << D .1m <二.填空题(共13小题)18.已知双曲线过点(4且渐近线方程为12yx=±,则该双曲线的标准方程是 .19.若双曲线经过点(6,且其渐近线方程为13yx=±,则此双曲线的标准方程 .20.与椭圆2214924xy+=有公共焦点,且离心率54e =的双曲线的方程 .21.双曲线2214xy -=的焦距为 ;渐近线方程为 .22.已知以20xy ±=为渐近线的双曲线经过点(4,1),则该双曲线的标准方程为 .23.已知双曲线22221(0,0)x y a b ab-=>>的两条渐近线方程为3y=±,若顶点到渐近线的距离为1,则双曲线方程为 . 24.与双曲线2214yx-=有共同的渐近线,且过点(2,2)的双曲线的标准方程为 .25.已知双曲线C 的中心在原点,(2,0)F -是一个焦点,过F 的直线l 与双曲线C 交于A ,B 两点,且A B 的中点为(3,1)N --,则C 的方程是 .26.若双曲线的一个顶点坐标为(3,0),焦距为10,则它的标准方程为 . 27.已知双曲线221(0)6xym mm -=>+的虚轴长是实轴长的2倍,则双曲线的标准方程为 .28.过点(2,2)-且与2212xy-=有公共渐近线方程的双曲线方程为 .29.设中心在原点的双曲线与椭圆2212xy+=有公共的焦点,且它们的离心率互为倒数,则该双曲线的方程是 .30.以抛物线28y x=的顶点为中心,焦点为右焦点,且以y=为渐近线的双曲线方程是 .三.解答题(共2小题)31.(1)求适合下列条件的椭圆的标准方程:对称轴为坐标轴,经过点(6,0)P -和(0,8)Q . (2)已知双曲线的一个焦点为(5,0),渐近线方程为34y x=±,求此双曲线的标准方程.32.已知椭圆的中心在坐标原点,椭圆的右焦点2F 与抛物线24y x的焦点重合,且椭圆经过点3(1,)2P .(Ⅰ)求该椭圆的标准方程;(Ⅱ)求以这个椭圆的焦点为顶点、顶点为焦点的双曲线的标准方程.双曲线的标准方程精选题32道参考答案与试题解析一.选择题(共17小题) 1.已知方程22221(,)3x y m n R mnmn-=∈+-表示双曲线,且该双曲线两焦点间的距离为4,则n 的取值范围是()A .(1,3)- B.(-C .(0,3)D.(0【分析】由已知可得2c =,利用224()(3)m n mn =++-,解得21m =,又22()(3)0mn m n +->,从而可求n的取值范围.【解答】解:双曲线两焦点间的距离为4,2c ∴=,当焦点在x 轴上时, 可得:224()(3)mn mn =++-,解得:21m =,方程222213xy mnmn-=+-表示双曲线,22()(3)0mn mn ∴+->,可得:(1)(3)0n n +->,解得:13n -<<,即n 的取值范围是:(1,3)-.当焦点在y 轴上时, 可得:224()(3)mn mn -=++-,解得:21m =-,无解. 故选:A .【点评】本题主要考查了双曲线方程的应用,考查了不等式的解法,属于基础题.2.已知双曲线E 的中心为原点,(3,0)P 是E 的焦点,过P 的直线l 与E 相交于A ,B 两点,且A B 的中点为(12,15)N --,则E 的方程式为( )A .22136xy-= B .22145xy-=C .22163xy-= D .22154xy-=【分析】已知条件易得直线l 的斜率为1,设双曲线方程,及A ,B 点坐标代入方程联立相减得1224x x +=-,根据21221245y y b x x a-=-,可求得a 和b 的关系,再根据3c=,求得a 和b ,进而可得答案. 【解答】解:由已知条件易得直线l 的斜率为1P N kk ==,设双曲线方程为22221x y ab-=,1(A x ,1)y ,2(B x ,2)y ,则有22112222222211x y a bx y ab⎧-=⎪⎪⎨⎪-=⎪⎩,两式相减并结合1224x x +=-,1230y y +=-得21221245y y b x x a-=-,从而22415b k a==即2245b a=, 又229a b +=,解得24a =,25b =,故选:B .【点评】本题主要考查了双曲线的标准方程.考查了学生综合分析问题和解决问题的能力. 3.已知双曲线22212x ya-=的一条渐近线的倾斜角为6π,则双曲线的离心率为()A3B3CD .2【分析】根据渐近线的倾斜角求出渐近线方程,结合题意求出a 、c 的值,再计算双曲线的离心率. 【解答】解:双曲线22212x ya-=的一条渐近线的倾斜角为6π,则ta n63π=,所以该条渐近线方程为3y =;3a =解得a =;所以c===所以双曲线的离心率为3c e a===.故选:A .【点评】本题考查了双曲线的渐近线和离心率的应用问题,是基础题.4.已知双曲线2222:1x yCa b-=的焦距为10,点(2,1)P在C的渐近线上,则C的方程为()A.221205x y-=B.221520x y-=C.2218020x y-=D.2212080x y-=【分析】利用双曲线2222:1x yCa b-=的焦距为10,点(2,1)P在C的渐近线上,建立方程组,求出a,b的值,即可求得双曲线的方程.【解答】解:双曲线2222:1x yCa b-=的焦距为10,点(2,1)P在C的渐近线上,2225a b∴+=,21ba=,b∴=a=∴双曲线的方程为221 205x y-=.故选:A.【点评】本题考查双曲线的标准方程,考查双曲线的几何性质,考查学生的计算能力,属于基础题.5.双曲线22221124x ym m-=+-的焦距是()A.4B.6C.8D.与m有关【分析】首先判断双曲线的焦点在x轴上,求出2a,2b,由222c a b=+,计算可得c,即可得到焦距2c.【解答】解:双曲线22221124x ym m-=+-焦点在x轴上,即有240m->,则2212a m=+,224b m=-,22216c a b=+=,则4c=,焦距28c=.故选:C.【点评】本题考查双曲线的方程和性质,考查运算能力,属于基础题.6.已知双曲线C的一个焦点为(0,5),且与双曲线2214xy-=的渐近线相同,则双曲线C的标准方程为()A.2214yx-=B.2214xy-=C.221205x y-=D.221520y x-=【分析】由已知是双曲线的方程可得渐近线的方程,设双曲线C的方程可得渐近线的方程,由题意可得a,b的关系,再由焦点的坐标可得a,b的值即求出双曲线C的方程.【解答】解:双曲线2214xy-=的渐近线方程为:12yx=±, 由题意设双曲线C 的方程为:22221y x ab-=,由焦点坐标(0,5)可得2225a b+=,①渐近线的方程为:a y xb=±再由C 与双曲线2214xy-=的渐近线相同,所以12a b=,②,由①②可得25a =,220b =,所以双曲线C 的方程为:221520yx-=,故选:D .【点评】本题考查双曲线的性质,渐近线方程与双曲线的参数之间的关系,属于基础题. 7.一动圆P 过定点(4,0)M-,且与已知圆22:(4)16Nx y-+=相切,则动圆圆心P 的轨迹方程是()A .221(2)412xyx -=… B .221(2)412xyx -=…C .221412xy-=D .221412yx-=【分析】动圆圆心为P ,半径为r ,已知圆圆心为N ,半径为4,则||4P N P M -=,即动点P 到两定点的距离之差为常数4,P 在以M 、C 为焦点的双曲线上,且24a =,28c=,从而可得动圆圆心P 的轨迹方程.【解答】解:动圆圆心为P ,半径为r ,已知圆圆心为N ,半径为4,则||4P NP M -=,即动点P 到两定点的距离之差为常数4,P 在以M 、C 为焦点的双曲线上,且24a=,28c =,b ∴=∴动圆圆心M 的轨迹方程为:221412xy-=.故选:C .【点评】本题考查圆与圆的位置关系,考查双曲线的定义,考查学生的计算能力,属于中档题.8.已知双曲线中心在原点且一个焦点为F ,0),直线1y x =-与其相交于M 、N 两点,M N 中点的横坐标为23-,则此双曲线的方程是()A .22134x y-= B .22143xy-=C .22152xy-= D .22125xy-=【分析】先设出双曲线的方程,然后与直线方程联立方程组,经消元得二元一次方程,再根据韦达定理及M N 中点的横坐标可得a 、b 的一个方程,又双曲线中有222c ab=+,则另得a 、b 的一个方程,最后解a 、b 的方程组即得双曲线方程.【解答】解:设双曲线方程为22221x y ab-=.将1yx =-代入22221x y ab-=,整理得2222222()20b a x a x aa b-+--=.由韦达定理得212222a x x ab+=-,则21222223x x a ab+==--.又2227c ab=+=,解得22a =,25b =,所以双曲线的方程是22125xy-=.故选:D .【点评】本题主要考查代数方法解决几何问题,同时考查双曲线的标准方程与性质等. 9.焦点在x 轴上,虚轴长为12,离心率为54的双曲线标准方程是( )A .22164144xy-=B .2213664xy-= C .2216416yx-=D .2216436xy-=【分析】由虚轴长是12求出半虚轴b ,根据双曲线的性质222c a b=+以及离心率然,求出2a ,写出双曲线的标准方程.【解答】解:根据题意可知212b =,解得6b=①又因为离心率54c ea ==②根据双曲线的性质可得222a c b=-③由①②③得,264a =双所以满足题意的双曲线的标准方程为:2216436xy-=故选:D .【点评】此题考查学生掌握双曲线的性质,会利用待定系数法求双曲线的标准方程,是一道中档题. 10.已知椭圆2222135xym n+=和双曲线2222123xym n-=有公共的焦点,那么双曲线的渐近线方程是()A .2xy=±B .2y=±C .4xy=± D .4y=±【分析】先根据椭圆方程和双曲线方程分别表示出c ,令二者相等即可求得m 和n 的关系,进而利用双曲线的方程求得双曲线的渐近线方程. 【解答】解:椭圆和双曲线有公共焦点22223523m nmn∴-=+,整理得228m n=,∴m n=双曲线的渐近线方程为4y x=±=±故选:D .【点评】本题主要考查了双曲线的标准方程,圆锥曲线的综合.考查了学生综合运用双曲线的基础的能力. 11.命题p :“35m <<”是命题q :“曲线22135xym m-=--表示双曲线”的()A .充要条件B .充分不必要条件C .必要不充分条件D .既不充分也不必要条件【分析】根据题意,由m 的范围可得30m ->,5m ->,即可得曲线22135xym m-=--表示双曲线,反之,若曲线22135xym m-=--表示双曲线,必有(3)(5)0m m -->,解可得m 的取值范围,分析可得答案. 【解答】解:根据题意,当35m <<,则30m->,5m ->,则曲线22135xym m-=--表示双曲线,反之,若曲线22135xym m-=--表示双曲线,必有(3)(5)0m m -->,解可得35m <<,故命题p :“35m <<”是命题q :“曲线22135xym m-=--表示双曲线”的充要条件,故选:A .【点评】本题考查充分必要条件的判断,涉及双曲线的标准方程,属于基础题. 12.已知双曲线方程为:2212yx-=,则下列叙述正确的是()A .焦点(1,0)F ±B .渐近线方程:y =C D .实轴长为【分析】求出双曲线方程求出焦点坐标,渐近线方程,离心率,实轴长判断选项即可. 【解答】解:双曲线方程为:2212yx-=,所以1a =,22a =,所以D 不正确,b =,则c=C 不正确;渐近线方程为:y =,所以B 正确;焦点坐标(0),所以A 不正确;故选:B .【点评】本题考查双曲线的简单性质的应用,是基本知识的考查. 13.设3(4πθ∈,)π,则关于x 、y 的方程221s in c o s xyθθ-=所表示的曲线是( )A .焦点在y 轴上的双曲线B .焦点在x 轴上的双曲线C .焦点在y 轴上的椭圆D .焦点在x 轴上的椭圆【分析】利用3(4πθ∈,)π,可定c o s s in 0θθ->>,即可得出结论.【解答】解:3(4πθ∈,)π,c o s s in 0θθ∴->>,∴关于x 、y 的方程221s in c o s xyθθ-=所表示的曲线是焦点在y 轴上的椭圆.故选:C .【点评】本题考查椭圆方程,考查学生的计算能力,比较基础. 14.以椭圆22143xy+=的焦点为顶点,顶点为焦点的双曲线方程为( )A .2213yx -=B .2213yx-= C .22143xy-= D .22134xy-=【分析】熟练掌握圆锥曲线的标准方程及其性质是解题的关键. 【解答】解:设要求的双曲线为22221x y ab-=,由椭圆22143xy+=得焦点为(1,0)±,顶点为(2,0)±.∴双曲线的顶点为(1,0)±焦点为(2,0)±.1a ∴=,2c=,2223b c a∴=-=.∴双曲线为2213yx-=.故选:B .【点评】熟练掌握圆锥曲线的标准方程及其性质是解题的关键. 15.已知点(3,0)A -和点(3,0)B ,动点M 满足||||4M A M B-=,则点M 的轨迹方程是()A .221(0)45xyx -=< B .221(0)45xyx -=>C .221(0)95xyx -=<D .221(0)95xyx -=>.【分析】由题设知动点M 是以点(3,0)A -和点(3,0)B 为焦点的双曲线的右支上的点,由此结合题设条件能求出点M 的轨迹方程.【解答】解:点(3,0)A -和点(3,0)B ,动点M 满足||||4M A M B-=,∴动点M 是以点(3,0)A -和点(3,0)B 为焦点的双曲线的右支上的点,且2a=,3c=,b=∴点M 的轨迹方程是221(0)45xyx -=>.故选:B .【点评】本题考查点的轨迹方程的求法,是基础题,解题时要认真审题,要熟练掌握双曲线的性质.16.以原点为中心,焦点在y 轴上的双曲线C 的一个焦点为(0F ,,一个顶点为(0,2)A -,则双曲线C的方程为( )A .22122yx-=B .221412yx-= C .22144yx-= D .22142yx-=【分析】利用双曲线的简单性质求解.【解答】解:以原点为中心,焦点在y 轴上的双曲线C 的一个焦点为(0F ,,一个顶点为(0,2)A -,∴设双曲线C 的方程为22221y x ab-=,则222(2a b b ⎧+=⎪⎨=⎪⎩,解得2ab ==,∴双曲线C 的标准方程是22144yx-=.故选:C .【点评】本题考查双曲线方程的求法,是基础题,解题时要认真审题,仔细解答,注意双曲线的简单性质的灵活运用. 17.若方程22112xym m+=--表示双曲线,则实数m 的取值范围是()A .2m> B .1m <或2m> C .12m << D .1m <【分析】由双曲线方程的特点可得(1)(2)0m m --<,解之可得.【解答】解:若方程22112xym m+=--表示的曲线为双曲线,则(1)(2)0mm --<,即(1)(2)0mm -->,解得1m <或2m>.故选:B .【点评】本题考查双曲线的简单性质,得出(1)(2)0m m --<是解决问题的关键,属基础题.二.填空题(共13小题)18.已知双曲线过点(4且渐近线方程为12yx=±,则该双曲线的标准方程是22114xy-= .【分析】设双曲线方程为2214y xλ-=,代入点(4,求出λ,即可求出双曲线的标准方程.【解答】解:设双曲线方程为2214y x λ-=,代入点(4,可得13164λ-⨯=,1λ∴=-,∴双曲线的标准方程是22114xy-=.故答案为:22114xy-=.【点评】本题考查双曲线的标准方程,考查学生的计算能力,正确设出双曲线的方程是关键.19.若双曲线经过点(6,且其渐近线方程为13yx=±,则此双曲线的标准方程2219xy-= .【分析】由已知设双曲线方程为229xyλ-=,(0)λ≠,利用待定系数法能求出此双曲线的标准方程.【解答】解:双曲线经过点(6,且其渐近线方程为13yx=±,∴设双曲线方程为229xyλ-=,(0)λ≠把点(6代入,得:3639λ-=,解得1λ=.∴此双曲线的标准方程为:2219xy -=.故答案为:2219xy-=.【点评】本题考查双曲线标准方程的求法,是基础题,解题时要认真审题,注意待定系数法的合理运用. 20.与椭圆2214924xy+=有公共焦点,且离心率54e =的双曲线的方程221169xy-= .【分析】求出椭圆的焦点,可得5c =,由离心率公式可得4a =,由a ,b ,c 的关系可得3b =,即可得到双曲线的方程.【解答】解:椭圆2214924xy+=的焦点为(0)即为(5,0)±,则双曲线的5c =,由离心率54e=,则54c a=,则有4a=,3b==,则双曲线的方程为221169xy-=,故答案为:221169xy-=.【点评】本题考查椭圆和双曲线的方程和性质,考查离心率公式的运用,考查运算能力,属于基础题和易错题. 21.双曲线2214xy-=的焦距为;渐近线方程为 .【分析】由双曲线方程求得a ,b ,c 的值,则其焦距与渐近线方程可求.【解答】解:由题知,24a =,21b =,故2225cab=+=,∴双曲线的焦距为:2c=,渐近线方程为:12b y x xa=±=±.故答案为:;12yx=±.【点评】本题考查双曲线的标准方程,考查双曲线的简单性质,是基础题. 22.已知以20xy ±=为渐近线的双曲线经过点(4,1),则该双曲线的标准方程为221123xy-= .【分析】由渐近线的方程设双曲线的方程,再由过的定点的坐标求出参数,化简为双曲线的标准形式. 【解答】解:由渐近线的方程以20x y ±=可以设双曲线的方程为:224xyλ-=,又过(4,1),所以1614λ-=,可得3λ=,所以双曲线的方程为:221123xy-=;故答案为:221123xy-=.【点评】考查双曲线的性质,属于基础题.23.已知双曲线22221(0,0)x y a b ab-=>>的两条渐近线方程为3y=±,若顶点到渐近线的距离为1,则双曲线方程为223144xy -= .【分析】由渐近线方程得到双曲线的实半轴、虚半轴之间的关系,再由顶点到渐近线的距离为1,求出实半轴、虚半轴的长, 进而写出双曲线方程.【解答】解:双曲线的焦点在x 轴上,两条渐近线方程为3y=±,∴3b a=,其中一个顶点的坐标(,0)a ,30y -= 的距离为:12a =,2a ∴=,3b∴=,∴所求双曲线的方程为:223144xy -=.【点评】本题考查双曲线的标准方程和性质,求出a 和b 的值,是解题的关键,属于中档题. 24.与双曲线2214yx-=有共同的渐近线,且过点(2,2)的双曲线的标准方程为221312xy-= .【分析】由于与双曲线2214yx-=有共同的渐近线,故方程可假设为224yxλ-=,再利用过点(2,2)即可求【解答】解:设双曲线方程为224yx λ-=过点(2,2),3λ∴=∴所求双曲线方程为221312xy-=故答案为221312xy-=【点评】本题的考点是双曲线的标准方程,主要考查待定系数法求双曲线的标准方程,关键是方程的假设方法.25.已知双曲线C 的中心在原点,(2,0)F -是一个焦点,过F 的直线l 与双曲线C 交于A ,B 两点,且A B 的中点为(3,1)N --,则C 的方程是2213xy-= .【分析】先利用点F ,N 的坐标求出直线A B 的斜率,再利用点差法得到223a b=,结合224a b+=求出a ,b的值,从而得到双曲线C 的方程.【解答】解:因为(2,0)F -,(3,1)N --,所以直线A B 的斜率1l k =,设双曲线方程为22221(0,0)x y a b ab-=>>,则224a b+=, 设1(A x ,1)y ,2(B x ,2)y ,则126x x +=-,122y y +=-,12121l y y k x x -==-.由2211221x y ab-=,2222221x y ab-=,得1212121222()()()()x x x x y y y y ab+-+--=,即22260l k ab-+=,223a b∴=.于是23a =,21b =, 所以C 的方程为2213xy-=.【点评】本题主要考查了双曲线方程,以及双曲线与直线的位置关系,考查了点差法的应用,是中档题. 26.若双曲线的一个顶点坐标为(3,0),焦距为10,则它的标准方程为 221916xy-= .【分析】根据顶点坐标求得a ,根据焦距求得c ,进而根据222b c a=-求得b ,进而求得双曲线的标准方程.【解答】解:依题意可知3a=,5c=4b ∴==根据顶点坐标可知焦点在x 轴,∴双曲线的方程为221916xy-=故答案为:221916xy-=【点评】本题主要考查了双曲线的标准方程.解题的关键是挖掘题设中的信息,充分利用a ,b 和c 的关系,同时注意焦点是在x 轴还是在y 轴. 27.已知双曲线221(0)6xym mm -=>+的虚轴长是实轴长的2倍,则双曲线的标准方程为22128xy-= .【分析】由题意可得m 与6m +的关系,求出m 的值,进而可得双曲线的方程.【解答】解:由题意知2a m=,26b m =+,则实轴长为,虚轴长为由题意有2=,解得2m=,代入2216xymm -=+中,可得双曲线的标准方程为22128xy-=.故答案为:22128xy-=.【点评】本题考查双曲线的定义,属于基础题. 28.过点(2,2)-且与2212xy-=有公共渐近线方程的双曲线方程为22124yx-= .【分析】先设出双曲线的方程,利用已知双曲线的渐近线求得a 和b 的关系,然后把点(2,2)-代入双曲线方程求得a ,进而求得b ,则双曲线的方程可得. 【解答】解:依题意可在知双曲线的焦点在y 轴, 设出双曲线的方程为22221y x ab-=,根据已知曲线方程可知其渐近线方程为2yx=±∴2a b=,b=把点(2.2)-代入24412aa-=中求得2b=,a=∴双曲线的方程为:22124yx-=故答案为:22124yx-=【点评】本题主要考查了双曲线的标准方程.考查考生分析推理和基本的运算能力. 29.设中心在原点的双曲线与椭圆2212xy+=有公共的焦点,且它们的离心率互为倒数,则该双曲线的方程是22221x y-= .【分析】欲求双曲线方程,只需求出双曲线中的a ,b 的值即可,根据双曲线与椭圆2212xy+=有公共的焦点,求出椭圆中的c 值,也即双曲线中的c 值,再求出椭圆中的离心率,因为椭圆与双曲线的离心率互为倒数,所以可得双曲线中离心率,据此求出a 值,再利用a ,b ,c 之间的关系式,就可得到双曲线的方程.【解答】解:椭圆2212xy+=中1c=中心在原点的双曲线与椭圆2212xy+=有公共的焦点∴双曲线中1c =,椭圆2212xy +=的离心率为2c a=,椭圆与双曲线的离心率互为倒数.∴∴双曲线中2a=,22212b ca=-=,2b=∴双曲线的方程为22221x y-=故答案为22221x y-=.【点评】本题主要考查了椭圆,双曲线的标准方程以及性质的应用.30.以抛物线28yx=的顶点为中心,焦点为右焦点,且以y=为渐近线的双曲线方程是2213yx-= .【分析】由题意设双曲线方程为2213xyλλ-=.再由双曲线的右焦点为(2,0),求出λ的值,进而得到双曲线方程.【解答】解:双曲线的渐近线为y=,∴设双曲线方程为2213xyλλ-=.28yx=的顶点为(0,0),焦点为(2,0),∴双曲线的右焦点为(2,0).34λλ∴+=,1λ=.∴双曲线方程为2213yx-=.故答案为:2213yx-=.【点评】本题考查双曲线的性质和应用,解题时要认真审题,仔细解答. 三.解答题(共2小题)31.(1)求适合下列条件的椭圆的标准方程:对称轴为坐标轴,经过点(6,0)P -和(0,8)Q . (2)已知双曲线的一个焦点为(5,0),渐近线方程为34yx=±,求此双曲线的标准方程.【分析】(1)由已知可得椭圆焦点在y 轴上,且得到实半轴与短半轴的长,则椭圆方程可求; (2)由已知可得,双曲线焦点在x 轴上,且5c=,34b a=,结合隐含条件求得a ,b ,则双曲线方程可求.【解答】解:(1)由题意,可知椭圆焦点在y 轴上,且8a=,6b=,∴椭圆方程为2216436yx+=;(2)由已知可得,双曲线焦点在x 轴上,且5c =,34b a=,又222a bc+=,解得4a=,3b=,∴双曲线的标准方程为221169xy-=.【点评】本题考查椭圆与双曲线的标准方程,是基础题. 32.已知椭圆的中心在坐标原点,椭圆的右焦点2F 与抛物线24y x=的焦点重合,且椭圆经过点3(1,)2P .(Ⅰ)求该椭圆的标准方程;(Ⅱ)求以这个椭圆的焦点为顶点、顶点为焦点的双曲线的标准方程. 【分析】(Ⅰ)抛物线24y x=的焦点为(1,0)即1c =,再利用椭圆定义,求出2a ,得出a ,可求得方程(Ⅱ)双曲线中由(Ⅰ)1a =,2c =,可求得方程【解答】解:(Ⅰ)抛物线24yx=的焦点右焦点2(1,0)F ,左焦点1(1F -,2123530)1(1,)2423222c P a P F P F a b ∴==+==+=∴=∴=所求椭圆方程为22143xy+=(Ⅱ)1a=,2c =则23b=所求双曲线的方程为2213yx-=【点评】本题考查圆锥曲线定义、标准方程、简单的几何性质.属于基础题.。

2007年江苏省高考数学试卷及解析

2007年江苏省高考数学试卷及解析

2007年江苏省高考数学试卷一、选择题(共10小题,每小题5分,满分50分)1.(5分)下列函数中,周期为的是()A. B.y=sin2x C. D.y=cos4x2.(5分)已知全集U=Z,A={﹣1,0,1,2},B={x|x2=x},则A∩∁U B为()A.{﹣1,2}B.{﹣1,0}C.{0,1}D.{1,2}3.(5分)在平面直角坐标系xOy中,双曲线中心在原点,焦点在y轴上,一条渐近线方程为x﹣2y=0,则它的离心率为()A.B.C.D.24.(5分)已知两条直线m,n,两个平面α,β,给出下面四个命题:①m∥n,m⊥α⇒n⊥α②α∥β,m⊂α,n⊂β⇒m∥n③m∥n,m∥α⇒n∥α④α∥β,m∥n,m⊥α⇒n⊥β其中正确命题的序号是()A.①③B.②④C.①④D.②③5.(5分)函数f(x)=sinx﹣cosx(x∈[﹣π,0])的单调递增区间是()A.[﹣π,﹣]B.[﹣,﹣]C.[﹣,0]D.[﹣,0] 6.(5分)设f(x)定义域为R,对任意的x都有f(x)=f(2﹣x),且当x≥1时,f(x)=2x﹣1,则有()A.f()<f()<f()B.f()<f()<f()C.f()<f ()<f()D.f()<f()<f()7.(5分)若对于任意实数x,有x3=a0+a1(x﹣2)+a2(x﹣2)2+a3(x﹣2)3,则a2的值为()A.3 B.6 C.9 D.128.(5分)设f(x)=lg(+a)是奇函数,则使f(x)<0的x的取值范围是()A.(﹣1,0)B.(0,1) C.(﹣∞,0)D.(﹣∞,0)∪(1,+∞)9.(5分)已知二次函数f(x)=ax2+bx+c的导数为f′(x),f′(0)>0,对于任意实数x都有f(x)≥0,则的最小值为()A.3 B.C.2 D.10.(5分)在平面直角坐标系xOy,已知平面区域A={(x,y)|x+y≤1,且x ≥0,y≥0},则平面区域B={(x+y,x﹣y)|(x,y)∈A}的面积为()A.2 B.1 C.D.二、填空题(共6小题,每小题5分,满分30分)11.(5分)若cos(α+β)=,cos(α﹣β)=,则tanαtanβ=.12.(5分)山东省某中学,为了满足新课改的需要,要开设9门课程供学生选修,其中A、B、C三门由于上课时间相同,至多选一门,学校规定,每位同学选修4门,共有种不同的选修方案.(用数值作答)13.(5分)已知函数f(x)=x3﹣12x+8在区间[﹣3,3]上的最大值与最小值分别为M,m,则M﹣m=.14.(5分)正三棱锥P﹣ABC高为2,侧棱与底面所成角为45°,则点A到侧面PBC的距离是.15.(5分)在平面直角坐标系xOy中,已知△ABC顶点A(﹣4,0)和C(4,0),顶点B在椭圆上,则=.16.(5分)某时钟的秒针端点A到中心点O的距离为5cm,秒针均匀地绕点O 旋转,当时间t=0时,点A与钟面上标12的点B重合,将A,B两点的距离d (cm)表示成t(s)的函数,则d=,其中t∈[0,60].三、解答题(共5小题,满分70分)17.(12分)某气象站天气预报的准确率为80%,计算(结果保留到小数点后面第2位)(1)5次预报中恰有2次准确的概率;(2)5次预报中至少有2次准确的概率;(3)5次预报中恰有2次准确,且其中第3次预报准确的概率.18.(12分)如图,已知ABCD﹣A1B1C1D1是棱长为3的正方体,点E在AA1上,点F在CC1上,且AE=FC1=1.(1)求证:E,B,F,D1四点共面;(2)若点G在BC上,BG=,点M在BB1上,GM⊥BF,垂足为H,求证:EM ⊥面BCC1B1;(3)用θ表示截面EBFD1和面BCC1B1所成锐二面角大小,求tanθ.19.(14分)如图,在平面直角坐标系xOy中,过y轴正方向上一点C(0,c)任作一直线,与抛物线y=x2相交于AB两点,一条垂直于x轴的直线,分别与线段AB和直线l:y=﹣c交于P,Q,(1)若,求c的值;(2)若P为线段AB的中点,求证:QA为此抛物线的切线;(3)试问(2)的逆命题是否成立?说明理由.20.(16分)已知{a n}是等差数列,{b n}是公比为q的等比数列,a1=b1,a2=b2≠a1,记S n为数列{b n}的前n项和,(1)若b k=a m(m,k是大于2的正整数),求证:S k﹣1=(m﹣1)a1;(2)若b3=a i(i是某一正整数),求证:q是整数,且数列{b n}中每一项都是数列{a n}中的项;(3)是否存在这样的正数q,使等比数列{b n}中有三项成等差数列?若存在,写出一个q的值,并加以说明;若不存在,请说明理由.21.(16分)已知a,b,c,d是不全为零的实数,函数f(x)=bx2+cx+d,g(x)=ax3+bx2+cx+d.方程f(x)=0有实数根,且f(x)=0的实数根都是g(f(x))=0的根;反之,g(f(x))=0的实数根都是f(x)=0的根.(1)求d的值;(2)若a=0,求c的取值范围;(3)若a=1,f(1)=0,求c的取值范围.2007年江苏省高考数学试卷参考答案与试题解析一、选择题(共10小题,每小题5分,满分50分)1.(5分)(2007•江苏)下列函数中,周期为的是()A. B.y=sin2x C. D.y=cos4x【分析】利用公式对选项进行逐一分析即可得到答案.【解答】解:根据公式,的周期为:T=4π,排除A.y=sin2x的周期为:T=π,排除B.的周期为:T=8π,排除C.故选D2.(5分)(2007•江苏)已知全集U=Z,A={﹣1,0,1,2},B={x|x2=x},则A ∩∁U B为()A.{﹣1,2}B.{﹣1,0}C.{0,1}D.{1,2}【分析】B为二次方程的解集,首先解出,再根据交集、补集意义直接求解.【解答】解:由题设解得B={0,1},C U B={x∈Z|x≠0且x≠1},∴A∩C U B={﹣1,2},故选A3.(5分)(2007•江苏)在平面直角坐标系xOy中,双曲线中心在原点,焦点在y轴上,一条渐近线方程为x﹣2y=0,则它的离心率为()A.B.C.D.2【分析】根据双曲线中心在原点,焦点在y轴上,一条渐近线方程为x﹣2y=0能够得到,由此能够推导出双曲线的离心率.【解答】解:由得b=2a,,.故选A.4.(5分)(2007•江苏)已知两条直线m,n,两个平面α,β,给出下面四个命题:①m∥n,m⊥α⇒n⊥α②α∥β,m⊂α,n⊂β⇒m∥n③m∥n,m∥α⇒n∥α④α∥β,m∥n,m⊥α⇒n⊥β其中正确命题的序号是()A.①③B.②④C.①④D.②③【分析】由题意用线面垂直和面面平行的定理,判断线面和面面平行和垂直的关系.【解答】解:用线面垂直和面面平行的定理可判断①④正确;②中,由面面平行的定义,m,n可以平行或异面;③中,用线面平行的判定定理知,n可以在α内;故选C.5.(5分)(2007•江苏)函数f(x)=sinx﹣cosx(x∈[﹣π,0])的单调递增区间是()A.[﹣π,﹣]B.[﹣,﹣]C.[﹣,0]D.[﹣,0]【分析】先利用两角和公式对函数解析式化简整理,进而根据正弦函数的单调性求得答案.【解答】解:f(x)=sin x﹣cos x=2sin(x﹣),因x﹣∈[﹣π,﹣],故x﹣∈[﹣π,﹣],得x∈[﹣,0],故选D6.(5分)(2007•江苏)设f(x)定义域为R,对任意的x都有f(x)=f(2﹣x),且当x≥1时,f(x)=2x﹣1,则有()A.f()<f()<f()B.f()<f()<f()C.f()<f ()<f()D.f()<f()<f()【分析】本题是关于函数图象对称性的一个题,方法一:由f(x)定义域为R,对任意的x都有f(x)=f(2﹣x),知对称轴是x=1,故有f()=f(),f()=f(),又x≥1时,f(x)=2x﹣1,函数在(1,+∞)上是增函数,>>,由此可选出正确选项;方法二:由f(x)定义域为R,对任意的x都有f(x)=f(2﹣x),知对称轴是x=1,由对称性知其在(﹣∞,1)上是减函数,其图象的特征是自变量离1的距离越远,其函数值越大,由此特征判断函数值的大小即可.【解答】解:方法一:由条件f(x)=f(2﹣x)可得函数图象关于直线x=1对称,则f()=f(),f()=f(),由于当x≥1时,f(x)=2x﹣1,即函数在[1,+∞)上为增函数,由于>>,故有f()=f()>f()>f()=f ()故应选B.方法二:由f(x)定义域为R,对任意的x都有f(x)=f(2﹣x),知对称轴是x=1,由对称性知其在(﹣∞,1)上是减函数,其图象的特征是自变量离1的距离越远,其函数值越大,∵1﹣<﹣1<1﹣∴f()<f()<f()故应选B.7.(5分)(2007•江苏)若对于任意实数x,有x3=a0+a1(x﹣2)+a2(x﹣2)2+a3(x﹣2)3,则a2的值为()A.3 B.6 C.9 D.12【分析】由等式右边可以看出是按照x﹣2的升幂排列,故可将x写为2+x﹣2,利用二项式定理的通项公式可求出a2的值.【解答】解:x3=(2+x﹣2)3,故a2=C322=6故选B8.(5分)(2007•江苏)设f(x)=lg(+a)是奇函数,则使f(x)<0的x 的取值范围是()A.(﹣1,0)B.(0,1) C.(﹣∞,0)D.(﹣∞,0)∪(1,+∞)【分析】首先由奇函数定义,得到f(x)的解析式的关系式(本题可利用特殊值f(0)=0),求出a,然后由对数函数的单调性解之.【解答】解:由f(﹣x)=﹣f(x),,,即=,1﹣x2=(2+a)2﹣a2x2此式恒成立,可得a2=1且(a+2)2=1,所以a=﹣1则即解得﹣1<x<0故选A9.(5分)(2007•江苏)已知二次函数f(x)=ax2+bx+c的导数为f′(x),f′(0)>0,对于任意实数x都有f(x)≥0,则的最小值为()A.3 B.C.2 D.【分析】先求导,由f′(0)>0可得b>0,因为对于任意实数x都有f(x)≥0,所以结合二次函数的图象可得a>0且b2﹣4ac≤0,又因为,利用均值不等式即可求解.【解答】解:∵f'(x)=2ax+b,∴f'(0)=b>0;∵对于任意实数x都有f(x)≥0,∴a>0且b2﹣4ac≤0,∴b2≤4ac,∴c>0;∴,当a=c时取等号.故选C.10.(5分)(2007•江苏)在平面直角坐标系xOy,已知平面区域A={(x,y)|x+y ≤1,且x≥0,y≥0},则平面区域B={(x+y,x﹣y)|(x,y)∈A}的面积为()A.2 B.1 C.D.【分析】将x+y和x﹣y看成整体,设,根据题意列出关于u,v的约束条件,画出区域求面积即可.【解答】解析:令,∴,作出区域是等腰直角三角形,可求出面积选B二、填空题(共6小题,每小题5分,满分30分)11.(5分)(2007•江苏)若cos(α+β)=,cos(α﹣β)=,则tanαtanβ=.【分析】先由两角和与差的公式展开,得到α,β的正余弦的方程组,两者联立解出两角正弦的积与两角余弦的积,再由商数关系求出两角正切的乘积.【解答】解:由已知,,∴cosαcosβ=,sinαsinβ=∴故应填12.(5分)(2007•江苏)山东省某中学,为了满足新课改的需要,要开设9门课程供学生选修,其中A、B、C三门由于上课时间相同,至多选一门,学校规定,每位同学选修4门,共有75种不同的选修方案.(用数值作答)【分析】由题意知本题需要分类来解,可以从A、B、C三门选一门有C31•C63,也可以从其他六门中选4门有C64,根据分类计数加法得到结果.【解答】解:由题意知本题需要分类来解,第一类,若从A、B、C三门选一门有C31•C63=60,第二类,若从其他六门中选4门有C64=15,∴根据分类计数加法得到共有60+15=75种不同的方法.故答案为:7513.(5分)(2007•江苏)已知函数f(x)=x3﹣12x+8在区间[﹣3,3]上的最大值与最小值分别为M,m,则M﹣m=32.【分析】先对函数f (x)进行求导,令导函数等于0求出x,然后根据导函数的正负判断函数f(x)的单调性,列出在区间[﹣3,3]上f(x)的单调性、导函数f'(x)的正负的表格,从而可确定最值得到答案.【解答】解:令f′(x)=3x2﹣12=0,得x=﹣2或x=2,列表得:x﹣3(﹣3,﹣2)﹣2(﹣2,2)2(2,3)3f′(x)+0﹣0+极值﹣8﹣1f(x)17极值24可知M=24,m=﹣8,∴M﹣m=32.故答案为:3214.(5分)(2007•江苏)正三棱锥P﹣ABC高为2,侧棱与底面所成角为45°,则点A到侧面PBC的距离是.【分析】在立体几何中,求点到平面的距离是一个常见的题型,同时求直线到平面的距离、平行平面间的距离及多面体的体积也常转化为求点到平面的距离.本题采用的是“找垂面法”:即找(作)出一个过该点的平面与已知平面垂直,然后过该点作其交线的垂线,则得点到平面的垂线段.设P在底面ABC上的射影为O,则PO=2,且O是三角形ABC的中心,设底面边长为a,设侧棱为b,则斜高.由面积法求A到侧面PBC的距离.【解答】解:如图所示:设P在底面ABC上的射影为O,则PO⊥平面ABC,PO=2,且O是三角形ABC的中心,∴BC⊥AM,BC⊥PO,PO∩AM=0∴BC⊥平面APM又∵BC⊂平面ABC,∴平面ABC⊥平面APM,又∵平面ABC∩平面APM=PM,∴A到侧面PBC的距离即为△APM的高设底面边长为a,则设侧棱为b,则斜高.由面积法求A到侧面PBC的距离故答案为:15.(5分)(2007•江苏)在平面直角坐标系xOy中,已知△ABC顶点A(﹣4,0)和C(4,0),顶点B在椭圆上,则=.【分析】先利用椭圆的定义求得a+c,进而由正弦定理把原式转换成边的问题,进而求得答案.【解答】解:利用椭圆定义得a+c=2×5=10b=2×4=8由正弦定理得=故答案为16.(5分)(2007•江苏)某时钟的秒针端点A到中心点O的距离为5cm,秒针均匀地绕点O旋转,当时间t=0时,点A与钟面上标12的点B重合,将A,B 两点的距离d(cm)表示成t(s)的函数,则d=,其中t∈[0,60].【分析】由题意知可以先写出秒针转过的角度,整个圆周对应的圆心角是360°,可以算出一秒转过的角度,再乘以时间,连接AB,过圆心向它做垂线,把要求的线段分成两部分,用直角三角形得到结果.【解答】解:∵∴根据直角三角形的边长求法得到d=2×5×sin=10sin,故答案为:10sin.三、解答题(共5小题,满分70分)17.(12分)(2007•江苏)某气象站天气预报的准确率为80%,计算(结果保留到小数点后面第2位)(1)5次预报中恰有2次准确的概率;(2)5次预报中至少有2次准确的概率;(3)5次预报中恰有2次准确,且其中第3次预报准确的概率.【分析】(1)本题是一个独立重复试验,事件发生的概率是0.8,有5次恰好发生2次,根据独立重复试验概率公式写出结果.(2)本题是一个独立重复试验,事件发生的概率是0.8,5次预报中至少有2次准确的对立事件是5次预报中只有1次准确,根据对立事件的概率和独立重复试验的概率公式得到概率.(3)本题是一个独立重复试验,事件发生的概率是0.8,5次预报中恰有2次准确,且其中第3次预报准确,表示除第三次外另外四次恰有一次正确,根据独立重复试验的概率公式得到概率.【解答】解:(1)由题意知,本题是一个独立重复试验,事件发生的概率是0.8,5次预报中恰有2次准确的概率是(2)由题意知,本题是一个独立重复试验,事件发生的概率是0.8,5次预报中至少有2次准确的对立事件是5次预报中只有1次准确和都不准确,根据对立事件的概率和独立重复试验的概率公式得到(3)由题意知,本题是一个独立重复试验,事件发生的概率是0.85次预报中恰有2次准确,且其中第3次预报准确,根据独立重复试验的概率公式得到18.(12分)(2007•江苏)如图,已知ABCD﹣A1B1C1D1是棱长为3的正方体,点E在AA1上,点F在CC1上,且AE=FC1=1.(1)求证:E,B,F,D1四点共面;(2)若点G在BC上,BG=,点M在BB1上,GM⊥BF,垂足为H,求证:EM ⊥面BCC1B1;(3)用θ表示截面EBFD1和面BCC1B1所成锐二面角大小,求tanθ.【分析】(1)四点共面问题通常我们将它们变成两条直线,然后证明这两条直线平行或相交,根据公理3的推论2、3可知,它们共面.(2)在正方体中,易知AB⊥面BCC1B1,所以欲证EM⊥面BCC1B1,可以先证AB ∥EM;或者也可以从平面ABB1A1⊥平面BCC1B1入手去证明,那么我们一开始就需要算出BM的长度.(3)由第二问的证明可知,利用三垂线定理,∠MHE就是截面EBFD1和面BCC1B1所成锐二面角的平面角.【解答】解:(1)证明:在DD1上取一点N使得DN=1,连接CN,EN,显然四边形CFD1N是平行四边形,所以D1F∥CN,同理四边形DNEA是平行四边形,所以EN∥AD,且EN=AD,又BC∥AD,且AD=BC,所以EN∥BC,EN=BC,所以四边形CNEB是平行四边形,所以CN∥BE,所以D1F∥BE,所以E,B,F,D1四点共面;(2)因为GM⊥BF所以△BCF∽△MBG,所以,即,所以MB=1,因为AE=1,所以四边形ABME是矩形,所以EM⊥BB1又平面ABB1A1⊥平面BCC1B1,且EM在平面ABB1A1内,所以EM⊥面BCC1B1;(3)EM⊥面BCC1B1,所以EM⊥BF,EM⊥MH,GM⊥BF,所以∠MHE就是截面EBFD1和面BCC1B1所成锐二面角的平面角,∠EMH=90°,所以,ME=AB=3,△BCF∽△MHB,所以3:MH=BF:1,BF=,所以MH=,所以=.19.(14分)(2007•江苏)如图,在平面直角坐标系xOy中,过y轴正方向上一点C(0,c)任作一直线,与抛物线y=x2相交于AB两点,一条垂直于x轴的直线,分别与线段AB和直线l:y=﹣c交于P,Q,(1)若,求c的值;(2)若P为线段AB的中点,求证:QA为此抛物线的切线;(3)试问(2)的逆命题是否成立?说明理由.(1)设过C点的直线的方程,与抛物线方程联立设出A,B的坐标则【分析】可分别表示出来,根据求得﹣c﹣k2c+kc•k+c2=2,求得c.(2)设过Q的切线方程,通过对抛物线方程求导求得切线的斜率,进而可表示出切线方程求得与y=﹣c的交点为M的坐标进而根据P为线段AB的中点,求求得Q点的坐标,根据x1x2=﹣c,进而可表示出M的坐标,判断出以点M和点Q 重合,也就是QA为此抛物线的切线.(3)根据(2)可知点Q的坐标,根据PQ⊥x轴,推断出点P的坐标,进而求得,判断出P为AB的中点.【解答】解:(1)设过C点的直线为y=kx+c,所以x2=kx+c(c>0),即x2﹣kx﹣c=0,设A(x1,y1),B(x2,y2),=(x1,y1),,因为,所以x1x2+y1y2=2,即x1x2+(kx1+c)(kx2+c)=2,x1x2+k2x1x2﹣kc (x1+x2)+c2=2所以﹣c﹣k2c+kc•k+c2=2,即c2﹣c﹣2=0,所以c=2(舍去c=﹣1)(2)设过Q的切线为y﹣y1=k1(x﹣x1),y′=2x,所以k1=2x1,即y=2x1x﹣2x12+y1=2x1x ﹣x12,它与y=﹣c的交点为M,又,所以Q,因为x1x2=﹣c,所以,所以M,所以点M和点Q重合,也就是QA为此抛物线的切线.(3)(2)的逆命题是成立,由(2)可知Q,因为PQ⊥x轴,所以因为,所以P为AB的中点.20.(16分)(2007•江苏)已知{a n}是等差数列,{b n}是公比为q的等比数列,a1=b1,a2=b2≠a1,记S n为数列{b n}的前n项和,(1)若b k=a m(m,k是大于2的正整数),求证:S k﹣1=(m﹣1)a1;(2)若b3=a i(i是某一正整数),求证:q是整数,且数列{b n}中每一项都是数列{a n}中的项;(3)是否存在这样的正数q,使等比数列{b n}中有三项成等差数列?若存在,写出一个q的值,并加以说明;若不存在,请说明理由.【分析】(1)设{a n}的公差为d,由a1=b1,把b k=a m代入a1q k﹣1=a1,进而可表示,题设得证.出S k﹣1(2)利用)b3=a1q2,a i=a1+(i﹣1)a1(q﹣1),进而可得q2=1+(i﹣1)(q﹣1),q2﹣(i﹣1)q+(i﹣2)=0,整理即可求得q=i﹣2,进而可判定i﹣2是整数,即q是整数,设数列{b n}中任意一项为b n=a1q n﹣1(n∈N+),设数列{a n}中的某一项a m(m∈N+)=a1+(m﹣1)a1(q﹣1)只要证明存在正整数m,使得b n=a m,即在方程a1q n﹣1=a1+(m﹣1)a1(q﹣1)中m有正整数解即可.(3)设数列{b n}中有三项b m,b n,b p(m<n<p,m,n,p∈N+)成等差数列,利用等差中项的性质建立等式,设n﹣m=x,p﹣n=y,进而可得以2=,令x=1,y=2,求得q.【解答】解:设{a n}的公差为d,由a1=b1,a2=b2≠a1,知d≠0,q≠1,d=a1(q ﹣1)(a1≠0)(1)因为b k=a m,所以a1q k﹣1=a1+(m﹣1)a1(q﹣1),q k﹣1=1+(m﹣1)(q﹣1)=2﹣m+(m﹣1)q,所以(2)b3=a1q2,a i=a1+(i﹣1)a1(q﹣1),由b3=a i,所以q2=1+(i﹣1)(q﹣1),q2﹣(i﹣1)q+(i﹣2)=0,解得,q=1或q=i﹣2,但q≠1,所以q=i﹣2,因为i是正整数,所以i﹣2是整数,即q是整数,设数列{b n}中任意一项为b n=a1q n﹣1(n∈N+),设数列{a n}中的某一项a m(m∈N+)=a1+(m﹣1)a1(q﹣1)现在只要证明存在正整数m,使得b n=a m,即在方程a1q n﹣1=a1+(m﹣1)a1(q ﹣1)中m有正整数解即可,m﹣1==1+q+q2+…+q n﹣2,所以m=2+q+q2+q n ﹣2,若i=1,则q=﹣1,那么b2n=b1=a1,b2n=b2=a2,当i≥3时,因为a1=b1,a2=b2,﹣1只要考虑n≥3的情况,因为b3=a i,所以i≥3,因此q是正整数,所以m是正整数,因此数列{b n}中任意一项为b n=a1q n﹣1(n∈N+)与数列{a n}的第2+q+q2+q n﹣2项相等,从而结论成立.(3)设数列{b n}中有三项b m,b n,b p(m<n<p,m,n,p∈N+)成等差数列,则有2a1q n﹣1=a1q m﹣1+a1q p﹣1,设n﹣m=x,p﹣n=y,(x,y∈N+),所以2=,令x=1,y=2,则q3﹣2q+1=0,(q﹣1)(q2+q﹣1)=0,因为q≠1,所以q2+q﹣1=0,所以,即存在使得{b n}中有三项b m,b m+1,b m+3(m∈N+)成等差数列.21.(16分)(2007•江苏)已知a,b,c,d是不全为零的实数,函数f(x)=bx2+cx+d,g(x)=ax3+bx2+cx+d.方程f(x)=0有实数根,且f(x)=0的实数根都是g(f (x))=0的根;反之,g(f(x))=0的实数根都是f(x)=0的根.(1)求d的值;(2)若a=0,求c的取值范围;(3)若a=1,f(1)=0,求c的取值范围.【分析】(1)不妨设r为方程的一个根,即f(r)=0,则由题设得g(f(r))=0.进而有g(0)=g(f(r))=0,再由g(0)=d求解.(2)由(1)知f(x)=bx2+cx,g(x)=ax3+bx2+cx.所以有g(f(x))=x(bx+c)[bx(bx+c)+c]=x(bx+c)(b2x2+bcx+c).而方程f(x)=0即为x(bx+c)=0.①方程g(f(x))=0即为x(bx+c)(b2x2+bcx+c)=0.②最后按方程的类型,分(ⅰ)当c=0时,b≠0,(ⅱ)当c≠0,b=0(ⅲ)当c≠0,b≠0讨论.(3)由a=1,f(1)=0得b=﹣c,将函数的系数都用c表示:f(x)=bx2+cx=cx (﹣x+1),g(f(x))=f(x)[f2(x)﹣cf(x)+c].由f(x)=0可以推得g(f (x))=0,知方程f(x)=0的根一定是方程g(f(x))=0的根.然后,按照c=0和c≠0两种情况,用判别式判断求解.【解答】解:(1)设r为方程的一个根,即f(r)=0,则由题设得g(f(r))=0.于是,g(0)=g(f(r))=0,即g(0)=d=0.所以,d=0.(2)由题意及(1)知f(x)=bx2+cx,g(x)=ax3+bx2+cx.由a=0得b,c是不全为零的实数,且g(x)=bx2+cx=x(bx+c),则g(f(x))=x(bx+c)[bx(bx+c)+c]=x(bx+c)(b2x2+bcx+c).方程f(x)=0就是x(bx+c)=0.①方程g(f(x))=0就是x(bx+c)(b2x2+bcx+c)=0.②当b=0时,c≠0时,方程①、②的根都为x=0,符合题意.当b≠0,c=0时,方程①、②的根都为x=0,符合题意.当b≠0,c≠0时,方程①的根为x1=0,,它们也都是方程②的根,但它们不是方程b2x2+bcx+c=0的实数根.则方程b2x2+bcx+c=0无实数根时,符合题此时△=(bc)2﹣4b2c<0,得0<c<4,综上所述,b=0时,c≠0时,b≠0时,0≤c<4;(3)由a=1,f(1)=0得b=﹣c,f(x)=bx2+cx=cx(﹣x+1),g(f(x))=f(x)[f2(x)﹣cf(x)+c].③由f(x)=0可以推得g(f(x))=0,知方程f(x)=0的根一定是方程g(f(x))=0的根.当c=0时,符合题意.当c≠0时,b≠0,方程f(x)=0的根不是方程f2(x)﹣cf(x)+c=0④的根,因此,根据题意,方程④应无实数根.那么当(﹣c)2﹣4c<0,即0<c<4时,f2(x)﹣cf(x)+c>0,符合题意.当(﹣c)2﹣4c≥0,即c<0或c≥4时,由方程④得,即,⑤则方程⑤应无实数根,所以有且.当c<0时,只需,解得,矛盾,舍去.当c≥4时,只需,解得.因此,.综上所述,所求c的取值范围为.。

江苏省南京市2024-2025学年高二上学期11月期中学情调研测试数学试题

江苏省南京市2024-2025学年高二上学期11月期中学情调研测试数学试题

江苏省南京市2024-2025学年高二上学期11月期中学情调研测试数学试题一、单选题1.下列四组数据中,方差最小的是()A .5,5,5,5,5,5,5,5B .4,4,4,5,5,5,6,6C .3,3,4,4,5,6,6,7D .2,2,2,2,2,5,8,82.已知i 13i z ⋅=+,则z =()A .3i-+B .3i --C .3i +D .3i-3.直线310x +=的倾斜角为()A .π6B .π3C .2π3D .5π64.两条渐近线互相垂直的双曲线的离心率为()AB C D 5.若方程22171x y m m +=--表示焦点在y 轴上的椭圆,则实数m 的取值范围是()A .(,1)-∞B .(1,4)C .(4,7)D .(7,)+∞6.底面直径与高相等的圆柱的体积为2π,则该圆柱的外接球的表面积为()A .6πB .8πC .10πD .12π7.已知点(0,0),(3,0)O A ,若圆2230x y tx ++-=上任意一点P 都满足||2||PA PO =,则实数t =()A .3-B .2-C .2D .38.抛物线2:4C x y =的准线为l ,M 为C 上的动点,则点M 到l 与到直线250x y --=的距离之和的最小值为()AB C D 二、多选题9.分别抛掷两枚质地均匀的硬币,记“第一枚硬币正面朝上”为事件A ,“第二枚硬币反面朝上”为事件B ,则()A .1()2P A =B .1()3P AB =C .A 和B 是互斥事件D .A 和B 是相互独立事件10.在矩形ABCD 中,2,4AB AD ==.若13,42BE BC CF CD ==-,则()A .//AC BFB .AE BD⊥C .以CE 为直径的圆与直线BF 相切D .直线AE 与BF 的交点在矩形ABCD 的外接圆上11.已知椭圆22:143x y C +=,直线y mx =与C 交于A ,B 两点,点P 为C 上异于A ,B 的动点,则()A .当12m =时,||AB =B .||PA PB +≥C .存在点P ,使得π2APB ∠=D .ABP S ≤ 三、填空题12.若直线1:210l x my ++=与2:(1)30l m x y -+-=垂直,则实数m =.13.已知π3πcos ,0,452x x ⎛⎫⎛⎫+=∈ ⎪ ⎪⎝⎭⎝⎭,则sin x =.14.历史上最早系统研究圆锥曲线的是古希腊学者梅纳库莫斯,大约100年后,阿波罗尼斯更详尽地研究了圆锥曲线,他的研究涉及圆锥曲线的光学性质,其中一条是:如图(1),从右焦点2F 发出的光线m 交双曲线右支于点P ,经双曲线反射后,反射光线n 的反向延长线经过左焦点1F .已知图(2)中,双曲线C 的中心在坐标原点,左、右焦点分别为12(4,0),(4,0)F F -,直线l 平分12F PF ∠,过点2F 作l 的垂线,垂足为H ,且||2OH =.则当反射光线n 经过点(8,5)M 时,2PF PM +=.四、解答题15.记ABC V 的内角A ,B ,C 的对边分别为a ,b ,c ,已知cos cos 2cos a C c A b A +=.(1)求A ;(2)若2,4a b c =+=,求ABC V 的面积.16.已知点(4,2)A 在抛物线2:2(0)C y px p =>上,直线l 经过点A ,且在y 轴上的截距为2-.(1)求p 的值和直线l 的方程;(2)记l 与C 的另一个交点为B ,求经过O ,A ,B 三点的圆的方程.17.在四面体PABC 中,M ,N 分别为PC ,BC 的中点.(1)证明:PB //平面AMN ;(2)若PC ⊥平面,2,3ABC PC AC ==,四面体PABC 的体积为2,且cos ACB ∠=,求MN 与平面PAC 所成角的正弦值.18.已知圆()2224C x y ++=:,圆222:(2)(0D x y r r -+=<<,过点(0,1)P 作圆D 的切线,切线的长为2.(1)求圆D 的方程;(2)直线l 经过点P ,且与圆C 交于A ,B 两点,||AB =①求l 的方程和CA CB ⋅的值;②若动圆E 与圆C 外切,且与圆D 内切,求动圆圆心E 到点P 距离的最小值.19.已知椭圆2222:1(0)x y E a b a b+=>>的右顶点为A ,上顶点为,||B AB =.(1)求E 的方程;(2)直线l 平行于直线AB ,且与E 交于M ,N 两点,①P ,Q 是直线AB 上的两点,满足四边形MNPQ 为矩形,且该矩形的面积等于21||3MN ,求l 的方程;②当直线AM ,BN 斜率存在时,分别将其记为12,k k ,证明:12k k ⋅为定值.。

苏教版数学选1-1:第2章2.3.2知能演练轻松闯关

苏教版数学选1-1:第2章2.3.2知能演练轻松闯关
解析:双曲线的渐近线方程为bx+ay=0和bx-ay=0,圆心为(3,0),半径r=2.由圆心到直线的距离为r=,所以4a2=5b2,又双曲线的右焦点为圆C的圆心,所以c=3,即9=a2+b2,a2=5,b2=4.故所求双曲线方程为-=1.
答案:-=1
已知F1、F2是双曲线-=1(a>0,b>0)的左、右焦点,过F1且垂直于x轴的直线与双曲线的左支交于A,B两点,若△ABF2是正三角形,试求该双曲线的离心率.
答案:(±4,0)x±y=0
双曲线的实轴长与虚轴长之和等于其焦距的倍,且一个顶点的坐标为(0,2),则双曲线的标准方程是________.
解析:由题意得2a+2b=2c,即a+b=c,又因为a=2,c2=a2+b2=4+b2,所以b=c-2,所以c2=4+(c-2)2,即c2-4c+8=0,所以c=2,b=2,所求的双曲线的标准方程是-=1.
解析:设双曲线的方程为y2-3x2=λ(λ≠0),将点(1,1)代入可得λ=-2,故双曲线C的标准方程是-=1.
答案:-=1
(2011·高考北京卷)已知双曲线x2-=1(b>0)的一条渐近线的方程为y=2x,则b=________.
解析:∵双曲线的焦点在x轴上,∴=2,∴=4.
∵a2=1,∴b2=4.又∵b>0,∴b=2.
解:直线l过(a,0)、(0,b)两点,得到直线方程为bx+ay-ab=0.
由点到直线的距离公式,且a>1,得点(1,0)到直线l的距离为d1=,
同理得到点(-1,0)到直线l的距离为d2=,由s≥c得到≥c①.将b2=c2-a2代入①式的平方,整理得4c4-25a2c2+25a4≤0,
两边同除以a4后令=x,得到4x2-25x+25≤0,

高中数学双曲线知识点及题型总结(学生版)

高中数学双曲线知识点及题型总结(学生版)

双曲线知识点及题型总结1 双曲线定义:①到两个定点F 1与F 2的距离之差的绝对值等于定长(<|F 1F 2|)的点的轨迹(21212F F a PF PF <=-(a 为常数))这两个定点叫双曲线的焦点. 要注意两点:(1)距离之差的绝对值.(2)2a <|F 1F 2|,这两点与椭圆的定义有本质的不同. 当|MF 1|-|MF 2|=2a 时,曲线仅表示焦点F 2所对应的一支; 当|MF 1|-|MF 2|=-2a 时,曲线仅表示焦点F 1所对应的一支;当2a =|F 1F 2|时,轨迹是一直线上以F 1、F 2为端点向外的两条射线; 当2a >|F 1F 2|时,动点轨迹不存在.②动点到一定点F 的距离与它到一条定直线l 的距离之比是常数e (e >1)时,这个动点的轨迹是双曲线这定点叫做双曲线的焦点,定直线l 叫做双曲线的准线2.双曲线的标准方程:12222=-b y a x 和12222=-bx a y (a >0,b >0).这里222a c b -=,其中|1F 2F |=2c.要注意这里的a 、b 、c 及它们之间的关系与椭圆中的异同.3.双曲线的标准方程判别方法是:如果2x 项的系数是正数,则焦点在x 轴上;如果2y 项的系数是正数,则焦点在y 轴上.对于双曲线,a 不一定大于b ,因此不能像椭圆那样,通过比较分母的大小来判断焦点在哪一条坐标轴上.4.求双曲线的标准方程,应注意两个问题:⑴ 正确判断焦点的位置;⑵ 设出标准方程后,运用待定系数法求解.5.曲线的简单几何性质22a x -22by =1(a >0,b >0) ⑴范围:|x |≥a ,y ∈R⑵对称性:关于x 、y 轴均对称,关于原点中心对称 ⑶顶点:轴端点A 1(-a ,0),A 2(a ,0) ⑷渐近线:①若双曲线方程为12222=-b y a x ⇒渐近线方程⇒=-02222b y a x x aby ±=②若渐近线方程为x aby ±=⇒0=±b y a x ⇒双曲线可设为λ=-2222b y a x③若双曲线与12222=-b y a x 有公共渐近线,可设为λ=-2222by a x (0>λ,焦点在x 轴上,0<λ,焦点在y 轴上)④特别地当⇔=时b a 离心率2=e ⇔两渐近线互相垂直,分别为y=x ±,此时双曲线为等轴双曲线,可设为λ=-22y x ;y =a b x ,y =-abx (什么是共轭双曲线?)⑸准线:l 1:x =-c a 2,l 2:x =c a 2,两准线之距为2122a K K c=⋅⑹焦半径:21()a PF e x ex a c =+=+,(点P 在双曲线的右支上x a ≥);22()a PF e x ex a c=-=-,(点P 在双曲线的右支上x a ≥);当焦点在y 轴上时,标准方程及相应性质(略)⑺与双曲线12222=-b y a x 共渐近线的双曲线系方程是λ=-2222by a x 0(≠λ⑻与双曲线12222=-by a x 共焦点的双曲线系方程是12222=--+k b y k a x 6曲线的内外部(1)点00(,)P x y 在双曲线22221(0,0)x y a b a b -=>>的内部2200221x y a b ⇔->. (2)点00(,)P x y 在双曲线22221(0,0)x y a b a b-=>>的外部2200221x y a b⇔-<. 7曲线的方程与渐近线方程的关系(1)若双曲线方程为12222=-b y a x ⇒渐近线方程:22220x y a b -=⇔x aby ±=.(2)若渐近线方程为x aby ±=⇔0=±b y a x ⇒双曲线可设为λ=-2222b y a x .(3)若双曲线与12222=-b y a x 有公共渐近线,可设为λ=-2222by a x (0>λ,焦点在x 轴上,0<λ,焦点在y 轴上). 8双曲线的切线方程(1)双曲线22221(0,0)x y a b a b -=>>上一点00(,)P x y 处的切线方程是00221x x y ya b-=.(2)过双曲线22221(0,0)x y a b a b -=>>外一点00(,)P x y 所引两条切线的切点弦方程是00221x x y y a b -=.(3)双曲线22221(0,0)x y a b a b-=>>与直线0Ax By C ++=相切的条件是22222A aB b c -=.9线与椭圆相交的弦长公式 AB =若斜率为k 的直线被圆锥曲线所截得的弦为AB , A 、B 两点分别为A(x 1,y 1)、B(x 2,y 2),则弦长]4))[(1(1212212122x x x x k x x k AB -++=-⋅+= ]4)[()11(11212212122y y y y ky y k -+⋅+=-⋅+=,这里体现了解析几何“设而不求”的解题思想;高考题型解析题型一:双曲线定义问题1.“ab <0”是“曲线ax 2+by 2=1为双曲线”的( )A.充分不必要条件B.必要不充分条件 C .充分必要条件 D.既不充分又不必要条件2.若R ∈k ,则“3>k ”是“方程13322=+--k yk x 表示双曲线”的( )A .充分不必要条件. B.必要不充分条件. C.充要条件. D.既不充分也不必要条件.3.给出问题:F 1、F 2是双曲线162x -202y =1的焦点,点P 在双曲线上.若点P 到焦点F 1的距离等于9,求点P 到焦点F 2的距离.某学生的解答如下:双曲线的实轴长为8,由||PF 1|-|PF 2||=8,即|9-|PF 2||=8,得|PF 2|=1或17.该学生的解答是否正确?若正确,请将他的解题依据填在下面横线上;若不正确,将正确结果填在下面横线上. _________.4.过双曲线x 2-y 2=8的左焦点F 1有一条弦PQ 在左支上,若|PQ |=7,F 2是双曲线的右焦点,则△PF 2Q 的周长是 .题型二:双曲线的渐近线问题1.双曲线42x -92y =1的渐近线方程是( )A . y =±23x B.y =±32x C.y =±49x D.y =±94x2.过点(2,-2)且与双曲线22x-y 2=1有公共渐近线的双曲线方程是( )A .22y -42x =1 B.42x -22y =1 C.42y -22x =1 D.22x -42y =1题型三:双曲线的离心率问题1已知双曲线 x 2a 2 - y 2b2 = 1 (a >0,b >0)的左右焦点分别为F 1、F 2,点P 在双曲线的右支上,且∣PF 1∣=4∣PF 2∣,则此双曲线的离心率e 的最大值为 ( )A .43B .53C .2D .732.已知21,F F 是双曲线)0(,12222>>=-b a b y a x 的左、右焦点,过1F 且垂直于x 轴的直线与双曲线的左支交于A 、B 两点,若2ABF ∆是正三角形,那么双曲线的离心率为 ( )A.2 B.3 C. 2 D. 33.过双曲线M:2221y x b -=的左顶点A 作斜率为1的直线l ,若l 与双曲线M 的两条渐近线分别相交于B 、C,且|AB|=|BC|,则双曲线M 的离心率是 (4.在给定双曲线中,过焦点垂直于实轴的弦长为2,焦点到相应准线的距离为21,则该双曲线的离心率为( ) A.22 B. 2 C .2 D. 225..已知双曲线12222=-by a x (a>0,b<0)的右焦点为F ,若过点F 且倾斜角为60°的直线与双曲线的右支有且只有一个交点,则此双曲线离心率的取值范围是A.( 1,2)B. (1,2) C .[2,+∞) D.(2,+∞) 题型四:双曲线的距离问题1.设P 是双曲线22ax -92y =1上一点,双曲线的一条渐近线方程为3x -2y =0,F 1、F 2分别是双曲线的左、右焦点.若|PF 1|=3,则|PF 2|等于( ) A.1或5 B.6 C .7 D.92.已知双曲线141222=-y x 的右焦点为F ,若过点F 的直线与双曲线的右支有且只有一个交点,则此直线斜率的取值范围是 A.(33-,33) B. (-3,3) C .[ 33-,33] D. [-3,3] 3.已知圆C 过双曲线92x -162y =1的一个顶点和一个焦点,且圆心在此双曲线上,则圆心到双曲线中心的距离是____________.题型五:轨迹问题1.已知椭圆x 2+2y 2 =8的两焦点分别为F 1、F 2,A 为椭圆上任一点。

(2021年整理)双曲线知识点归纳总结例题分析

(2021年整理)双曲线知识点归纳总结例题分析

双曲线知识点归纳总结例题分析(推荐完整)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(双曲线知识点归纳总结例题分析(推荐完整))的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为双曲线知识点归纳总结例题分析(推荐完整)的全部内容。

双曲线知识点归纳总结例题分析(推荐完整)编辑整理:张嬗雒老师尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布到文库,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是我们任然希望双曲线知识点归纳总结例题分析(推荐完整)这篇文档能够给您的工作和学习带来便利。

同时我们也真诚的希望收到您的建议和反馈到下面的留言区,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请下载收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为〈双曲线知识点归纳总结例题分析(推荐完整)> 这篇文档的全部内容。

双曲线基本知识点补充知识点:等轴双曲线的主要性质有:(1)半实轴长=半虚轴长(一般而言是a=b ,但有些地区教材版本不同,不一定用的是a,b 这两个字母);(2)其标准方程为x^2-y^2=C ,其中C≠0; (3)离心率e=√2;(4)渐近线:两条渐近线 y=±x 互相垂直; (5)等轴双曲线上任意一点到中心的距离是它到两个焦点的距离的比例中项; (6)等轴双曲线上任意一点P 处的切线夹在两条渐近线之间的线段,必被P 所平分;(7)等轴双曲线上任意一点处的切线与两条渐近线围成三角形的面积恒为常数a^2; (8)等轴双曲线x^2-y^2=C 绕其中心以逆时针方向旋转45°后,可以得到XY=a^2/2,其中C≠0。

江苏省淮安市2023-2024学年高二上学期11月期中数学试题

江苏省淮安市2023-2024学年高二上学期11月期中数学试题

江苏省淮安市2023-2024学年高二上学期11月期中数学试题学校:___________姓名:___________班级:___________考号:___________
A .
22
B .1
2
C .
32
二、多选题
9.关于直线:0l ax y a ++=,以下结论正确的有()
A .1a =时,直线l 在两坐标轴上的截距相等
B .直线
C .a<0时,直线l 不过第四象限
D .0a >时,直线10.已知221:1C x y += 与22
2:(5)16C x y -+= ,以下结论正确的有(
A .1C 与2C 有且仅有2条公切线
三、填空题
四、双空题
(1)求点A 的坐标;(2)求BC 边所在直线方程.
18.已知直线:10l x y --=,点A (1)求抛物线C 的标准方程;
(2)记抛物线C 上一点(2,),P m 20.在ABC 中,(4,1),(8,5),A B -(1)求ABC 内切圆方程;
21.已知22:4O x y += 交x 轴于,A B 两点,P 为O 上位于x 轴上方的动点,将O 上各点的横坐标保持不变,纵坐标变为原来的一半,得到曲线C .
(1)求曲线C 的方程;
(2)记直线BP 与曲线C 的另一个交点为D ,若2PAB DAB ∠=∠,求ABD △的面积.
(1)求双曲线E 的标准方程;
(2)设双曲线E 的右顶点为,B P 为直线点(异于,A B ),记直线MN 与x 轴的交点为①求证:Q 为定点;
②直线MN 交直线=1x -于点D ,记。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1、(1997文)已知直线2=-y x 与抛物线x y 42=交于A 、B 两点,那么线段AB 的中点坐标是_______2、(2003江苏卷)已知双曲线中心在原点且一个焦点为F (7,0)直线y=x-1与其相交于M 、N 两点,MN 中点的横坐标为32-,则此双曲线的方程是( ) A .14322=-y x B .13422=-y x C .12522=-y x D .15222=-y x 3、(2004上海春季)已知倾斜角为︒45的直线l 过点)2,1(-A 和点B ,B 在第一象限,23||=AB .⑴ 求点B 的坐标; ⑵若直线l 与双曲线1:222=-y ax C )0(>a 相交于E 、F 两点,且线段EF 的中点坐标为)1,4(,求a 的值;⑶对于平面上任一点P ,当点Q 在线段AB 上运动时,称||PQ 的最小值为P 与线段AB 的距离. 已知点P 在x 轴上运动,写出点)0,(t P 到线段AB 的距离h 关于t 的函数关系式.4、(2004北京春季理)已知点A (2,8),),(11y x B ,),(22y x C 在抛物线y px 22=上,∆ABC 的重心与此抛物线的焦点F 重合(如图)⑴写出该抛物线的方程和焦点F 的坐标;⑵求线段BC 中点M 的坐标;⑶求BC 所在直线的方程。

5、(2002全国春季)已知某椭圆的焦点是)0,4(1-F 、)0,4(2F ,过点2F 并垂直于x 轴的直线与椭圆的一个交点为B ,且10||||21=+B F B F ,椭圆上不同的两点),(11y x A 、),(22y x C 满足条件:||2A F 、||2B F 、||2C F 成等差数列.⑴求该椭圆方程;⑵求弦AC 中点的横坐标;⑶设弦AC 的垂直平分线的方程为m kx y +=,求m 的取值范围.6、(2001上海春季)已知椭圆C 的方程为1222=+y x ,点),(b a P 的坐标满足1222≤+b a 。

过点P 的直线l 与椭圆交于A 、B 两点,点Q 为线段AB 的中点,求: ⑴点Q 的轨迹方程;⑵点Q 的轨迹与坐标轴的交点的个数.7、(2004广州春季高毕)已知向量→a =(x ),→b =(1,0),且(→a +3→b )⊥(→a –3→b ). ⑴求点Q (x ,y )的轨迹C 的方程;⑵设曲线C 与直线y kx m =+相交于不同的两点M 、N ,又点A (0,-1),当AN AM =时,求实数m 的取值范围.8、(2003上海理)在以O 为原点的直角坐标系中,点A (4,-3)为△OAB 的直角顶点.已知|AB|=2|OA|,且点B 的纵坐标大于零. ⑴求向量AB 的坐标;⑵求圆02622=++-y y x x 关于直线OB 对称的圆的方程;⑶是否存在实数a ,使抛物线12-=ax y 上总有关于直线OB 对称的两个点?若不存在,说明理由:若存在,求a 的取值范围.9、(1992理)已知椭圆)0(12222>>=+b a by a x ,A 、B 是椭圆上的两点,线段AB 的垂直平分线与x 轴相交于点P (x 0,0).证明:.22022ab a x a b a -<<-- 10、(2003春季北京理)已知动圆过定点P (1,0),且与定直线1:-=x l 相切,点C 在l 上.⑴求动圆圆心的轨迹M 的方程;⑵设过点P ,且斜率为-3的直线与曲线M 相交于A ,B 两点.(i )问:△ABC 能否为正三角形?若能,求点C 的坐标;若不能,说明理由;(ii )当△ABC 为钝角三角形时,求这种点C 的纵坐标的取值范围.11、(1987文)正方形ABCD 在直角坐标平面内,已知其一条边AB 在直线y=x+4上,C ,D 在抛物线x=y 2上,求正方形ABCD 的面积。

12、(1984理)求经过定点M (1,2),以y 轴为准线,离心率为21的椭圆的左顶点的轨迹方程。

13、(2004广州春季高毕)若直线2=-y x 被圆4)(22=+-y a x 所截得的弦长为22,则实数a 的值为(A )–1或3 (B )1或3 (C )–2或6 (D )0或414、(2003全国理)已知圆C :4)2()(22=-+-y a x (a >0)及直线03:=+-y x l ,当直线l 被C 截得的弦长为32时,则a =( ) A .2 B .22- C .12- D .12+15、(2002全国理)圆1)1(22=+-y x 的圆心到直线x y 33=的距离是 (A )21 (B )23 (C )1 (D )3 16、(1999理)直线0323=-+y x 截圆422=+y x 得的劣弧所对的圆心角为(A )6π (B )4π (C )3π (D )2π ( C ) 17、(1990新题目组文)圆122=+y x 上的点到直线02543=-+y x 的距离的最小值是(A )6 (B )4 (C )5 (D )1 ( B )18、(2003全国理) 已知常数,0>a 在矩形ABCD中,AB=4,BC=4a ,O 为AB 的中点,点E 、F 、G 分别在BC 、CD 、DA 上移动,且DADG CD CF BC BE ==,P 为GE 与OF 的交点(如图),问是否存在两个定点,使P 到这两点的距离的和为定值?若存在,求出这两点的坐标及此定值;若不存在,请说明理由.19、(2003江苏卷)已知常数0>a ,向量).0,1(),,0(==i a c 经过原点O 以ic λ+为方向向量的直线与经过定点A (0,a )以c i λ2-为方向向量的直线相交于点P ,其中.R ∈λ试问:是否存在两个定点E 、F ,使得|PE|+|PF|为定值.若存在,求出E 、F 的坐标;若不存在,说明理由.20、(2002全国新课程卷理)平面直角坐标系中,O 为坐标原点,已知两点()()3,1,1,3-B A ,若点C 满足OB OA OC βα+=,其中有R ∈βα,且1=+βα,则点C 的轨迹方程为( )01123)(=-+y x A ()()521)(22=-+-y x B 02)(=-y x C 052)(=-+y x D21、(2002全国新课程卷理)已知两点()()0,1,0,1N M -,且点P 使∙,∙,∙成公差小于零的等差数列。

⑴点P 的轨迹是什么曲线?⑵若点P 坐标为()00,y x ,记θ为PM 与的夹角,求θtan 。

22、(2002全国春季)已知椭圆的焦点是1F 、2F ,P 是椭圆上的一个动点.如果延长P F 1到Q ,使得||||2PF PQ =,那么动点Q 的轨迹是( )(A )圆 (B )椭圆 (C )双曲线的一支 (D )抛物线23、(2001北京内蒙古安徽春季)设动点P 在直线1=x 上,O 为坐标原点.以OP 为直角边、点O 为直角顶点作等腰OPQ Rt ∆,则动点Q 的轨迹是(A )圆 (B )两条平行直线 (C )抛物线(D )双曲线24、(2000北京安徽春季理)如图,设点A 和B 为抛物线()042>=p px y 上原点以外的两个动点,已知OA ⊥OB ,OM ⊥AB 。

求点M 的轨迹方程,并说明它表示什么曲线。

25、(1995理)已知椭圆22x y 12416+=,直线x :1128y l +=.P 是l 上一点,射线OP 交椭圆于点R ,又点Q 在OP 上且满足|OQ|∙|OP|=|OR|2.当点P 在直线l 迹方程,并说明轨迹是什么曲线.26、(1999理)如图,给出定点A (,a 0)(0>a )和直线.1:-=x l B 是直线l 上的动点,∠BOA 的角平分线交AB 于点C 。

求点C 的轨迹方程,并讨论方程表示的曲线类型与a 值的关系。

27、(1985理)已知两点P (-2,2),Q (0,2)以及一条直线:l :y=x ,设长为2的线段AB 在直线l 上移动,如图。

求直线PA 和QB 的交点M 的轨迹方程。

(要求把结果写成普通方程)28、(2004年安徽春季理)抛物线x y 62=的准线方程为_____.29、(2003江苏卷)抛物线2ax y =的准线方程是y=2,则a 的值为( ) A .81 B .-81 C .8 D .-8 30、(2002全国理)椭圆5522=+ky x 的一个焦点是)2,0(,那么=k 。

31、(2002全国春季)若双曲线1422=-my x 的渐近线方程为x y 23±=,则双曲线的焦点坐标是_________.32、(1994新考理)设F 1和F 2为双曲线1422=-y x 的两个焦点,点P 在双曲线上满足∠F 1PF 2=900,则△F 1PF 2的面积是 ( A )(A )1 (B )25 (C )2 (D )5 33、(2000全国理)过抛物线()02>=a ax y 的焦点F 作一条直线交抛物线于P 、Q 两点,若线段PF 与FQ 的长分别是p 、q ,则q p 11+等于 (A )a 2 (B )a21 (C )a 4 (D )a 4 34、(2004年安徽春季理)已知F 1、F 2为椭圆22221x y a b+=(0a b >>)的焦点;M 为椭圆上一点,MF 1垂直于x 轴,且∠F 1MF 2=600,则椭圆的离心率为(A )21 (B )22 (C )33 (D )23 35、(2003广东卷)双曲线虚轴的一个端点为M ,两个焦点为F 1、F 2,∠F 1MF 2=120°,则双曲线的离心率为 ( )A .3B .26C .36D .33 36、(2003春季北京理)如图,F 1,F 2分别为椭圆12222=+b y a x 的左、右焦点,点P 在椭圆上,△POF 2是面积为3的正三角形,则b 2的值是 .37、(2000全国理)椭圆14922=+y x 的焦点1F 、2F ,点P 为其上的动点,当∠1F P 2F 为钝角时,点P 横坐标的取值范围是 。

38、(2000北京安徽春季理)双曲线12222=-ay b x 的两条渐近线互相垂直,那么该双曲线的离心率是(A )2 (B )3 (C )2 (D )23 39、(1996理)设双曲线)0(12222b a by a x <<=-的半焦距为c ,直线l 过(a ,0),(0,b )两点。

已知原点到直线l 的距离为c 43,则双曲线的离心率为 ( A ) (A )2 (B )3 (C )2 (D )332 40、(1999理)设椭圆)0(12222>>=+b a by a x 的右焦点为F 1,右准线为1l 。

相关文档
最新文档