湖北省黄冈市2021届新高考四诊数学试题含解析
2021年湖北省新高考数学模拟试卷及答案解析
第 1 页 共 21 页2021年湖北省新高考数学模拟试卷一.选择题(共8小题,满分40分,每小题5分)1.(5分)已知集合M ={x|y =√log 0.5(4x −3)},N ={y|y =√log 0.5(4x −3)},则M ∩N =( ) A .[34,+∞)B .[0,+∞)C .(34,1]D .[34,1]2.(5分)已知p :|m +1|<1,q :幂函数y =(m 2﹣m ﹣1)x m 在(0,+∞)上单调递减,则p 是q 的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件3.(5分)某宾馆有n 间客房,客房的定价将影响住房率,每间客房的定价与每天的住房率的关系如表: 每间客房的定价 90元 80元 70元 60元 每天的住房率65%75%85%90%要使此宾馆每天收入最高,则每间客房的定价应为( ) A .90元B .80元C .70元D .60元4.(5分)已知数列{a n }是公差为d (d ≠0)的等差数列,且a 1,a 3,a 6成等比数列,则a 1d=( ) A .4B .3C .2D .15.(5分)将函数y =sin (4x −π6)图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),再把所得图象向左平移π6个单位长度,得到函数f (x )的图象,则函数f (x )的解析式为( )A .f(x)=sin(2x +π6) B .f(x)=sin(2x −π3) C .f(x)=sin(8x +π6)D .f(x)=sin(8x −π3)6.(5分)已知当x ∈R 时,函数y =f (x )满足f(2.5+x)=f(1.5+x)+13,且f(1)=43,则f (2010)的值为( ) A .20103B .20143C .671D .268。
湖北省黄冈市2021届新高考数学第一次押题试卷含解析
湖北省黄冈市2021届新高考数学第一次押题试卷一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.复数1i i +=( )A .2i -B .12i C .0 D .2i【答案】C【解析】略2.若1nx ⎫⎪⎭的展开式中二项式系数和为256,则二项式展开式中有理项系数之和为( ) A .85B .84C .57D .56 【答案】A【解析】【分析】先求n ,再确定展开式中的有理项,最后求系数之和.【详解】解:1nx ⎫⎪⎭的展开式中二项式系数和为256 故2256n =,8n = 88433188r r rr rr T C x x C x ---+==要求展开式中的有理项,则258r =,,则二项式展开式中有理项系数之和为:258888++=85C C C故选:A【点睛】考查二项式的二项式系数及展开式中有理项系数的确定,基础题.3.若a R ∈,则“3a =”是“()51x ax +的展开式中3x 项的系数为90”的( )A .必要不充分条件B .充分不必要条件C .充要条件D .既不充分也不必要条件 【答案】B【解析】【分析】求得()51x ax +的二项展开式的通项为15C k k k a x +⨯⋅,令2k =时,可得3x 项的系数为90,即25290C =a ⨯,求得a ,即可得出结果.【详解】若3a =则()()55=113x ax x x ++二项展开式的通项为+15C 3k k k x ⨯⋅,令13k +=,即2k =,则3x 项的系数为252C 3=90⨯,充分性成立;当()51x ax +的展开式中3x 项的系数为90,则有25290C =a ⨯,从而3a =±,必要性不成立.故选:B.【点睛】本题考查二项式定理、充分条件、必要条件及充要条件的判断知识,考查考生的分析问题的能力和计算能力,难度较易.4.已知椭圆C :()222210x y a b a b+=>>的左,右焦点分别为1F ,2F ,过1F 的直线交椭圆C 于A ,B 两点,若290ABF ∠=︒,且2ABF V 的三边长2BF ,AB ,2AF 成等差数列,则C 的离心率为( )A .12B .C .2D 【答案】C【解析】【分析】 根据等差数列的性质设出2BF ,AB ,2AF ,利用勾股定理列方程,结合椭圆的定义,求得21BF a BF ==.再利用勾股定理建立,a c 的关系式,化简后求得离心率.【详解】 由已知2BF ,AB ,2AF 成等差数列,设2BF x =,AB x d =+,22AF x d =+.由于290ABF ∠=︒,据勾股定理有22222BF AB AF +=,即()()2222x x d x d ++=+,化简得3x d =;由椭圆定义知2ABF V 的周长为233124x x d x d x d d a ++++=+==,有3a d =,所以x a =,所以21BF a BF ==;在直角21BF F V 中,由勾股定理,2224a c =,∴离心率e =. 故选:C【点睛】本小题主要考查椭圆离心率的求法,考查椭圆的定义,考查等差数列的性质,属于中档题.5.如图,在直角梯形ABCD 中,AB ∥DC ,AD ⊥DC ,AD =DC =2AB ,E 为AD 的中点,若(,)CA CE DB R λμλμ=+∈u u u r u u u r u u u r ,则λ+μ的值为( )A .65 B .85 C .2 D .83【答案】B【解析】【分析】建立平面直角坐标系,用坐标表示,,CA CE DB u u u r u u u r u u u r ,利用(,)CA CE DB R λμλμ=+∈u u u r u u u r u u u r ,列出方程组求解即可.【详解】建立如图所示的平面直角坐标系,则D(0,0).不妨设AB =1,则CD =AD =2,所以C(2,0),A(0,2),B(1,2),E(0,1),(2,2),(2,1),(1,2)CA CE DB ∴=-=-=u u u r u u u r u u u rCA CE DB λμ=+u u u r u u u r u u u r Q∴(-2,2)=λ(-2,1)+μ(1,2),2222λμλμ-+=-⎧∴⎨+=⎩解得6525λμ⎧=⎪⎪⎨⎪=⎪⎩则85λμ+=. 故选:B【点睛】本题主要考查了由平面向量线性运算的结果求参数,属于中档题.6.已知集合{}2,1,0,1,2A =--,2}2{|0B x x x =-+>,则A B =I ( )A .{}1,0-B .{}0,1C .{}1,0,1-D .{}2,1,0,1,2--【答案】D【解析】【分析】先求出集合B ,再与集合A 求交集即可.【详解】 由已知,22172()024x x x -+=-+>,故B R =,所以A B =I {}2,1,0,1,2--. 故选:D.【点睛】本题考查集合的交集运算,考查学生的基本运算能力,是一道容易题.7.如图,正方形网格纸中的实线图形是一个多面体的三视图,则该多面体各表面所在平面互相垂直的有( )A .2对B .3对C .4对D .5对【答案】C【解析】【分析】 画出该几何体的直观图P ABCD -,易证平面PAD ⊥平面ABCD ,平面PCD ⊥平面PAD ,平面PAB ⊥平面PAD ,平面PAB ⊥平面PCD ,从而可选出答案.【详解】该几何体是一个四棱锥,直观图如下图所示,易知平面PAD ⊥平面ABCD ,作PO ⊥AD 于O ,则有PO ⊥平面ABCD ,PO ⊥CD ,又AD ⊥CD ,所以,CD ⊥平面PAD ,所以平面PCD ⊥平面PAD ,同理可证:平面PAB ⊥平面PAD ,由三视图可知:PO =AO =OD ,所以,AP ⊥PD ,又AP ⊥CD ,所以,AP ⊥平面PCD ,所以,平面PAB ⊥平面PCD ,所以该多面体各表面所在平面互相垂直的有4对.【点睛】本题考查了空间几何体的三视图,考查了四棱锥的结构特征,考查了面面垂直的证明,属于中档题. 8.已知F 为抛物线y 2=4x 的焦点,过点F 且斜率为1的直线交抛物线于A ,B 两点,则||FA|﹣|FB||的值等于( )A .82B .8C .42D .4【答案】C【解析】【分析】将直线方程1y x =-代入抛物线方程,根据根与系数的关系和抛物线的定义即可得出FA FB -的值.【详解】 F (1,0),故直线AB 的方程为y =x ﹣1,联立方程组241y x y x ⎧=⎨=-⎩,可得x 2﹣6x+1=0,设A (x 1,y 1),B (x 2,y 2),由根与系数的关系可知x 1+x 2=6,x 1x 2=1.由抛物线的定义可知:|FA|=x 1+1,|FB|=x 2+1,∴||FA|﹣|FB||=|x 1﹣x 2|=()21212436442x x x x +-=-=故选C .【点睛】本题考查了抛物线的定义,直线与抛物线的位置关系,属于中档题. 9.设不等式组2000x x y x y -≤⎧⎪+≥⎨⎪-≥⎩,表示的平面区域为Ω,在区域Ω内任取一点(),P x y ,则P 点的坐标满足不等式222x y +≤的概率为A .π8B .π4C .12π+D 2π+【解析】【分析】画出不等式组表示的区域Ω,求出其面积,再得到222x y +≤在区域Ω内的面积,根据几何概型的公式,得到答案.【详解】 画出2000x x y x y -≤⎧⎪+≥⎨⎪-≥⎩所表示的区域Ω,易知()()2,2,2,2A B -,所以AOB V 的面积为4,满足不等式222x y +≤的点,在区域Ω内是一个以原点为圆心,2为半径的14圆面,其面积为2π, 由几何概型的公式可得其概率为2==48P ππ, 故选A 项.【点睛】本题考查由约束条件画可行域,求几何概型,属于简单题.10.在ABC V 中,角,,A B C 的对边分别为,,a b c ,若cos (2)cos c a B a b A -=-,则ABC V 的形状为( )A .直角三角形B .等腰非等边三角形C .等腰或直角三角形D .钝角三角形【答案】C【解析】【分析】利用正弦定理将边化角,再由()sin sin A B C +=,化简可得sin cos sin cos B A A A =,最后分类讨论可得;解:因为cos (2)cos c a B a b A -=-所以()sin sin cos 2sin sin cos C A B A B A -=-所以sin sin cos 2sin cos sin cos C A B A A B A -=-所以()sin sin cos 2sin cos sin cos A B A B A A B A +-=-所以sin cos sin cos sin cos 2sin cos sin cos A B B A A B A A B A +-=-所以sin cos sin cos B A A A =当cos 0A =时2A π=,ABC ∆为直角三角形;当cos 0A ≠时sin sin A B =即A B =,ABC ∆为等腰三角形;ABC ∆∴的形状是等腰三角形或直角三角形故选:C .【点睛】本题考查三角形形状的判断,考查正弦定理的运用,考查学生分析解决问题的能力,属于基础题. 11.设命题:p 函数()x x f x e e -=+在R 上递增,命题:q 在ABC ∆中,cos cos A B A B >⇔<,下列为真命题的是( )A .p q ∧B .()p q ∨⌝C .()p q ⌝∧D .()()p q ⌝∧⌝ 【答案】C【解析】【分析】命题p :函数()x x f x e e -=+在(,0)-∞上单调递减,即可判断出真假.命题q :在ABC ∆中,利用余弦函数单调性判断出真假.【详解】解:命题p :函数()x x f x e e -=+,所以()x x f x e e -=-',当0x <时,()0f x '<,即函数在(,0)-∞上单调递减,因此是假命题.命题q :在ABC ∆中,,(0,),cos A B y x π∈=在(0,)π上单调递减,所以cos cos A B A B >⇔<,是真命题.则下列命题为真命题的是()p q ⌝∧.故选:C .【点睛】本题考查了函数的单调性、正弦定理、三角形边角大小关系、简易逻辑的判定方法,考查了推理能力与计算能力,属于基础题.12.函数2sin 1x x y x+=+的部分图象大致为( ) A .B .C .D .【答案】B【解析】【分析】 图像分析采用排除法,利用奇偶性判断函数为奇函数,再利用特值确定函数的正负情况。
湖北省黄冈市2021届高三9月质量检测数学试题 含答案
(1)求C角与c边;
(2)求 面积的最大值.
21.(本小题满分12分)如图,有一生态农庄的平面图是一个半圆形,其中直径长为 ,C、D两点在半圆弧上满足 ,设 ,现要在此农庄铺设一条观光通道,由 和 组成.
12.一副三角板由一块有一个内角为60°的直角三角形和一块等腰直角三角形组成,如图所示, , , , ,现将两块三角形板拼接在一起,得三棱锥 ,取 中点O与 中点M,则下列判断中正确的是()
A.直线 平面 B. 与平面 所成的角为定值
C.三棱锥 体积为定值D.设平面 平面 ,则有
三、填空题:本题共4小题,每小题5分,共20分.
解得 ,令 ,得 ,
从而 在 上的单调减区间为 .10分
18.(1)由 知,
,
从而有: ,
4分
(2)由(1)同理可得:
从而 8分
从而 12分
19.(1) ,两边同时除以 得:
2分
从而有: ,
…………
叠加可得: ,
又 满足等式,从而 6分
10.已知曲线C的方程为 ,则下列结论正确的是()
A.当 时,曲线C为圆
B.存在实数k使得曲线C为双曲线,其离心率为
C.当 时,曲线C为双曲线,其渐近线方程为
D.“ ”是“曲线C为焦点在x轴上的椭圆”的充分而不必要条件
11.已知函数 则下列说法正确的是()
A. 的值域是 B. 在 上有2个零点
C. 在区间 上单调递增D. 是以 为最小正周期的周期函数
(2)若函数 ,当 时, 恒成立,求实数m的取值范围.
高三9月调考数学参考答案及评分标准
湖北省黄石市2021届新高考数学第四次押题试卷含解析
湖北省黄石市2021届新高考数学第四次押题试卷一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知复数()11z ai a R =+∈,212z i =+(i 为虚数单位),若12z z 为纯虚数,则a =( ) A .2-B .2C .12-D .12 【答案】C【解析】【分析】把()12112z ai a R z i =+∈=+,代入12z z ,利用复数代数形式的除法运算化简,由实部为0且虚部不为0求解即可.【详解】∵()12112z ai a R z i =+∈=+,, ∴121(1)(12)12212(12)(12)55z ai ai i a a i z i i i ++-+-===+++-, ∵12z z 为纯虚数, ∴12020a a +=⎧⎨-≠⎩,解得12a =-. 故选C .【点睛】本题考查复数代数形式的除法运算,考查复数的基本概念,是基础题.2.若复数2(2)(32)m m m m i -+-+是纯虚数,则实数m 的值为( )A .0或2B .2C .0D .1或2【答案】C【解析】试题分析:因为复数2(2)(32)m m m m i -+-+是纯虚数,所以(2)0m m -=且2320m m -+≠,因此0.m =注意不要忽视虚部不为零这一隐含条件.考点:纯虚数3.若x ,y 满足约束条件0,2,10,x y x y x -≤⎧⎪+≤⎨⎪+≥⎩,则4z x y =+的取值范围为( )A .[]5,1--B .[]5,5-C .[]1,5-D .[]7,3-【答案】B【解析】【分析】 根据约束条件作出可行域,找到使直线4y x z =-+的截距取最值得点,相应坐标代入4z x y =+即可求得取值范围.【详解】画出可行域,如图所示:由图可知,当直线4z x y =+经过点()1,1A --时,z 取得最小值-5;经过点()1,1B 时,z 取得最大值5,故55z -剟. 故选:B【点睛】本题考查根据线性规划求范围,属于基础题.4.设全集U=R ,集合2{|340}A x x x =-->,则U A =ð( )A .{x|-1 <x<4}B .{x|-4<x<1}C .{x|-1≤x≤4}D .{x|-4≤x≤1}【答案】C【解析】【分析】解一元二次不等式求得集合A ,由此求得U A ð【详解】由()()234410x x x x --=-+>,解得1x <-或4x >. 因为{|1A x x =<-或4}x >,所以U {|14}x x A =-≤≤ð.故选:C【点睛】本小题主要考查一元二次不等式的解法,考查集合补集的概念和运算,属于基础题.5.在ABC ∆中,,A B C ∠∠∠所对的边分别是,,a b c ,若3,4,120a b C ︒==∠=,则c =( )A .37B .13C D【答案】D【解析】【分析】直接根据余弦定理求解即可.【详解】解:∵3,4,120a b C ︒==∠=,∴2222cos 9161237c a b ab C =+-=++=,∴c =故选:D .【点睛】本题主要考查余弦定理解三角形,属于基础题. 6.已知双曲线()2222:10,0x y C a b a b-=>>的实轴长为2,离心率为2,1F 、2F 分别为双曲线C 的左、右焦点,点P 在双曲线C 上运动,若12F PF △为锐角三角形,则12PF PF +的取值范围是( )A .()B .()C .()D .()【答案】A【解析】【分析】 由已知先确定出双曲线方程为2213y x -=,再分别找到12F PF △为直角三角形的两种情况,最后再结合122PF PF -=即可解决.【详解】由已知可得22a =,2c a=,所以1,2,a c b ==== 2213y x -=,不妨设点P 在双曲线C 右支上运动,则122PF PF -=,当12PF PF ⊥时, 此时221216PF PF +==122()2PF PF -+12PF PF ,所以126PF PF =,122()PF PF +=22122PF PF ++1228PF PF =,所以12PF PF+= 当2PF x ⊥轴时,221216PF PF =+,所以121682PF PF =+=,又12F PF △为锐角三 角形,所以12PF PF+()∈.故选:A.【点睛】本题考查双曲线的性质及其应用,本题的关键是找到12F PF △为锐角三角形的临界情况,即12F PF △为直角三角形,是一道中档题.7.已知过点(1,1)P 且与曲线3y x =相切的直线的条数有( ).A .0B .1C .2D .3【答案】C【解析】【分析】设切点为()00x ,y ,则300y x =,由于直线l 经过点()1,1,可得切线的斜率,再根据导数的几何意义求出曲线在点0x 处的切线斜率,建立关于0x 的方程,从而可求方程.【详解】若直线与曲线切于点()()000x ,y x 0≠,则32000000y 1x 1k x x 1x 1x 1--===++--, 又∵2y'3x =,∴200y'x x 3x ==,∴2002x x 10--=,解得0x 1=,01x 2=-, ∴过点()P 1,1与曲线3C :y x =相切的直线方程为3x y 20--=或3x 4y 10-+=,故选C .【点睛】本题主要考查了利用导数求曲线上过某点切线方程的斜率,求解曲线的切线的方程,其中解答中熟记利用导数的几何意义求解切线的方程是解答的关键,着重考查了运算与求解能力,属于基础题.8.甲乙两人有三个不同的学习小组A , B , C 可以参加,若每人必须参加并且仅能参加一个学习小组,则两人参加同一个小组的概率为( )A .13B .14C .15D .16【答案】A 【解析】依题意,基本事件的总数有339⨯=种,两个人参加同一个小组,方法数有3种,故概率为3193=. 9.执行如下的程序框图,则输出的S 是( )A .36B .45C .36-D .45-【答案】A【解析】【分析】 列出每一步算法循环,可得出输出结果S 的值.【详解】18i =≤满足,执行第一次循环,()120111S =+-⨯=-,112i =+=;28i =≤成立,执行第二次循环,()221123S =-+-⨯=,213i =+=;38i =≤成立,执行第三次循环,()323136S =+-⨯=-,314i =+=;48i =≤成立,执行第四次循环,()4261410S =-+-⨯=,415i =+=;58i =≤成立,执行第五次循环,()52101515S =+-⨯=-,516i =+=;68i =≤成立,执行第六次循环,()62151621S =-+-⨯=,617i =+=;78i =≤成立,执行第七次循环,()72211728S =+-⨯=-,718i =+=;88i =≤成立,执行第八次循环,()82281836S =-+-⨯=,819i =+=;98i =≤不成立,跳出循环体,输出S 的值为36,故选:A.【点睛】本题考查算法与程序框图的计算,解题时要根据算法框图计算出算法的每一步,考查分析问题和计算能力,属于中等题. 10.如图,2AB =是圆O 的一条直径,,C D 为半圆弧的两个三等分点,则()AB AC AD ⋅+=u u u r u u u r u u u r ( )A.52B.4C.2D.13+【答案】B【解析】【分析】连接CD、OD,即可得到60CAB DOB︒∠=∠=,1AC=,再根据平面向量的数量积及运算律计算可得;【详解】解:连接CD、OD,CQ,D是半圆弧的两个三等分点,//CD AB∴,且2AB CD=,60CAB DOB︒∠=∠=所以四边形AODC为棱形,1cos1212AC AB AC AB BAC∴=∠=⨯⨯=u u u r u u u r u u u r u u u rg g∴()11222AB AC AD AB AC AC AB AB AC AB⎡⎤⎛⎫⎛⎫+=++=+⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u rg g g2122AC AB AB=+u u u r u u u r u u u rg.2121242=⨯+⨯=故选:B【点睛】本题考查平面向量的数量积及其运算律的应用,属于基础题.11.《周易》历来被人们视作儒家群经之首,它表现了古代中华民族对万事万物的深刻而又朴素的认识,是中华人文文化的基础,它反映出中国古代的二进制计数的思想方法.我们用近代术语解释为:把阳爻“- ”当作数字“1”,把阴爻“--”当作数字“0”,则八卦所代表的数表示如下:卦名符号表示的二进制数表示的十进制数坤 000 0震 001 1 坎010 2 兑 011 3依此类推,则六十四卦中的“屯”卦,符号“ ”表示的十进制数是( )A .18B .17C .16D .15 【答案】B【解析】【分析】由题意可知“屯”卦符号“”表示二进制数字010001,将其转化为十进制数即可. 【详解】由题意类推,可知六十四卦中的“屯”卦符号“”表示二进制数字010001,转化为十进制数的计算为1×20+1×24=1.故选:B .【点睛】 本题主要考查数制是转化,新定义知识的应用等,意在考查学生的转化能力和计算求解能力.12.设函数()f x 定义域为全体实数,令()(||)|()|g x f x f x =-.有以下6个论断:①()f x 是奇函数时,()g x 是奇函数;②()f x 是偶函数时,()g x 是奇函数;③()f x 是偶函数时,()g x 是偶函数;④()f x 是奇函数时,()g x 是偶函数⑤()g x 是偶函数;⑥对任意的实数x ,()0g x ….那么正确论断的编号是( )A .③④B .①②⑥C .③④⑥D .③④⑤【答案】A【解析】【分析】根据函数奇偶性的定义即可判断函数()g x 的奇偶性并证明.【详解】当()f x 是偶函数,则()()f x f x -=,所以()()(||)|()|(||)|()|g x f x f x f x f x g x -=---=-=,所以()g x 是偶函数;当()f x 是奇函数时,则()()f x f x -=-,所以()()(||)|()|(||)|()|g x f x f x f x f x g x -=---=-=,所以()g x 是偶函数;当()f x 为非奇非偶函数时,例如:()5f x x =+, 则()27f -=,()23f -=,此时(2)0g ->,故⑥错误;故③④正确.故选:A【点睛】本题考查了函数的奇偶性定义,掌握奇偶性定义是解题的关键,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。
湖北省黄石市2021届新高考四诊数学试题含解析
湖北省黄石市2021届新高考四诊数学试题一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.某四棱锥的三视图如图所示,则该四棱锥的体积为( )A .23B .43C .2D .4【答案】B 【解析】 【分析】由三视图知该四棱锥是底面为正方形,且一侧棱垂直于底面,由此求出四棱锥的体积. 【详解】由三视图知该四棱锥是底面为正方形,且一侧棱垂直于底面,画出四棱锥的直观图,如图所示:则该四棱锥的体积为211421333ABCD V S PA =⋅=⨯⨯=正方形. 故选:B. 【点睛】本题考查了利用三视图求几何体体积的问题,是基础题.2.若函数()ln f x x x h =-++,在区间1,e e ⎡⎤⎢⎥⎣⎦上任取三个实数a ,b ,c 均存在以()f a ,()f b ,()f c 为边长的三角形,则实数h 的取值范围是( )A .11,1e ⎛⎫-- ⎪⎝⎭B .11,3e e ⎛⎫--⎪⎝⎭C .11,e ⎛⎫-+∞⎪⎝⎭D .()3,e -+∞【答案】D 【解析】 【分析】利用导数求得()f x 在区间1,e e ⎡⎤⎢⎥⎣⎦上的最大值和最小,根据三角形两边的和大于第三边列不等式,由此求得h 的取值范围. 【详解】()f x 的定义域为()0,∞+,()'111x f x x x-=-+=,所以()f x 在1,1e ⎛⎫⎪⎝⎭上递减,在()1,e 上递增,()f x 在1x =处取得极小值也即是最小值,()1ln111f h h =-++=+,1111ln 1f h h e e e e ⎛⎫=-++=++ ⎪⎝⎭,()ln 1f e e e h e h =-++=-+,()1f f e e ⎛⎫< ⎪⎝⎭, 所以()f x 在区间1,e e ⎡⎤⎢⎥⎣⎦上的最大值为()1f e e h =-+.要使在区间1,e e⎡⎤⎢⎥⎣⎦上任取三个实数a ,b ,c 均存在以()f a ,()f b ,()f c 为边长的三角形,则需()()()f a f b f c +>恒成立,且()10f >,也即()()()max min f a f b f c +>⎡⎤⎣⎦,也即当1a b ==、c e =时,()()21e f f >成立, 即()211h e h +>-+,且()10f >,解得3h e >-.所以h 的取值范围是()3,e -+∞. 故选:D 【点睛】本小题主要考查利用导数研究函数的最值,考查恒成立问题的求解,属于中档题. 3.函数()sin (0)f x x ωω=>的图象向右平移12π个单位得到函数()y g x =的图象,并且函数()g x 在区间[,]63ππ上单调递增,在区间[,]32ππ上单调递减,则实数ω的值为( ) A .74B .32C .2D .54【答案】C 【解析】由函数()sin (0)f x x ωω=>的图象向右平移12π个单位得到[]1212g x sin x sin x πωπωω=-=-()()(),函数()g x 在区间,63ππ⎡⎤⎢⎥⎣⎦上单调递增,在区间,32ππ⎡⎤⎢⎥⎣⎦上单调递减,可得3x π=时,()g x 取得最大值,即23122k πωππωπ⨯-=+(),k Z ∈,0ω>,当0k =时,解得2ω=,故选C.点睛:本题主要考查了三角函数图象的平移变换和性质的灵活运用,属于基础题;据平移变换“左加右减,上加下减”的规律求解出()g x ,根据函数()g x 在区间,63ππ⎡⎤⎢⎥⎣⎦上单调递增,在区间,32ππ⎡⎤⎢⎥⎣⎦上单调递减可得3x π=时,()g x 取得最大值,求解可得实数ω的值.4.函数()sin()(0)4f x A x πωω=+>的图象与x 轴交点的横坐标构成一个公差为3π的等差数列,要得到函数()cos g x A x ω=的图象,只需将()f x 的图象( )A .向左平移12π个单位 B .向右平移4π个单位 C .向左平移4π个单位 D .向右平移34π个单位 【答案】A 【解析】依题意有()f x 的周期为()22ππ,3,sin 334T f x A x πωω⎛⎫====+ ⎪⎝⎭.而()πππππsin 3sin 3sin 3244124g x A x A x A x ⎡⎤⎛⎫⎛⎫⎛⎫=+=++=++ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦,故应左移π12.5.在5678(1)(1)(1)(1)x x x x -+-+-+-的展开式中,含3x 的项的系数是( ) A .74 B .121 C .74- D .121-【答案】D 【解析】 【分析】根据5678(1)(1)(1)(1)x x x x -+-+-+-,利用通项公式得到含3x 的项为:()+++-333335678()C C C C x ,进而得到其系数,【详解】因为在5678(1)(1)(1)(1)x x x x -+-+-+-,所以含3x 的项为:()+++-333335678()C C C C x ,所以含3x 的项的系数是的系数是33335678()C C C C -+++,()10203556121=-+++=-,故选:D 【点睛】本题主要考查二项展开式及通项公式和项的系数,还考查了运算求解的能力,属于基础题,6.为比较甲、乙两名高中学生的数学素养,对课程标准中规定的数学六大素养进行指标测验(指标值满分为100分,分值高者为优),根据测验情况绘制了如图所示的六大素养指标雷达图,则下面叙述不正确的是( )A .甲的数据分析素养优于乙B .乙的数据分析素养优于数学建模素养C .甲的六大素养整体水平优于乙D .甲的六大素养中数学运算最强【答案】D 【解析】 【分析】根据所给的雷达图逐个选项分析即可. 【详解】对于A ,甲的数据分析素养为100分,乙的数据分析素养为80分, 故甲的数据分析素养优于乙,故A 正确;对于B ,乙的数据分析素养为80分,数学建模素养为60分, 故乙的数据分析素养优于数学建模素养,故B 正确; 对于C ,甲的六大素养整体水平平均得分为10080100801008031063+++++=,乙的六大素养整体水平均得分为806080606010025063+++++=,故C 正确;对于D ,甲的六大素养中数学运算为80分,不是最强的,故D 错误; 故选:D 【点睛】本题考查了样本数据的特征、平均数的计算,考查了学生的数据处理能力,属于基础题. 7.()f x 是定义在()0,∞+上的增函数,且满足:()f x 的导函数存在,且()()f x x f x '<,则下列不等式成立的是( ) A .()()221f f < B .()()3344ff <C .()()2334f f <D .()()3223f f <【答案】D 【解析】 【分析】根据()f x 是定义在()0,∞+上的增函数及()()f x f x '有意义可得()0f x '>,构建新函数()()f x g x x=,利用导数可得()g x 为()0,∞+上的增函数,从而可得正确的选项. 【详解】因为()f x 是定义在()0,∞+上的增函数,故()0f x '≥.又()()f x f x '有意义,故()0f x '≠,故()0f x '>,所以()()f x f x x <'. 令()()f xg x x =,则()()()20'-'=>xf x f x g x x, 故()g x 在()0,∞+上为增函数,所以()()32g g >即()()3232f f >, 整理得到()()2332f f >. 故选:D. 【点睛】本题考查导数在函数单调性中的应用,一般地,数的大小比较,可根据数的特点和题设中给出的原函数与导数的关系构建新函数,本题属于中档题. 8.已知数列{}n a 对任意的*n N ∈有111(1)n n a a n n +=-++成立,若11a =,则10a 等于( )A .10110B .9110C .11111D .12211【答案】B【解析】 【分析】观察已知条件,对111(1)n n a a n n +=-++进行化简,运用累加法和裂项法求出结果.【详解】 已知111(1)n n a a n n +=-++,则1111111()11()(1)11n n a a n n n n n n +--+=--+=--+++=,所以有21111()12a a ---=,32111()23a a ---=,43111()34a a ---=,L109111()910a a ---=,两边同时相加得10119(1)10a a ---=,又因为11a =,所以101919(11)1010a --==+.故选:B 【点睛】本题考查了求数列某一项的值,运用了累加法和裂项法,遇到形如1n(n 1)+时就可以采用裂项法进行求和,需要掌握数列中的方法,并能熟练运用对应方法求解. 9.已知i 为虚数单位,若复数z 满足5i 12iz =-+,则z =( ) A .1i + B .1i -+C .12i -D .12i +【答案】A 【解析】分析:题设中复数满足的等式可以化为512z i i=++,利用复数的四则运算可以求出z . 详解:由题设有512112z i i i i i=+=-+=-+,故1z i =+,故选A. 点睛:本题考查复数的四则运算和复数概念中的共轭复数,属于基础题. 10.函数()1ln1xf x x-=+的大致图像为( ) A . B .C .D .【答案】D 【解析】 【分析】通过取特殊值逐项排除即可得到正确结果. 【详解】 函数()1ln1x f x x -=+的定义域为{|1}x x ≠±,当12x =时,1()ln 302f =-<,排除B 和C ; 当2x =-时,(2)ln 30f -=>,排除A. 故选:D. 【点睛】本题考查图象的判断,取特殊值排除选项是基本手段,属中档题.11.已知集合{}|0A x x =<,{}2|120B x x mx =+-=,若{}2A B =-I ,则m =( )A .4B .-4C .8D .-8【答案】B 【解析】 【分析】根据交集的定义,{}2A B =-I ,可知2B -∈,代入计算即可求出m . 【详解】由{}2A B =-I ,可知2B -∈, 又因为{}2|120B x x mx =+-=, 所以2x =-时,2(2)2120m ---=, 解得4m =-. 故选:B. 【点睛】本题考查交集的概念,属于基础题.12.根据如图所示的程序框图,当输入的x 值为3时,输出的y 值等于( )A .1B .eC .1e -D .2e -【答案】C 【解析】 【分析】根据程序图,当x<0时结束对x 的计算,可得y 值. 【详解】由题x=3,x=x-2=3-1,此时x>0继续运行,x=1-2=-1<0,程序运行结束,得1y e -=,故选C . 【点睛】本题考查程序框图,是基础题.二、填空题:本题共4小题,每小题5分,共20分。
2021届湖北省黄冈市高三上学期9月调研考试数学试题(解析版)
【答案】C
【解析】根据题意可得三项等比数列的中项可由首项和末项表示,四项等比数列的第2、第3项均可由首项和末项表示,从而类比出正项等比数列 中的 可由首项 和末项 表示.
【详解】
因为三项等比数列的中项可由首项和末项表示,
四项等比数列的第2、第3项均可由首项和末项表示,
所以正项等比数列 中的 可由首项 和末项 表示,
A.直线 面
B. 与面 所成的角为定值
C.设面 面 ,则有 ∥
D.三棱锥 体积为定值.
【答案】ABC
【解析】对于A,利用线面垂直的判定定理即可解决;对于B,C,依托于选项A即可较容易得到.点 到平面 的距离不等确定,即可判断选项D.
【详解】
对于A,由 中点 与 中点 ,得 ,
得 ,
由 为等腰直角三角形得 ,由 ,
.
.
当 时, .
当 时,上式成立.
故数列 的通项公式为 .
故答案为: .
【点睛】
本题考查数列的通项公式的求法,考查等差数列的性质,考查转化思想,分析问题能力,属于中档题.
15.若 ,则 =____________.
【答案】2020
【解析】由条件求出 ,化简待求式为 的形式即可求解.
【详解】
因为 ,
解得 ,
19.已知数列 满足 ,且 .
(1)求数列 的通项公式;
(2)若数列 满足 ,求数列 的前 项和 .
【答案】(1) ;(2) .
【解析】(1)由题意,左右同除 得: ,利用累加法即可求得数列 的通项公式;
(2)由(1)可得 ,代入可得 ,利用错位相减求和法,即可求得数列 的前 项和 .
【详解】
(1)由 ,两边同时除以 得:
湖北省黄冈市2021届新高考一诊数学试题含解析
湖北省黄冈市2021届新高考一诊数学试题一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知复数z ,满足(34)5z i i -=,则z =( )A .1B .CD .5 【答案】A【解析】【分析】首先根据复数代数形式的除法运算求出z ,求出z 的模即可.【详解】 解:55(34)4334255i i i i z i +-+===-,1z ∴==,故选:A【点睛】本题考查了复数求模问题,考查复数的除法运算,属于基础题.2.i 为虚数单位,则32i 1i-的虚部为( ) A .i -B .iC .1-D .1【答案】C【解析】【分析】利用复数的运算法则计算即可.【详解】 ()()()()32122111111i i i i i i i i i i i -+-===-+=----+,故虚部为1-. 故选:C.【点睛】本题考查复数的运算以及复数的概念,注意复数(),a bi a b R +∈的虚部为b ,不是bi ,本题为基础题,也是易错题.3.我们熟悉的卡通形象“哆啦A 梦”.在东方文化中通常称这个比例为“白银比例”,该比例在设计和建筑领域有着广泛的应用.已知某电波塔自下而上依次建有第一展望台和第二展望台,塔顶到塔底的高度与第二展望台到塔底的高度之比,第二展望台到塔底的高度与第一展望台到塔底的高度之比皆等于“白银比例”,若两展望台间高度差为100米,则下列选项中与该塔的实际高度最接近的是( ) A .400米B .480米C .520米D .600米【答案】B【解析】【分析】根据题意,画出几何关系,结合各线段比例可先求得第一展望台和第二展望台的距离,进而由比例即可求得该塔的实际高度.【详解】设第一展望台到塔底的高度为x 米,塔的实际高度为y 米,几何关系如下图所示:由题意可得1002x x+=,解得()10021x =; 且满足2100y x =+ 故解得塔高()100220021480y x =+=≈米,即塔高约为480米. 故选:B【点睛】 本题考查了对中国文化的理解与简单应用,属于基础题.4.达芬奇的经典之作《蒙娜丽莎》举世闻名.如图,画中女子神秘的微笑,,数百年来让无数观赏者人迷.某业余爱好者对《蒙娜丽莎》的缩小影像作品进行了粗略测绘,将画中女子的嘴唇近似看作一个圆弧,在嘴角,A C 处作圆弧的切线,两条切线交于B 点,测得如下数据:6,6,10.392AB cm BC cm AC cm ===(其中30.8662≈).根据测量得到的结果推算:将《蒙娜丽莎》中女子的嘴唇视作的圆弧对应的圆心角大约等于( )A .3πB .4πC .2πD .23π 【答案】A【解析】【分析】由已知6AB BC ==,设2ABC θ∠=.可得 5.196sin 0.8667θ==.于是可得θ,进而得出结论. 【详解】解:依题意6AB BC ==,设2ABC θ∠=. 则 5.1963sin 0.8667θ==. 3πθ∴=,223πθ=. 设《蒙娜丽莎》中女子的嘴唇视作的圆弧对应的圆心角为α.则2αθπ+=,3πα∴=.故选:A .【点睛】本题考查了直角三角形的边角关系、三角函数的单调性、切线的性质,考查了推理能力与计算能力,属于中档题.5.设集合{}12M x x =<≤,{}N x x a =<,若M N M ⋂=,则a 的取值范围是( ) A .(),1-∞B .(],1-∞C .()2,+∞D .[)2,+∞ 【答案】C【解析】【分析】由M N M ⋂=得出M N ⊆,利用集合的包含关系可得出实数a 的取值范围.【详解】 {}12M x x =<≤Q ,{}N x x a =<且M N M ⋂=,M N ∴⊆,2a ∴>.因此,实数a 的取值范围是()2,+∞.故选:C.【点睛】本题考查利用集合的包含关系求参数,考查计算能力,属于基础题.6.一个圆锥的底面和一个半球底面完全重合,如果圆锥的表面积与半球的表面积相等,那么这个圆锥轴截面底角的大小是( )A .15︒B .30︒C .45︒D .60︒ 【答案】D【解析】【分析】设圆锥的母线长为l,底面半径为R,再表达圆锥表面积与球的表面积公式,进而求得2l R =即可得圆锥轴截面底角的大小.【详解】设圆锥的母线长为l,底面半径为R,则有2222R Rl R R ππππ+=+,解得2l R =,所以圆锥轴截面底角的余弦值是12R l =,底角大小为60︒. 故选:D【点睛】本题考查圆锥的表面积和球的表面积公式,属于基础题.7.双曲线2212y x -=的渐近线方程为( )A .2y x =±B .y x =±C .y =D .y =【答案】C【解析】【分析】根据双曲线的标准方程,即可写出渐近线方程.【详解】Q 双曲线2212y x -=,∴双曲线的渐近线方程为y =,故选:C【点睛】本题主要考查了双曲线的简单几何性质,属于容易题.8.若关于x 的不等式1127k xx ⎛⎫≤ ⎪⎝⎭有正整数解,则实数k 的最小值为( ) A .9B .8C .7D .6【答案】A【解析】【分析】 根据题意可将1127k x x ⎛⎫≤ ⎪⎝⎭转化为ln 3ln 3x x k ≥,令()ln x f x x=,利用导数,判断其单调性即可得到实数k 的最小值.【详解】因为不等式有正整数解,所以0x >,于是1127k x x ⎛⎫≤ ⎪⎝⎭转化为ln 3ln 3k x x≥, 1x =显然不是不等式的解,当1x >时,ln 0x >,所以ln 3ln 3k x x ≥可变形为ln 3ln 3x x k≥. 令()ln x f x x =,则()21ln x f x x -'=, ∴函数()f x 在()0,e 上单调递增,在(),e +∞上单调递减,而23e <<,所以当*x ∈N 时,()(){}max ln 3max 2,33f f f ==,故ln 33ln 33k ≥,解得9k ≥. 故选:A .【点睛】本题主要考查不等式能成立问题的解法,涉及到对数函数的单调性的应用,构造函数法的应用,导数的应用等,意在考查学生的转化能力,属于中档题.9.已知数列{}n a 满足()12347324n a a a n a n ++++-=L ,则23342122a a a a a a +++=L ( ) A .58 B .34 C .54 D .52【答案】C【解析】【分析】利用()32n n a -的前n 项和求出数列(){}32n n a -的通项公式,可计算出n a ,然后利用裂项法可求出23342122a a a a a a +++L 的值.【详解】()12347324n a a a n a n ++++-=Q L .当1n =时,14a =;当2n ≥时,由()12347324n a a a n a n ++++-=L ,可得()()1231473541n a a a n a n -++++-⋅=-L ,两式相减,可得()324n n a -=,故432n a n =-, 因为14a =也适合上式,所以432n a n =-. 依题意,()()12161611313433134n n a a n n n n ++⎛⎫==- ⎪++++⎝⎭, 故233421221611111111161153477101013616434644a a a a a a ⎛⎫⎛⎫+++=-+-+-++-=-= ⎪ ⎪⎝⎭⎝⎭L L . 故选:C.【点睛】本题考查利用n S 求n a ,同时也考查了裂项求和法,考查计算能力,属于中等题.10.函数sin y x x =+在[]2,2x ππ∈-上的大致图象是( )A .B .C .D .【答案】D【解析】【分析】讨论x 的取值范围,然后对函数进行求导,利用导数的几何意义即可判断.【详解】当0x ≥时,sin y x x =+,则cos 10y x '=+≥,所以函数在[]0,2π上单调递增,令()cos 1g x x =+,则()sin g x x '=-,根据三角函数的性质,当[]0,x π∈时,()sin 0g x x '=-<,故切线的斜率变小,当[],2x ππ∈时,()sin 0g x x '=->,故切线的斜率变大,可排除A 、B ;当0x <时,sin y x x =-+,则cos 10y x '=-+≥,所以函数在[]2,0π-上单调递增,令 ()cos 1h x x =-+,()sin h x x '=,当[]2,x ππ∈--时,()sin 0h x x '=>,故切线的斜率变大,当[],0x π∈-时,()sin 0h x x '=<,故切线的斜率变小,可排除C ,故选:D【点睛】本题考查了识别函数的图像,考查了导数与函数单调性的关系以及导数的几何意义,属于中档题.11.已知函数()()sin 0,2f x x πωϕωϕ⎛⎫=+>< ⎪⎝⎭,1,03A ⎛⎫ ⎪⎝⎭为()f x 图象的对称中心,若图象上相邻两个极值点1x ,2x 满足121x x -=,则下列区间中存在极值点的是( )A .,06π⎛⎫- ⎪⎝⎭B .10,2⎛⎫ ⎪⎝⎭C .1,3π⎛⎫ ⎪⎝⎭D .,32ππ⎛⎫ ⎪⎝⎭【答案】A【解析】【分析】 结合已知可知,112T =可求T ,进而可求ω,代入()f x ,结合1()03f =,可求ϕ,即可判断. 【详解】Q 图象上相邻两个极值点1x ,2x 满足12||1x x -=, ∴112T =即2T =,ωπ∴=,()sin()f x x πϕ=+,且11()sin()033f πϕ=+=, ∴13k πϕπ+=,k Z ∈,1||2ϕπ<Q ,13ϕπ∴=-,1()sin()3f x x ππ=-, 当16x =-时,1()16f -=-为函数的一个极小值点,而1(,0)66π-∈-. 故选:A .【点睛】本题主要考查了正弦函数的图象及性质的简单应用,解题的关键是性质的灵活应用.12.过点P 的直线l 与曲线y =交于A B ,两点,若25PA AB =u u u r u u u r ,则直线l 的斜率为( )A .2B .2+C .2或2D .21 【答案】A【解析】【分析】 利用切割线定理求得,PA AB ,利用勾股定理求得圆心到弦AB 的距离,从而求得30APO ∠=︒,结合45POx ∠=o ,求得直线l 的倾斜角为15o ,进而求得l 的斜率.【详解】曲线y 为圆2213x y +=的上半部分,圆心为()0,0设PQ 与曲线y =Q , 则()2PQ PA PB PA PA AB =⋅=⋅+2225375PA PO OQ -=== 所以5,2PA AB ==,O 到弦AB =1sin 2APO ===∠,所以30APO ∠=︒,由于45POx ∠=o ,所以直线l 的倾斜角为453015-=o o o ,斜率为()tan 45tan 30tan15tan 453021tan 45tan 30-=-==+⨯o oo o oo o 故选:A【点睛】本小题主要考查直线和圆的位置关系,考查数形结合的数学思想方法,属于中档题.二、填空题:本题共4小题,每小题5分,共20分。
湖北省新2021年高考数学试卷和答案解析(新课标Ⅰ)
2021年湖北省新高考数学试卷(新课标Ⅰ)1.设集合,,则()A. B.C. D.2.已知,则()A. B.C. D.3.已知圆锥的底面半径为,其侧面展开图为一个半圆,则该圆锥的母线长为()A.2B.C.4D.4.下列区间中,函数单调递增的区间是()A. B.C. D.5.已知,是椭圆的两个焦点,点M 在C 上,则的最大值为()A.13B.12C.9D.66.若,则()A. B.C.D.7.若过点可以作曲线的两条切线,则()A. B. C. D.8.有6个相同的球,分别标有数字1,2,3,4,5,6,从中有放回的随机取两次,每次取1个球,甲表示事件“第一次取出的球的数字是1”,乙表示事件“第二次取出的球的数字是2”,丙表示事件“两次取出的球的数字之和是8”,丁表示事件“两次取出的球的数字之和是7”,则()A.甲与丙相互独立B.甲与丁相互独立C.乙与丙相互独立D.丙与丁相互独立9.有一组样本数据,,…,,由这组数据得到新样本数据,,…,,其中为非零常数,则()A.两组样本数据的样本平均数相同B.两组样本数据的样本中位数相同C.两组样本数据的样本标准差相同D.两组样本数据的样本极差相同10.已知O 为坐标原点,点,,,,则()A. B.C.D.11.已知点P 在圆上,点,,则()A.点P 到直线AB 的距离小于10B.点P 到直线AB 的距离大于2C.当最小时,D.当最大时,12.在正三棱柱中,,点P 满足,其中,,则()A.当时,的周长为定值B.当时,三棱锥的体积为定值C.当时,有且仅有一个点P,使得D.当时,有且仅有一个点P,使得平面13.已知函数是偶函数,则__________.14.已知O为坐标原点,抛物线C:的焦点为F,P为C上一点,PF与x轴垂直,Q为x轴上一点,且若,则C的准线方程为______.15.函数的最小值为__________.16.某校学生在研究民间剪纸艺术时,发现剪纸时经常会沿纸的某条对称轴把纸对折.规格为的长方形纸,对折1次共可以得到,两种规格的图形,它们的面积之和,对折2次共可以得到,,三种规格的图形,它们的面积之和,以此类推.则对折4次共可以得到不同规格图形的种数为__________;如果对折n次,那么__________17.已知数列满足,记,写出,,并求数列的通项公式;求的前20项和.18.某学校组织“一带一路”知识竞赛,有A,B两类问题.每位参加比赛的同学先在两类问题中选择一类并从中随机抽取一个问题回答,若回答错误则该同学比赛结束;若回答正确则从另一类问题中再随机抽取一个问题回答,无论回答正确与否,该同学比赛结束类问题中的每个问题回答正确得20分,否则得0分;B类问题中的每个问题回答正确得80分,否则得0分.已知小明能正确回答A类问题的概率为,能正确回答B类问题的概率为,且能正确回答问题的概率与回答次序无关.若小明先回答A类问题,记X为小明的累计得分,求X的分布列;为使累计得分的期望最大,小明应选择先回答哪类问题?并说明理由.19.记的内角A,B,C的对边分别为a,b,已知,点D在边AC上,证明:;若,求20.如图,在三棱锥中,平面平面BCD,,O为BD的中点.证明:;若是边长为1的等边三角形,点E在棱AD上,,且二面角的大小为,求三棱锥的体积.21.在平面直角坐标系xOy中,已知点,,点M满足记M的轨迹为求C的方程;设点T在直线上,过T的两条直线分别交C于A,B两点和P,Q两点,且,求直线AB的斜率与直线PQ的斜率之和.22.已知函数讨论的单调性;设a,b为两个不相等的正数,且,证明:答案和解析1.【答案】B 【解析】【分析】本题考查集合的交集运算,属于简单题.直接利用交集运算可得答案.【解答】解:,,故选:2.【答案】C 【解析】【分析】本题考查复数代数形式的乘除运算,考查复数的基本概念,是基础题.把代入,再由复数代数形式的乘除运算化简得答案.【解答】解:,故选:3.【答案】B 【解析】解:由题意,设母线长为l,因为圆锥底面周长即为侧面展开图半圆的弧长,圆锥的母线长即为侧面展开图半圆的半径,则有,解得,所以该圆锥的母线长为故选:设母线长为l,利用圆锥底面周长即为侧面展开图半圆的弧长,圆锥的母线长即为侧面展开图半圆的半径,列出方程,求解即可.本题考查了旋转体的理解和应用,解题的关键是掌握圆锥底面周长即为侧面展开图半圆的弧长,圆锥的母线长即为侧面展开图半圆的半径,考查了逻辑推理能力与运算能力,属于基础题.4.【答案】A 【解析】【分析】本题考查正弦型函数单调性,是简单题.本题需要借助正弦函数单调增区间的相关知识点求解.【解答】解:令,则,当时,,,故选:5.【答案】C【解析】【分析】利用椭圆的定义,结合基本不等式,转化求解即可.本题考查椭圆的简单性质的应用,基本不等式的应用.【解答】解:,是椭圆C:的两个焦点,点M在C上,,所以,当且仅当时,取等号,所以的最大值为故选:6.【答案】C【解析】【分析】本题主要考查同角三角函数基本关系,三角函数式的求值等知识,属于基础题.由题意化简所给的三角函数式,然后利用齐次式的特征将其“弦化切”即可求得三角函数式的值.【解答】解:由题意可得:故选7.【答案】D【解析】解:函数是增函数,恒成立,函数的图象如图,,即取得坐标在x轴上方,如果在x轴下方,连线的斜率小于0,不成立.点在x轴或下方时,只有一条切线.如果在曲线上,只有一条切线;在曲线上侧,没有切线;由图象可知在图象的下方,并且在x轴上方时,有两条切线,可知故选:画出函数的图象,判断与函数的图象的位置关系,即可得到选项.本题考查曲线与方程的应用,函数的单调性以及切线的关系,考查数形结合思想,是中档题.8.【答案】B 【解析】【分析】本题考查相互独立事件的应用,要求能够列举出所有事件和发生事件的个数,属于中档题.分别列出甲、乙、丙、丁可能的情况,然后根据独立事件的定义判断即可.【解答】解:由题意可知,两次取出的球的数字之和是8的所有可能为:,,,,,两次取出的球的数字之和是7的所有可能为,,,,,,甲,乙,丙,丁,A:甲丙甲丙,B:甲丁甲丁,C:乙丙乙丙,D:丙丁丙丁,故选:9.【答案】CD 【解析】【分析】本题考查平均数、中位数、标准差、极差,是基础题.利用平均数、中位数、标准差、极差的定义直接判断即可.【解答】解:对于A,两组数据的平均数的差为c,故A错误;对于B,两组样本数据的样本中位数的差是c,故B错误;对于C,设原样本数据的样本方差和标准差分别为,,新数据的样本方差和标准差分别为,,因为…,,,,即,两组样本数据的样本标准差相同,故C正确;对于D,…,,c为非零常数,原数据组的样本极差为,新数据组的样本极差为,两组样本数据的样本极差相同,故D正确.故选:10.【答案】AC【解析】【分析】本题考查平面向量数量积的性质及运算,考查同角三角函数基本关系式及两角和的三角函数,是中档题.由已知点的坐标分别求得对应向量的坐标,然后逐一验证四个选项得答案.【解答】解:,,,,,,,,,,则,,则,故A正确;,,不能恒成立,故B错误;,,,故C正确;,,不能恒成立,故D错误.故选:11.【答案】ACD【解析】【分析】求出过AB的直线方程,再求出圆心到直线AB的距离,得到圆上的点P到直线AB的距离范围,判断A与B;画出图形,由图可知,当过B的直线与圆相切时,满足最小或最大,求出圆心与B点间的距离,再由勾股定理求得判断C与本题考查直线与圆的位置关系,考查转化思想与数形结合思想,是中档题.【解答】解:,,过A、B的直线方程为,即,圆的圆心坐标为,圆心到直线的距离,点P到直线AB的距离的范围为,,,,点P到直线AB的距离小于10,但不一定大于2,故A正确,B错误;如图,当过B的直线与圆相切时,满足最小或最大点位于时最小,位于时最大,此时,,故CD正确.故选:12.【答案】BD【解析】【分析】本题考查了动点轨迹,线面平行与线面垂直的判定,锥体的体积问题等,综合性强,考查了逻辑推理能力与空间想象能力,属于拔高题.判断当时,点P在线段上,分别计算点P为两个特殊点时的周长,即可判断选项A;当时,点P在线段上,利用线面平行的性质以及锥体的体积公式,即可判断选项B;当时,取线段BC,的中点分别为M,,连结,则点P在线段上,分别取点P在,M处,得到均满足,即可判断选项C;当时,取的中点,的中点D,则点P在线的上,证明当点P在点处时,平面,利用过定点A与定直线垂直的平面有且只有一个,即可判断选项【解答】解:对于A,当时,,即,所以,故点P在线段上,此时的周长为,当点P为的中点时,的周长为,当点P在点处时,的周长为,故周长不为定值,故选项A错误;对于B,当时,,即,所以,故点P在线段上,因为平面,所以直线上的点到平面的距离相等,又的面积为定值,所以三棱锥的体积为定值,故选项B正确;对于C,当时,取线段BC,的中点分别为M,,连结,因为,即,所以,则点P在线段上,当点P在处时,,,又,所以平面,又平面,所以,即,同理,当点P在M处,,故选项C错误;对于D,当时,取的中点,的中点D,因为,即,所以,则点P在线的上,当点P在点处时,取AC的中点E,连结,BE,因为平面,又平面,所以,在正方形中,,又,BE,平面,故平面,又平面,所以,在正方体形中,,又,,平面,所以平面,因为过定点A与定直线垂直的平面有且只有一个,故有且仅有一个点P,使得平面,故选项D正确.故答案选:13.【答案】1【解析】【分析】本题考查函数的奇偶性,考查计算能力,属于基础题.根据题意,可得也为R上的奇函数,即可得解.【解答】解:函数是偶函数,为R上的奇函数,故也为R上的奇函数,所以时,,所以,经检验,满足题意,故答案为:14.【答案】【解析】解:由题意,不妨设P在第一象限,则,,所以,所以PQ的方程为:,时,,,所以,解得,所以抛物线的准线方程为:故答案为:求出点P的坐标,推出PQ方程,然后求解Q的坐标,利用,求解p,然后求解准线方程.本题考查抛物线的简单性质的应用及求抛物线的标准方程,考查转化思想以及计算能力,是中档题.15.【答案】1【解析】【分析】本题考查利用导数求最值的应用,考查运算求解能力,是中档题.求出函数定义域,对x分段去绝对值,当时,直接利用单调性求最值;当时,利用导数求最值,进一步得到的最小值.【解答】解:函数的定义域为,当时,,此时函数在上为减函数,所以;当时,,则,当时,,单调递减,当时,,单调递增,当时取得最小值,为,,函数的最小值为故答案为:16.【答案】5【解析】【分析】本题考查数列的求和,考查数学知识在生活中的具体运用,考查运算求解能力及应用意识,属于中档题.依题意,对折4次共可以得到5种不同规格图形;对折k次共有种规格,且每个面积为,则,,然后再转化求解即可.【解答】解:易知有,,共5种规格;由题可知,对折k次共有种规格,且每个面积为,故,则,记,则,,,故答案为:5;17.【答案】解:因为,,所以,,,所以,,,所以数列是以为首项,以3为公差的等差数列,所以由可得,,则,,当时,也适合上式,所以,,所以数列的奇数项和偶数项分别为等差数列,则的前20项和为……【解析】本题主要考查数列的递推式,数列的求和,考查运算求解能力,属于中档题.由数列的通项公式可求得,,从而可得求得,,由可得数列是等差数列,从而可求得数列的通项公式;由数列的通项公式可得数列的奇数项和偶数项分别为等差数列,求解即可.18.【答案】解:由已知可得,X 的所有可能取值为0,20,100,则,,所以X 的分布列为:X 020100P 由可知小明先回答A 类问题累计得分的期望为,若小明先回答B 类问题,记Y 为小明的累计得分,则Y 的所有可能取值为0,80,100,,,,则Y的期望为,因为,所以为使累计得分的期望最大,小明应选择先回答B类问题.【解析】本题主要考查离散型随机变量分布列及数学期望,考查运算求解能力,属于中档题.由已知可得,X的所有可能取值为0,20,100,分别求出对应的概率即可求解分布列;由可得,若小明先回答B类问题,记Y为小明的累计得分,Y的所有可能取值为0,80,100,分别求出对应的概率,从而可得,比较与的大小,即可得出结论.19.【答案】解:证明:由正弦定理知,,,,,,即,;由知,,,,在中,由余弦定理知,,在中,由余弦定理知,,,,即,得,,,或,在中,由余弦定理知,,当时,舍;当时,;综上所述,【解析】本题主要考查正弦定理和余弦定理,难度不大.利用正弦定理求解;要能找到隐含条件:和互补,从而列出等式关系求解.20.【答案】解:证明:因为,O为BD的中点,所以,又平面平面BCD,平面平面,平面ABD,所以平面BCD,又平面BCD,所以;方法一:取OD的中点F,因为为正三角形,所以,过O作与BC交于点M,则,所以OM,OD,OA两两垂直,以点O为坐标原点,分别以OM,OD,OA所在直线为x轴,y轴,z轴建立空间直角坐标系如图所示,则,,,设,则,因为平面BCD,故平面BCD的一个法向量为,设平面BCE的法向量为,又,所以由,得,令,则,,故,因为二面角的大小为,所以,解得,所以,又,所以,故方法二:过E作,交BD于点F,过F作于点G,连结EG,由题意可知,,又平面BCD所以平面BCD,又平面BCD,所以,又,,FG、平面EFG,所以平面EFG,又平面EFG,所以,则为二面角的平面角,即,又,所以,则,故,所以,因为,则,所以,则,所以,则,所以【解析】本题考查了面面垂直和线面垂直的性质,在求解有关空间角问题的时候,一般要建立合适的空间直角坐标系,将空间角问题转化为空间向量问题,属于中档题.利用等腰三角形中线就是高,得到,然后利用面面垂直的性质,得到平面BCD,再利用线面垂直的性质,即可证明;方法一:建立合适的空间直角坐标系,设,利用待定系数法求出平面的法向量,由向量的夹角公式求出t的值,然后利用锥体的体积公式求解即可.方法二:过E作,交BD于点F,过F作于点G,连结EG,求出,,然后利用锥体的体积公式求解即可.21.【答案】解:由双曲线的定义可知,M的轨迹C是双曲线的右支,设C的方程为,根据题意,解得,的方程为;设,设直线AB的方程为,,,由,得,整理得,,,,设,同理可得,由,得,,,,,【解析】的轨迹C是双曲线的右支,根据题意建立关于a,b,c的方程组,解出即可求得C的方程;设出直线AB的参数方程,与双曲线方程联立,由参数的几何意义可求得,同理求得,再根据,即可得出答案.本题考查双曲线的定义及其标准方程,考查直线与双曲线的位置关系,考查直线参数方程的运用,考查运算求解能力,属于中档题.22.【答案】解:由函数的解析式可得,,,单调递增,,,单调递减,则在单调递增,在单调递减.证明:由,得,即,由在单调递增,在单调递减,所以,且,令,,则,为的两根,其中不妨令,,则,先证,即证,即证,令,则在单调递减,所以,故函数在单调递增,,,得证.同理,要证,即证,根据中单调性,即证,令,,则,令,,,单调递增,,,单调递减,又,,且,故,,,恒成立,得证,则【解析】本题主要考查利用导数研究函数的单调性,利用导数研究极值点偏移问题,等价转化的数学思想,同构的数学思想等知识,属于难题.首先求得导函数的解析式,然后结合导函数的符号即可确定函数的单调性,利用同构关系将原问题转化为极值点偏移的问题,构造对称差函数分别证明左右两侧的不等式即可.。
2021-2022学年湖北省黄冈市、黄石市高三(上)调研数学试卷(9月份)(学生版+解析版)
2021-2022学年湖北省黄冈市、黄石市高三(上)调研数学试卷(9月份)一、选择题(本大题共8小题,每小题5分,共40分,在每小题给出的四个选项中,只有一个是符合题目要求的)1.(5分)已知A ={3,4,5,6},B ={x |2≤x <6},则A ∩B =( ) A .{2,3,4}B .{3,4,5}C .{2,3,4,5}D .{3,4,5,6}2.(5分)已知向量a →,b →的夹角为π3,a →=(1,√2),|b →|=√3,则|a →−2b →|=( )A .√21B .21C .3D .93.(5分)已知圆锥的母线长为3√2,其侧面展开图是一个圆心角为2π3的扇形,则该圆锥的底面面积是( ) A .πB .2πC .3πD .4π4.(5分)已知函数f (x )=2x|x|4x +1,则函数y =f (x )的大致图象为( )A .B .C .D .5.(5分)抛物线y 2=4x 的焦点为F ,A ,B 是抛物线上两点,且|AF →|=2|BF →|,且AB 中点到准线的距离为3,则AF 中点到准线的距离为( ) A .1B .2C .52D .36.(5分)P 为双曲线x 2﹣y 2=1左支上任意一点,EF 为圆C :(x ﹣2)2+y 2=4的任意一条直径,则PE →⋅PF →的最小值为( ) A .3B .4C .5D .97.(5分)已知a =4ln 5π,b =5ln 4π,c =5ln π4,则a ,b ,c 的大小关系是( ) A .a <b <cB .b <c <aC .b <a <cD .c <b <a8.(5分)普林斯顿大学的康威教授发现了一类有趣的数列并命名为“外观数列”,该数列的后一项由前一项的外观产生.以1为首项的“外观数列”记作A 1,其中A 1为1,11,21,1211,111221,…,即第一项为1,外观上看是1个1,因此第二项为11;第二项外观上看是2个1,因此第三项为21;第三项外观上看是1个2,1个1,因此第四项为1211,…,按照相同的规则可得A 1其它项,例如A 3为3,13,1113,3113,132113,…若A i ;的第n 项记作a n ,A j 的第n 项记作b n ,其中i ,j ∈[2,9],若c n =|a n ﹣b n |,则{c n }的前n 项和为( ) A .2n |i ﹣j |B .n (i +j )C .n |i ﹣j |D .12|i −j|二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全选对的得5分,部分选对的得2分,有选错的得0分. 9.(5分)设实数满足a ,b 满足2a <2b <1,则下列不等式一定成立的是( ) A .a 2<b 2B .ln |a |>ln |b |C .a b+b a>2D .a +b +2√ab <010.(5分)将函数f (x )=sin (2x +2π3)+1的图象向右平移π6个单位,得到函数y =g (x )的图象,则以下说法正确的是( ) A .函数y =g (x )在[﹣4,4]在内只有2个零点B .g (x −π2)=﹣g (x )C .函数y =g (x )的图象关于(−π6,1)对称 D .g (π6)≥g (x )恒成立11.(5分)如图,正方体ABCD ﹣A 1B 1C 1D 1的棱长为1,E ,F 分别是棱AA 1,CC 1的中点,过直线EF 的平面分别与棱BB 1,DD 1交于M ,N 两点,设BM =x ,x ∈[0,1],以下说法中正确的是( )A .平面MENF ⊥平面BDD 1B 1B .四边形MENF 的面积最小值为1C .四边形MENF 周长的取值范围是[4,4√2]D .四棱锥C 1﹣MENF 的体积为定值12.(5分)在平面直角坐标系中,O 是坐标原点,M n ,N n 是圆O :x 2+y 2=n 2上两个不同的动点,P n 是M n ,N n 的中点,且满足OM n →⋅ON n →+2OP n →2=0(n ∈N *).设M n ,N n 到直线l :√3x +y +n 2+n =0的距离之和的最大值为a n ,则下列说法中正确的是( ) A .向量OM n →与向量ON n →所成角为120°B .|OP n →|=nC .a n =n 2+2nD .若b n =a n n+2,则数列{2b n (2b n −1)(2b n +1−1)}的前n 项和为1−12n+1−1三、填空题:本题共4小题,每小题5分,共20分.13.(5分)已知函数f (x )=(e x +m •e ﹣x )•sin x 是偶函数,则m = .14.(5分)曲线y =lnx −2x 在x =1处的切线的倾斜角为α,则sin2α3cos 2α+sin 2α= .15.(5分)已知函数f (x )=1cosx +162−cosx (0<x <π2),则f (x )的最小值为 .16.(5分)已知m >0,若存在实数x ∈[1,+∞)使不等式成立m •2mx +1﹣log√2x ≤0成立,则m 的最大值为 .四、解答题:本题共6小题,共70分,解答应写出文字说眀、证明过程或演算步骤. 17.(10分)已知函数f (x )=2√3sin x cos x ﹣2sin 2x +3.(1)若角α的顶点在坐标原点O ,始边与x 轴非负半轴重合,终边与单位圆(圆心为坐标原点O )交于点P (−√55,2√55),求f (α)的值;(2)当x ∈[−π4,π2]时,求函数f (x )的值城.18.(12分)在①√3(a −ccosB)=bsinC ;②sinA−sinCb=sinA−sinBa+c;③bcos(C −π6)=csinB .这三个条件中任选一个,补充在下面的问题中,并解答问题:在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,且满足条件 ____(填写所选条件的序号). (1)求角C ;(2)若△ABC 的面积为16√3,D 为AC 的中点,求BD 的最小值.19.(12分)已知数列{a n }前n 项和为S n ,若2S n =(n +1)a n ,且a 1>1,a 2﹣1,a 4﹣2,a 6成等比数列.(1)求数列{a n }的通项公式;(2)设b n =4a n a n+1+2−a n ,数列{b n }的前n 项和为T n ,求证:T n <43.20.(12分)已知函数f (x ),对∀x ,y ∈R ,都有f (x +y )﹣f (y )﹣x 2﹣2xy +3x =0恒成立,且f (2)=﹣1. (1)求f (x )的解析式;(2)若函数h (x )=f(x)x ,G (x )=h (|2x ﹣1|)+2m|2x −1|−5m 有三个零点,求m 的取值范围.21.(12分)如图,平面四边形OABC 中,OA =OB =OC =1,对角线AC ,OB 相交于M . (1)设AM →=λAC →(0<λ<1),且OM →=t OB →(0<t <1), (ⅰ)用向量OA →,OB →表示向量OC →;(ⅱ)若∠BOA =π3,记λ=f (t ),求f (t )的解析式.(2)在(ⅱ)的条件下,记△AMB ,△CMO 的面积分别为S △AMB ,S △CMO ,求S △AMB S △CMO的取值范围.22.(12分)已知函数f(x)=ax2+1,a∈R,函数g(x)=e x﹣2x+sin x.(1)求函数g(x)的单调区间;(2)记F(x)=g(x)﹣f(x),对任意的x≥0,F(x)≥0恒成立,求实数a的取值范围.2021-2022学年湖北省黄冈市、黄石市高三(上)调研数学试卷(9月份)参考答案与试题解析一、选择题(本大题共8小题,每小题5分,共40分,在每小题给出的四个选项中,只有一个是符合题目要求的)1.(5分)已知A ={3,4,5,6},B ={x |2≤x <6},则A ∩B =( ) A .{2,3,4}B .{3,4,5}C .{2,3,4,5}D .{3,4,5,6}【解答】解:∵集合A ={3,4,5,6},集合B ={x |2≤x <6}, ∴A ∩B ={3,4,5}. 故选:B .2.(5分)已知向量a →,b →的夹角为π3,a →=(1,√2),|b →|=√3,则|a →−2b →|=( )A .√21B .21C .3D .9【解答】解:由题得|a →|=√12+(√2)2=√3,|a →−2b →|²=|a →|²+4|b →|²﹣4a →⋅b →=(√3)²+4×(√3)²﹣4×√3×√3cos π3=3+12﹣6=9,故选:D .3.(5分)已知圆锥的母线长为3√2,其侧面展开图是一个圆心角为2π3的扇形,则该圆锥的底面面积是( ) A .πB .2πC .3πD .4π【解答】解:设圆锥的底面半径为r , 由题意可得,3√2=2π3,解得r =√2,所以圆锥的底面面积为π⋅(√2)2=2π. 故选:B .4.(5分)已知函数f (x )=2x|x|4x +1,则函数y =f (x )的大致图象为( )A .B .C .D .【解答】解:函数f (x )=2x|x|4x +1,函数f (﹣x )=2−x|−x|4−x +1=2x|x|4x +1=f (x ),所以函数是偶函数,所以B 不正确;函数f (x )=2x|x|4x +1=0,可得x =0,函数值域一个零点,所以A 不正确;C 不正确;故选:D .5.(5分)抛物线y 2=4x 的焦点为F ,A ,B 是抛物线上两点,且|AF →|=2|BF →|,且AB 中点到准线的距离为3,则AF 中点到准线的距离为( ) A .1B .2C .52D .3【解答】解:∵抛物线y 2=4x , ∴2p =4,即p =2,∵AB 中点到准线的距离为3,∴结合抛物线的定义可得,|AF |+|BF |=3×2=6, 又∵|AF →|=2|BF →|,且A ,B ,F 共线, ∴|AF |+12|AF|=6,解得|AF |=4, ∴AF 中点到准线的距离为p+|AF|2=2+42=3.故选:D .6.(5分)P 为双曲线x 2﹣y 2=1左支上任意一点,EF 为圆C :(x ﹣2)2+y 2=4的任意一条直径,则PE →⋅PF →的最小值为( ) A .3B .4C .5D .9【解答】解:设P (x ,y ),且x ≤﹣1,则x 2﹣y 2=1,设直线EF 的方程为x =my +2,{x =my +2(x −2)2+y 2=4整理可得:(1+m 2)y 2=4,解得y =±√1+m 2, 设E (√1+m 2+2,√1+m2),F (√1+m +2,√1+m ),则PE →⋅PF →=(√1+m 2+2﹣x ,√1+m 2−y )•(√1+m +2﹣x ,√1+m y )=−4m 21+m 2+(2﹣x )2−41+m2+y 2=2x 2﹣4x ﹣1=2(x ﹣1)2﹣3, 因为x ≤﹣1,所以(x ﹣1)2≥4, 所以可得2(x ﹣1)2﹣3≥2×4﹣3=5,当直线的斜率为0时,则设E (0,0),F (4,0),这时PE →•PF →=(﹣x ,﹣y )(4﹣x ,﹣y )=﹣x (4﹣x )+y 2=2x 2﹣4x +1,与上面类似, 综上所述:PE →⋅PF →≥5, 故选:C .7.(5分)已知a =4ln 5π,b =5ln 4π,c =5ln π4,则a ,b ,c 的大小关系是( ) A .a <b <cB .b <c <aC .b <a <cD .c <b <a【解答】解:令f (x )=lnxx (x ≥e ),f ′(x )=1−lnxx 2, 可得函数f (x )在(e ,+∞)上单调递减. ∴πln44>πln55,∴5ln 4π>4ln 5π,∴b >a .同理可得:lnππ>ln44,∴π4>4π,∴5ln π4>5ln 4π,∴c >b .∴a <b <c . 故选:A .8.(5分)普林斯顿大学的康威教授发现了一类有趣的数列并命名为“外观数列”,该数列的后一项由前一项的外观产生.以1为首项的“外观数列”记作A 1,其中A 1为1,11,21,1211,111221,…,即第一项为1,外观上看是1个1,因此第二项为11;第二项外观上看是2个1,因此第三项为21;第三项外观上看是1个2,1个1,因此第四项为1211,…,按照相同的规则可得A 1其它项,例如A 3为3,13,1113,3113,132113,…若A i ;的第n 项记作a n ,A j 的第n 项记作b n ,其中i ,j ∈[2,9],若c n =|a n ﹣b n |,则{c n }的前n 项和为( ) A .2n |i ﹣j |B .n (i +j )C .n |i ﹣j |D .12|i −j|【解答】解:由题意得,a 1=i ,a 2=1i ,a 3=111i ,a 4=311i ,…,a n =…i ; b 1=j ,b 2=1j ,b 3=111j ,b 4=311j ,…,b n =…j ;由递推可知,随着n 的增大,a n 和b n 每一项除了最后一位不同外,其余各位数都相同, 所以c n =|a n ﹣b n |=|i ﹣j |, 所以{c n }的前n 项和为n |i ﹣j |, 故选:C .二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全选对的得5分,部分选对的得2分,有选错的得0分. 9.(5分)设实数满足a ,b 满足2a <2b <1,则下列不等式一定成立的是( ) A .a 2<b 2B .ln |a |>ln |b |C .ab +b a>2 D .a +b +2√ab <0【解答】解:∵2a <2b <1,∴a <b <0, ∴a 2>b 2>0,故A 错; ∵﹣a >﹣b >0,∴|a |>|b |>0, ∴ln |a |>ln |b |,故B 对; ∵ab >1,0<ba <1,∴b a+a b>2√b a ⋅ab =2,故C 对;a +b +2√ab =−(﹣a ﹣b ﹣2√ab )=﹣(√−a −√−b )2<0, 故D 对; 故选:BCD .10.(5分)将函数f (x )=sin (2x +2π3)+1的图象向右平移π6个单位,得到函数y =g (x )的图象,则以下说法正确的是( ) A .函数y =g (x )在[﹣4,4]在内只有2个零点B .g (x −π2)=﹣g (x )C .函数y =g (x )的图象关于(−π6,1)对称 D .g (π6)≥g (x )恒成立【解答】解:将函数f (x )=sin (2x +2π3)+1的图象向右平移π6个单位,得到函数y =g (x )=sin (2x +π3)+1的图象,在[﹣4,4]内,2x +π3∈[﹣8+π3,8+π3],g (x )=0,即sin (2x +π3)=﹣1, 函数y =g (x )在[﹣4,4]在内只有2个零点,故A 正确;∵g (x −π2)=sin (2x −2π3)+1≠sin (2x +π3)+1=g (x ),故B 错误; 由于g (−π6)=1,故g (x )的图象关于(−π6,1)对称,故C 正确; ∵g (π6)=√32+1,不是最大值,故g (π6)≥g (x )不恒成立,故D 错误,故选:AC .11.(5分)如图,正方体ABCD ﹣A 1B 1C 1D 1的棱长为1,E ,F 分别是棱AA 1,CC 1的中点,过直线EF 的平面分别与棱BB 1,DD 1交于M ,N 两点,设BM =x ,x ∈[0,1],以下说法中正确的是( )A .平面MENF ⊥平面BDD 1B 1B .四边形MENF 的面积最小值为1C .四边形MENF 周长的取值范围是[4,4√2]D .四棱锥C 1﹣MENF 的体积为定值【解答】解:对于选项A :连接EF ,AC ,BD ,B 1D 1,如图所示, 由正方体的性质,可知AC ⊥平面BDD 1B 1, 又∵E ,F 分别是棱AA 1,CC 1的中点,∴EF ∥AC ,∴EF ⊥平面BDD 1B 1, 又∵EF ⊂平面MENF ,∴平面MENF ⊥平面BDD 1B 1,故选项A 正确, 对于选项B :由选项A 可知,EF ⊥MN , ∴四边形MENF 的面积为12|MN||EF|=√22|MN |, 当M ,N 分别是棱BB 1,DD 1的中点时,|MN |取得最小值√2, ∴四边形MENF 的面积的最小值为1,故选项B 正确, 对于选项C :由面面平行的性质可知EM ∥NF ,EN ∥MF , ∴四边形MENF 为菱形,∴四边形MENF 周长L (x )=4|EM |=4√12+(12−x)2, 又∵x ∈[0,1],∴L (x )∈[4,2√5],故选项C 错误, 对于选项D :V C 1−MENF =V C 1−MEN +V C 1−MFN =2V C 1−MFN =2V N−C 1MF =2×13×S △C 1MF ×D 1C 1=2×13×12×12×1×1=16,为定值,故选项D 正确, 故选:ABD .12.(5分)在平面直角坐标系中,O 是坐标原点,M n ,N n 是圆O :x 2+y 2=n 2上两个不同的动点,P n 是M n ,N n 的中点,且满足OM n →⋅ON n →+2OP n →2=0(n ∈N *).设M n ,N n 到直线l :√3x +y +n 2+n =0的距离之和的最大值为a n ,则下列说法中正确的是( ) A .向量OM n →与向量ON n →所成角为120°B .|OP n →|=nC .a n =n 2+2nD .若b n =a n n+2,则数列{2b n (2b n −1)(2b n +1−1)}的前n 项和为1−12n+1−1【解答】解:因为P n 是M n ,N n 的中点, 所以OP n →=12(OM n →+ON n →), 因为OM n →⋅ON n →+2OP n →2=0,所以OM n →⋅ON n →+12(OM n →+ON n →)2=0,即n 2cos ∠M n ON n +n 2+n 2cos ∠M n ON n =0,解得cos ∠M n ON n =−12,所以∠M n ON n =120°,故A 正确;|OP n →|=√14(OM n →+ON n →)2=√14[n 2+n 2+2n 2×(−12)]=12n ,故B 错误;由|OP n →|=12n 可得点P n 在圆x 2+y 2=n 24上,M n ,N n 到直线l :√3x +y +n 2+n =0的距离之和等于点P n 到该直线的距离的两倍, 点P n 到直线距离的最大值为圆心到直线的距离与圆的半径之和,而圆x 2+y 2=n 24的圆心(0,0)到直线√3x +y +n 2+n =0的距离d =|n(n+1)|√3+1=n(n+1)2, 所以a n =2[n(n+1)2+n2]=n 2+2n ,故C 正确;若b n =a n n+2=n 2+2n n+2=n ,则2b n(2b n −1)(2b n +1−1)=2n(2n −1)(2n+1−1)=12n −1−12n+1−1,所以数列{2b n(2b n −1)(2b n +1−1)}的前n 项和为12−1−122−1+122−1−123−1+123−1−124−1+⋯+12n −1−12n+1−1=1−12n+1−1,故D 正确.故选:ACD .三、填空题:本题共4小题,每小题5分,共20分.13.(5分)已知函数f (x )=(e x +m •e ﹣x )•sin x 是偶函数,则m = ﹣1 .【解答】解:因为函数f (x )=(e x +m •e ﹣x )•sin x 是偶函数,又y =sin x 为奇函数, 所以函数g (x )=e x +m •e﹣x为奇函数,则g (﹣x )=e ﹣x +m •e x =﹣f (x )=﹣(e x +m •e ﹣x ),所以(1+m )(e ﹣x +e x )=0恒成立,则m =﹣1. 故答案为:﹣1.14.(5分)曲线y =lnx −2x 在x =1处的切线的倾斜角为α,则sin2α3cos 2α+sin 2α= 12.【解答】解:由y =lnx −2x 得y′=1x +2x 2, 依题意,tan α=1+2=3, ∴sin2α3cos 2α+sin 2α=2sinαcosα3cos 2α+sin 2α=2tanα3+tan 2α=63+9=12.故答案为:12.15.(5分)已知函数f (x )=1cosx +162−cosx (0<x <π2),则f (x )的最小值为 252.【解答】解:设cos x =t ,(0<t <1), 所以f(t)=1t −162−t , 所以f′(t)=−1t 2+16(2−t)2= 15t 2+4t−4t 2⋅(2−t)2=(2t+3)(2t−5)t 2(2−t)2令f ′(t )=0, 得t =−23或25,当t ∈(0,25)时,f ′(x )<0,故f (x )单调递减, 当t ∈(25,1)时,f ′(x )>0,故f (x )单调递增, 所以f(t)min =f(25)=52+10=252, 即f (x )的最小值为252.故答案为:252.16.(5分)已知m >0,若存在实数x ∈[1,+∞)使不等式成立m •2mx +1﹣log √2x ≤0成立,则m 的最大值为1eln2.【解答】解:依题意m >0,存在实数x ∈[1,+∞)使不等式m •2mx +1﹣log√2x ≤0成立,即m •2mx •2﹣2log 2x ≤0,亦即2mx −1m ⋅log 2x ≤0,(2m )x −log 2m x ≤0,令a =2m ,a>1,则存在实数x∈[1,+∞)使不等式a x﹣log a x≤0,即a x≤log a x成立,作出y=a x和y=log a x的图象如图所示,结合图象可知,m取得最大值时,y=a x和y=log a x相切,由于y=a x和y=log a x关于直线y=x对称,所以m取得最大值时,y=a x与y=log a x的相切于直线y=x(切点相同),如图所示,由y=log a x可知y′=1xlna,设切点为(t,log a t),则斜率为1tlna=1,故t=1lna①,由y=a x可知y′=a x lna,设切点为(t,a t),则斜率为a t lna=1,则{a t=log a ta t lna=1tlna=1,解得t=e,将t=e代入①得e=1lna,即lna=1e,所以ln2m=1e,解得m=1eln2.故答案为:1eln2.四、解答题:本题共6小题,共70分,解答应写出文字说眀、证明过程或演算步骤.17.(10分)已知函数f(x)=2√3sin x cos x﹣2sin2x+3.(1)若角α的顶点在坐标原点O,始边与x轴非负半轴重合,终边与单位圆(圆心为坐标原点O)交于点P(−√55,2√55),求f(α)的值;(2)当x∈[−π4,π2]时,求函数f(x)的值城.【解答】解:(1)因为角α的终边与单位圆交于点P(−√55,2√55),则sinα=2√55,cosα=−√55,故f(α)=2√3sinαcosα−2sin2α+3=7−4√35;(2)函数f(x)=2√3sin x cos x﹣2sin2x+3=√3sin2x −(1−cos2x)+3 =2sin(2x +π6)+2, 因为x ∈[−π4,π2],所以2x +π6∈[−π3,7π6], 则sin(2x +π6)∈[−√32,1],故函数f (x )的值域为[2−√3,4]. 18.(12分)在①√3(a −ccosB)=bsinC ;②sinA−sinCb=sinA−sinBa+c;③bcos(C −π6)=csinB .这三个条件中任选一个,补充在下面的问题中,并解答问题:在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,且满足条件 ____(填写所选条件的序号). (1)求角C ;(2)若△ABC 的面积为16√3,D 为AC 的中点,求BD 的最小值.【解答】解:(1)选①,∵√3(a −c ⋅cosB)=b ⋅sinC ,∴√3(sinA −sinC ⋅cosB)=sinB ⋅sinC ,∴√3[sin(B +C)−sinC ⋅cosB]=sinB ⋅sinC ,∴√3sinB ⋅cosC =sinB ⋅sinC ,∴tanC =√3,∴C =π3; 选②,∵sinA−sinCb=sinA−sinBa+c,∴a−c b=a−b a+c,∴a 2﹣c 2=ab ﹣b 2,∴a 2+b 2﹣c 2=ab ,∴cosC =a 2+b 2−c 22ab =12,∴C =π3;选③,∵b ⋅cos(C −π6)=c ⋅sinB ,∴sinB ⋅cos(C −π6)=sinC ⋅sinB , ∴sinB ⋅(cosC ⋅cos π6+sinC ⋅sin π6)=sinC ⋅sinB , ∴√32⋅cosC =12sinC ,∴tanC =√3,∴C =π3;(2)S △ABC =12absinC =16√3,又C =π3,∴ab =64;在△BCD 中,BD 2=BC 2+CD 2−2⋅BC ⋅CD ⋅cosC =a 2+(b 2)2−2a ⋅b 2⋅cos π3=a 2+b 24−12ab ≥2√a 2⋅b 24−12ab =12ab =32,当且仅当a =b2=4√2时取等号,∴BD 的最小值为4√2. 19.(12分)已知数列{a n }前n 项和为S n ,若2S n =(n +1)a n ,且a 1>1,a 2﹣1,a 4﹣2,a 6成等比数列.(1)求数列{a n }的通项公式; (2)设b n =4a n a n+1+2−a n ,数列{b n }的前n 项和为T n ,求证:T n <43.【解答】解:(1)由2S n =(n +1)a n ,得S n =(n+1)a n2, 当n ≥2时,a n =S n −S n−1=n+12⋅a n −n2⋅a n−1, ∴a n n=a n−1n−1,∴a n n=a n−1n−1=⋯=a 11,∴a n =na 1,又a 2﹣1,a 4﹣2,a 6成等比数列,得(a 2−1)⋅a 6=(a 4−2)2, ∴(2a 1−1)⋅6a 1=(4a 1−2)2,∴a 1=2或a 1=12, 又a 1>1,∴a 1=2,∴a n =2n(n ∈N ∗);(2)证明:由(1)可得b n =4a n ⋅a n+1+2−a n =42n⋅2(n+1)+2−2n =1n −1n+1+(14)n ,T n =b 1+b 2+⋯+b n =[(1−12)+14]+[(12−13)+(14)2]+⋯+[(1n −1n+1)+(14)n ], 即T n =(1−12+12−13+⋯+1n −1n+1)+[14+(14)2+⋯+(14)n ], 所以T n =1−1n+1+14[1−(14)n ]1−14=43−1n+1−13⋅(14)n <43. 20.(12分)已知函数f (x ),对∀x ,y ∈R ,都有f (x +y )﹣f (y )﹣x 2﹣2xy +3x =0恒成立,且f (2)=﹣1. (1)求f (x )的解析式;(2)若函数h (x )=f(x)x ,G (x )=h (|2x ﹣1|)+2m|2x −1|−5m 有三个零点,求m 的取值范围.【解答】解:(1)函数f (x ),对∀x ,y ∈R ,都有f (x +y )﹣f (y )﹣x 2﹣2xy +3x =0恒成立,令x =2,y =0,则f (2)﹣f (0)+2=0, 又f (2)=﹣1,所以f (0)=1, 令y =0,则f (x )﹣f (0)﹣x 2+3x =0,所以f (x )=x 2﹣3x +1; (2)函数h (x )=f(x)x =x +1x−3, 令|2x ﹣1|=t ,由题意t ≠0, 所以t >0,当t ≥1,方程t =|2x ﹣1|有一根, 当0<t <1,方程有两根, 令G (x )=h (|2x ﹣1|)+2m |2x−1|−5m =t +1t −3+2mt −5m =0, 所以方程t 2﹣(3+5m )t +2m +1=0有两不等实根,且0<t 1<1,t 2>1或0<t 1<1,t 2=1, 记h (x )=t 2﹣(3+5m )t +2m +1, 所以h (x )的零点情况: ①当0<t 1<1,t 2>1时,{ℎ(0)=2m +1>0ℎ()1=−3m −1<0,解得m >−13;②当0<t 1<1,t 2=1时,{0<3+5m2<1ℎ(0)=2m +1>0ℎ(1)=−3m −1=0,解得m =−13.综上所述,m 的取值范围为[−13,+∞).21.(12分)如图,平面四边形OABC 中,OA =OB =OC =1,对角线AC ,OB 相交于M . (1)设AM →=λAC →(0<λ<1),且OM →=t OB →(0<t <1), (ⅰ)用向量OA →,OB →表示向量OC →;(ⅱ)若∠BOA =π3,记λ=f (t ),求f (t )的解析式.(2)在(ⅱ)的条件下,记△AMB ,△CMO 的面积分别为S △AMB ,S △CMO ,求S △AMB S △CMO的取值范围.【解答】解:(1)(i )因为AM →=λAC →,所以OM →=(1﹣λ)OA →+λOC →, 又因为OM →=t OB →(0<t <1),所以t OB →=(1﹣λ)OA →+λOC →,所以OC →=λ−1λOA →+t λOB →.(ii )因为OC →2=(λ−1λOA →+t λOB →)2,所以1=(λ−1λ)2+2(λ−1)t λ2cos π3+t 2λ2,所以λ=t 2−t+12−t ,(0<t <1),即f (t )=λ=t 2−t+12−t ,(0<t <1).(2)S △AMB S △CMO=12×AM×MB×sin∠BMA 12×CM×MO×sin∠CMO =AM CM ⋅MB MO=λ1−λ⋅1−t t=t 2−t+1t 2+t(0<t <1),记g (t )=t 2−t+1t 2+t (0<t <1),所以g ′(t )=2t(t−1)−1(t 2+t)2<0, 所以g (t )在(0,1)上单调递减, 所以g (t )>12,所以S △AMB S △CMO的取值范围为(12,+∞).22.(12分)已知函数f (x )=ax 2+1,a ∈R ,函数g (x )=e x ﹣2x +sin x . (1)求函数g (x )的单调区间;(2)记F (x )=g (x )﹣f (x ),对任意的x ≥0,F (x )≥0恒成立,求实数a 的取值范围.【解答】解:(1)g ′(x )=e x ﹣2+cos x 且g ′(0)=0,令φ(x )=g ′(x )=e x ﹣2+cos x ,则φ′(x )=e x ﹣sin x ,x ∈(0,+∞), 所以φ′(x )=e x ﹣sin x >1﹣sin x ≥0, 所以φ(x )=g ′(x )>g ′(0)=0, 所以g (x )的单调递增区间为(0,+∞),当x ∈(﹣∞,0),g ′(x )=e x ﹣2+cos x <cos x ﹣1≤0, 所以g (x )的单调递减区间为(﹣∞,0).(2)F (x )=g (x )﹣f (x )=e x ﹣2x +sin x ﹣ax 2﹣1,且F (0)=0, F ′(x )=e x +cos x ﹣2ax ﹣2,令G (x )=F ′(x ),G ′(x )=e x ﹣sin x ﹣2a , 令H (x )=G ′(x ),H ′(x )=e x ﹣cos x ≥1﹣cos x ≥0,所以G ′(x )在(0,+∞)上单调递增,①若a ≤12,G ′(x )≥G ′(0)=1﹣2a ≥0,所以F ′(x )在[0,+∞)上单调递增, 所以F ′(x )≥F ′(0)=0,所以F (x )≥F (0)=0恒成立.②若a >12,G ′(0)=1﹣2a <0,G ′(ln (2a +2))=2﹣sin (2a +2)>0, 所以存在x 0∈(0,ln (2a +2)),使G ′(x 0)=0,且x ∈(0,ln (2a +1)), G ′(x )<0,F ′(x )≤F ′(0)=0,所以F (x )≤F (0)=0,不合题意. 综上,a 的取值范围为(﹣∞,12].。
湖北省黄冈市2021届高三9月调研考试数学试卷(全解析)
湖北省黄冈市2020年高三年级9月质量检测全解析数学试题 2020.9.22 测试一、单项选择题:本题共8小题,每小题5分,共40分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1. 已知集合2{|320},{|124}xA x x xB x =−+≤=<<,则A B =( )A .{|12}x x ≤≤ B. {|12}x x <≤ C. {|12}x x ≤< D. {|02}x x ≤<解析:[]()1,2,0,2A B ==所以A B ={|12}x x ≤<,故选:C2. 已知,,,a b c d 都是常数,,a b c d .若()()()2020f x x a x b 的零点为,c d ,则下列不等式正确的是( )A .ac d b B .c a b d C .a c b d D .c d a b解析:令()()()g x x a x b ,此抛物线开口向上,且易知: ,a b 为()0g x 的两根,,c d 为()2020g x 的两根.根据图像结合,ab cd 知:cabd ,故选:B3. 已知0.42x =,2lg 5y =,0.425z ⎛⎫= ⎪⎝⎭,则下列结论正确的是( ) A .x y z <<B .y z x <<C .z y x <<D .z x y <<解析:根据常见中间值0和1比较:0.412x =>,2lg 05y =<,0.41205z ⎛⎫<= ⎝⎭<⎪,所以y z x <<,故选:B4. 若实数a ,b 满足14ab ab,则ab 的最小值为( )A.B .2C .D .4解析:由题设,0,0a b >>,所以14a b +=≥= 所以4ab ≥,故选:D5. 我国著名数学家华罗庚先生曾说:数缺形时少直观,形缺数时难入微,数形结合百般好,隔裂分家万事休. 在数学的学习和研究中,常用函数的图象来研究函数的性质,也常用函数的解析式来琢磨函数的图象的特征,如函数(1)e sin ()e 1x xxf x =−+在区间ππ(-,)22上的图象的大致形状是( )A .B .C .D .解析:通过对函数的奇偶性和趋近研究函数图像,本题(1)e sin ()e 1x x x f x =−+,e sin()e sin )()()e 1)e (1)(1(1x x x xx x f x f x −−−−===++−−⋅−, 所以()f x 为偶函数,排除B,D ,又0,e sin 0,e 12,10,x x x x ++++−→→→→+()0f x +∴→,所以选:A6.已知向量(2,1)a,(0,)b m ,(2,4)c ,且()a b c ,则实数m 的值为( )A. 4B. 3C. 2D. 1 解析:()2,1,2,4ab mc ,又因为()a b c ,所以有:224(1)0,2m m ⨯+⨯−=∴=,故选:C7.已知抛物线2:4C y x =的焦点为F ,准线为l ,P 是l 上一点,Q 是直线PF 与抛物线C 的一个交点,若4PF FQ =,则QF =( ) A .3B .52C .32D .32或52解析:过Q 作QMl ⊥交l 于点M,设QF d =,由抛物线定义:QM d =,又4PF FQ =,所以4PF d =,设l 交x 轴于点N,根据,PF FN PNFPMQ PQ MQ∆∆∴= 即:424d d d d=+,得52QF d ==,故选:B8. 明代朱载堉创造了音乐上极为重要的“等程律”. 在创造律制的过程中,他不仅给出了求解三项等比数列的等比中项的方法,还给出了求解四项等比数列的中间两项的方法,比如 ,若已知黄钟、大吕、太簇、夹钟四个音律值成等比数列,则有大吕=,太簇. 据此,可得正项等比数列{}n a 中,k a =A.n −B.n −C.D.解析:本题看选项转化为:已知首项1a 和末项n a ,求第k 项k a ,根据等数列有:()111111111111111=k k n n k n n n n k aa a a qa a a a −−−−−−−⎡⎤⎡⎤⎛⎫⎛⎫⎢⎥⎢⎥=== ⎪ ⎪⎢⎥⎢⎥⎝⎭⎝⎭⎣⎦⎢⎥⎣⎦C二、多项选择题:本题共4小题,每小题5分,共20分。
湖北省黄冈市2021届新高考数学第四次调研试卷含解析
湖北省黄冈市2021届新高考数学第四次调研试卷一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知函数()[]010x x f x x x ⎧≥⎪=⎨⎪⎩,,<([]x 表示不超过x 的最大整数),若()0f x ax -=有且仅有3个零点,则实数a 的取值范围是( ) A .12,23⎛⎤⎥⎝⎦B .12,23⎡⎫⎪⎢⎣⎭C .23,34⎡⎫⎪⎢⎣⎭D .23,34⎛⎤⎥⎝⎦【答案】A 【解析】 【分析】根据[x]的定义先作出函数f (x )的图象,利用函数与方程的关系转化为f (x )与g (x )=ax 有三个不同的交点,利用数形结合进行求解即可. 【详解】当01x ≤<时,[]0x =, 当12x ≤<时,[]1x =, 当23x ≤<时,[]2x =, 当34x ≤<时,[]3x =,若()0f x ax -=有且仅有3个零点, 则等价为()=f x ax 有且仅有3个根, 即()f x 与()g x ax =有三个不同的交点, 作出函数()f x 和()g x 的图象如图,当a=1时,()g x x =与()f x 有无数多个交点,当直线()g x 经过点21A (,)时,即()221g a ==,12a =时,()f x 与()g x 有两个交点, 当直线()g x 经过点()32B ,时,即()332g a ==23a =,时,()f x 与()g x 有三个交点, 要使()f x 与()g x ax =有三个不同的交点,则直线()g x 处在过12y x =和23y x =之间,即1223a ≤<, 故选:A .【点睛】利用函数零点的情况求参数值或取值范围的方法(1)直接法:直接根据题设条件构建关于参数的不等式,再通过解不等式确定参数的范围; (2)分离参数法:先将参数分离,转化成求函数的值域(最值)问题加以解决;(3)数形结合法:先对解析式变形,在同一平面直角坐标系中,画出函数的图象,然后数形结合求解.2.若01a b <<<,则b a , a b , log b a ,1log ab 的大小关系为( ) A .1log log b a b aa b a b >>> B .1log log a bb ab a b a >>> C .1log log b a b aa ab b >>> D .1log log a b b aa b a b >>> 【答案】D 【解析】因为01a b <<<,所以10a a b b a a >>>>, 因为log log 1b b a b >>,01a <<,所以11a>,1log 0a b <.综上1log log a bb aa b a b >>>;故选D. 3.若两个非零向量a r 、b r 满足()()0a b a b +⋅-=r r r r ,且2a b a b +=-r r r r ,则a r 与b r夹角的余弦值为( )A .35B .35±C .12D .12±【答案】A 【解析】 【分析】设平面向量a r 与b r的夹角为θ,由已知条件得出a b =r r ,在等式2a b a b +=-r r r r 两边平方,利用平面向量数量积的运算律可求得cos θ的值,即为所求. 【详解】设平面向量a r 与b r的夹角为θ,()()22220a b a b a b a b +⋅-=-=-=r r r r r r r r Q ,可得a b =r r ,在等式2a b a b +=-r r r r 两边平方得22222484a a b b a a b b +⋅+=-⋅+r r r r r r r r ,化简得3cos 5θ=.故选:A. 【点睛】本题考查利用平面向量的模求夹角的余弦值,考查平面向量数量积的运算性质的应用,考查计算能力,属于中等题.4.如图,在等腰梯形ABCD 中,//AB DC ,222AB DC AD ===,60DAB ∠=︒,E 为AB 的中点,将ADE ∆与BEC ∆分别沿ED 、EC 向上折起,使A 、B 重合为点F ,则三棱锥F DCE -的外接球的体积是( )A .68B .64C .32π D .23π 【答案】A 【解析】 【分析】由题意等腰梯形中的三个三角形都是等边三角形,折叠成的三棱锥是正四面体,易求得其外接球半径,得球体积. 【详解】由题意等腰梯形中DA AE EB BC CD ====,又60DAB ∠=︒,∴AED ∆,BCE ∆是靠边三角形,从而可得DE CE CD ==,∴折叠后三棱锥F DEC -是棱长为1的正四面体, 设M 是DCE ∆的中心,则FM ⊥平面DCE ,23313DM ==226FM FD DM =-=, F DCE -外接球球心O 必在高FM 上,设外接球半径为R ,即OF OD R ==,∴22263()()R R =-+,解得6R =, 球体积为334466()33V R ππ==⨯=. 故选:A .【点睛】本题考查求球的体积,解题关键是由已知条件确定折叠成的三棱锥是正四面体. 5.如图是一个几何体的三视图,则这个几何体的体积为( )A .53π B .2πC .52π D .3π【答案】A 【解析】 【分析】由三视图还原原几何体如图,该几何体为组合体,上半部分为半球,下半部分为圆柱,半球的半径为1,圆柱的底面半径为1,高为1.再由球与圆柱体积公式求解. 【详解】由三视图还原原几何体如图,该几何体为组合体,上半部分为半球,下半部分为圆柱, 半球的半径为1,圆柱的底面半径为1,高为1. 则几何体的体积为32145111233V πππ=⨯⨯+⨯⨯=.故选:A . 【点睛】本题主要考查由三视图求面积、体积,关键是由三视图还原原几何体,意在考查学生对这些知识的理解掌握水平.6.如图是函数sin()R,A 0,0,02y A x x πωφωφ⎛⎫=+∈>><<⎪⎝⎭在区间5,66ππ⎡⎤-⎢⎥⎣⎦上的图象,为了得到这个函数的图象,只需将sin (R)y x x =∈的图象上的所有的点( )A .向左平移3π个长度单位,再把所得各点的横坐标变为原来的12,纵坐标不变 B .向左平移3π个长度单位,再把所得各点的横坐标变为原来的2倍,纵坐标不变C .向左平移6π个长度单位,再把所得各点的横坐标变为原来的12,纵坐标不变 D .向左平移6π个长度单位,再把所得各点的横坐标变为原来的2倍,纵坐标不变 【答案】A 【解析】 【分析】由函数的最大值求出A ,根据周期求出ω,由五点画法中的点坐标求出ϕ,进而求出sin()y A x ωφ=+的解析式,与sin (R)y x x =∈对比结合坐标变换关系,即可求出结论. 【详解】由图可知1,A =T π=,2ω∴=,又2()6k k πωϕπ-+=∈z ,2()3k k πϕπ∴=+∈z ,又02πφ<<,3πϕ∴=,sin 23y x π⎛⎫∴=+⎪⎝⎭,∴为了得到这个函数的图象,只需将sin ()y x x R =∈的图象上的所有向左平移3π个长度单位, 得到sin 3y x π⎛⎫=+⎪⎝⎭的图象, 再将sin 3y x π⎛⎫=+ ⎪⎝⎭的图象上各点的横坐标变为原来的12(纵坐标不变)即可. 故选:A 【点睛】本题考查函数的图象求解析式,考查函数图象间的变换关系,属于中档题.7.(),0F c -为双曲线2222:1x y E a b -=的左焦点,过点F 的直线与圆22234x y c +=交于A 、B 两点,(A在F 、B 之间)与双曲线E 在第一象限的交点为P ,O 为坐标原点,若FA BP =u u u r u u u r ,且23100OA OB c ⋅=-u u u r u u u r ,则双曲线E 的离心率为( )A B .52C D .5【答案】D 【解析】 【分析】过点O 作OM PF ⊥,可得出点M 为AB 的中点,由23100OA OB c ⋅=-u u u r u u u r 可求得cos AOB ∠的值,可计算出cos 2AOB∠的值,进而可得出OM ,结合FA BP =u u u r u u u r 可知点M 为PF 的中点,可得出PF ',利用勾股定理求得PF (F '为双曲线的右焦点),再利用双曲线的定义可求得该双曲线的离心率的值. 【详解】如下图所示,过点O 作OM PF ⊥,设该双曲线的右焦点为F ',连接PF '.2333cos 22100OA OB AOB c ⋅=⋅⋅∠=-u u u r u u u r ,1cos 25AOB ∴∠=-.1cos 23cos22AOB AOB ∠+∠∴==, 3cos 25AOB OM OA c ∠∴==, FA BP=u u u r u u u r Q ,M ∴为PF 的中点,//PF OM '∴,90FPF '∠=o ,625c PF OM '==, ()22825c PF c PF '∴=-=,由双曲线的定义得2PF PF a '-=,即225ca =, 因此,该双曲线的离心率为5ce a==.故选:D. 【点睛】本题考查双曲线离心率的求解,解题时要充分分析图形的形状,考查推理能力与计算能力,属于中等题. 8.已知函数()0,1ln ,1x f x x x <⎧=⎨≥⎩,若不等式()≤-f x x k 对任意的x ∈R 恒成立,则实数k 的取值范围是( ) A .(],1-∞ B .[)1,+∞C .[)0,1D .(]1,0-【答案】A 【解析】 【分析】先求出函数()f x 在(1,0)处的切线方程,在同一直角坐标系内画出函数()0,1ln ,1x f x x x <⎧=⎨≥⎩和()g x x k =-的图象,利用数形结合进行求解即可.当1x ≥时,()''1ln ,()(1)1f x x f x f x=⇒=⇒=,所以函数()f x 在(1,0)处的切线方程为:1y x =-,令()g x x k =-,它与横轴的交点坐标为(,0)k .在同一直角坐标系内画出函数()0,1ln ,1x f x x x <⎧=⎨≥⎩和()g x x k =-的图象如下图的所示:利用数形结合思想可知:不等式()≤-f x x k 对任意的x ∈R 恒成立,则实数k 的取值范围是1k ≤. 故选:A 【点睛】本题考查了利用数形结合思想解决不等式恒成立问题,考查了导数的应用,属于中档题. 9.执行如图所示的程序框图,当输出的2S =时,则输入的S 的值为( )A .-2B .-1C .12-D .12【解析】若输入2S =-,则执行循环得1313,2;,3;2,4;,5;,6;3232S k S k S k S k S k =====-===== 132,7;,8;,9;32S k S k S k =-=====结束循环,输出32S =,与题意输出的2S =矛盾;若输入1S =-,则执行循环得11,2;2,3;1,4;,5;2,6;22S k S k S k S k S k =====-=====11,7;,8;2,9;2S k S k S k =-=====结束循环,输出2S =,符合题意;若输入12S =-,则执行循环得212,2;3,3;,4;,5;3,6;323S k S k S k S k S k =====-=====12,7;,8;3,9;23S k S k S k =-=====结束循环,输出3S =,与题意输出的2S =矛盾;若输入12S =,则执行循环得12,2;1,3;,4;2,5;1,6;2S k S k S k S k S k ===-======-=1,7;2,8;1,9;2S k S k S k =====-=结束循环,输出1S =-,与题意输出的2S =矛盾;综上选B.10.已知全集U =R ,集合{}1A x x =<,{}12B x x =-≤≤,则()U A B =I ð( ) A .{}12x x <≤ B .{}12x x ≤≤C .{}11x x -≤≤D .{}1x x ≥-【答案】B 【解析】 【分析】直接利用集合的基本运算求解即可. 【详解】解:全集U =R ,集合{}1A x x =<,{}12B x x =-≤≤,{}U |1A x x ∴=≥ð则(){}{}{}|1|12|12U A B x x x x x x =-=I I 厔剟?ð, 故选:B . 【点睛】本题考查集合的基本运算,属于基础题.11.《算数书》竹简于上世纪八十年代在湖北省江陵县张家山出土,这是我国现存最早的有系统的数学典籍.其中记载有求“囷盖”的术:“置如其周,令相承也.又以高乘之,三十六成一”.该术相当于给出了由圆锥的底面周长L 与高h ,计算其体积2136V L h ≈的近似公式.它实际上是将圆锥体积公式中的圆周率近似取为3.那么近似公式23112V L h ≈相当于将圆锥体积公式中的圆周率近似取为( )A .227B .15750C .289D .337115【答案】C 【解析】 【分析】将圆锥的体积用两种方式表达,即213V r h π==23(2)112r h π,解出π即可. 【详解】设圆锥底面圆的半径为r ,则213V r h π=,又2233(2)112112V L h r h π≈=, 故23(2)112r h π213r h π≈,所以,11228369π≈=. 故选:C. 【点睛】本题利用古代数学问题考查圆锥体积计算的实际应用,考查学生的运算求解能力、创新能力.12.空间点到平面的距离定义如下:过空间一点作平面的垂线,这个点和垂足之间的距离叫做这个点到这个平面的距离.已知平面α,β,λ两两互相垂直,点A α∈,点A 到β,γ的距离都是3,点P 是α上的动点,满足P 到β的距离与P 到点A 的距离相等,则点P 的轨迹上的点到β的距离的最小值是( ) A .33- B .3C .33- D .32【答案】D 【解析】 【分析】建立平面直角坐标系,将问题转化为点P 的轨迹上的点到x 轴的距离的最小值,利用P 到x 轴的距离等于P 到点A 的距离得到P 点轨迹方程,得到()26399y x =-+≥,进而得到所求最小值.【详解】如图,原题等价于在直角坐标系xOy 中,点()3,3A ,P 是第一象限内的动点,满足P 到x 轴的距离等于点P 到点A 的距离,求点P 的轨迹上的点到x 轴的距离的最小值. 设(),P x y ,则()()2233y x y =-+-,化简得:()23690x y --+=,则()26399y x =-+≥,解得:32y ≥, 即点P 的轨迹上的点到β的距离的最小值是32. 故选:D . 【点睛】本题考查立体几何中点面距离最值的求解,关键是能够准确求得动点轨迹方程,进而根据轨迹方程构造不等关系求得最值.二、填空题:本题共4小题,每小题5分,共20分。
(b4联考新高考调研)湖北省部分省级示范性重点中学2021届高三统一质量检测数学试题
绝密★启用前B4联考新高考调研湖北省部分省级示范性重点中学2021届高三统一质量检测数学试题本试卷分第Ⅰ卷(选择题60分)和第Ⅱ卷(非选择题90分)两部分,满分150分,考试时间120分钟.════════════★祝考试顺利★═══════════注意事项:1.答题前,务必在试卷、答题卡规定的地方填写自己的姓名、座位号,并认真核对答题卡上所粘贴的条形码中姓名、座位号与本人姓名、座位号是否一致.务必在答题卡背面规定的地方填写姓名和座位号后两位.2.答第Ⅰ卷时,每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.3.答第Ⅱ卷时,必须使用0.5毫米的黑色墨水签字笔在答题卡...上书写,要求字体工整、笔迹清晰.作图题可先用铅笔在答题卡规定的位置绘出,确认后再用0.5毫米的黑色墨水签字笔描清楚.必须在题号所指示的答题区域作答,超出答题区域书写的答案无效.............,在.试题卷...、草稿纸上答题无效.........4.考试结束后,务必将试卷和答题卡一并上交.第Ⅰ卷(选择题满分60分)一、单项选择题:(本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项符合题目要求.)1.已知集合,集合,若A ∩B =A ∪B ,则实数a 的取值范围为A.[-e ,1] B.[-e ,e ] C.[-1,e ] D.[-1,1]2.已知复数z 1和z 2满足,,则的取值范围为A.[0,13]B.[3,9]C.[0,10]D.[3,13]3.已知θ为锐角,且满足,则tan2θ的值为A. B. C. D.1ln {|1}x a e a x A x x x--+=-≤{|2021ln 2021}B x x x =+ 123z z -=1181446z i i --=--2z tan 311tan θθ=322334434.“你是什么垃圾?”这句流行语火爆全网,垃圾分类也成为时下热议的话题.某居民小区有如下六种垃圾桶:干垃圾湿垃圾有害垃圾可回收垃圾不可回收垃圾其他垃圾一天,张三提着六袋属于不同垃圾桶的垃圾进行投放,发现每个垃圾箱再各投一袋垃圾就满了,作为一名法外狂徒,张三要随机投放垃圾,则法外狂徒张三只投对一袋垃圾或两袋垃圾的概率为A.12 B.59 C.67120 D.1332405.在△ABC 中,满足sin 22A +sin 22B =sin 22C ,则下列说法中错误的是A.C 可能为 B.C 可能为 C.C 可能为 D.△ABC 可能为等腰Rt △6.已知正数a ,b 满足,则正整数n 的最大值为A.7 B.8 C.9 D.117.现有一个三棱锥形状的工艺品P -ABC ,点P 在底面ABC 的投影为Q ,满足,,.若要将此工艺品放入一个球形容器(不计此球形容器的厚度)中,则该球形容器的表面积的最小值为A.42πB.44πC.48πD.49π8.已知在上恒成立,则实数a 的取值范围为A. B. C.D.4π22ln n a b b e a <()ABC S =△22222213QA QB QC AB BC CA++=++12QAB QAC QBC PAB PAC PBC S S S S S S ===△△△△△△21[)x e ∈+∞,11()ln )3x x a x x e a----++≥[02,2π34π1(4][0)2-∞-,∪,1[0)2,(2][0)2-∞-,∪,二、多项选择题:(本题共4小题,每小题5分,共20分.在每小题给出的四个选项中,会有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.)9.已知数列{a n }的首项a 1=m 且满足,其中n ∈N *,则下列说法中正确的是A.当m =1时,有a n =a n+3恒成立B.当m =21时,有a n+4=a n+7恒成立C.当m =27时,有a n+108=a n+111恒成立D.当m =2k (k ∈N *)时,有a n+k =a n+k+2恒成立10.已知函数f (x )=sin ax -a sin x ,x ∈[0,2π],其中a -lna >1,则下列说法中正确的是A .若f (x )只有一个零点,则a ∈B .若f (x )只有一个零点,则f (x )≥0恒成立C .若f (x )只有两个零点,则a ∈D .若f (x )有且只有一个极值点x 0,则恒成立11.已知抛物线H :y 2=2px 的准线与x 轴交于E (-1,0),其焦点为F .过点F 的直线与抛物线H 交于A 、B 两点,则下列说法中正确的是A .B .若在准线上存在一点C ,使△ABC 为等边三角形,则△ABC 的周长为36C .若在准线上存在一点C ,使△ABC 为直角三角形,则△ABC 的内切圆的面积可能为D .若在准线上存在一点C ,使直线AC 与x 轴的交点为D 且△ABC 的重心G在x 轴上,则当取得最小值时,12.已知函数f (x )=x 3+ax +b ,若在曲线y =f (x )的图象上存在四个点构成正方形,且该正方形的面积为f (0),则下列说法中正确的是A .当a 取得最大值时,b 取得最小值,且a 的最大值为-2B .b 的最小值为8C .10a +7b 的最小值为24D .当b 取得最小值时,设g (x )=f (ax +b )-b ,则g (x )有三个零点且各零点处切线斜率的倒数之和为8a +3b14[75(1)]22(1)n n a a n n a a +=-⋅-⋅+-⋅-1(0)2,3(1)2,0131()a a f x π+--<⋅EA FB EB FA⋅=⋅1625πABC S =△AFG CDGS S △△第Ⅱ卷(非选择题满分90分)三、填空题:(本题共4小题,每小题5分,共20分.)13.已知不共线的单位向量和满足,其中,则的取值范围为__________.14.已知双曲线的左顶点为A ,右焦点为F ,离心率为e .若动点B 在双曲线C 的右支上且不与右顶点重合,满足恒成立,则双曲线C 的渐近线的方程为__________.15.已知椭圆的左、右焦点分别为,点P 为椭圆C 上的动点,点A (-a ,b ),点B (a ,b ).在点P 的运动过程中,的面积的最大值为且满足成立的点P 有且只有3个.当点P 在x 轴的下方运动时,记的外接圆半径为R ,内切圆半径为r ,则的最大值为_________,的外接圆面积的取值范围为__________.16.西气东输工程把西部的资源优势变为了经济优势,实现了气能源需求与供给的东西部衔接,同时该项工程的建设也加快了西部及沿线地区的经济发展.在输气管道工程建设过程中,某段直线形管道铺设需要经过一处平行峡谷,勘探人员在峡内恰好发现一处四分之一圆柱状的圆弧拐角,用测量仪器得到此横截圆面的圆心为O ,半径OM =ON 且为1米,而运输人员利用运输工具水平横向移动直线形输气管不可避免的要经过此圆弧拐角,需从宽为38米的峡谷拐入宽为16米的峡谷.如图所示,位于峡谷悬崖壁上的两点A ,B 的连线恰好与圆弧拐角相切于点T (点A ,T ,B 在同一水平面内),若要使得直线形输气管能够顺利地通过圆弧拐角,其长度不能超过__________米.1e →2e →1212--1e e e e λλ→→→→+=64λ≥12,e e →→<>2222:1(0,0)x y C a b a b -=>>BFA e BAF ∠=∠cos cos 2sin sin PAB PBA PBA PAB∠∠+=∠∠r R312PF F △12,F F 22221(0)x y C a b a b +=>>:12PF F △PAB △四、解答题:(本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.(本小题满分10分)在△ABC 中,A<B<C 且tan A ,tan B ,tan C 均为整数.(1)求A 的大小;(2)设AC 的中点为D ,求的值.18.(本小题满分12分)已知x n 是关于x 的方程的实数根,记,其中[x ]表示不超过x 的最大整数且n ∈N *.若a n+1·a n+3>0恒成立,求:(1)数列{a n }的通项公式;(2)数列{a n }的前n 项和S n .19.(本小题满分12分)如图所示,已知直棱柱ABCD -A 1B 1C 1D 1的底面四边形是菱形,点E ,F ,P ,Q 分别在棱AA 1,BB 1,CC 1,DD 1上运动,且满足:BF=DQ ,AA 1=AC =2BD =4CP -4BF =4DQ -4AE =4.(1)求证:EF ∥平面PQB ;(2)是否存在点P 使得二面角B -PQ -E 的正弦值为若存在,求出CP 的长度;若不存在,请说明理由.20.(本小题满分12分)已知椭圆的左、右顶点分别为A ,B 且左、右焦点分别为,点P 为椭圆C 上的动点,在点P 的运动过程中,有且只有6个位置使得△PF 1F 2为直角三角形,且△PF 1F 2的内切圆半径的最大值为(1)求椭圆C 的标准方程;(2)过点B 作两条互相垂直的直线交椭圆C 于M ,N 两点,记MN 的中点为Q ,求点A 到直线BQ 的距离的最大值.BC BD1[]2n na x =2121log 3n n x n n x +-=+1052222221(0)x y C a b a b+=>>:12,F F21.(本小题满分12分)射击是使用某种特定型号的枪支对各种预先设置的目标进行射击,以命中精确度计算成绩的一项体育运动.射击运动不仅能锻炼身体,而且可以培养细致、沉着、坚毅等优良品质,有益于身心健康.为了度过愉快的假期,感受体育运动的美好,法外狂徒张三来到私人靶场体验射击运动.(1)已知用于射击打靶的某型号步枪的弹夹中一共有k (k ∈N *)发子弹,假设张三每次打靶的命中率均为p (0<p <1),靶场主规定:一旦出现子弹脱靶或者子弹打光耗尽的现象便立刻停止射击.记标靶上的子弹数量为随机变量X ,求X 的分布列和数学期望.(2)张三在休息之余用手机逛B 站刷到了著名电视剧《津门飞鹰》中的经典桥段:中国队长燕双鹰和三合会何五姑玩起了俄罗斯轮盘。
湖北省黄冈市2021届新高考第四次模拟数学试题含解析
湖北省黄冈市2021届新高考第四次模拟数学试题一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.如图,四边形ABCD 为平行四边形,E 为AB 中点,F 为CD 的三等分点(靠近D )若AF x AC yDE =+u u u r u u u r u u u r ,则y x -的值为( )A .12-B .23-C .13- D .1-【答案】D【解析】【分析】使用不同方法用表示出AF u u u r,结合平面向量的基本定理列出方程解出.【详解】 解:13AF AD DF AB AD =+=+u u u r u u u r u u u r u u u r u u u r , 又11()()()()22AF xAC yDE x AB AD y AB AD x y AB x y AD =+=++-=++-u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r 1231y x x y ⎧+=⎪∴⎨⎪-=⎩解得5949x y ⎧=⎪⎪⎨⎪=-⎪⎩,所以1y x -=- 故选:D【点睛】本题考查了平面向量的基本定理及其意义,属于基础题.2.已知3sin 2cos 1,(,)2παααπ-=∈,则1tan 21tan 2αα-=+( ) A .12- B .2- C .12 D .2 【答案】B【解析】【分析】结合22sin cos 1αα+=求得sin ,cos αα的值,由此化简所求表达式,求得表达式的值.【详解】由22sin 2cos 1sin cos 1αααα-=⎧⎨+=⎩,以及3(,)2παπ∈,解得34sin ,cos 55αα=-=-. 1tan 21tan 2αα-=+222sin 21cos sin cos cos sin 12cos sin 2222222sin cos sin cos sin cos sin cos sin 2222222221cos 2αααααααααααααααααα-⎛⎫--- ⎪⎝⎭===⎛⎫⎛⎫+--+ ⎪⎪⎝⎭⎝⎭+311sin 524cos 5αα+-===--. 故选:B【点睛】本小题主要考查利用同角三角函数的基本关系式化简求值,考查二倍角公式,属于中档题.3.在各项均为正数的等比数列{}n a 中,若563a a =,则3132310log log log a a a +++=L ( ) A .31log 5+B .6C .4D .5【答案】D【解析】【分析】由对数运算法则和等比数列的性质计算.【详解】由题意313231031210log log log log ()a a a a a a +++=L L 53563563log ()5log ()5log 35a a a a ====.故选:D .【点睛】本题考查等比数列的性质,考查对数的运算法则.掌握等比数列的性质是解题关键.4.甲乙两人有三个不同的学习小组A , B , C 可以参加,若每人必须参加并且仅能参加一个学习小组,则两人参加同一个小组的概率为( )A .13B .14C .15D .16【答案】A 【解析】依题意,基本事件的总数有339⨯=种,两个人参加同一个小组,方法数有3种,故概率为3193=. 5.已知复数z 满足:34zi i =+(i 为虚数单位),则z =( )A .43i +B .43i -C .43i -+D .43i --【答案】A【解析】【分析】 利用复数的乘法、除法运算求出z ,再根据共轭复数的概念即可求解.【详解】由34zi i =+,则3434431i i z i i +-===--, 所以z =43i +.故选:A【点睛】本题考查了复数的四则运算、共轭复数的概念,属于基础题. 6.点O 在ABC ∆所在的平面内,OA OB OC ==u u u v u u u v u u u v ,2AB =u u u v ,1AC =u u u v ,AO AB AC λμ=+u u u v u u u v u u u v (),R λμ∈,且()420λμμ-=≠,则BC =uu u v ( ) A .73 B. C .7 D【答案】D【解析】【分析】确定点O 为ABC ∆外心,代入化简得到56λ=,43μ=,再根据BC AC AB =-u u u r u u u r u u u r 计算得到答案. 【详解】 由OA OB OC ==u u u r u u u r u u u r可知,点O 为ABC ∆外心, 则2122AB AO AB ⋅==u u u r u u u r u u u r ,21122AC AO AC ⋅==u u u r u u u r u u u r ,又AO AB AC λμ=+u u u r u u u r u u u r , 所以2242,1,2AO AB AB AC AB AC AB AO AC AB AC AC AB AC λμλμλμλμ⎧⋅=+⋅=+⋅=⎪⎨⋅=⋅+=⋅+=⎪⎩u u u v u u u v u u u v u u u v u u u v u u u v u u u v u u u v u u u v u u u v u u u v u u u v u u u v u u u v ①因为42λμ-=,② 联立方程①②可得56λ=,43μ=,1AB AC ⋅=-u u u r u u u r ,因为BC AC AB =-u u u r u u u r u u u r , 所以22227BC AC AB AC AB =+-⋅=u u u r u u u r u u u r u u u r u u u r,即BC =u u u r本题考查了向量模长的计算,意在考查学生的计算能力.7.函数()sin x y x-=([),0x π∈-或(]0,x π∈)的图象大致是( ) A . B . C .D .【答案】A【解析】【分析】确定函数的奇偶性,排除两个选项,再求x π=时的函数值,再排除一个,得正确选项.【详解】分析知,函数()sin x y x -=([),0x π∈-或(]0,x π∈)为偶函数,所以图象关于y 轴对称,排除B ,C , 当x π=时,sin 0x x =,排除D , 故选:A .【点睛】本题考查由函数解析式选择函数图象,解题时可通过研究函数的性质,如奇偶性、单调性、对称性等,研究特殊的函数的值、函数值的正负,以及函数值的变化趋势,排除错误选项,得正确结论.8.设a b c ,,为非零实数,且a c b c >>,,则( )A .a b c +>B .2ab c >C .a b 2c +>D .112a b c+> 【答案】C【解析】【分析】取1,1,2a b c =-=-=-,计算知ABD 错误,根据不等式性质知C 正确,得到答案.【详解】 ,a c b c >>,故2a b c +>,2a b c +>,故C 正确; 取1,1,2a b c =-=-=-,计算知ABD 错误;本题考查了不等式性质,意在考查学生对于不等式性质的灵活运用.9.已知向量(1,2),(3,1)a b =-=-r r ,则( )A .a r ∥b rB .a r ⊥b rC .a r ∥(a b -r r )D .a r ⊥( a b -r r )【答案】D【解析】【分析】 由题意利用两个向量坐标形式的运算法则,两个向量平行、垂直的性质,得出结论.【详解】∵向量a =r (1,﹣2),b =r (3,﹣1),∴a r 和b r 的坐标对应不成比例,故a r 、b r 不平行,故排除A ; 显然,a r •b =r 3+2≠0,故a r 、b r不垂直,故排除B ; ∴a b -=r r (﹣2,﹣1),显然,a r 和a b -r r 的坐标对应不成比例,故a r 和a b -r r 不平行,故排除C ;∴a r •(a b -r r )=﹣2+2=0,故 a r ⊥(a b -r r ),故D 正确,故选:D.【点睛】本题主要考查两个向量坐标形式的运算,两个向量平行、垂直的性质,属于基础题.10.已知函数332sin 2044y x x ππ⎛⎫⎛⎫=+<< ⎪⎪⎝⎭⎝⎭的图像与一条平行于x 轴的直线有两个交点,其横坐标分别为12,x x ,则12x x +=( )A .34πB .23πC .3πD .6π 【答案】A【解析】【分析】 画出函数332sin 2044y x x ππ⎛⎫⎛⎫=+<< ⎪⎪⎝⎭⎝⎭的图像,函数对称轴方程为82k x ππ=-+,由图可得1x 与2x 关于38x π=对称,即得解. 【详解】 函数332sin 2044y x x ππ⎛⎫⎛⎫=+<< ⎪⎪⎝⎭⎝⎭的图像如图,对称轴方程为32()42x k k Z πππ+=+∈, ()82k x k Z ππ∴=-+∈, 又330,48x x ππ<<∴=Q , 由图可得1x 与2x 关于38x π=对称, 1233284x x ππ∴+=⨯= 故选:A【点睛】 本题考查了正弦型函数的对称性,考查了学生综合分析,数形结合,数学运算的能力,属于中档题. 11.已知命题p :“关于x 的方程240x x a -+=有实根”,若p ⌝为真命题的充分不必要条件为31a m >+,则实数m 的取值范围是( )A .[)1,+∞B .()1,+?C .(),1-∞D .(],1-∞【答案】B【解析】命题p :4a ≤,p ⌝为4a >,又p ⌝为真命题的充分不必要条件为31a m >+,故3141m m +>⇒>12.正项等差数列{}n a 的前n 和为n S ,已知2375150a a a +-+=,则9S =( ) A .35B .36C .45D .54【答案】C【解析】【分析】 由等差数列{}n a 通项公式得2375150a a a +-+=,求出5a ,再利用等差数列前n 项和公式能求出9S .Q 正项等差数列{}n a 的前n 项和n S ,2375150a a a +-+=,2552150a a ∴--=,解得55a =或53a =-(舍),()91959995452S a a a ∴=+==⨯=,故选C. 【点睛】本题主要考查等差数列的性质与求和公式,属于中档题. 解等差数列问题要注意应用等差数列的性质2p q m n r a a a a a +=+=(2p q m n r +=+=)与前n 项和的关系.二、填空题:本题共4小题,每小题5分,共20分。
湖北省黄冈市2021届新高考数学模拟试题(3)含解析
湖北省黄冈市2021届新高考数学模拟试题(3)一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.过双曲线22221x y a b-= (0,0)a b >>的左焦点F 作直线交双曲线的两天渐近线于A ,B 两点,若B 为线段FA 的中点,且OB FA ⊥(O 为坐标原点),则双曲线的离心率为( )A BC .2D 【答案】C 【解析】由题意可得双曲线的渐近线的方程为by x a=±. ∵B 为线段FA 的中点,OB FA ⊥ ∴OA OF c ==,则AOF ∆为等腰三角形. ∴BOF BOA ∠=∠由双曲线的的渐近线的性质可得BOF xOA ∠=∠ ∴60BOF BOA xOA ∠=∠=∠=︒∴tan 60ba=︒=223b a =.∴双曲线的离心率为22cae aa a==== 故选C.点睛:本题考查了椭圆和双曲线的定义和性质,考查了离心率的求解,同时涉及到椭圆的定义和双曲线的定义及三角形的三边的关系应用,对于求解曲线的离心率(或离心率的取值范围),常见有两种方法:①求出,a c ,代入公式ce a=;②只需要根据一个条件得到关于,,a b c 的齐次式,转化为,a c 的齐次式,然后转化为关于e 的方程(不等式),解方程(不等式),即可得e (e 的取值范围).2.若62a x x ⎛⎫+ ⎪⎝⎭的展开式中6x 的系数为150,则2a =( ) A .20 B .15 C .10 D .25【答案】C 【解析】 【分析】通过二项式展开式的通项分析得到22666150C a x x =,即得解.【详解】由已知得()62123166()rrrr r rr aT C xC a xx --+⎛⎫== ⎪⎝⎭, 故当2r =时,1236r -=,于是有226663150T C a x x ==,则210a =. 故选:C 【点睛】本题主要考查二项式展开式的通项和系数问题,意在考查学生对这些知识的理解掌握水平. 3.已知函数()f x 满足:当[)2,2x ∈-时,()()22,20log ,02x x x f x x x ⎧+-≤≤=⎨<<⎩,且对任意x ∈R ,都有()()4f x f x +=,则()2019f =( )A .0B .1C .-1D .2log 3【答案】C 【解析】 【分析】由题意可知()()20191f f =-,代入函数表达式即可得解. 【详解】由()()4f x f x +=可知函数()f x 是周期为4的函数,∴()()()()20191450511121f f f =-+⨯=-=-⨯-+=-.故选:C. 【点睛】本题考查了分段函数和函数周期的应用,属于基础题.4.一个四棱锥的三视图如图所示(其中主视图也叫正视图,左视图也叫侧视图),则这个四棱锥中最最长棱的长度是( ).A .26B .4C .23D .22【答案】A 【解析】 【分析】作出其直观图,然后结合数据根据勾股定定理计算每一条棱长即可. 【详解】根据三视图作出该四棱锥的直观图,如图所示,其中底面是直角梯形,且2AD AB ==,4BC =,PA ⊥平面ABCD ,且2PA =,∴22222PB =+=222222PD =+=,22CD =2242026PC PA AC =+=+= ∴这个四棱锥中最长棱的长度是26 故选A . 【点睛】本题考查了四棱锥的三视图的有关计算,正确还原直观图是解题关键,属于基础题. 5.已知函数()sin 22f x x π⎛⎫=+ ⎪⎝⎭,则函数()f x 的图象的对称轴方程为( ) A .,4x k k Z ππ=-∈B .+,4x k k Z ππ=∈C .1,2x k k Z π=∈ D .1+,24x k k Z ππ=∈ 【答案】C 【解析】 【分析】()cos2f x x =,将2x 看成一个整体,结合cos y x =的对称性即可得到答案.【详解】由已知,()cos2f x x =,令2,π=∈x k k Z ,得1,2x k k Z π=∈. 故选:C.【点睛】本题考查余弦型函数的对称性的问题,在处理余弦型函数的性质时,一般采用整体法,结合三角函数cos x 的性质,是一道容易题.6.在我国传统文化“五行”中,有“金、木、水、火、土”五个物质类别,在五者之间,有一种“相生”的关系,具体是:金生水、水生木、木生火、火生土、土生金.从五行中任取两个,这二者具有相生关系的概率是( ) A .0.2 B .0.5 C .0.4 D .0.8【答案】B 【解析】 【分析】利用列举法,结合古典概型概率计算公式,计算出所求概率. 【详解】从五行中任取两个,所有可能的方法为:金木、金水、金火、金土、木水、木火、木土、水火、水土、火土,共10种,其中由相生关系的有金水、木水、木火、火土、金土,共5种,所以所求的概率为510.5102==. 故选:B 【点睛】本小题主要考查古典概型的计算,属于基础题.7.设全集U =R ,集合{|(1)(3)0}A x x x =--≥,11|24xB x ⎧⎫⎪⎪⎛⎫=>⎨⎬ ⎪⎝⎭⎪⎪⎩⎭.则集合()U A B I ð等于( )A .(1,2)B .(2,3]C .(1,3)D .(2,3)【答案】A 【解析】 【分析】先算出集合U A ð,再与集合B 求交集即可. 【详解】因为{|3A x x =≥或1}x ≤.所以{|13}U A x x =<<ð,又因为{}|24{|2}xB x x x =<=<. 所以(){|12}U A B x x ⋂=<<ð. 故选:A. 【点睛】本题考查集合间的基本运算,涉及到解一元二次不等式、指数不等式,是一道容易题. 8.若5(1)(1)ax x ++的展开式中23,x x 的系数之和为10-,则实数a 的值为( )A .3-B .2-C .1-D .1【答案】B 【解析】 【分析】由555(1)(1)(1)(1)ax x x ax x ++=+++,进而分别求出展开式中2x 的系数及展开式中3x 的系数,令二者之和等于10-,可求出实数a 的值. 【详解】由555(1)(1)(1)(1)ax x x ax x ++=+++,则展开式中2x 的系数为1255105C aC a +=+,展开式中3x 的系数为32551010C aC a +=+,二者的系数之和为(105)(1010)152010a a a +++=+=-,得2a =-. 故选:B. 【点睛】本题考查二项式定理的应用,考查学生的计算求解能力,属于基础题. 9.已知()f x 是定义是R 上的奇函数,满足3322f x f x ⎛⎫⎛⎫-+=+ ⎪ ⎪⎝⎭⎝⎭,当30,2x ⎛⎫∈ ⎪⎝⎭时,()()2ln 1f x x x =-+,则函数()f x 在区间[]0,6上的零点个数是( )A .3B .5C .7D .9【答案】D 【解析】 【分析】根据()f x 是定义是R 上的奇函数,满足3322f x f x ⎛⎫⎛⎫-+=+ ⎪ ⎪⎝⎭⎝⎭,可得函数()f x 的周期为3,再由奇函数的性质结合已知可得33101022f f f f f -=-====()()()()() ,利用周期性可得函数()f x 在区间[]0,6上的零点个数. 【详解】∵()f x 是定义是R 上的奇函数,满足3322f x f x ⎛⎫⎛⎫-+=+ ⎪ ⎪⎝⎭⎝⎭,33332222f x f x ∴-++=++()() ,可得3f x f x ()()+=,函数()f x 的周期为3,∵当30,2x ⎛⎫∈ ⎪⎝⎭时, ()()2ln 1f x x x =-+, 令0fx =(),则211x x -+=,解得0x =或1, 又∵函数()f x 是定义域为R 的奇函数,∴在区间33[]22-,上,有11000f f f -=-==()(),(). 由3322f x f x ⎛⎫⎛⎫-+=+ ⎪ ⎪⎝⎭⎝⎭,取0x =,得3322f f -=()() ,得33022f f =-=()(), ∴33101022f f f f f -=-====()()()()(). 又∵函数()f x 是周期为3的周期函数,∴方程()f x =0在区间[]0,6上的解有39012345622,,,,,,,,. 共9个,故选D . 【点睛】本题考查根的存在性及根的个数判断,考查抽象函数周期性的应用,考查逻辑思维能力与推理论证能力,属于中档题.10.已知椭圆22:13x C y +=内有一条以点11,3P ⎛⎫ ⎪⎝⎭为中点的弦AB ,则直线AB 的方程为( )A .3320x y --=B .3320x y -+=C .3340x y +-=D .3340x y ++=【答案】C 【解析】 【分析】设()11,A x y ,()22,B x y ,则221113x y +=,222213x y +=,相减得到22033k +=,解得答案. 【详解】设()11,A x y ,()22,B x y ,设直线斜率为k ,则221113x y +=,222213x y +=, 相减得到:()()()()1212121203x x x x y y y y -+++-=,AB 的中点为11,3P ⎛⎫⎪⎝⎭,即22033k +=,故1k =-,直线AB 的方程为:43y x =-+. 故选:C .本题考查了椭圆内点差法求直线方程,意在考查学生的计算能力和应用能力. 11.设函数1()ln1xf x x x+=-,则函数的图像可能为( ) A . B . C . D .【答案】B 【解析】 【分析】根据函数为偶函数排除,A C ,再计算11()22ln 30f =>排除D 得到答案. 【详解】1()ln1xf x x x +=-定义域为:(1,1)- 11()ln ln ()11x xf x x x f x x x-+-=-==+-,函数为偶函数,排除,A C11()22ln 30f => ,排除D 故选B 【点睛】本题考查了函数图像,通过函数的单调性,奇偶性,特殊值排除选项是常用的技巧. 12.已知函数2()ln(1)f x x x-=+-,则函数(1)=-y f x 的图象大致为( )A .B .C .D .【答案】A 【解析】用排除法,通过函数图像的性质逐个选项进行判断,找出不符合函数解析式的图像,最后剩下即为此函数的图像. 【详解】设2()(1)ln 1g x f x x x -=-=-+,由于120112ln 22g -⎛⎫=> ⎪⎝⎭+,排除B 选项;由于()2222(e),e 2e 3eg g --==--,所以()g e >()2e g ,排除C 选项;由于当x →+∞时,()0>g x ,排除D 选项.故A 选项正确. 故选:A 【点睛】本题考查了函数图像的性质,属于中档题.二、填空题:本题共4小题,每小题5分,共20分。
湖北省黄冈市2021届新高考数学模拟试题(2)含解析
湖北省黄冈市2021届新高考数学模拟试题(2)一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.小明有3本作业本,小波有4本作业本,将这7本作业本混放在-起,小明从中任取两本.则他取到的均是自己的作业本的概率为( ) A .17B .27C .13D .1835【答案】A 【解析】 【分析】 利用An P n=计算即可,其中A n 表示事件A 所包含的基本事件个数,n 为基本事件总数. 【详解】从7本作业本中任取两本共有27C 种不同的结果,其中,小明取到的均是自己的作业本有23C 种不同结果,由古典概型的概率计算公式,小明取到的均是自己的作业本的概率为232717C C =.故选:A. 【点睛】本题考查古典概型的概率计算问题,考查学生的基本运算能力,是一道基础题.2.8x ⎛- ⎝的二项展开式中,2x 的系数是( )A .70B .-70C .28D .-28【答案】A 【解析】试题分析:由题意得,二项展开式的通项为3882188((1)r r rr r rr T C xC x --+==-,令38242r r -=⇒=,所以2x 的系数是448(1)70C -=,故选A .考点:二项式定理的应用.3.已知抛物线2:4C y x =和点()2,0D ,直线2x ty =-与抛物线C 交于不同两点A ,B ,直线BD 与抛物线C 交于另一点E .给出以下判断: ①直线OB 与直线OE 的斜率乘积为2-; ②//AE y 轴;③以BE 为直径的圆与抛物线准线相切. 其中,所有正确判断的序号是( )A .①②③B .①②C .①③D .②③【答案】B 【解析】 【分析】由题意,可设直线DE 的方程为2x my =+,利用韦达定理判断第一个结论;将2x ty =-代入抛物线C 的方程可得,18A y y =,从而,2A y y =-,进而判断第二个结论;设F 为抛物线C 的焦点,以线段BE 为直径的圆为M ,则圆心M 为线段BE 的中点.设B ,E 到准线的距离分别为1d ,2d ,M e 的半径为R ,点M 到准线的距离为d ,显然B ,E ,F 三点不共线,进而判断第三个结论. 【详解】解:由题意,可设直线DE 的方程为2x my =+, 代入抛物线C 的方程,有2480y my --=. 设点B ,E 的坐标分别为()11,x y ,()22,x y , 则124y y m +=,128y y =-.所()()()21212121222244x x my my m y y m y y =++=+++=.则直线OB 与直线OE 的斜率乘积为12122y y x x =-.所以①正确. 将2x ty =-代入抛物线C 的方程可得,18A y y =,从而,2A y y =-, 根据抛物线的对称性可知,A ,E 两点关于x 轴对称, 所以直线//AE y 轴.所以②正确.如图,设F 为抛物线C 的焦点,以线段BE 为直径的圆为M ,则圆心M 为线段BE 的中点.设B ,E 到准线的距离分别为1d ,2d ,M e 的半径为R ,点M 到准线的距离为d ,显然B ,E ,F 三点不共线, 则12||||||222d d BF EF BE d R ++==>=.所以③不正确.故选:B. 【点睛】本题主要考查抛物线的定义与几何性质、直线与抛物线的位置关系等基础知识,考查运算求解能力、推理论证能力和创新意识,考查数形结合思想、化归与转化思想,属于难题.4.在平行六面体1111ABCD A B C D -中,M 为11A C 与11B D 的交点,若,AB a AD b ==u u u r r u u u r r ,1AA c =u u u r r ,则与BM u u u u r相等的向量是( )A .1122a b c ++r r rB .1122a b c --+r r rC .1122a b c -+r r rD .1122-++r r ra b c【答案】D 【解析】 【分析】根据空间向量的线性运算,用,,a b c r r r 作基底表示BM u u u u r即可得解.【详解】根据空间向量的线性运算可知11BM BB B M =+u u u u r u u u r u u u u r11112AA B D =+u u u r u u u u r()1111112AA B A A D =++u u u r u u u u r u u u u r()112AA AB AD =+-+u u u r u u u r u u u r因为,AB a AD b ==u u u r r u u u r r ,1AA c =u u ur r ,则()112AA AB AD +-+u u u r u u u r u u u r1122a b c =-++r r r即1122BM a b c =-++u u u u r r r r ,故选:D. 【点睛】本题考查了空间向量的线性运算,用基底表示向量,属于基础题.5.已知向量()3,2AB =u u u r ,()5,1AC =-u u u r ,则向量AB u u u r 与BC uuur 的夹角为( )A .45︒B .60︒C .90︒D .120︒【答案】C【分析】求出()2,3BC AC AB =-=-u u u r u u u r u u u r,进而可求()32230AB BC ⋅=⨯+⨯-=u u u r u u u r ,即能求出向量夹角.【详解】解:由题意知,()2,3BC AC AB =-=-u u u r u u u r u u u r. 则()32230AB BC ⋅=⨯+⨯-=u u u r u u u r所以AB BC ⊥u u u r u u u r ,则向量AB u u u r 与BC uuu r的夹角为90︒. 故选:C. 【点睛】本题考查了向量的坐标运算,考查了数量积的坐标表示.求向量夹角时,通常代入公式cos ,a b a b a b⋅=r rr r r r 进行计算.6.某空间几何体的三视图如图所示(图中小正方形的边长为1),则这个几何体的体积是( )A .323B .643C .16D .32【答案】A 【解析】几何体为一个三棱锥,高为4,底面为一个等腰直角三角形,直角边长为4,所以体积是2113244323⨯⨯⨯=,选A.7.下列选项中,说法正确的是( )A .“20000x R x x ∃∈-≤,”的否定是“2000x R x x ∃∈->,”B .若向量a b r r ,满足0a b ⋅<r r ,则a r 与b r的夹角为钝角 C .若22am bm ≤,则a b ≤D .“()x A B ∈U ”是“()x A B ∈I ”的必要条件 【答案】D 【解析】对于A 根据命题的否定可得:“∃x 0∈R ,x 02-x 0≤0”的否定是“∀x ∈R ,x 2-x >0”,即可判断出;对于B 若向量a b r r ,满足0a b ⋅<r r ,则a r 与b r的夹角为钝角或平角;对于C 当m=0时,满足am 2≤bm 2,但是a≤b 不一定成立;对于D 根据元素与集合的关系即可做出判断. 【详解】选项A 根据命题的否定可得:“∃x 0∈R ,x 02-x 0≤0”的否定是“∀x ∈R ,x 2-x >0”,因此A 不正确; 选项B 若向量a b r r ,满足0a b ⋅<r r ,则a r 与b r的夹角为钝角或平角,因此不正确. 选项C 当m=0时,满足am 2≤bm 2,但是a≤b 不一定成立,因此不正确;选项D 若“()x A B ∈I ”,则x A ∈且x B ∈,所以一定可以推出“()x A B ∈U ”,因此“()x A B ∈U ”是“()x A B ∈I ”的必要条件,故正确. 故选:D. 【点睛】本题考查命题的真假判断与应用,涉及知识点有含有量词的命题的否定、不等式性质、向量夹角与性质、集合性质等,属于简单题.8.如图,正方体1111ABCD A B C D -中,E ,F ,G ,H 分别为棱1AA 、1CC 、11B C 、11A B 的中点,则下列各直线中,不与平面1ACD 平行的是( )A .直线EFB .直线GHC .直线EHD .直线1A B【答案】C 【解析】 【分析】充分利用正方体的几何特征,利用线面平行的判定定理,根据//EF AC 判断A 的正误.根据1111//,//GH A C A C AC ,判断B 的正误.根据11//,EH C D C D 与 1D C 相交,判断C 的正误.根据11//A B D C ,判断D 的正误.【详解】在正方体中,因为//EF AC ,所以//EF 平面1ACD ,故A 正确.因为1111//,//GH A C A C AC ,所以//GH AC ,所以//GH 平面1ACD 故B 正确. 因为11//A B D C ,所以1//A B 平面1ACD ,故D 正确.因为11//,EH C D C D 与 1D C 相交,所以 EH 与平面1ACD 相交,故C 错误. 故选:C 【点睛】本题主要考查正方体的几何特征,线面平行的判定定理,还考查了推理论证的能力,属中档题.9.如图,在ABC ∆中, 13AN AC =u u u r u u u r,P 是BN 上的一点,若23mAC AP AB =-u u u r u u u r u u u r ,则实数m 的值为( )A .13B .19C .1D .2【答案】B 【解析】 【分析】23mAC AP AB =-u u u r u u u r u u u r 变形为23AP mAC AB =+u u u r u u u r u u u r ,由13AN AC =u u u r u u u r 得3AC AN =u u u r u u u r,转化在ABN V 中,利用B P N 、、三点共线可得.【详解】解:依题: 22333AP mAC AB mAN AB =+=+u u u r u u u r u u u r u u u r u u u r,又B P N ,,三点共线,2313m ∴+=,解得19m =.故选:B . 【点睛】本题考查平面向量基本定理及用向量共线定理求参数. 思路是(1)先选择一组基底,并运用该基底将条件和结论表示成向量的形式,再通过向量的运算来解决.利用向量共线定理及向量相等的条件列方程(组)求参数的值. (2)直线的向量式参数方程:A P B 、、 三点共线⇔(1)OP t OA tOB =-+u u u r u u u r u u u r(O 为平面内任一点,t R ∈)10.三棱锥S ABC -中,侧棱SA ⊥底面ABC ,5AB =,8BC =,60B ∠=︒,25SA =,则该三棱锥的外接球的表面积为( ) A .643π B .2563π C .4363π D .2048327π 【答案】B 【解析】由题,侧棱SA ⊥底面ABC ,5AB =,8BC =,60B ∠=︒,则根据余弦定理可得2215825872BC =+-⨯⨯⨯= ,ABC V 的外接圆圆心2sin 33BC r r B ==∴=三棱锥的外接球的球心到面ABC 的距离15,2d SA == 则外接球的半径()22764533R ⎛⎫=+=⎪⎝⎭,则该三棱锥的外接球的表面积为225643S R ππ== 点睛:本题考查的知识点是球内接多面体,熟练掌握球的半径R 公式是解答的关键.11.如图,平面四边形ACBD 中,AB BC ⊥,3AB =,2BC =,ABD △为等边三角形,现将ABD △沿AB 翻折,使点D 移动至点P ,且PB BC ⊥,则三棱锥P ABC -的外接球的表面积为( )A .8πB .6πC .4πD 82 【答案】A 【解析】 【分析】将三棱锥P ABC -补形为如图所示的三棱柱,则它们的外接球相同,由此易知外接球球心O 应在棱柱上下底面三角形的外心连线上,在Rt OBE V 中,计算半径OB 即可. 【详解】由AB BC ⊥,PB BC ⊥,可知BC ⊥平面PAB .将三棱锥P ABC -补形为如图所示的三棱柱,则它们的外接球相同.由此易知外接球球心O 应在棱柱上下底面三角形的外心连线上, 记ABP △的外心为E ,由ABD △为等边三角形, 可得1BE =.又12BCOE ==,故在Rt OBE V 中,2OB = 此即为外接球半径,从而外接球表面积为8π. 故选:A 【点睛】本题考查了三棱锥外接球的表面积,考查了学生空间想象,逻辑推理,综合分析,数学运算的能力,属于较难题.12.已知函数1()cos 22f x x x π⎛⎫=++ ⎪⎝⎭,,22x ππ⎡⎤∈-⎢⎥⎣⎦,则()f x 的极大值点为( ) A .3π-B .6π-C .6π D .3π 【答案】A 【解析】 【分析】求出函数的导函数,令导数为零,根据函数单调性,求得极大值点即可. 【详解】 因为()11cos 222f x x x x sinx π⎛⎫=++=- ⎪⎝⎭, 故可得()12f x cosx '=-+, 令()0f x '=,因为,22x ππ⎡⎤∈-⎢⎥⎣⎦, 故可得3x π=-或3x π=,则()f x 在区间,23ππ⎛⎫-- ⎪⎝⎭单调递增, 在,33ππ⎛⎫-⎪⎝⎭单调递减,在,32ππ⎛⎫ ⎪⎝⎭单调递增,故()f x 的极大值点为3π-. 故选:A. 【点睛】本题考查利用导数求函数的极值点,属基础题. 二、填空题:本题共4小题,每小题5分,共20分。
(2021年高考必备)湖北省黄冈中学高考数学压轴题精编精解四 新人教版
〔2021年高考必备〕湖北省黄冈中学高考数学压轴题精编精解四31.设函数,其图象在点处的切线的斜率分别为.〔Ⅰ〕求证:;〔Ⅱ〕假设函数的递增区间为,求的取值范围;〔Ⅲ〕假设当时〔k是与无关的常数〕,恒有,试求k的最小值.32.如图,转盘游戏.转盘被分成8个均匀的扇形区域.游戏规那么:用力旋转转盘,转盘停止时箭头A所指区域的数字就是游戏所得的点数〔转盘停留的位置是随机的〕.假设箭头指到区域分界线的概率为,同时规定所得点数为0.某同学进行了一次游戏,记所得点数为.求的分布列及数学期望.〔数学期望结果保存两位有效数字〕33.设,分别是椭圆:的左,右焦点.〔1〕当,且,时,求椭圆C的左,右焦点、.〔2〕、是〔1〕中的椭圆的左,右焦点,的半径是1,过动点的作切线,使得〔是切点〕,如下列图.求动点的轨迹方程.34.数列满足, ,.〔1〕求证:是等比数列;〔2〕求数列的通项公式;〔3〕设,且对于恒成立,求的取值范35.集合〔其中为正常数〕.〔1〕设,求的取值范围;〔2〕求证:当时不等式对任意恒成立;〔3〕求使不等式对任意恒成立的的范围.36、椭圆C:+=1〔a>b>0〕的离心率为,过右焦点F且斜率为1的直线交椭圆C于A,B两点,N为弦AB的中点。
〔1〕求直线ON〔O为坐标原点〕的斜率K ON ;〔2〕对于椭圆C上任意一点M,试证:总存在角〔∈R〕使等式:=cos+sin成立。
37、曲线C上任意一点M到点F〔0,1〕的距离比它到直线的距离小1。
〔1〕求曲线C的方程;〔2〕过点①当的方程;②当△AOB的面积为时〔O为坐标原点〕,求的值。
38、数列的前项和为,对一切正整数,点都在函数的图像上,且过点的切线的斜率为.〔1〕求数列的通项公式.〔2〕假设,求数列的前项和.〔3〕设,等差数列的任一项,其中是中的最小数,,求的通项公式.39、是数列的前项和,,且,其中.(1)求数列的通项公式;(2)(理科)计算的值. ( 文科) 求.40、函数对任意x∈R都有f(x)+f(1-x)=.〔1〕求的值;〔2〕数列的通项公式。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
湖北省黄冈市2021届新高考四诊数学试题一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.函数ln ||()xx x f x e =的大致图象为( ) A . B .C .D .【答案】A 【解析】 【分析】利用特殊点的坐标代入,排除掉C ,D ;再由1()12f -<判断A 选项正确. 【详解】1.11.1ln |1.1|( 1.1)0f e --=<,排除掉C ,D ;1211ln 122()22f e e---==1ln 22e <=2e ,1()212f e ∴-=<.故选:A . 【点睛】本题考查了由函数解析式判断函数的大致图象问题,代入特殊点,采用排除法求解是解决这类问题的一种常用方法,属于中档题.2.集合{}2,A x x x R =>∈,{}2230B x x x =-->,则AB =( )A .(3,)+∞B .(,1)(3,)-∞-+∞C .(2,)+∞D .(2,3)【答案】A 【解析】 【分析】 计算()(),13,B =-∞-+∞,再计算交集得到答案.【详解】{}()()2230,13,B x x x =-->=-∞-⋃+∞,{}2,A x x x R =>∈,故(3,)A B =+∞.故选:A . 【点睛】本题考查了交集运算,属于简单题.3.已知水平放置的△ABC 是按“斜二测画法”得到如图所示的直观图,其中B′O′=C′O′=1,A′O′=3,那么原△ABC 的面积是( )A 3B .2C .32 D .34【答案】A 【解析】 【分析】先根据已知求出原△ABC 的高为AO 3△ABC 的面积. 【详解】由题图可知原△ABC 的高为AO 3 ∴S △ABC =12×BC×OA =12×2×33 A 【点睛】本题主要考查斜二测画法的定义和三角形面积的计算,意在考察学生对这些知识的掌握水平和分析推理能力.4.中国古建筑借助榫卯将木构件连接起来,构件的凸出部分叫榫头,凹进部分叫卯眼,图中木构件右边的小长方体是榫头.若如图摆放的木构件与某一带卯眼的木构件咬合成长方体,则咬合时带卯眼的木构件的俯视图可以是A .B .C .D .【答案】A 【解析】 【详解】详解:由题意知,题干中所给的是榫头,是凸出的几何体,求得是卯眼的俯视图,卯眼是凹进去的,即俯视图中应有一不可见的长方形, 且俯视图应为对称图形故俯视图为故选A.点睛:本题主要考查空间几何体的三视图,考查学生的空间想象能力,属于基础题。
5.已知复数z 满足(3)1i z i +=+,则z 的虚部为( ) A .i - B .iC .–1D .1【答案】C 【解析】 【分析】利用复数的四则运算可得2z i =--,即可得答案. 【详解】∵(3)1i z i +=+,∴131iz i i++==-, ∴2z i =--,∴复数z 的虚部为1-. 故选:C. 【点睛】本题考查复数的四则运算、虚部概念,考查运算求解能力,属于基础题.6.根据最小二乘法由一组样本点(),i i x y (其中1,2,,300i =),求得的回归方程是ˆˆˆybx a =+,则下列说法正确的是( )A .至少有一个样本点落在回归直线ˆˆˆybx a =+上 B .若所有样本点都在回归直线ˆˆˆybx a =+上,则变量同的相关系数为1 C .对所有的解释变量i x (1,2,,300i =),ˆˆibx a +的值一定与i y 有误差 D .若回归直线ˆˆˆybx a =+的斜率ˆ0b >,则变量x 与y 正相关 【答案】D 【解析】 【分析】对每一个选项逐一分析判断得解. 【详解】回归直线必过样本数据中心点,但样本点可能全部不在回归直线上﹐故A 错误;所有样本点都在回归直线ˆˆˆybx a =+上,则变量间的相关系数为1±,故B 错误; 若所有的样本点都在回归直线ˆˆˆy bx a =+上,则ˆˆbx a +的值与y i 相等,故C 错误;相关系数r 与ˆb符号相同,若回归直线ˆˆˆy bx a =+的斜率ˆ0b >,则0r >,样本点分布应从左到右是上升的,则变量x 与y 正相关,故D 正确. 故选D . 【点睛】本题主要考查线性回归方程的性质,意在考查学生对该知识的理解掌握水平和分析推理能力.7.在ABC ∆中,内角A 的平分线交BC 边于点D ,4AB =,8AC =,2BD =,则ABD ∆的面积是( )A .B .C .3D .【答案】B 【解析】 【分析】利用正弦定理求出CD ,可得出BC ,然后利用余弦定理求出cos B ,进而求出sin B ,然后利用三角形的面积公式可计算出ABD ∆的面积. 【详解】AD 为BAC ∠的角平分线,则BAD CAD ∠=∠.ADB ADC π∠+∠=,则ADC ADB π∠=-∠,()sin sin sin ADC ADB ADB π∴∠=-∠=∠,在ABD ∆中,由正弦定理得sin sin AB BDADB BAD =∠∠,即42sin sin ADB BAD =∠∠,①在ACD ∆中,由正弦定理得sin sin AC CD ADC ADC =∠∠,即8sin sin CDADC CAD=∠∠,②①÷②得212CD =,解得4CD =,6BC BD CD ∴=+=, 由余弦定理得2221cos 24AB BC AC B AB BC +-==-⋅,sin B ∴==因此,ABD ∆的面积为1sin 2ABD S AB BD B ∆=⋅=故选:B. 【点睛】本题考查三角形面积的计算,涉及正弦定理和余弦定理以及三角形面积公式的应用,考查计算能力,属于中等题.8.已知双曲线22122:1x y C a b -=与双曲线222:14y C x -=没有公共点,则双曲线1C 的离心率的取值范围是( ) A.(B.)+∞C.(D.)+∞【答案】C 【解析】 【分析】先求得2C 的渐近线方程,根据12,C C 没有公共点,判断出1C 渐近线斜率的取值范围,由此求得1C 离心率的取值范围. 【详解】双曲线222:14y C x -=的渐近线方程为2y x =±,由于双曲线22122:1x y C a b -=与双曲线222:14y C x -=没有公共点,所以双曲线1C 的渐近线的斜率2b a ≤,所以双曲线1C的离心率(e =.故选:C 【点睛】本小题主要考查双曲线的渐近线,考查双曲线离心率的取值范围的求法,属于基础题.9.已知函数1,0()ln ,0x xf x x x x⎧<⎪⎪=⎨⎪>⎪⎩,若函数()()F x f x kx =-在R 上有3个零点,则实数k 的取值范围为( )A .1(0,)eB .1(0,)2eC .1(,)2e-∞ D .11(,)2e e【答案】B 【解析】 【分析】根据分段函数,分当0x <,0x >,将问题转化为()f x k x=的零点问题,用数形结合的方法研究. 【详解】 当0x <时,()21f x k xx==,令()()2312g ,'0x g x x x ==->,()g x 在()0x ∈-∞,是增函数,0k >时,()f x k x=有一个零点, 当0x >时,()2ln f x xk xx ==,令()()23ln 12ln h ,x x x h x x x -'== 当(0,)x e ∈时,'()0h x >,∴()h x 在(0,)e 上单调递增, 当(,)x e ∈+∞时,'()0h x <,∴()h x 在(,)e +∞上单调递减, 所以当x e =时,()h x 取得最大值12e, 因为()()F x f x kx =-在R 上有3个零点, 所以当0x >时,()f x k x=有2个零点, 如图所示:所以实数k 的取值范围为1(0,)2e综上可得实数k 的取值范围为1(0,)2e, 故选:B【点睛】本题主要考查了函数的零点问题,还考查了数形结合的思想和转化问题的能力,属于中档题. 10.下列函数中,既是奇函数,又在(0,1)上是增函数的是( ). A .()ln f x x x = B .()x x f x e e -=- C .()sin 2f x x = D .3()f x x x =-【答案】B 【解析】 【分析】奇函数满足定义域关于原点对称且()()0f x f x +-=,在(0,1)上()'0f x ≥即可. 【详解】A :因为()ln f x x x =定义域为0x >,所以不可能时奇函数,错误;B :()x x f x e e -=-定义域关于原点对称,且()()0xxx x f x f x e ee e --+-=-+-=满足奇函数,又()'0xxf x e e-=+>,所以在(0,1)上()'0f x ≥,正确;C :()sin 2f x x =定义域关于原点对称,且()()sin 2sin 20f x f x x x +-=+-=满足奇函数,()'2cos2f x x =,在(0,1)上,因为()()'0'122cos20f f =⨯<,所以在(0,1)上不是增函数,错误;D :3()f x x x =-定义域关于原点对称,且()()33()0f x f x x x x x +-=-+-+=,满足奇函数,()2'31f x x =-在(0,1)上很明显存在变号零点,所以在(0,1)上不是增函数,错误;故选:B 【点睛】此题考查判断函数奇偶性和单调性,注意奇偶性的前提定义域关于原点对称,属于简单题目. 11.设0.380.3log 0.2,log 4,4a b c ===,则( )A .c b a <<B .a b c <<C .a c b <<D .b a c <<【答案】D 【解析】 【分析】结合指数函数及对数函数的单调性,可判断出10a -<<,1b <-,1c >,即可选出答案. 【详解】 由0.30.310log 4log 13<=-,即1b <-,又8881log 0.125log 0.2log 10-=<<=,即10a -<<,0.341>,即1c >,所以b a c <<. 故选:D. 【点睛】本题考查了几个数的大小比较,考查了指数函数与对数函数的单调性的应用,属于基础题. 12.已知平面向量a ,b 满足()1,2a =-,()3,b t =-,且()a ab ⊥+,则b =( )A .3B .C .D .5【答案】B 【解析】 【分析】先求出a b +,再利用()0a a b ⋅+=求出t ,再求b . 【详解】解:()()()1,23,2,2t t a b -+-=-=-+ 由()a ab ⊥+,所以()0a a b ⋅+=()()()12220t ⨯-+-⨯-=,1t =,()3,1b =-,10=b故选:B 【点睛】考查向量的数量积及向量模的运算,是基础题. 二、填空题:本题共4小题,每小题5分,共20分。