数学三十六计续集28:染色法(1)(1)

合集下载

孙子兵法三十六计绝版图

孙子兵法三十六计绝版图

[转] 孙子兵法三十六计绝版图
转载自菰獨浪籽转载于2010年06月19日 11:09 阅读(9) 评论(0) 分类:个人日记
举报
第一套胜战计
第一计瞒天过海第二计围魏救赵第三计
借刀杀人
第四计以逸待劳第五计趁火打劫第六计声东击
西
第二套敌战计
第七计无中生有第八计暗渡陈仓第九计隔岸观

第十计笑里藏刀第十一计李代桃僵第十二计
顺手牵羊
第三套攻战计
第十三计打草惊蛇第十四计借尸还魂第十五计
调虎离山
第十六计欲擒故纵第十七计抛砖引玉第十八计
擒贼擒王
第四套混战计
第十九计釜底抽薪第二十计混水摸鱼第二十一
计金蝉脱壳
第二十二计关门捉贼第二十三计远交近攻第二
十四计假途伐虢
第五套并战计
第二十五计偷梁换柱第二十六计指桑骂槐
第二十七计假痴不颠第二十八计上屋抽梯第二十九计树上开花第三十计反客为主
第六套败战计
第三十一计美人计第三十二计空城计第三十三
计反间计
第三十四计苦肉计第三十五计连环计第三十六
计走为上。

数学破题36计(183页电子版超级秘笈)

数学破题36计(183页电子版超级秘笈)
数学破题 36 计
目录
第 1 计 芝麻开门 点到成功........................................................................................................... 1 第 2 计 西瓜开门 滚到成功........................................................................................................... 4 第 3 计 诸葛开门 扇到成功........................................................................................................... 7 第 4 计 关羽开门 刀举成功........................................................................................................... 9 第 5 计 才子开门 风情万种......................................................................................................... 13 第 6 计 勇士开门 手脚咚咚......................................................................................................... 15 第 7 计 模特开门 见一知众............................

数学三十六计续集27:延后算

数学三十六计续集27:延后算
15 ×15 ×12 15 ×15 ×12 4 = = 60 × 60 — 15 ×15 75 × 45 5 4 最终结果为: 12 + = 12.8 厘米。 5
【精典名题3】皮球掉在一个盛有水的圆柱形水桶中.皮球的直径为 12 厘米,水桶底面直径为 60 厘米.皮球有 2/3 的体积浸在水中(下 图).问皮球掉进水中后,水桶的水面升高多少厘米? 【思路点拨】 皮球掉进水中后排挤出一部分水,使水面升高.这部分 水的体积的大小等于皮球浸在水中部分的体积, 再用这个体积除以圆柱 形水桶底面积,就得到水面升高的高度.方案设计为: 2/3 的球体体积 水桶底面积 可以发现在设计的方案中分子分母部分都有圆周率,可以约去,所以不必在算球 体积时乘出具体得数。球的体积:
=3.14×(18+60+20) =3.14×98 =314-6.28 =307.72(平方厘米).
--省去了三次乘 3.14
--可当成 100 个 3.14-2 个 3.14,体现运算的灵活。
这个计算过程一个竖式也不用列,全部可以口算得出。在讲课中发现大部分学员 都在一部分一部分算再加起来,结果数据很难精确。听我讲完这题后都感触很深,一 定要把简算的思路体现到所有的运算中去,这才是学习速算与巧算的目的。
3
尽最大努力去做得更好!
-马到成功老师
第一块草地扩大 24 倍 ,可供 10×24 头吃 30 天,吃草 10×24×30 份, 第二块草地扩大 8 倍,可供 8×28 头吃 45 天,吃草:8×28×45 份,(以上每个 算式可以不算出具体得数。) 可得 120 公顷每天长草量:(8×28×45-10×24×30)÷(45-30)=(8×28× 15×3-10×24×15×2)÷15=24×28-24×20=24×8 注:除数是 15,就把被除数中的 15 提取,不同因数相减,不算出具体结果。 120 公顷原有草量:8×28×45-24×8×45=32×45 120 公顷地可供多少头牛吃 80 天: 32×45÷80+24×8=210(头) 210÷5=42(头) 再从 120 公顷回归到 24 公顷可供多少头牛吃 80 天。 答案:42 头。 以上运算过程最值得借鉴的是:有些计算结果不是算出得数,而是用 24×8,32 ×45 这样的算式来表示, 代入下一步中可以利用提取公共因数或约分等来化简, 所以 上一步算出精确结果意义不大。 升学模拟 27 1. 如图,边长为3的两个正方形BDKE、正方形DCFK并 排放置,以BC为边向内侧作等边三角形,分别以B、C 为圆心, BK、 CK为半径画弧. 求阴影部分面积. ( π 3.14 ) 2. 一个盛有水的圆柱形容器,底面内半径为5厘米, 深20厘米,水深15厘米.今将一个底面半径为2厘米, 高为17厘米的铁圆柱垂直放入容器中. 求这时容器的水 深是多少厘米? 3. 把一块长15厘米、宽6.28厘米、高5厘米的长方体 铝锭,和底面直径8厘米、高14厘米的圆柱形铝块,熔铸成一个底面半径为5厘米 的圆锥体铝块,求这个圆锥体铝块高是多少厘米? 4. 如图,一只小狗被拴在一个边长为4米的正五边形的建筑物的一个顶点处,四 周都是空地.绳长刚好够小狗走到建筑物外墙边的任一位置.小狗的活动范围是 多少平方米?

数学破题36计(19-27)

数学破题36计(19-27)

第19计 模式开门 请君入瓮●计名释义数码时代就是非数学问题数学化,非数字问题数字化,非函数问题函数化,非方程问题方程化,如此等等.如何“化”法呢?这就是数学建模.数学建模是一种能力,把实际问题加工为数学问题的能力.数学建模是一种思维形式,对中学生来讲,有以下三种形式.第一,现成的模式直接拿来应用;第二,实际问题理想化,从复杂的问题中抓住主要矛盾,使之符合某种现有的模式;第三,对原始问题进行重新建构,“重新”的意思包含:①对原有模型重新组合;②对新问题创建新模式.● 典例示范【例1】 实数x ,y 满足x 2+(y -1)2=1,则使不等式x+y+c ≥0恒成立的实数c 的取值范围是 ( ) A .[-12-,2-1] B .[2-1,+∞) C .( 2-+1,2-1) D .(-∞,2--1)【分析】 容易看出:x 2+(y -1)2=1表示以(0,1)为圆心,1为半径的圆,而x+y+c ≥0表示直线y=-x-c 即其上半平面,因而构造解析几何模型,原题转化为:当点(x ,y )既在直线y=-x-c 上方,又在圆x 2+(y -1)2=1上运动时,实数c 应满足什么条件? 【解答】 如图,斜率为-1的直线 y=-x-c 切圆x 2+(y -1)2=1于A ,B , 交y 轴于M ,N .连AB , 则AB 过圆心C (1,0).等腰直角三角形MCB 中,∣CB ∣=1, ∴∣CM ∣=2,设M (0,-c ), 必-c =1-2,得M (0,1-2).当且仅当-c ≤1-2时,圆x 2+(y -1)2=1 例1题解图 上的点在直线y=-x-c 上或其上方.于是c ≥2-1,选 B .【例2】 正数x ,y ,z 满足方程组⎪⎪⎪⎩⎪⎪⎪⎨⎧=++=+=++2222222224331531x zx z z y y xy x ,则xy +2yz +3xz 的值是 .【分析】从题目的条件看,方程组的左边具有余弦定理或勾股定理的形式,而右边正好是一个直角三角形三边之长的平方值.因此考虑构造直角三角形.【解答】 将原方程组改写如下:⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧=︒∙-+=+⎪⎪⎭⎫ ⎝⎛=︒∙∙-⎪⎪⎭⎫ ⎝⎛+2222222224120cos 23315150cos 31231xz z x z y y x y x , 构造如图的直角三角形ABC ,使AB =5, AC =4,BC =3.又在△ABC 内取一点P , 使∠APB =150°,∠APC =120°, ∠BPC =90°.显然符合题设条件. ∵S △APB +S △BPC +S △CP A =S △ABC , 而S △APB =21x ²31y ²sin150=341xy , S △APC =21xz ²sin120°=43xz , 例2题解图S △BPC =21z ²31y =321yz ,S △ABC =6. ∴341xy +43xz +321yz =6,∴xy +2yz +3xz =24.3.【例3】 某城市为了改善交通状况,需进行路网改造,已知原有道路a 个标段,(注:1个标段是指一定长度的机动车道),拟增建x 个标段的新路和n 个道路交叉口,n 与x 满足关系n=ax+b ,其中b 为常数,设新建一个标段道路的平均造价为k 万元;新建一个道路交叉口的平均造价是新建1个标段道路的平均造价的β倍(β≥1),n 越大,路网越通畅,记路网的堵塞率为μ,它与β的关系为μ=)1(21β+.(Ⅰ)写出新建道路交叉口的总造价y (万元)与x 的函数关系式;(Ⅱ)若要求路网的堵塞率介于5%~10%之间,而新增道路标段为原有道路的标段的 25%,求新建的x 个标段的总造价与新建道路交叉口的总造价之比p 的取值范围.(Ⅲ)当b =4时,在(Ⅱ)的假设下,要使路网最通畅,且造价比p 最高时,问原有道路标段为多少个? 【解答】 (Ⅰ)新建x 个标段,则应建n=ax+b 个道口,建x 个标段需kx 万元,建(ax+b )个道口需y=k β(ax+b )(万元). (Ⅱ)∵μ∈[5%,10%], ∴0.05≤)1(21β+≤0.1,5≤1+β≤10,即β∈[4,9],又p =y kx =)4()41(41)(2b a a b a a a b ax x +=+∙=+βββ. ∵p >0,β>0,∴ba a 42+>0,当β∈[4,9]时,β1∈[91,41],所求p 的范围是: )4(4)4(922b a ap b a a +≤≤+. (Ⅲ)路网最畅通,则μ最小,即β最大, 故β=9,又b =4. ∴p =721162911691)16(92=⨯≤⎪⎭⎫ ⎝⎛+=+a a a a ,当且仅当a =a 16. a >0,即a =4时,造价比p =721为最高. ∴满足(Ⅲ)的条件的原有道路标段是4个.【点评】 本例属城市规划型应用题,牵涉到的数学知识虽然不变,可是题目牵涉到的新概念如“标段”、“堵塞率”、还有新定义的字母n 、β、μ等都会成为解题的拦路虎,所以解这类应用题的基本办法是反复阅读,务求读懂题,读懂一部,做一步,在做中加深理解,从而创造再做的条件,如此反复,必可导致问题的完全解决.【例4】 你正受聘向一家公司的生产经理提供合理方案,生产工序的一部分是从一块小半圆的扇形钢板上切割出一块矩形钢板,问你该如何安排切割方案才能使损耗最小? 【思考】 此题条件太抽象,完全靠自主建立模型,在建立几何模型时要考虑全面半圆扇形分锐角、直角、钝角三种情况,恰当的引入参数角θ将所求量用其表示出来. 【解答】 设扇形OAB 的半径为R ,中心角为2α. (1)当中心角小于直角时,如图(1)所示,设∠BOD=θ,则S □CDEF =DE ²EF =Rsin θ²ααθα2sin 22sin )2sin(2R R =-²[cos2(α-θ)-cos2α]当2(α-θ)=0,即θ=α时,S □CDEF 有最大值22R tan α.(2)当中心角等于直角时,如图(2)所示,因EF =OE =R cos θ,则S □CDEO =DE ² EF =R sin θ²R cos θ=22R sin2θ,当2θ=2π即θ=4π=α,S □CDEO 有最大值22R . (3)当中心角大于直角时,如图(3)所示,CDEF 为扇形的内接矩形,取B A的中点M ,连结OM ,则∠BOM =α,∠DEO =π-α,令∠DOM =θ,则矩形面积S=CD ²DE =2R ²sin θααθαθαθαsin sin )sin(sin 2sin )sin(22R R R =-=-[cos (2θ-α)-cos α],当cos(2θ-α)=1. 即θ=2α时,S max =2tan sin )cos 1(22αθαR R =- .此时,只需将扇形弧四等分,以第一和第三分点的线段为一边作内接矩形CDEF ,再沿其周界切开即可.例4题解图●对应训练1.已知a<b<c ,求证:a 2b +b 2c+c 2a <ab 2+bc 2+ca2.2.已知a ,b ,c ,d 为实数,求证:.)()(222222d b c a d c b a ++±≥+++3.设n 是大于1的自然数,求证:.2121211511311+>⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛+n n 4.若a ,b ≠0,且a 2+b 2=1,求证:.91122≥⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛+b b a a5.α,β,γ均为锐角,且cos 2α+cos 2β+cos 2γ=2,求证:tan αtan βtan γ≤.426.某企业生产一种机器的固定成本(即固定投入)为5000元,但每生产1台时又需可变成本(即另增加投入)25元,市场对此商品的年需求量为500台,销售的收入函数为R (x )=5x -221x (万元)(0≤x ≤5),其中x 是产品售出的数量(百台). (1)把利润l 表示为产量x 的函数L (x); (2)年产量为多少时,企业所得利润得大? (3)年产量为多少时,企业才不会亏本?7.在边长为5cm ,6cm ,7cm 的三角形铁皮中,能否剪下一个面积不小于8cm 2的圆形铁片?请做出准确回答并证明你的结论 ●参考答案1.原题即证:a 2b +b 2c +c 2a -ab 2-bc 2-ca 2<0或a 2(b-c )+a (c 2-b 2)+bc (b-c )<0.设f (a )=a 2(b-c )+a (c 2-b 2)+bc (b-c ) (a<b<c ),这里b-c <0,且Δ=(b+c )2(b-c )2-4bc (b-c )2=(b-c )4>0. ∴f (a )的图像是开口向下的抛物线,其对称轴为x =2c b +,而2cb +>b>a ,函数在⎪⎭⎫ ⎝⎛+∞-2,c b •上递增, ∴f (a )<f (b ),但f (b )=0, ∴f (a )<0,故a 2b +b 2c +c 2a <ab 2+bc 2+ca 2.2 如图所示,在直角坐标系中, 设有A (a ,b ),B (c ,d )两点, 连接AO ,OB ,显然|OA |+|OB |≥|AB |(当A 、O 、B 共线时等式成立).∴222222)()(d b c a d c b a -+-≥+++若将点B 的坐标改为 (-c ,-d ),则有:222222)()(d b c a d c b a +++≥+++. 第2题解图3 设⎪⎭⎫ ⎝⎛-+∙∙⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛+=1211511311111n A , 即122563412-∙∙=n n A, 则nn A 212674523+∙∙∙∙> . 两式相乘:A 2>2n +1,∴A =121211511311111+>⎪⎭⎫ ⎝⎛-+∙∙⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛+n n 2. 即2121211511311111+>⎪⎭⎫ ⎝⎛-+∙∙⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛+n n . 4.在坐标平面内设有两点A (a ,b ), B ⎪⎭⎫ ⎝⎛--b •a1,1,则|AB |=2211⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛+b b a a设过A 的直线l :ax+by -1=0.∵a ²a +b ²b -1=a 2+b 2-1=0, ∴点A (a ,b )符合条件a 2+b 2=1. 作BC ⊥l 于C ,则|AB |≥|BC | (当直线l ⊥AB 时等式成立).∵|BC |=,3|111|22=+-⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-ba b b a a 第4题解图∴2211⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛+b b a a ≥3. 即2211⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛+b b a a ≥9.5 如图所示,设长方体的长、宽、高分别为a ,b ,c ,连接BD 1,设∠BD 1B 1=α, ∠BD 1A =β,∠BD 1C =γ.∵BD 1=222c b a ++,B 1D 1=22b a +, AD 1=22c b +, CD 1=22a c +,∴满足cos 2α+cos 2β+cos 2γ=2,且α,β,γ均为锐角. 第5题解图 于是 tan α²tan β²tan γ=222222ca b cb a ba c +∙+∙+≤221222=∙∙ac bc ab abc故 tan α²tan β²tan γ≤.42 6.(1)年产量在500台以内(即0≤x ≤5),可全部售出;年产量超过500台(即x >5).只能售出500台,x (百台)的生产成本为C (x )=0.25x +0.5(万元). 故利润函数L (x )=R (x )-C (x ).当0≤x ≤5时,L (x )=(5x -21x 2)-(0.25x +0.5)= -21x 2+4.75x -0.5. 当x >5时,由于只能售出500台,∴L (x )=(5³5-21³52)-(0.5+0.25x )=12-0.25x .于是⎪⎩⎪⎨⎧>⋅-≤≤⋅-⋅+=)5(25012)50(50754211)(2x x •x x x x L .(2)为使利润最大,须求L (x )的最大值,显然x >5时不可取(会造成积压).当0≤x ≤5时,∵L ′(x )=-x +4.75,命L ′(x )=0,得x =4.75,L (x )的图像为开口向下的抛物线,∴当x =4.75时,[L (x )]max=3234521419212=-⎪⎭⎫ ⎝⎛⨯ =10.78125(万元),即年产量为475台时,企业利润最大.(3)为使企业不亏本,必须L (x )≥0.显然,0≤x ≤5时,应使-21x 2+4.75x -0.5≥0. 即2x 2-19x +2≤0,解得0.11≤x ≤14,综合得:0.11≤x ≤5.x >5时,应使12-0.25x ≥0,得5<x ≤48.于是,为使企业不亏本,产量应在11台至4800台之间. 7.可以办到.如图所示,证明如下: 设△ABC 内切圆半径为r ,则S △ABC =21(5+6+7)r=9r ① ∵cos B =51652493625=∙∙-+∴sin B =6522511=- ∴S △ABC =21²5²6²652=66(cm 2) ② 第7题解图 比较①,②:9r =66得r =632(cm ),于是 S ⊙O =338383622⨯>=⎪⎪⎭⎫ ⎝⎛ππ=8(cm )2. 第20计 讨论开门 防漏防重●计名释义为什么要讨论?因为对研究的对象不能作统一的结论.既然“统”不了,那就只有“分”.分就是化整为零,以便各个击破.为什么“分”后易“破”呢?因为在“部分”中有了“个性”,这相当于增加了解题的条件.分类要注意“标准统一”,这将可避免“重”和“漏”,用集合的话说,就是,把全集合分成若干个子集之后,要使: ①两两子集之交为“空”;②所有子集之并为“全”.分是手段,合为目的,分类讨论完毕之后,要整合出对整个问题的答案.●典例示范【例1】 已知a ∈R ,函数f (x )=x 2|x-a |.(1)当a =2时,求使f (x )=x 成立的x 的集合; (2)求函数y =f (x )在区间[1,2]上的最小值.【分析】 (1)只需分两种情况讨论; (2)含参数的讨论问题,一定要把所有情况考虑出来,否则容易丢解.【解答】 (1)当a =2时,f (x )=x 2|x -2|=⎪⎩⎪⎨⎧<-≥-2)2(2)2(22•x x x •x x x当f (x )=x 时,即x 2(x -2)=x (x ≥2)或x 2(2-x )=x (x <2) x 3-2x 2-x =0,x (x 2-2x -1)=0, x 1=0(舍去),x 2=1-2(舍去),x 3=1+2.当x 2(2-x )=x 时,∴x 3-2x 2+x =0,x (x 2-2x +1)=0,x =0或x =1. 综上所述:a =2时,f (x )=x 成立的x 的集合为{0,1,1+2}.(2)f (x )=⎪⎩⎪⎨⎧<-≥-a•x x a x a •x a x x )()(22若a ≤1时,即a <1≤x ≤2,f (x )=x 3-ax 2.∴f ′(x )=3x 2-2ax =0,∴x 1=0,x 2=32a ∵1≤x ≤2,∴32a<x ,0<x . ∴x =0或x =32a 都不在[1,2]内,而x ∈[1,2], f ′(x )>0,即f (x )在[1,2]内为增函数. ∴f (1)=1-a ,f (2)=8-4a . ∴f (x )min =1-a .若a ∈(1,2),即f (x )=⎪⎩⎪⎨⎧≤<-≤≤+-212323x •a ax x a x •ax x当1≤x ≤a 时,f (x )=-3x 2+2ax =0,x 1=0,x 2=32a . 若a <32时,1≤x<a ,f ′(x )<0. ∴f ′(x )=-x 3+ax 2在[1,a ]为减函数, ∴f (x )min =-a 3+a 3=0.当a ≤x ≤2时,f ′(x )=3x 2-2ax =0,x 1=0,x 2=32a . 当x ∈[a ,2],f ′(x )>0. ∴f (x )在[a ,2]上为增函数. ∴f (x )min =0.当a >2时,x ∈[1,2]. f (x )=x 2(a-x )= ax 2-x 3. ∴f ′(x )=2ax -3x 2=0. ∴x 1=0,x 2=32a 若34<32a ≤2,f (x )在[1,32a ]上为增函数. f (1)=a -1,f (32a )=94a 3-278a 3=274a 3.f (x )在[32a ,2]为减函数,f (2)=4a -8. ∴f (x )min 为a -1,4a -8中的较小数. 即2<a <37时,f (x )min = 4a -8 37≤a ≤3,f (x )min =a -1 a >3时,x ∈[1,2]时,f ′(x )>0 ∴f (x )min =f (1)=a -1.综上所述,a ≤1时,f (x )min =1-a , a ∈(1,2)时,f (x )min =0, a ∈(2,37)时,f (x )min = 4a-8; a ∈[37,3]时,f (x )min =a -1; a ∈(3,+∞)时,f (x )min =a -1. 【点评】 本题是对分类讨论的思想考查得非常充分和深入的一道试题.第(1)问中要对x 的取值进行讨论,第(2)问中对a 的取值进行讨论,而且分了四种情况,可见分类讨论的考查无处不在.【例2】 设f (x )=g (x )-h (x ),其中g (x )=2x 3+x +5,h (x )=(3a +3)x 2-12a (1-a )x +x . (1)若x >0,试运用导数的定义求g ′(x );(2)若a >0,试求定义在区间[0,6]上的函数f (x )的单调递增区间与单调递减区间.【解答】 (1)g ′(x )=⎥⎦⎤⎢⎣⎡∆-∆++∆-∆+∙=∆-∆+→∆→∆x x x x x x x x x x g x x g x x 3300)(2lim )()(lim=⎥⎦⎤⎢⎣⎡+∆+∆∆+∆∆+∆+∆∙→∆)()()(332lim 3220x x x x xx x x x x x x =xx xx x x x x x x 216}1])()(33[2{lim 222+=+∆++∆+∆+→∆.(2)由f (x )=g (x )-h (x )=2x 3-(3a +3)x 2+12a (1-a )x +5得f ′(x )=6x 2-(6a +6)x +12a (1-a )=6(x -2a )(x-1+a ),令f ′(x )=0得x =2a 或x =1-a . ①当0<a <31时,0<2a <1-a <6,于是函数f (x )在[0,2a ]上单调递增,在[2a ,1-a ]上单调递减,在[1-a ,6]上单调递增; ②当31≤a <1时,0<1-a ≤2a <6,于是函数f (x )在[0,1-a ]上单调递增,在[1-a ,2a ]上单调递减,在[2a ,6]上单调递增;③当1≤a <3时,1-a ≤0<2a <6,于是函数f (x )在[0,2a ]上单调递减,在[2a ,6]上单调递增;④当a ≥3时,1-a <0<6≤2a ,于是函数f (x )在[0,6]上单调递减.【点评】 本题中对a 的划分是关键,最主要的是找出它的分界点.只要有了正确的分类,再进行讨论就不成问题了.●对应训练1.若集合A 1,A 2满足A 1∪A 2=A ,则称(A 1,A 2)为集合A 的一种分拆,并规定:当且仅当A 1=A 2时,(A 1,A 2)与(A 2,A 1)为集合A 的同一种分拆,则集合A ={a 1,a 2,a 3}的不同分拆种数是A 27B 26C 9D 82.若数列{a n }的通项公式为a n =2)23()1(23n n n n n ------++,n ∈N +,则)(l i m 21n n a a a ++∞→ 等于 ( )A2411 B 2417 C 2419 D 24253. 如图,已知一条线段AB , 它的两个端点分别在直二面角α-l-β的两个面内转动, 若AB 和平面α、β所成的角分别为θ1、θ2,试讨论θ1+θ2的范围.第3题图●参考答案1. A 由于A ={a 1,a 2,a 3}=A 1∪A 2,以A 1为标准分类. A 1是,则A 2={a 1,a 2,a 3},这种分拆仅一种,即 C 03²C 33=1;如A 1为单元素集,有C 13种可能,对其中每一种,例如A 1={a 1},由于必有a 1,a 3∈A 2,且a 1∈A 2或a 1∉A 2都符合条件. 这种分拆有 C 13·C 12=6种.如A 1为双元素集,有C 23种可能,对其中每一种,不妨设A 1={a 1,a 2},则必a 3∈A 2,此外对a 1,a 2可以不选,选1个或全选,有22=4种选法,这种分拆共有 C 23²4=12种. 若A 1为三元素集,则A 2可以是{a 1,a 2,a 3}的任何一个子集,故这种分拆有23种. 于是共有1+6+12+8=27种不同的分拆.2.分析:直接赋值,无法求解,观察题设及欲求式,需对n 分奇数、偶数两种情况进行讨论.解析:根据题意,得a n =⎪⎩⎪⎨⎧--为偶数为奇数•n •n nn ,3,,2∴{a 2n -1}是首项为21,公比为41的等比数列,{a 2n }是首项为91,公比为91的等比数列. ∴)(lim )(lim )(lim 423121 +++++=++∞→∞→∞→a a a a a a a n n n n=.24191911219141=-+- 故选 C . 点悟:解分类讨论问题的一般步骤为:(1)确定分类讨论的对象:即对哪个参数进行讨论;(2)对所讨论的对象进行合理的分类(分类时要做到不重复、不遗漏,标准要统一、分层不越级);(3)逐类讨论:即对各类问题详细讨论,逐步解决; (4)归纳总结:将各类情况总结归纳.3.分析:由于AB 于l 的位置关系不定,故需分类讨论. 解:(1)当AB ⊥l 时,显然θ1+θ2=90° .(2)当AB 与l 不垂直时,在平面α内作AC ⊥l ,垂足为C ,连结BC .∵平面α⊥平面β,∴AC ⊥平面β. ∴∠ABC 是AB 与平面β成的角,即∠ABC =θ2. 在平面β内作BD ⊥l ,垂足为D ,连结AD . 同理可得∠BAD =θ1. 在Rt △BDA 和Rt △ACB 中,∵BD<BC ,∴ABBCAB BD <,即sin θ1<sin ∠BAC . ∵θ1与∠BAC 均为锐角,∴θ1<∠BAC . 而∠BAC +θ2=90°,∴0°<θ1+θ2<90°. (3)若线段AB 在直线l 上,则θ1+θ2=0°. 综上,可得0°≤θ1+θ2≤90°.点悟:由于几何问题中各元素的位置关系不定,对于所有可能的情况,必须分开一一进行研究.第21计 图表开门 信息传送●计名释义图表也是一种数学语言.这种语言以图形和表格的形式传送信息,它有立意新颖,设计灵活,构思精巧,内涵丰富,解法多样等特点,因而备受当今命题人的青睐,许多创新题型每每在图表上打主意.解图表型题目应在读图表,识图表和用图表上找窍点,通过观察找到其中的关键点,有效地实现图表语言到文字语言的转化,从而在思考上引起质的飞跃,从而达到破题的目的. ●典例示范【例1】 如图,甲、乙两人分别位于方格中A 、B 两处,从某一时刻开始 ,两人同时以每分钟一格的速度向东或 西或南或北方向行走,已知甲向东、 西行走的概率均为41,向南、北行走的 概率分别为31和p ; 乙向东、西、南、北行走的概率均为q . 例1题图 (1)求p 和q 的值;(2)试判断最少几分钟,甲、乙两人可以相遇,并求出最短时间内可以相遇的概率. 【分析】 同时进行两个相互独立事件,因为概率的总和为1,因此有以下解答. 【解答】 (1)甲向四个方向行走是一个必然事件, ∴41+41+31+p =1, ∴p =61. 同理4q =1,∴q=41. 【分析】 甲、乙二人到底在哪儿相遇没有定数,但我们可以看到,甲、乙二人在一个正方形的两个对角顶点上.他们要在最短时间内相遇,他们必须沿着这个正方形的边行走. 【解答】 (2)如解图,设甲、乙两人在C 、D 、E 处 相遇的概率分别为p C 、p D 、p E . 【插语】 从图形中来, 回到图形中去,在图上标明这三点,让我们的思路一目了然, 才会有下面的解答.【继解】 甲、乙两人最少需要2分钟可以相遇. 【插语】 每人朝对方走2步,因为他们的速度相同(每分钟都是一格). 例1题解图 【继解】 则p C =576141416161=⎪⎭⎫ ⎝⎛⨯⨯⎪⎭⎫⎝⎛⨯, p D =2961414124161=⎪⎭⎫ ⎝⎛⨯⨯⎪⎭⎫ ⎝⎛⨯, p E =⎪⎭⎫⎝⎛⨯4141³⎪⎭⎫ ⎝⎛⨯4141=.2561∴p C +p D +p E =.23043725619615761=++ 即所求的概率为230437. 【评说】 这是一个几何图形信息题,具有多样性、直观性的特征,充分挖掘图形内涵,全方位地审视图形,全面掌握图形所提供的信息,以形助数是解决信息题的关键. 【例2】 函数f (x )=ax 3+bx 2+cx+d 的部分数值如下:则函数y =lg f (x )的定义域为 .【分析】 所求函数为复合函数,只需f (x )>0即可,但f (x )中含有四个系数a ,b ,c ,d ,所以先确定它们的值.【解答】 设f (x )=a (x +1)(x -1)(x -2),而f (0)=4,∴a=2.【插语】 为什么这样设?这来源于表格中y 有三个0值点,关键点的选取,使我们的系数一下减少了3个. 此设是本题的一个突破口. 【续解】 ∴f (x )=2(x +1)(x -1)(x -2).要使y =lg f (x )有意义,则有f (x )=2(x +1)(x -1)(x -2)>0, 由数轴标根法解得-1<x <1或x >2.∴函数y =lg f (x )的定义域为(-1,1)∪(2,+∞).【评说】 本题把求函数解析式与高次不等式的解法巧妙地结合在一起,而且给出了多余的条件信息,属开放问题,这些正是题目命制的创新之处.解答这类信息过剩的问题时,要注意从众多的信息中,观察、分析、筛选,放弃无用的信息,挑选出与解题有关的信息,找到解题的突破口,这种能力正是在当今“信息大爆炸”的社会所需要的能力.●对应训练1.甲、乙两射击运动员进行射击训练比赛,射击相同的次数,已知两运动员射击的环数稳定在7,8,9,10环.他们的这次成绩画成频率分布直方图如图所示.(1)根据这次训练比赛的成绩频率分布直方图,推断乙击中8环的概率P (ξ乙=8),并求甲,乙同时击中9环以上(包括9环)的概率;(2)根据这次训练比赛的成绩估计甲,乙谁的水平更高(即平均每次射击的环数谁大).第1题图 2.如图,小正六边形沿着大正六边形的边,按顺时针方向滚动.小正六边形的边长是大正六边形边长的一半,如果小正六边形沿着大正六边形的边滚动一周后返回出发时的位置,在这个过程中向量OA 围绕着点O 旋转了θ角,其中O 为小正六边形的中心,则 sin 6cos 6θθ+= .第2题图●参考答案1.(1)由图乙可知P (ξ乙=7)=0.2, P (ξ乙=9)=0.2,P (ξ乙=10)=0.35, ∴P (ξ乙=8)=1-0.2-0.2-0.35=0.25.由图甲可知P (ξ甲=7)=0.2,P (ξ甲=8)=0.15,P (ξ甲=9)=0.3, ∴P (ξ甲=10)=1-0.2-0.15-0.3=0.35.∵P (ξ甲≥9)=0.3+0.35=0.65,P (ξ乙≥9)=0.2+0.35=0.55. ∴甲、乙同时击中9环以上(包括9环)的概率为:P =P (ξ甲≥9)³P (ξ乙≥9)=0.65³0.55=0.3575. (2)∵E ξ甲=7³0.2+8³0.15+9³0.3+10³0.35=8.8,E ξ乙=7³0.2+8³0.25+9³0.2+10³0.35=8.7, ∴E ξ甲>E ξ乙,所以估计甲的水平更高. 【评说】 条形统计图能直观反映各种数据,具有可比性、规律性.理解图形内容,找出变化趋势和规律,是解答条形图信息的关键.2.从第一图的开始位置变化到第二图时,向量OA 绕点O 旋转了3π-(注意OA 绕点O 是顺时针方向旋转),从第二图位置变化到第三图时,向量OA 绕点O 旋转了32π-,则从第一图的位置变化到第三图位置时,正好小正六边形滚过大正六边形的一条边,向量绕点O 旋转了-π.则小正六边形沿着大正六边形的边滚动一周后返回出发时的位置,向量绕点O 共旋转了-6π,即θ= -6π,因而 sin1)sin()cos(6cos6-=-+-=+ππθθ.【评说】 本题要仔细阅读题意,分析图形,把握图形与题意的联系,可从简单情形,特. 第22计 数形开门 体美神丰●计名释义“有数无形少直观,有形无数入微难”.——这是华罗庚先生讲数形结合的意义. “凭直观,图上看;想深入,解析出”.——这是专家们谈形与数各自的特征. “遇式不用愁,请你先画图;看图莫着急,静心来分析”.——这是在讲数形互动. “图形有形象,记数不易忘;解析有内功,看图静变动”.——这是在讲数形互补. “观图见形美,初品数学味;想数内涵丰,数学色调浓”.这是美学家对数形的赞赏. 函数有图形——图象,轨迹有图象——图形,三角、几何就更不必说,集合有韦恩图,逻辑有方框图,组合、二项式有杨辉三角,如此等等.然而,数形结合中的形,仅相对数而言.如几何中最简单的直线,平面等,现实生活中并不存在.这里的形是数的象征,是精神的直观.现在有人把“函数图象”写成“函数图像”,这是对数形的大误,你怎么不把“想象”写成“想像”呢?●典例示范【例1】 若直线y =2a 与函数y =|a x -1|(a>0,a ≠1)的图象有两个公共点,则a 的取值范围是 .【解答】 函数y =|a x-1|=⎪⎩⎪⎨⎧≤-≥-0101•x a •x a xx ,其图象由y =|a x |(a >0,a ≠1)的图象下移一个单位得到.如图,当a >1时,直线y =2a 与y =|a x -1|(a >0,a ≠1)的图象仅一个交点; 当0<a<1时,当且仅当0<2a <1时,直线y =2a 与y =|a x -1|(a >0,a ≠1)的图象有两个公共点,解得a ∈(0,21).例1题解图【评注】 本题也是有数无形,解法是“图形开门,体美神丰”. 【例2】当曲线y =1+24x -与y =k (x -2)+4有两个相异交点时,实数k 的取值范围是 ( ) A .⎪⎭⎫⎝⎛∞+•,125 B .⎥⎦⎤ ⎝⎛43,125• C .⎪⎭⎫ ⎝⎛125,0• D .⎥⎦⎤⎝⎛43,31•【解答】 方程即y =1+24x -即x 2+(y-1)2= 4 (y ≥1),它表示以(0,1)为圆心,2为半径的上半圆;方程y =k (x -2)+4表示过(2,4)且斜率为k 的直线.原题的含义是:当直线与半圆有两个相异交点时,该直线的斜率应在什么范围? 如图,直线MB 、MC 与半圆切于B 、C , 半圆的两端依次为A (-2,1)(2,1). 显然,线段AB 内任意一点与M 的连线 与半圆都只一个公共点, ∴k max =k MA =432214=+-,设直线 MC 交直线y =1于N ,令∠DMC =∠DMB =α,∠DNM =β,例2题解图显然tan α=32||||=BM DB , ∴tan β=tan(90°-2α)= cot2α=12521tan 22tan 1294=⨯-⨯-αα, 于是斜率k ∈⎥⎦⎤⎝⎛43,125•,选 B . 【反思】 只有准确理解“数”的意义,才能恰当的“图形开门,体美神丰”. 【例3】 设实数(x ,y )满足方程x 2+y 2-2x -2y +1=0,则yx 1+的最小值是 . 【解答】43圆(x -1)2+(y -1)2=1的圆心C (1,1),半径r=1. 如图所示, 此圆在第一象限且与两轴相切, 为求y x 1+的最小值. 先求yx 1+的最大值. yx 1+表示圆上的点(x,y )与定点P (-1,0)连线的斜率. 例3题解图 ∴k P A ≤yx 1+≤kPB (其中P A 、PB 为过P 所引圆的切线). 设∠APC =∠CPB=θ,则tan θ=21, ∴tan ∠BP A =tan 2θ=34)(122121=-⨯. ∴.341min =⎥⎦⎤⎢⎣⎡+y x 从而.431min =⎥⎦⎤⎢⎣⎡+y x 【例4】 已知f (x )是定义在(-3,3)上的奇函数,当x ∈(0,3)时,f (x )的图像如图所示,那么不等式f (x )²cos x <0的解集是 .【思考】 将f (x )在 (-3,3) 内的图像补充完整如图所示.可知:当x ∈(-1,0)∪(1,3)时,f (x )>0,为使f (x )²cos x <0,只须cos x <0,得x ∈⎪⎭⎫⎝⎛3,2•π; 当x ∈(-3,-1)∪(0,1)时f (x )<0,为使f (x )²cos x <0,只须cos x >0,得x ∈⎪⎭⎫⎝⎛--1,2•π∪(0,1) ∴f (x )²cos x <0的解集为⎪⎭⎫ ⎝⎛--1,2•π∪(0,1)∪⎪⎭⎫⎝⎛3,2•π.例4题图 例4题解图【点评】 仅凭图像,无法断定f (x )的解析式,就本题而言,也不必纠缠于此而花费不必要的精力.能断定f (x )的正、负区间即足够解题需要,这即是图形的功能.●对应训练1.若不等式x 2-log a x <0在(0,0.5)内恒成立,则a 的取值范围是 ( ) A .161≤a <1 B .0<a <161 C .0<a <1 D .a >1 2.P 是抛物线y=x 2上任意一点,则当P 和直线x+y +2=0上的点距离最小时,P 与该抛物线的准线距离是 ( )A.91 B.21C.1D.2 3.方程12442--=-+x x x x 的实根共有 ( )A.1个B.2个C.3个D.4个4.若方程)lg()2lg(2a x x --=2有实数解,则a 的取值范围是 ( )A.(-2,0)∪(0,2)B.[-2,0)∪(0,2]C.(-2,2)D.[-2,2]5.若关于x 的方程2log 2(x+a )=1+log 2x 有且仅有一个实数解,试求实数a 的取值范围.●参考答案1. A 在同一坐标平面内作y 1=x 2,y 2=log a x 的图像,如图,由题意可知必有0<a <1;进而设x =0.5时,y 1=x 2图像上的点为A ,两曲线的交点为P ,要使y 2>y 1在(0,0.5)内恒成立,必须且只需P 点在A 的右边,而P 点与A 点重合时,a =161,根据对数曲线随底数的改变而变化的规律得161≤a <1.第1题解图 第2题解图2. B 作出y =x 2及x+y +2=0的图像如图所示,设与x+y +2=0平行的抛物线切线为L ,由图可知,切点P 0到x+y +2=0的距离最小,设P 0(x 0,y 0), 则L 方程为y=-x+b 与抛物线y =x 2联立得:x 0=21-,则y 0=x 20=41. 所以P 0⎪⎭⎫ ⎝⎛-41,21•到抛物线准线y =-41的距离为21. 3. A 设y 1=244x x -+,变形得(x -2)2+y 21=8, ∴y 1的图像是以(2,0)为圆心,22为半径的上半圆, 设y 2=12--x x,变形得:(x -1)²(y 2+1)=1,y 2的图像是以直线x =1,y =-1为渐近线的双曲线,如图所示,两曲线仅一个交点,即原方程只有1个实根.第3题解图 第4题解图4. A 原方程可变形为lg 22x -=lg(x-a ),设y =22x -,它表示以原点为圆心,2为半径的半圆,如图,设y=x-a (y >0),它表示斜率为1的射线(不含端点),其中a 的几何意义是射线在x 轴上的端点,如图所示,当 -2≤a <2时,两曲线有交点,又因为x-a ≠1,令x =1+a 代入方程2-x 2-(x-a )2=0,解得a =0或a =-2,所以a ≠0且a ≠-2,故a ∈(-2,0)∪(0,2).5.解析 ∵原方程⎩⎨⎧=+>⇔⎪⎩⎪⎨⎧=+>+>⇔x a x x xa x a x x 2,0200∴原方程有且仅有一个实数解等价于方程x+a =x 2在x >0时有且仅有一个实数解. 问题转化为直线y=x+a 与曲线y =x 2(x >0)在平面直角坐标系中有且仅有一个交点,由图像易得a =21或a ≤0. 点评 本题若用代数方法求解比较繁琐,由数向形的转化,使得问题的解决显得形象直观而又简洁明了.第23计 探索开门 智勇双锋●计名释义所谓创新题,就是这之前没有做过,没有见过没有现成“套路”可以套用的陌生题目,它的答案(是否存在),它的解法(暂时不知),需要我们在“摸着石头过河”中得以发现和解决.这就是所谓的“探索解题”.“石头”,指我们已有的知识和方法,这当然是很重要的.若要“过河”,仅有这些还不够.过河人还需要两大素质:大智大勇!面对着数学上的探索问题,智、勇体现在哪里?勇——大胆地猜;智——小心地证. ●典例示范【例1】 如图所示,在正四棱柱ABCD —A 1B 1C 1D 1中,E 、F 、G 、H 分别是棱CC 1,C 1D 1,D 1,D 的中点,N 是BC 中点,点M 在四边形EFGH 及其内部运动,则M 只要满足条件 时,就有MN ∥平面B 1BDD 1(请填上你认为正确的一个条件即可,不必考虑全部可能情况).【思考】 显然HN ∥BD ,即得HN ∥平面B 1BDD 1,为使点M 在平面EFGH 内运动时总有B 1BDD 1∥M ,只需过HN 作平面,使之平行于平面B 1BDD 1,将线面平行的问题转化为面面平行的问题.【解答】 连FH ,当点M 在HF 上运动时,恒有MN ∥平面B 1BDD 1例1题图 例1题解图证明如下:连NH ,HF ,BD ,B 1D 1,且平面NHF 交B 1C 1于P . 则NH ∥BD ,HF ∥BB 1,故平面PNHF ∥平面B 1BDD 1. MN 平面PNHF ,∴MN ∥平面B 1BDD 1.【例2】 知f (x )是二次项系数为负数的二次函数,且对于任何x ∈R ,f (2-x )= f (2+x )总成立,问f (1-2x 2)与f (1+2x-x 2)满足什么条件时,才能使-2<x <0成立.【思考】 根据已知条件很容易得到f (x )是开口向下且对称轴为x =2的二次函数,然后可通过函数单调区间进行分类讨论.【解答】 由题设知:函数f (x )的图象是开口向下且对称轴为直线x =2的抛物线. 故函数f (x )在(-∞,2]上是增函数;在[2,+∞)上是减函数.∵1-2x 2≤1<2,1+2x-x 2=-(x -1)2+2≤2 ∴1-2x 2∈(-∞,2],1+2x-x 2∈(-∞,2] 当f (1-2x 2)< f (1+2x-x 2)时, 1-2x 2<1+2x-x 2 即x 2+2x >0,解得x <-2或x >0,不能使-2<x <0成立当f (1-2x 2)>f (1+2x-x 2)时,1-2x 2>1+2x-x 2, 即x 2+2x <0,解得-2<x <0,符合题意, 当f (1-2x 2)=f (1+2x-x 2)时, 可得x = -2或0,不能使-2<x <0成立.∴当f (1-2x 2)>f (1+2x-x 2)时,才能使-2<x <0成立.【例3】 能否构造一个等比数列{a n },使其同时满足三个条件:①a 1+a 6=11;②a 3a 4=932;③至少存在一个自然数m ,使32a m -1 ,a 2m ,a m +1+94依次成等差数列.若能,请写出这个数列的通项公式.【解答】 先考虑前两个条件.设等比数列{a n }的公比为q .∵a 3a 4=a 1a 6, ∴由⎪⎪⎩⎪⎪⎨⎧==⎪⎩⎪⎨⎧==⇒⎪⎩⎪⎨⎧=∙=+⇒⎪⎩⎪⎨⎧==+.2133223193211)1(1932111152156161q a ••q a q a q a a a a a 或 即满足条件①,②的等比数列,其通项公式为a n =31²2n -1或a n =232²⎪⎭⎫ ⎝⎛21n -1. (1)如a n =31²2n -1,设存在题设要求的m ∈N ,则2³21231⎪⎭⎫⎝⎛∙-m =.94231231322+∙+∙∙-m m 化简得:22m -7²2m -8=0⇒2m =8,∴m =3.(2)如a n =232²⎪⎭⎫ ⎝⎛21n -1,设存在m ∈N ,使2²9421232213323221332221+⎪⎭⎫ ⎝⎛∙+⎪⎭⎫ ⎝⎛∙∙=⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛∙--mm m化简得:4(26-m )2-11²26-m -8=0,这里Δ=112+16³8=249不是完全平方数. ∴符合条件的m不存在.综上所述,能构造出满足条件①,②,③的等比数列,该自然数m =3,数列的通项公式为: a n =31²2n -1 . 【例4】 将二次函数f (x )=ax 2+bx+c 对应于一次函数g (x )=2ax+b .(1)求f (x )=x 2+2x +1对应的一次函数g (x ). (2)观察后请写出这个对应法则. (3)可以用g (x )的某些性质来研究f (x )的性质:当g (x )>0时,对应的f (x )的性质有哪些?(4)你还能研究另外的某些性质吗?(5)设g (x )=x ,写出与g (x )对应的f (x )的三个不同的解析式.【思考】 本例是结论开放型试题,解题时要求根据已知条件将结论(必要条件)补充完整. f (x )与g (x )是什么关系?我们容易由f ′(x )=2ax+b ,知f ′(x )=g (x ),可见,只有当 g (x )= f ′(x )时,才有可能用g (x )的性质来研究f (x )的某些性质. 【解答】 (1)∵a =1,b =2,∴g (x )=2x +2.(2)①g (x )的一次项系数是f (x )的二次项系数与其次数的积; ②g (x )的常数项等于f (x )的一次项系数.(3)g (x )>0,即2ax+b >0,当a >0时,x >a b 2-,而x =ab 2-是f (x )的对称轴,故这时f (x )是单调增函数;a <0时,x <a b 2-,f (x )仍为单调增函数(前者单调区间为⎪⎭⎫⎢⎣⎡∞+-•a b ,2.后者单调区间为⎥⎦⎤ ⎝⎛-∞-a b •2,). (4)当g (x )<0时,f (x )是单调减函数(请仿照(3)证明之).(5)g (x )=x 时,2ax+b=x ,知a =21,b =0. 只须在f (x )=ax 2+bx+c 中,命a =21,b =0,c 取任意值即可,如f (x )=21x 2+1,f (x )=21x 2+23,f (x )=21x 2+5.【小结】 指导开放题解法的理论依据是充分必要条件,即若A ⇒B ,则称A 为B 的充分条件,B 为A 的必要条件.●对应训练1.已知圆O ′过定点A (0,P )(P >0),圆心O ′在抛物线x 2=2py 上运动,MN 为圆O ′在x 轴上截得的弦,令|AM | =d 1,|AN |=d 2,∠MAN=θ. (1)当O ′运动时,|MN |是否有变化,并证明你的结论; (2)求1221d d d d +的最大值,并求取得最大值的θ的值. 2.如图所示,已知在矩形ABCD 中,AB =1,BC=a (a >0),P A ⊥平面AC , 且P A =1.(1)问BC 边上是否存在Q ,便得PQ ⊥QD ,并说明理由; (2)若BC 边上有且只有一点Q , 使得PQ ⊥QD ,求这时二面角Q —PD —A 的大小. 第2题图3.已知椭圆12222=+by a x (a>b >0)的离心率e =36,过点A (0,-b )和B (a ,0)的直线与原点距离为23. (Ⅰ)求椭圆方程;(Ⅱ)已知定点E (-1,0),若直线y =kx +2(k ≠0)与椭圆交于C 、D 两点,试判断:是否存在k 的值,使以CD 为直径的圆过点E ?若存在,求出这个值.若不存在,说明理由. 4.是否存在一条双曲线同时满足下列两个条件: ①原点O 与直线x =1是它的焦点和准线;②被直线x+y =0垂直平分的弦的长等于22,若存在,求出它的方程;若不存在,说明理。

引领右脑教你用数字定桩法记忆《三十六计》

引领右脑教你用数字定桩法记忆《三十六计》

引领右脑教你用数字定桩法记忆《三十六计》《三十六计》是中国古代三十六个兵法策略的兵书,是中国传统文化的瑰宝,自问世以来,受到全世界精英人士的一致推崇。

《三十六计》丰富的内涵已经远远超出了军事斗争的范畴,被人们广泛应用于政治、经济、外交管理、科技、体育乃至人生哲学等各个领域,成为人们立身处世的智慧源泉。

我相信很多小伙伴都能够回答出三十六计里面的最后一计:走为上。

可真正能够一字不漏,完整地把三十六计背诵出来的人很少很少。

下面引领右脑专家跟大家讲解一种记忆法——数字定桩法记忆,掌握了这种记忆方法,可以让你快速记忆三十六计!我们知道,数字是有着非常明确而且清晰的排列顺序的,如1、2、3、4……这样的排列顺序。

所以,数字是一种非常好用、而且最常用的桩子。

用数字编码作为桩子来进行记忆的方法,我们称之为“数字定桩法”。

而数字桩,由于都是非常抽象的东西,首先需要用编码法把它们转换成一些具体的东西,才能开始使用。

一、记忆0-36位数字编码快速记忆的原则便是将抽象的枯燥的数字通过谐音、象形、替代法转换为具像的、图象的,可触摸的数字编码。

数字记忆编码一般采用谐音法、象形法和代替法。

学快速记忆,一定先牢记数字编码,看到数字,就能想到相对应的图像,它是快速记忆的一种工具和方法。

比如看到28想到凶神恶煞的恶霸,看到31想到张着血盆大口的鲨鱼,以这种趣味十足的方式,更利于记忆。

下面是引领右脑常用的数字编码:1树、2鸭子、3耳朵、4小旗、5秤钩、6勺子、7拐杖、8葫芦、9猫、10棒球、11筷子、12婴儿、13医生、14钥匙、15石虎、16石榴、17仪器、18石坝、19药酒、20哑铃、21鳄鱼、22恶鹅、23乔丹、24饿死、25二胡、26二流子、27耳机、28恶霸、29二舅、30森林、31三姨、32孙儿、33蝴蝶、34山寺、35珊瑚、36山路。

二、定桩记忆“三十六计”把要记忆的事物快速转图,并与数字对应的图片编码产生有趣的、密切的联接,联想得越有趣、越好玩,越奇特,回忆得时候越记忆深刻。

名师献计:学好初中数学的“三十六计”

名师献计:学好初中数学的“三十六计”

第15计:适度动机。动机过强和动机过弱,都不利于考试;适度动机,效率最高。期望值过高,容易导致考生紧张、忧郁、恐惧等情绪,进而造成考试的失败。
第16计:适度运动。希望同学们能根据自己的情况,适度运动运动,可以缓解紧张的神经,提高学习效率,保证考试时有一个健康的身体和清醒的头脑。
第17计:适度交流。同龄人一起迎考,大家的情况都差不多,适度交流、沟通感情十分重要。同学之情对增强信心、减缓压力有很大的帮助。当然,考前时间宝贵,切不可“长谈”。除了和同学交流外,还可与家长、亲友交流。
第28计:总览全卷,区别难易。打开试卷,看看哪些是基础题,哪些是中档题,哪些是难题或压轴题,按先易后难的原则,确定解题顺序,逐题解答。力争做到“巧做低档题,全部做对;稳做中档题,一分不浪费;尽力冲击高档题,做错也无悔。”
第29计:认真审题,灵活答题。审题要做到:一不漏掉题,二不看错题,三要审准题,四要看全题目的条件和结论。
第3计:调好心态。心态决定成败,高考不仅是知识和智力的竞争,更是心理的竞争。考生应努力改变最近的不良心态。
第4计:把握自我。复习时紧跟老师踏踏实实地复习没有错,但也要有自我意识:“我”如何适应老师的要求,如何根据自己的特点搞好最后阶段的复习,如何在“合奏”的前提下灵活处理“独奏”。
第18计:充分准备。认真做好考前的复习和准备工作,注重知识的掌握和技能的训练,做到胸有成竹,心中不慌。
第19计:处变不惊。训练自己在面对变化的问题或困难时,能冷静地分析、判断,采取科学的应对措施。试题的难易,要有“人难我难,我不怕难;人易我易,我不大意”的心态。
第20计:防止过劳。考试临近,切忌搞疲劳战术,过度疲劳容易引起心理上的不适,不利于考试时发挥出应有的水平。
名师献计:学好初中数学的“三十六计”来源:网络 文章作者:匿名 2009-10-22 10:28:39

【为学溪精品】数学天机36计

【为学溪精品】数学天机36计
1 3

GO高考家长总群235649790

1
r nC n −1
1 1 1 1 1 1 + + + +L+ + 2 2 ,则 3 12 30 60 nC n −1 (n + 1)C n
23
= 1 1
1
十载毕业班经验
1 1 1 + = ,其中 x = r x (n + 1)C n (n + 1)C n nC nr−1
书上有路勤为径 有径都在为学溪
第1计
●计名释义
芝麻开门
点到成功
●典例示范 [例题] (2006 年鄂卷第 15 题)将杨辉三角中的每一个 数 C n 都换成分数
r
令 an =
n→∞
lim an =
.

[分析] 一看此题,图文并举,篇幅很大,还有省略号省去的有无穷之多,真乃是个庞然 大物. 从何处破门呢?我们仍然在“点”上打主意. 莱布三角形,它虽然没有底边,但有个顶点,我们就打这个顶点 的主意.
为学溪教育 联系电话:18215571552(罗老师)
周末班、寒暑假班、全日制、冲刺班 小班教学、一对一教学,名师团队
书上有路勤为径 有径都在为学溪
数学破题 36 计

第1计 第2计 第3计 第4计 第5计 第6计 第7计 第8计 第9计 第 10 计 第 11 计 第 12 计 第 13 计 第 14 计 第 15 计 第 16 计 第 17 计 第 18 计 第 19 计 第 20 计 第 21 计 第 22 计 第 23 计 第 24 计 第 25 计 第 26 计 第 27 计 第 28 计 第 29 计 第 30 计 第 31 计 第 32 计 第 33 计 第 34 计 第 35 计 第 36 计 芝麻开门 西瓜开门 诸葛开门 关羽开门 才子开门 勇士开门 模特开门 小姐开门 瞎子开门 聋子开门 耗子开门 小刀开门 钥匙开门 鲜花开门 驿站开门 摆渡开门 化归开门 转换开门 模式开门 讨论开门 图表开门 数形开门 探索开门 杠杆开门 函数开门 数列开门 方程开门 三角开门 向量开门 统计开门 解几开门 立几开门 导数开门 参数开门 符号开门

数学破题36计 第28计 三角开门 八面玲珑

数学破题36计 第28计  三角开门  八面玲珑

第28计 三角开门 八面玲珑●计名释义三角函数是沟通平面几何,立体几何、解析几何、向量和函数的重要工具.它具有以下特点:1.公式多,变换多,技巧多;2.思想方法集中,特别是函数方程思想、数形结合思想和特殊一般思想;3.应用广泛,学科内自身应用和跨学科的综合应用.●典例示范【例1】 设a ,b ∈R ,a 2+2b 2=6,则a+b 的最小值是 ( ) A.-22 B.535-C.-3D.27- 【解答】 a 2+2b 2=63262b a +⇒=1. 设⎪⎩⎪⎨⎧==θθsin 3cos 6y x (θ∈[0,2π]),则 a+b =6cos θ+3sin θ=3cos(θ-φ),其中cos φ=36,sin φ=33,∴a+b ≥-3,选 C .【点评】 本例实施代数与解析几何、三角函数之间的转换,利用三角函数的有界性破题.【例2】 已知正数x,y 满足3x 2+2y 2=6x ,则x 2+y 2的最大值是 . 【思考】 对于本题,以下解法并不鲜见; 由条件y 2=3x -23x 2. ∴x 2+y 2=x 2+212332-=⎪⎭⎫ ⎝⎛-x x x 2+3x =21-(x -3)2+29.∴当且仅当x =3时,(x 2+y 2)max =29. 你能发现这种解法有什么毛病吗? 先检验一下,如x =3,会有什么情况发生,将x =3代入已知条件,得: 3×9+2y 2=18. ∴2y 2=-9.显然,我们得到了一个错误的等式,毛病在哪里呢?是没有分析条件所暗示的变量x,y 的范围,正确的解法是:∵y 2=3x -23x 2≥0,∴x 2-2x ≤0. 得x ∈[0,2],而x 2+y 2=21-(x -3)2+29. 令z =21-(x-3)2+29,则当x ≤3时,z 为增函数,已求x ∈[0,2],故当x =2时,z max =21(2-3)2+29= 4,即(x 2+y 2)max = 4.【评注】 本题若用三角代换,可以避开陷阱,达到八面玲珑.由条件得:(x -1)2+32y 2=1. 设⎪⎩⎪⎨⎧=+=θθ•y •x sin 23cos 1, 则 x 2+y 2=(1+cos θ)2+23sin 2θ=21-cos 2θ+2cos θ+2521-(cos θ-2)2+29. 由于cos θ∈[-1,1],故当cos θ=1时,(x 2+y 2)max =21-+29=4.此时,x =2,y =0.【例3】 设抛物线y 2=4px (p >0)的准线交x 轴于点M ,过M 作直线l 交抛物线于A 、B 两点,求AB 中点的轨迹方程.【解答】 抛物线y 2=4px 的准线为x = -p ,交x 轴于M (-p ,0), 设过M 的直线参数方程为:⎩⎨⎧=+-=θθsin cos t y t p x (t 为参数)代入y 2=4px :t 2sin 2θ-4pt cos θ+4p 2=0 (1) 方程(1)有相异二实根的条件是:,1cot 0)sin (cos 160sin 2222>⇒⎩⎨⎧>-=∆≠θθθθp 1, 设方程(1)之二根为t 1,t 2,则t 1+t 2=.sin cos 42θθo设AB 之中点为Q (x,y ), ∵t =θθ221sin cos 22p t t =+. ∴⎪⎪⎩⎪⎪⎨⎧=∙=+-=∙+-=θθθθθθθθcot 2sin sin cos 2cos 2cos sin cos 2222p p y p p p p x , 消去θ得:y 2=2p (x+p ), ∵|cot θ|>1,∴|y |>2p ,即所求AB 中点的轨迹方程为:y 2=2p (x+p )(|y |>2p ).【点评】 直线的参数方程即直线的三角形式,在处理解析几何中直线与曲线的关系中,常起重要作用,由于它能减少变量(由x,y 两个变量减为一个变量t ).所以其运算过程常比一般方程简便.但在起用直线的参数方程时,必须用其标准式:⎩⎨⎧+=+=θθsin cos 00t y y y x x其中P (x 0,y 0)为定点,θ是直线的倾斜角:参数t 表示动点M (x,y )与定点P (x 0,y 0)所连有向线段的数量,若M 在P 上方则t >0,反之t <0.【例4】 两圆O 1与O 2外离,其半径分别为r 1,r 2,直线AB 分别交两圆于 A 、C 、D 、B ,且AC =DB ,过A ,B的切线交于E ,求证:21r r EB EA = . 【思考】 本例是平面几何题吗? 不是,谁要试图仅用平几知识证明,肯定难以成功,但若引入三角,则不然. 【解答】 作两圆直径AF ,BG ,连CF ,DG ,命∠EAB =∠F =∠α,∠EBA =∠G =∠β, 那么AC =2r 1sin α,BD =2r 2sin β,已知AC=BD ,∴2r 1sin α=2r 2sin β, 例4题图αβsin sin 21=r r , △EAB 中,由正弦定理:,sin sin αβ=EB EA ∴21r r EB EA =. 【例5】某矿石基地A 和冶炼厂B 在铁路MN 的两侧,A 距铁路m 千米,B 距铁路n 千米. 在铁路上要建造两个火车站C 与D ,并修两条公路AC 与BD . A 地的矿石先用汽车由公路运至火车站C ,然后用火车运至D ,再用汽车运到冶炼厂B (如图所示)A 、B 在铁路MN 上的投影A ′、B ′距离为l 千米.若汽车每小时行u 公里,火车每小时行v 公里(v>u ),要使运输矿石的时间最短,火车站C 、D 应建在什么地方? 【分析】 求的是C 、D 建的地方, 为了将问题简化,暂不考虑车站D ,设法求出从A 经过C 到B ′所需最短时间. 【解答】 ∵AC =,cos AmA ′C =mtanA , ∴CB ′=A ′B ′-A ′C =l-mtanA∴从A 经过C 到B ′所需时间为 例5题图t =A Au vvm v l A v A A u m v l v A m l A u m cos sin cos sin cos 1tan cos -∙+=⎪⎭⎫ ⎝⎛-+=-+ 由于v l ,v m ,a v 为常数,问题转化为求y =A Au vcos sin - 的最小值. ∵y ′=AA u v2cos 1sin -,令y ′=0,得u vA =sin 时, sin A <1. sin A <v u 时,y ′<0, sin A >uv时,y ′>0.故函数y ,从而函数t 当sin A =u v 时,取得极小值:.122min u u v v u v u u v y -='⎪⎭⎫ ⎝⎛--=∵ sin A =v u ,∴A ′C =mtanA =22u v mu -,即车站C 距A ′为22uv mu -千米,它与l 的长短无关.同理,站D 距B ′为22uv nu -千米.【点评】 本例再次映证了求导法在求最值中的重要作用.●对应训练1 已知方程x 2+x sin2θ- sin θcot θ=0(π<θ<23π)之二根为α,β,求使等比数列1,211,11⎪⎪⎭⎫⎝⎛++βαβα•,…前100项之和为零的θ值. 2 设实数对(x,y )满足方程x 2+y 2-2x -2y +1=0,求yx 1+的最小值. 3 已知圆的方程是x 2+y 2=1,四边形P ABQ 为该圆内接梯形,底边AB 为圆的直径且在x 轴上,当梯形ABCD 的周长l 最大时,求P 点的坐标及这个最大的周长. 4 △ABC 中,已知三内角满足关系式y =2+cos C cos (A-B )- cos 2C . (Ⅰ)证明任意交换A 、B 、C 位置y 的值不变; (Ⅱ)求y 的最大值.5.一条河宽1km ,相距4km (直线距离)的两座城市A 与B 分别位于河的两岸,现需铺设一条电缆连通A 与B . 已知地下电缆的修建费为每千米2万元,水下电缆的修建费为每千米4万元. 假定两岸是平行的直线.问应如何铺设电缆可使总的修建费用最少?●参考答案1 由条件:⎩⎨⎧-=-=-=+θθθαβθβαcos cot sin 2sin ,∴θθθαββαβαsin 2cos 2sin 11==+=+,即等比数列的公比q =2sin θ,∴S 100=θθsin 21])sin 2(1[1100--∙ .已知S 100=0,∴(2sin θ)100=1且2sin θ≠1,于是2sin θ= -1, sin θ=21-, ∵θ∈(π,23π), ∴θ=67π. 2 圆(x -1)2+(y -1)2=1的圆心为C (1,1),半径r=1,此圆在第一象限且与两轴相切,为求yx 1+的最小值,先求1+x y的最大值. 如图,1+x y表示圆上的点(x,y )与 定点P (-1,0)连线的斜率, P A ,PB 为 圆C 的切线,则PB k x y =⎪⎭⎫⎝⎛+max1,连PC, 设∠BPC =∠APC =θ,则tan θ=21, 第2题解图 tan ∠BP A =tan2θ=342112122=⎪⎭⎫ ⎝⎛-⨯, 即341max =⎪⎭⎫ ⎝⎛+x y ,从而431=⎪⎪⎭⎫ ⎝⎛+y x . 3 如图所示,有A (1,0),B(-1,0),⊙方程为x 2+y 2=1,∴设P (cos θ,sin θ)为 圆上一点,不妨设P 在第一象限, 则有Q (-cos θ, sin θ).∴|PQ |=2cos θ, Rt △P AB 中∠PBA =2θ, ∴|BQ |=|P A |=|AB | sin2θ=2sin 2θ, l =2+2cos θ+4sin 2θ=2+2(1-2sin 22θ)+4sin 2θ=5-4(sin 2θ21-)2, 第3题解图当且仅当sin 2θ=21,即θ=60°(若θ在四象限则为300°)时,l max =5,此时点P 的坐标为⎪⎪⎭⎫ ⎝⎛23,21••. 4 (Ⅰ)y =2+cos C [cos (A-B ) - cos C ]=2+cos C [cos (A-B )+cos (A+B )]=2+2cos A cos B cos C此为关于A 、B 、C 的对称轮换式,故任意交换A 、B 、C 的位置,y 的值不变. (Ⅱ)y =2-[cos C 21-cos (A-B )]2 +41cos 2(A-B ),为求y 的最大值必须[cos C 21-cos (A-B )]2取得最小而41cos 2(A-B )取得最大. ∵[cos C 21-cos (A-B ) 2≥0,且41cos+(A-B )≤41当且仅当⎪⎩⎪⎨⎧==-)cos(21cos 1)cos(AB C B A 时以上两条同时成立.∴y max =49,此时C B A C B A ==⇒⎪⎩⎪⎨⎧==-21cos 1)cos(故△ABC 为正三角形. 5.解法一:如图所示,设OM =x km ,则AM =15-x ,BM =21x +. 总修建费 S=2(15-x )+421x + =215+21x ++x +3(21x +-x ) =215+(21x ++x )+xx ++213≥215+23由21x ++x =xx ++213,得当x =33时, S 取最小值 215+23, 此时,AM ≈3.3,BM ≈1.2.故当先沿岸铺设3.3 km 地下电缆,再铺设1.2 km 水下电缆连通A 与B 时, 第5题解图 总的修建费用最少,此时修建费为11.4万元.解法二:如图所示,设∠OBM =α(0<α<arccos 41,则BM =αcos 1, AM=AO-MO =15-tan α,总修建费 S =215-tan α)+αcos 4=215+ααcos )sin 2(2-设t =ααcos sin 2-,则sin α+t cos α=2 ∴ sin(α+φ)=211t+由1122≤+t及t >0,得t ≥3, ∴ S ≥215+23将t =3代入sin α+t cos α=2,解得α=6π∵ 0<6π<arccos 41 ∴ AM =15-33≈3.3,BM =332≈1.2故S min =2×3.3+4×1.2=11.4.。

初中数学重点梳理:染色问题

初中数学重点梳理:染色问题

染色问题知识定位染色是分类的直观表现,在数学竞赛中有大批以染色面目出现的问题,这类问题的特点是知识点少,逻辑性强,技巧性强,其内部蕴藏着深刻的数学思想。

同时,染色作为一种解题手段也在数学竞赛中广泛使用。

将问题中的对象适当进行染色,有利于我们观察、分析对象之间的关系,像国际象棋的棋盘那样,我们可以把被研究的对象染上不同的颜色,许多隐藏的关系会变得明了,再通过对染色图形的处理达到对原问题的解决,这种解题方法称为染色法。

知识梳理知识梳理1.染色问题解答染色问题,并不需要具备更多的数学知识,只需要具有缜密的思考能力和较强的分析能力。

纵观各种染色试题,它与我们经常使用的数学方法紧密联系。

大体上有如下几种方法:奇偶分析、归纳法、反证法、抽屉原理、构造法、组合计数等。

常见的染色方式有:点染色、线段染色、小方格染色和对区域染色。

例题精讲【试题来源】【题目】用任意的方式将平面上的每一点染上黑色或白色(称为二染色).求证:一定存在长为1的线段,它的两个端点同色。

【答案】在平面上任作一个边长为1的正三角形,设三个顶点为A,B,C,由于平面上的每点只着黑、白两色之一,根据抽屉原理,A,B,C三点中必有两点同色,以这两同色点为端点的线段长度恰为1.【解析】在平面上任画一条长为1的线段,如图,若A,B两点同色,则结论已成立.若A,B 两点不同色,为确定起见不妨设A为黑色,B为白色,以AB为边作正三角形ABC,则AB=BC=CA=1.这时C点要么是黑点,要么是白点.若C为黑点,则AC为两个端点同色的长为1的线段.若C为白点,则BC为两个端点同色的长为1的线段.上述分析过程,其实已完成了证明过程,不过思路一旦找出,出现边长为1的正三角形的顶点A,B,C三点的构想是个关键,为此可得出如下简化的证明.【知识点】染色问题【适用场合】当堂例题【难度系数】3【试题来源】【题目】对平面上的点黑白二染色后,一定存在三顶点同色的直角三角形.【答案】见解析【解析】对平面上的点黑白二染色,根据例1的结论,存在边长为a(a>0)的线段AB,它的两个端点同色(不妨设A,B同黑).以AB为边作正方形ABCD,对角线AC,BD交于点O,如图,如果D,O,C中有一个黑点,则该点与A,B构成三顶点同黑色的直角三角形.如果D,O,C全白色,则△DOC就是三顶点全为白色的直角三角形.因此,二染色平面上一定存在顶点同色的直角三角形.【知识点】染色问题【适用场合】当堂例题【难度系数】3【试题来源】【题目】用任意的方式,对平面上的每个点染黑色或白色,求证:一定存在一个边长为1或3的正三角形,它的三个顶点同色.【答案】见解析【解析】若存在边长为1且顶点同色的正三角形,则问题得证.若不存在边长为1且顶点同色的正三角形,则一定存在长为1的线段AB ,两端点A ,B 异色.以AB =1为底作腰长为2的等腰三角形ABC ,则C 与A 或B 总有一对是异色的.不妨设长为2的线段AC 两端点异色(见图(a )).取AC 的中点O ,则O 必与A ,C 之一同色(见图(b )),不妨设O 与A 同色.由于不存在边长为1的同色顶点的正三角形,所以以AO 为一边的等边三角形的另外的顶点D 和E 必与A 异色.此时,△ECD 就是一个边长为3的顶点同色的正三角形.评注 事实上,当将平面分成宽度为23的水平带状区域,且每个区域含下沿直线,不含上沿直线,使相邻的带状区域染上不同颜色,对这样的平面二染色,任意边长为1的正三角形的三个顶点均不同色,但存在边长为3的三顶点同色的三角形.由例3可得更一般的结论:平面上点二染色后,要么存在边长为a (a >0)三顶点同色的正三角形,要么存在边长为3 a 三顶点同色的正三角形.【知识点】染色问题 【适用场合】当堂练习题 【难度系数】3【试题来源】【题目】连接圆周上9个不同点的36条线段染成红色或蓝色,假设9点中每3点所确定的三角形都至少含有一条红色边.证明有4点,其中每两点的连线都是红色.【答案】见解析【解析】设9个点依次为v1,v2,…,v9,首先证明必存在一点,设为v1,从v 1出发的红色线段不是5条.事实上,若不然,如果都是5条,则共有红色线段295不是整数,矛盾.若从v1出发的红色线段至少有6条,设v1v2,v1v3,v1v4,v1v5,v1v6,v 1v7均为红色,则由第26讲例8评注可知,连结v2,v3,v4,v5,v6,v7的线段中必有同色三角形.由题意知它只能为红色三角形,设为v2v3v4,则v1,v 2,v3,v4四点中两两皆连红线.若从v1出发的红色线段至多4条,则v1出发的蓝色线段至少有4条,设为v 1v2,v1v3,v1v4,v1v5,则v2,v3,v4,v54点必然两两连红线.否则,例如若v2v3是蓝色的,则△v1v2v3是蓝色三角形,与题设至少有一边为红色矛盾.以上各例中,染色都是作为问题条件给出的,有时,染色方法也作为一种分类手段,因此,用形象直观地染色进行分类,也就成了一种很有特色的解题方法.【知识点】染色问题【适用场合】随堂课后练习【难度系数】3【试题来源】【题目】某桥牌俱乐部约定,四个人在一起打牌,同一方的两个人必须都曾合作过,或都不曾合作过.试证:只要有五个人,就一定能凑齐四个人,按照约定在一起打牌.【答案】见解析【解析】本题证明采用构造一个涂色模型,使它与原问题间有一一对应的关系.如果模型中的问题证明了,那么原问题也相应地证明了.证明五个人对应为空间五个点,如两个人合作过,那么对应两点连结红色线段,如两人不曾合作过,那么对应两点连结蓝色线段.因此原问题等价于证明涂色模型:空间五个点(无三点在一条直线上),两两连线,涂上红色或蓝色之一.证明必存在两条无公共端点的同色线段.设五个点为A1,A2,A3,A4,A5,不失一般性,不妨设A1A2为红色.观察△A3A4A5三条边的颜色.(1)如果△A3A4A5中有一条边为红色,设为A3A4,那么A1A2与A3A4是满足条件的两条线段;(2)如果△A3A4A5的三条边均为蓝色,此时如A1A3,A1A4,A1A5与A2A3,A2A4,A2A5中如果有一条蓝色线段,那么问题就获证.如以A1A3是蓝色线段为例,那么A1A3与A4A5是满足条件的两条线段.反之,如果此时六条线段均为红色,如取A1A3与A2A4就是满足条件的两条线段.由于无公共端点的同色线段存在,证得原命题成立.【知识点】染色问题【适用场合】阶段测验【难度系数】3【试题来源】【题目】把平面划分成形为全等正六边形的房间,并按如下办法开门:若三面墙汇聚于一点,那么在其中两面墙上各开一个门,而第三面墙不开门.证明:不论沿多么曲折的路线走回原来的房间,所穿过的门的个数一定是偶数.【答案】见解析【解析】为方便起见,我们把有公共门的两个房间叫做相邻的.用两种不同的颜色涂平面上的这些房间,使相邻的房间的颜色不同(如图).注意,从某种颜色的房间走到同种颜色的房间,必须经过另一种颜色的房间.显然,从任一房间走到同种颜色的房间,必定经过偶数个门.这样,利用图形和不同的颜色就可以解出这道题.【知识点】染色问题【适用场合】课后两周练习【难度系数】3【试题来源】【题目】有一个2003⨯2003的棋盘和任意多个l⨯2及1⨯3的矩形纸片,规定l⨯2的纸片只能沿着棋盘的格线水平地放置,而1⨯3的纸片只能沿着棋盘的格线铅直地放置. 请问是否可依上述规定取用一些纸片不重叠地盖满整个棋盘?【答案】不可以【解析】先将棋盘的每一行黑白交错涂色,即第一行,第二行,第三行,…,依次为黑色,白色,黑色,….经过这样涂色后,开始时棋盘的黑白方格数之差为2003个.沿着棋盘的格线水平地放置1⨯2的纸片,每放上一个l⨯2的纸片,就能盖住黑白方格各一个,所以这个操作并不会改变黑白方格数之差;而每一个1⨯3的矩形纸片沿着棋盘的格线铅直地放置,所覆盖的三个方格都是同一颜色,所以每放置一片l⨯3的矩形纸片,棋盘的黑白方格数之差就增加3个或减少3个.因为2003不是3的倍数,所以,依题述规定取用一些1⨯2及l⨯3的矩形纸片是不可能不重叠地盖满整个棋盘的.【知识点】染色问题【适用场合】课后一个月练习【难度系数】3【试题来源】【题目】证明:如图,用15块4×1的矩形瓷砖与1块2×2的方形瓷砖,不能覆盖8×8的正方形地面(瓷砖不许断开!).【答案】见解析【解析】本例题有多种证法.一个共同点是:“不能覆盖”的证明,通常借助于反证法.证法1将8×8的正方形地面的小方格,用黑、白色涂之,染色法如图.于是,每一块4×1瓷砖,不论怎样辅设,都恰好盖住两个白格两个黑格.15块4×1瓷砖共盖住30个白格和30个黑格.一块2×2瓷砖,无论怎么放,总是盖住“三白一黑”或“三黑一白”,即只能盖住奇数个白格和奇数个黑格.而盘中的黑白格总数相等(全为32个).所以用15块4×1砖与1块2×2砖不能完全覆盖8×8地面.证法2将8×8的正方形地面的小方格.用代号为1,2,3,4的四种颜色涂之,染色法如(a).这时,4×1砖每次总能盖住1,2,3,4四色;而2×2砖不论放何处,总是不能同时盖住1,2,3,4四色.故是不可能的.证法3同样用四色涂之,涂法如(b).用反证法,设4×1砖横着盖住i 色的有x i 块,竖着盖住的有y 块.2×2砖盖住阴影格处(不妨假定,余仿此).假定能够盖住.那么有:⎩⎨⎧=+=+,144,16421y x y x 相减得4(x 1-x 2)=2.因为x 1与x 2均为整数,这是不可能的.【知识点】染色问题 【适用场合】当堂例题 【难度系数】3【试题来源】【题目】(1)用1×1,2×2,3×3三种型号的正方形地板砖铺设23×23的正方形地面,请你设计一种辅设方案,使得1×1的地板砖只用一块.(2)请你证明:只用2×2,3×3两种型号的地板砖,无论如何铺设都不能铺满23×23的正方形地面而不留空隙.【答案】见解析【解析】(1)首先用12块地板砖与6块地板砖能铺成的长方形地面, 再利用4个的板块,恰用1块地板砖,可以铺满的正方形地面. (2)我们将的大正方形分成23行23列共计529个的小方格,再将第1行,第4行,第7行,第10行,第13行,第16行,第19行,第22行这八行染红色,其余的15行都染白色,任意或的小正方块无论怎样放置(边线与大正方形格线重合),每块或的正方块都将盖住偶数块的白色小方格.假设用及的正方形地板砖可以铺满后正方形地面,则它们盖住的白色的小方格总数为偶数个.然而地面染色后共有(奇数)个的白色小方格,矛盾.所以,只用,两种型号地板砖无论如何铺设,都不能铺满的正方形地面而不留空隙.【知识点】染色问题【适用场合】当堂例题【难度系数】3【试题来源】【题目】如图,对A,B,C,D,E,F,G七个区域分别用红、黄、绿、蓝、白五种颜色中的某一种来着色,规定相邻的区域着不同的颜色.那么有种不同的着色方法.【答案】2880【解析】对这五个区域,我们分五步依次给予着色:(1)区域A共有5种着色方式;(2)区域B因不能与区域A同色,故共有4种着色方式;(3)区域C因不能与区域B同色,故共有4种着色方式;(4)区域D因不能与区域A,B,C同色,故共有2种着色方式;(5)区域E因不能与区域A,D同色,故共有3种着色方式.(6)区域F因不能与区域D,E同色,故共有3种着色方式.(7)区域G因不能与区域A,E,F同色,故共有2种着色方式.于是,根据乘法原理共有种不同的着色方式.因此,本题正确答案是:2880.【知识点】染色问题【适用场合】随堂课后练习【难度系数】3【试题来源】【题目】一块2×2的方格由4个1×1的方格构成,每个小方格被涂上红、绿两种颜色之一.如果要求绿色小方格的上方和右方不能与红色方格邻接.且上述四个小方格可以全部不涂绿色,也可全部涂上绿色.则可能的涂色方法共有种.【答案】2880【解析】对这五个区域,我们分五步依次给予着色:(1)区域A共有5种着色方式;(2)区域B因不能与区域A同色,故共有4种着色方式;(3)区域C因不能与区域B同色,故共有4种着色方式;(4)区域D因不能与区域A,B,C同色,故共有2种着色方式;(5)区域E因不能与区域A,D同色,故共有3种着色方式.(6)区域F因不能与区域D,E同色,故共有3种着色方式.(7)区域G因不能与区域A,E,F同色,故共有2种着色方式.于是,根据乘法原理共有5×4×4×2×3×3×2=2880种不同的着色方式.故答案为:2880.【知识点】染色问题【适用场合】当堂例题【难度系数】3【试题来源】【题目】在9×9的方格表中,有29个小格被染上了黑色,如果m表示至少包含5个黑色小方格的行的数目,n表示至少包含5个黑色小方格的列的数目,试确定m+n的最大值.【答案】10【解析】∵m表示至少包含5个黑色小方格的行的数目,∴5m小于29,∴m的最大值为5,当m=5时,则n的最大值为5.故m+n的最大值为5+5=10.【知识点】染色问题【适用场合】当堂例题【难度系数】3【试题来源】【题目】将凸五边形ABCDE的5条边和5条对角线染色,且满足任意有公共顶点的两条线段不同色,求颜色数目的最小值.【答案】5【解析】由于顶点A是4条线段AB,AC,AD,AE的公共点,因此至少需要4种颜色.若只有4种颜色,不妨设为红、黄、蓝、绿,则每个顶点引出的4条线段的颜色包含红、黄、蓝、绿各一种,因此,红色的线段共有条,矛盾.所以,至少需要5种颜色.下面的例子说明5种颜色可以将这10条线段染为满足条件的颜色.将AB,CE 染为1号颜色;将BC,DA染为2号颜色;将CD,EB染为3号颜色;将DE,AC染为4号颜色;将EA,BD染为5号颜色,则任意有公共顶点的两条线段不同色.综上所述,颜色数目的最小值为5.【知识点】染色问题【适用场合】当堂例题【难度系数】3【试题来源】【题目】有10个表面涂满红漆的正方体,其棱长分别为2,4,6,…,20.若把这些正方体全部锯成棱长为1的小正方体,求有多少个至少一面有漆的小正方体.【答案】8000【解析】【知识点】染色问题【适用场合】随堂课后练习【难度系数】3【试题来源】【题目】将直线上的每一个点都染上红、黄两色中的一种,证明:必存在同颜色的三个点,使得其中一点是另两点为端点的线段的中点.【答案】见解析【解析】【知识点】染色问题【适用场合】当堂例题【难度系数】3【试题来源】【题目】某班有50个学生,男女各占一半,他们围成一圈,席地而坐开营火晚会,求证:必能找到一位两旁都是女生的学生.【答案】见解析【解析】【知识点】染色问题【适用场合】课后两周练习【难度系数】3【试题来源】【题目】若由“L”形的4个小方格,无重迭地拼成一个4×n的矩形.试证:n必为偶数.【答案】见解析【解析】【知识点】染色问题【适用场合】随堂课后练习【难度系数】3【试题来源】【题目】将一个棱长分别为36厘米、54厘米和72厘米的长方体切割成一些大小相同、棱长是整数厘米的正方体,然后给这些正方体的表面涂色。

【图文并茂】《三十六计》完整版及记忆口诀

【图文并茂】《三十六计》完整版及记忆口诀

【图文并茂】《三十六计》完整版及记忆口诀一,胜战计:瞒天过海/围魏救赵/借刀杀人/以逸待劳/趁火打劫/声东击西二,敌战计:无中生有/暗度陈仓/隔岸观火/笑里藏刀/李代桃僵/顺手牵羊三,攻战计:打草惊蛇/借尸还魂/调虎离山/欲擒故纵/抛砖引玉/擒贼擒王四,混战计:釜底抽薪/混水摸鱼/金蝉脱壳/关门捉贼/远交近攻/假途伐虢五,并战计:偷梁换柱/指桑骂槐/假痴不颠/上屋抽梯/树上开花/反客为主六,败战计:美人计/空城计/反间计/苦肉计/连环计/走为上计记忆口诀胜:瞒围借以趁声敌:无暗隔笑李顺攻:打借调欲抛擒混:釜混金关远假并:偷指假上树反败:美空反苦连走【图文并茂】《三十六计》完整内容第一套胜战计第一计瞒天过海原文:备周而意怠,常见则不疑,阴在阳之内,不在阳之对。

太阳,太阴。

译:认为准备万分周到,就容易松劲;平时看惯了的,就往往不在怀疑了,秘计隐藏在暴露的事物中,而不是和公开的形式相排斥。

非常公开的往往蕴藏着非常机密的。

第二计围魏救赵原文:共敌不如分敌,敌阳不如敌阴。

译:树敌不可过多,对敌要各个击破,对现在还不忙于消灭的,要隐藏我们的意图。

第三计借刀杀人原文:敌已明,友未定,引友杀敌,不出自力,以损推演。

译:作战的对象已经确定,而朋友的态度还不稳定,要诱导朋友去消灭敌人,避免消耗自己的力量。

第四计以逸待劳原文:困敌之势,不以战,损刚益柔。

译:控制敌方力量发展的命脉来扼杀他,而不采取进攻的形势,这就是“损刚益柔”原理的演用。

第五计趁火打劫原文:敌之害大,就势取利,刚决柔也。

译:敌方的危机很大,就乘机取利,用优势力量攻击软弱的。

第六计声东击西原文:乱志乱萃,不虞“坤下兑上”之象;利其不自主而取之。

译:敌人乱撞瞎碰,摸不清情况,这是《易经》“萃”封上所说的“坤下兑上”的混乱征状。

必须利用敌方失去控制力的时机加以消灭。

第二套敌战计第七计无中生有原文:诳也,非诳也,实其所诳也。

少阴,太阴,太阳。

译:无中生有是运用假象,但不是弄假到底。

六年级奥数专题染色问题

六年级奥数专题染色问题

二十染色问题(1)年级班姓名得分(编者按:由于内容本身的限制,本讲不设填空题)1.某影院有31排,每排29个座位.某天放映了两场电影,每个座位上都坐了一个观众.如果要求每个观众在看第二场电影时必须跟他(前、后、左、右)相邻的某一观众交换座位,这样能办到吗为什么2.如图是一所房子的示意图,图中数字表示房间号码,每间房子都与隔壁的房间相通.问能否从1号房间开始,不重复的走遍所有房间又回到1号房间3.在一个正方形的果园里,种有63棵果树、加上右下角的一间小屋,整齐地排列成八行八列(见图 (a)).守园人从小屋出发经过每一棵树,不重复也不遗漏(不许斜走),最后又回到小屋,行吗如果有80棵果树,连小屋在内排成九行九列(图(b))呢(a) (b)88国际象棋(下图)去掉对角上两格后,是否可以用31个21的“骨牌” (形如 )把象棋盘上的62个小格完全盖住5.如果在中国象棋盘上放了多于45只马,求证:至少有两只马可以“互吃”.6.空间6个点,任三点不共线,对以它们为顶点的线段随意涂以红色或蓝色,是否必有两个同色三角形7.如图,把正方体分割成27个相等的小正方体,在中心的那个小正方体中有一只甲虫,甲虫能从每个小正方体走到与这个正方体相邻的6个小正方体中的任一个中去.如果要求甲虫能走到每个小正方体一次,那么甲虫能走遍所有的正方体吗8.中国象棋的马走“日”字,车走横线或竖线,下图是半张中国象棋盘,试回答下面的问题:一只马从起点出发,跳了n步又回到起点.证明:n一定是偶数.9.中国象棋的马走“日”字,车走横线或竖线,下图是半张中国象棋盘,试回答下面的问题:一只马能否跳遍这半张棋盘,每一点都不重复,最后一步跳回起点10.中国象棋的马走“日”字,车走横线或竖线,下图是半张中国象棋盘,试回答下面的问题:证明:一只马不可能从位置B出发,跳遍半张棋盘而每个点都只经过一次(不要求最后一步跳回起点).11.中国象棋的马走“日”字,车走横线或竖线,下图是半张中国象棋盘,试回答下面的问题:一只马能否从位置B出发,用6步跳到位置A为什么12.中国象棋的马走“日”字,车走横线或竖线,下图是半张中国象棋盘,试回答下面的问题:一只车从位置A出发,在这半张棋盘上走,每步走一格,走了若干步后到了位置B.证明:至少有一个格点没被走过或被走了不止一次.8的国际象棋棋盘能不能被剪成7个22的正方形和9个41的长方形如果可以,请给出一种剪法;如果不行,请说明理由.14.(表1)是由数字0,1交替构成的,(表2)是由(表1)中任选、、三种形式组成的图形,并在每个小方格全部加1或减1,如此反复多次进行形成的,试问(表2)中的A格上的数字是多少并说明理由.1010101001010101101010100101010010101010010101011010101001010101表 111111111111111111111111111111111111111A1表 2———————————————答案——————————————————————1. 把影院的座位图画成黑白相间的矩形.(2931),共有899个小方格.不妨假定四角为黑格,则共有黑格450个,白格449个.要求看第二场电影,每位观众必须跟他相邻的某一观众交换位置,即要求每一黑白格必须互换,因黑白格的总数不相等,因此是不可能的.2. 将编号为奇数的房间染成黑色,编号为偶数的房间染成白色.从1号房间出发,只能按黑白黑白……的次序,当走遍九个房间时应在黑色房间中,这个房间不与1号房间相邻,故不能不重复地走遍所有房间又回到1号房间.3. 图(a)行,走法如图所示.图(a)图(b)不行,将小屋染成黑色,果树染成黑白相间的颜色,则图(b)中有41个黑色的,40个白色的.从小屋出发,按黑白黑白……的次序,当走遍80棵树后,到达的树的颜色还是黑色,与小屋不相邻,故不可能最后回到小屋.4. 不能.原因是每一个21的矩形骨牌一定恰好盖住一个黑格和一个白格,31个这样的骨牌恰好盖住31个黑格和31个白格.但是国际象棋棋盘上对角两格的颜色是相同的,把它们去掉后剩下的是30个白格,32个黑格,或32个白格,30个黑格,因此不能盖住.5. 中国象棋棋盘上有90个交叉点,把棋盘分成10个小部分,每部分有33=9个交叉点,由抽屉原则知,至少有一个小部分内含有6只马.将这一小部分的9个交叉点分别涂上黑色及白色.总有两只马在不同颜色交叉点上,故一定有两只马“互吃”.6. 设这六个点为A 、B 、C 、D 、E 、F.我们先证明存在一个同色的三角形: 考虑由A 点引出的五条线段AB 、AC 、AD 、AE 、AF,其中必有三条被染成了相同的颜色,不妨设AB 、AC 、AD 三条同为红色.再考虑三角形BCD 的三边:若其中有一条为红色,则存在一个红色三角形;若这三条都不是红色,则三角形BCD 为蓝色三角形.下面再来证明有两个同色三角形,不妨设三角形ABC 的三边同为红色.(1)若三角形DEF 也是红色三角形,则存在两个同色三角形.(2)若三角形DEF 中有一条边为蓝色(不妨设DE),下面考虑DA 、DB 、DC 三 条线段,其中必有两条同色.①若其中有两条是红色的,如DA 、DB 是红色的,则三角形DAB 为第二个同色三角形(图1). B DC AD (图1)②若其中有两条是蓝色的,设DA、DB为蓝色(图2).此时在EA、EB两条线段中,若有一条为蓝色,则存在一个蓝色三角形;若两条都是红色的,则三角形EAB 为红色三角形.综上所述,一定有两个同色三角形.7. 甲虫不能走遍所有的立方体.我们将大正方体如图分割成27个小正方体,涂上黑白相间的两种颜色,使得中心的小正方体染成白色,再使两个相邻的小正方体染上不同的颜色.显然在27个小正文体中,14个是黑的,13个是白的.甲虫从中间的白色正方体出发,每走一步,小正方体就改变一种颜色.故它走27步,应该经过14个白色的小正方体,13个黑色的小正方体.因此在27步中至少有一个白色的小正方体,甲虫进去过两次.故若要求甲虫到每个小正方体只去一次,甲虫就不能走遍所有的小正方体.8. 将棋盘上的各点按黑白相间的方式染上黑白二色.由“马步”的行走规则,当“马”从黑点出发,下一步只能跳到白点,以后依次是黑、白、黑、白……要回到原出发点(黑点),它必须跳偶数步.9. 不能.半张象棋盘共有45个格点,马从起点出发跳遍半张棋盘,则起点与最后一步同色.故不可能从最后一步跳回起点.10. 与B 点同色的点(白点)有22个,异色的点(黑色)有23个.马从B 点出发,跳了42步时,已经跳遍了所有的白色,还剩下两个黑点,但是马不能够连续跳过两个黑点.11. 不能.因为A 、B 两点异色,从B 到A 所跳的步数是一个奇数.12. “车”每走一步,所在的格点就会改变一次颜色.因A 、B 两点异色,故从A 到B “车”走的步数是一个奇数.但半张棋盘共有45个格点,不重复地走遍半张棋盘要44步,但44是一个偶数.13. 如图对88的棋盘染色,则每一个41的长方形能盖住2白2黑小方格,而每一个22的正方形能盖住1白3黑或1黑3白小方格,那么7个22的正方形盖住的黑色小方格数总是一个奇数,但图中黑格数为32是一个偶数.故这种剪法是不存在的.14. 如下图所示,将表(1)黑白相间地染色. +1 +1 +1 +1 -1 -1 -1 -1 +1 +1 +1 +1 +1 +1 -1 -1 -1 -1 -1 -1 +1 +1 +1 +1+1 +1 -1 -1 -1 -1 -1 -1表(1)本题条件允许如图所示的6个操作,这6个操作无论实行在那个位置上,白格中的数字之和减去黑格中的数字之和总是一个常数,所以表1中白格中数字之和与黑格中数字之和的差即32,等于表2中白格中数字之和与黑格中数字之和的差即(31+A)-32,于是(31+A)-32=32,故A=33.二十 染色问题(2)年级 班 姓名 得分1.下图是一套房子的平面图,图中的方格代表房间,每个房间都有通向任何 一个邻室的门.有人想从某个房间开始,依次不重复地走遍每一个房间,他的想法能实现吗2.展览会有36个展室(如图),每两相邻展室之间均有门相通.能不能从入口 进去,不重复地参观完全部展室后,从出口出来呢3.图中的16个点表示16个城市,两个点之间的连线表示这两个城市有公路 相通.问能否找到一条不重复地走遍这16座城市的路线4.下图是由4个小方格组成的“L”形硬纸片,用若干个这种纸片无重叠地拼成一个4n的长方形,试证明:n一定是偶数.5.中国象棋盘上最多能放几只马互不相“吃”(“马”走“日”字,另不考虑“别马腿”的情况).6.能否用一个田字和15个41矩形覆盖88棋盘7.能否用1个田字和15个T字纸片,拼成一个88的正方形棋盘8.在88棋盘上,马能否从左下角的方格出发,不重地走遍棋盘,最后回到起点若能请找出一条路,若不能,请说明理由.9.下面三个图形都是从44的正方形分别剪去两个11的小方格得到的,问可否把它们分别剪成12的七个小矩形(1)(2)(3)10.把三行七列的21个小格组成的矩形染色,每个小格染上红、蓝两种色中的一种.求证:总可以找到4个同色小方格,处于某个矩形的4个角上(如图)红 红 红 红个科学家互相通信,在他们的通信中共讨论3个问题,而任意两个科学家之间仅讨论1个问题.证明:至少有3个科学家,他们彼此通信讨论的是同一个问题. 12.用一批124的长方体木块,能不能把一个容积为666的正方体木箱充塞填满说明理由.13.在平面上有一个2727的方格棋盘,在棋盘的正中间摆好81枚棋子,它们被罢成一个99的正方形.按下面的规则进行游戏:每一枚棋子都可沿水平方向或竖直方向越过相邻的棋子,放进紧挨着这枚棋子的空格中,并把越过的这格棋子取出来.问:是否存在一种走法,使棋盘上最后恰好剩下一枚棋子12的超极棋盘上,一匹超级马每步跳至34矩形的另一角(如图).问能否从任一点出发遍历每一格恰一次,再回到出发点(这种情况又称马有“回路”)OO1 2———————————————答案——————————————————————1. 不能.对房间染色,使最下面的两个房间染成黑色,与黑色相邻的房染成白色,则图中有7个黑色房间和5个白色房间.如果要想不重复地走过每一个房间,黑色与白色房间数应该相等.故题中的想法是不能实现的.2. 不能.对展室进行染色,使相邻两房间分别是黑色和白色的.此时入口处展室的颜色与出口处展室的颜色是相同的,而不重复参观完36个展室,入口与出口展室的颜色应该不相同.3. 不能.对这16个城市进行黑白相间的染色,一种颜色有9个,另一种颜色有7个.而要不重复地走遍这16个城市,黑色与白色的个数应该相等.4. 如图,对4n长方形的各列分别染上黑色和白色.任一L形纸片所占的方格只有两类:第一类占3黑1白,第二类占3白1黑.n个设第一类有a个,第二类有b个,因为涂有两种颜色的方格数相等,故有3b+a=3a+b,即a=b,也就是说第一类与第二类相等,因此各种颜色的方格数都是4的倍数,总数是8的倍数,从而n是偶然.5. 将棋盘黑白相间染色,由“马”的走法可知,放在黑点上的“马”,只能吃放在某些白点上的马.整个棋盘上黑、白点的个数均为45,故可在45个黑点放上马,它们是不能互吃的.6. 如图的方式对棋盘染色.那么一个田字形盖住1个或3个白格,而一个41的矩形盖住2个白格.这样一来一个田字和15个41的矩形能盖住的白格数是一个奇数,但上图中的白格数是一个偶数,因此一个田字形和15个41的矩形不能复盖88的棋盘.7. 将棋盘里黑白相间涂色.一个田字形盖住2个白格,一个T字形盖住3个或1个白格.故1个田字和15个T字盖住的白格数是一个奇数,但棋盘上的白格数是一个偶数.因此一个田字形和15个T字形不能盖住88的棋盘.8. 将棋盘黑白相间地染色后,马的走法是从一种颜色的格子跳到另一种颜色.棋盘上有32个白格与32个黑格,故马可能跳遍整个棋盘.图中给出了一种走法.564158355039603347445540593451384257464936533261454843543162375220530632211161329642141714251061922782312151287183269249. 先对44的棋盘黑白相间的涂色(如图),这道题的实际问题是问7个12矩形能否分别复盖剪去A、B;剪去A、C;剪去A、D的三个棋盘.若7个12矩形可以复盖剪残的棋盘,因为每个12矩形均可盖住一个白格和一个黑格,所以棋盘的白格与黑格数目应该相等.都是7个.而剪去A格和C格的棋盘(2)有5个白格8个黑格,剪去A、D的棋盘(3)有5个白格8个黑格,因此这两个剪损的棋盘均不能被7个12矩形复盖,也就不能剪成7个12的矩形.ABCD棋盘(1)可以被7个12的矩形所复盖.下面给出一种剪法:A11277B26543654310. 在第一行的7格中必有4格同色,不妨设这4格位于前4个位置,且均为红色.然后考虑前4列构成的34矩形.若第二行和第3行中出现2个或2个以上的红色格子.则该行的两个红色格子与第一行的红色格子就组成一个4角同为红色格子的矩形.若不然,则第2、3行中都至少有3个蓝格在前4列中,不妨设第2行前3格为蓝色,显然第三行中的前3格中至少有2个蓝格,故在二、三行的前4列中必存在四角都是蓝色的矩形.11. 将17个科学家用17个点代表,两点之间连结的线段表示两个科学家之间讨论的问题.用三种颜色给这些线段染色,表示三个问题,于是问题就变成:给17个点之间的所有连结线段用三种颜色染色,必有同色三角形.从任意一点,不妨设从A向其他16点A1,A2,…A16共可连成16条线段,用三种颜色染色,由抽屉原则可知,必有6条线段同色.设这6条线段为AA1,AA2,…AA6且同为红色.考虑A1,A2,A3,A4,A5,A6这六点之间的连线,若有一条为红色,(如A1A2为红色) ,则三角形AA 1A 2为红色的同色三角形.若这六点之间的连线中,没有一条是红色的,则它们之间只能涂两种颜色.考虑从A 1引出的五条线段A 1A 2 A 1A 3 A 1A 4 A 1A 5 A 1A 6,由抽屉原理知,其中必有三条是同色的.不妨设这三条为A 1A 2 A 1A 3 A 1A 4,且同为蓝色.若三角形A 2A 3A 4的三边中有一条为蓝色的,则有一个蓝色的三角形存在;若三角形A 2A 3A 4三边都不是蓝色的,则它的三边是同为第三色的同色三角形.12. 把正方体木箱分成27个小正方体,每个小正方体的体积为222=8.将这些正方体如右图黑白相间染上色.显然黑色222的正方体有14个,白色222小正方体有13个.每一个这样的正方体相当于8个111的小正方体.将124的长方体放入木箱,无论怎么放,每个长方体木块盖住8个边长为AA 1A 2 A 3 A 4A 5 A 6A 1A 2A 3 A 41的单位正方体,其中有4个黑色的,4个白色的.木箱共含666=216个单位正方体,26个长方体木块共盖住826=208个单位正方体,其中黑白各占104个,余下216-208=8个单位正方体是黑色的.但是第27个124长方体木块不管怎样放,也无法盖住这8个黑色单位正方体.13. 如图,将整个棋盘的每一格都分别染上红、白、黑三种颜色,这种染色方式将棋盘分成了三个部分.按照游戏规则,每走一步,有两种颜色方格中的棋子数分别减少了1个,而第三种颜色的棋子数增加了一个.这表明每走一步,每个部分的棋子的奇偶性要发生改变.因为一开始时,81枚棋子摆成一个99的正方形,显然三个部分的棋子数是相同的,从而每走一步,三部分中的棋子数的奇偶性是相同的.如果走了若干步以后,棋盘上恰好剩下一枚棋子,则两部分上的棋子数为偶数,而另一部分上的棋子数为奇数.这种结果是不可能出现的.14. 用两种方法对超级棋盘染色.首先,将棋盘黑白相间染色,则马每跳一步,它所在的方格就要改变一次颜色.不妨设第奇数步跳入白格.其次,将棋盘的第3,4,5及8,9,10这六行染成黑色,其余六行染成白色.在此种染色方式下,马从白格一定跳入黑格.又因黑白格总数相同,马要遍历每一格恰一次又回到出发点,因此,马从黑格只能跳入白格而不能跳入黑格.不妨设马第奇数步跳入白格.但是对于一种满足要求跳法,在两种染色方式下第奇数步跳入的格子的全体是不同的,这显然是不可能的,故题目要求的跳法是不存在的.。

《三十六计》----第29计树上开花(并战计)

《三十六计》----第29计树上开花(并战计)

《三十六计》----第29计树上开花(并战计)第二十九计树上开花借局布势,力小势大;鸿渐于陆,其羽可用为仪也。

译:借别人的局面布成阵势,兵力弱小的看来阵容也显得强大。

《易经·渐》卦说:鸿雁飞向大陆,全凭它的羽毛丰满助长气势。

引申:比喻将本求利,别人收获。

此计是说借助某种局面(或手段)布成有利的阵势,兵力弱小但可使阵势显出强大的样子或者是弱小的部队通过凭借某种因素,改变外部形态之后,自己阵容显得充实强大了。

树上开花结苦丁,剪粘布势要分明。

儒家威敌柔如水,攘外安邦必太平。

树上开花计。

以假乱真。

一、二句尤妙。

三、四句空泛,虎头蛇尾了。

第29计树上开花借局布势,力小势大。

鸿渐于陆,其羽可以为仪也。

树上开花:比喻将本求利,别人收获。

语出《荡寇志》。

树上开花庞涓攻城:韩国太子仍按兵不动,韩国将士情绪激愤,许多将军以死逼太子出兵,众怒难犯,太子只好出战。

韩国军队依照孙膑"树上开花"之计,四方出兵,虚张声势,庞涓错误的以为,韩军主攻方向在韩国太子一路,率主力迎击太子,结果申大夫率韩军主力突破魏军包围,将粮食和援军送进成皋。

太子不听劝告,违背孙膑之意,被宠涓大军围困在城西。

孙膑再用"树上开花"之计,让成皋守城军队东门出,南门进,造成大军进城的假象。

庞涓估计孙膑将从成皋西门突袭庞涓,调集大军埋伏在城西。

谁知孙膑大军从魏军包围圈的另一方向突破,救出太子及所率将士。

第二十九计树上开花借局布势,力小势大。

鸿渐于陆,其羽可用为仪也。

一、计名:树上开花,是从“铁树开花”转化而来,原意是指不可能开花的树竟然开起花来了。

铁树开花是奇迹,用来比喻此卦的计谋,最恰当不过了。

二、解语:借别人的局面布成阵势,兵力弱小的队伍从阵容上看起来也显得强大。

按照渐卦的所示,鸿雁飞上高山,落下的羽毛,可以被我用来当做典礼中的装饰,增长我的气势。

三、易解:1、“鸿渐于陆,其羽可用为仪”,是渐卦上九爻辞,渐卦的卦画是(001 011),其中“陆”字,不少注家都认为有讹。

解决小学奥数问题的方法:染色分类法

解决小学奥数问题的方法:染色分类法

一种解决数学问题的新方法:染色分类法【摘要】:在现实生活中,有一些判断能与否的数学问题涉及到的知识点很少,难以快速地找到解题思路。

本文主要介绍一种解决这类数学问题的新方法:染色分类法。

对研究对象进行染色,可以形象、直观地使某些隐蔽的条件显露,从而 获得简明的解答。

【关键字】:染色 分类 数学问题一、 用染色解决图形覆盖问题:在中学数学竞赛中,我们常常会碰到这样的题目:用多个几何图形去覆盖另一个几何图形,问能否实现。

如果我们每一种情况都去试,不仅花时间,而且容易因考虑不全而出错。

对于这一类问题,我们不妨对涉及到的几何对象进行染色,再来寻找解题思路。

问题一:能否用2个田字形和7个T 字形恰好覆盖一个6⨯6网格?分析:这道题看似简单,但是如果要穷尽每种情况去试一试,却不太可行。

考虑到网格中共有36个小方格,不妨通过染色把这36个小方格分成黑白两类,然后看用田字形能覆盖住多少个,T 字形能覆盖住多少个,从而判断该题是否有解。

解:由于用黑白两种颜色对6⨯6 网格进行染色(如图),可以看到图中有18个黑格,18个白格。

而用一个田字形,无论放在哪里,都能覆盖住一个黑格,一个白格;而T 字形能覆盖住1个或3个白格。

所以2个田字形和7个T 字形总共覆盖住奇数个白格,而6⨯6 网格中总共有18(偶数)个白格,所以不能完全覆盖住。

问题二 :要用40块方形瓷砖铺设如图2所示图形的地面,但当时商店只有长方形瓷砖,每块大小等于方形的两块,一人买了20块长方形瓷砖,结果弄来弄去始终无法完整铺设好,你能否用这20块瓷砖(不分割任何一块)帮他铺好地面?图2 图3分析:要得出这道题的答案并不难,但是如何从理论上证明却没那么简单。

这里,如果我们仿照问题一采用染色方法,不仅能更快得出答案,更能较好地说明理由,让读者一目了然。

解:在图形上黑、白相间地染色,如图3。

则共有19个白格和21个黑格。

一块长方形瓷砖只可盖住一白一黑两格。

为了把所有的白格都盖住,需要19块长方形瓷砖,但19块长方形瓷砖只能盖住19个黑格,还有两个黑格没有盖住。

小学思维数学讲义:乘法原理之染色问题-带详解

小学思维数学讲义:乘法原理之染色问题-带详解

乘法原理之染色问题教学目标1.使学生掌握乘法原理主要内容,掌握乘法原理运用的方法;2.使学生分清楚什么时候用乘法原理,分清有几个必要的步骤,以及各步之间的关系.3.培养学生准确分解步骤的解题能力;乘法原理的数学思想主旨在于分步考虑问题,本讲的目的也是为了培养学生分步考虑问题的习惯.知识要点一、乘法原理概念引入老师周六要去给同学们上课,首先得从家出发到长宁上8点的课,然后得赶到黄埔去上下午1点半的课.如果说申老师的家到长宁有5种可选择的交通工具(公交、地铁、出租车、自行车、步行),然后再从长宁到黄埔有2种可选择的交通工具(公交、地铁),同学们,你们说老师从家到黄埔一共有多少条路线?我们看上面这个示意图,老师必须先的到长宁,然后再到黄埔.这几个环节是必不可少的,老师是一定要先到长宁上完课,才能去黄埔的.在没学乘法原理之前,我们可以通过一条一条的数,把线路找出来,显而易见一共是10条路线.但是要是老师从家到长宁有25种可选择的交通工具,并且从长宁到黄埔也有30种可选择的交通工具,那一共有多少条线路呢?这样数,恐怕是要耗费很多的时间了.这个时候我们的乘法原理就派上上用场了.二、乘法原理的定义完成一件事,这个事情可以分成n个必不可少的步骤(比如说老师从家到黄埔,必须要先到长宁,那么一共可以分成两个必不可少的步骤,一是从家到长宁,二是从长宁到黄埔),第1步有A种不同的方法,第二步有B种不同的方法,……,第n步有N种不同的方法.那么完成这件事情一共有A×B×……×N种不同的方法.结合上个例子,老师要完成从家到黄埔的这么一件事,需要2个步骤,第1步是从家到长宁,一共5种选择;第2步从长宁到黄埔,一共2种选择;那么老师从家到黄埔一共有5×2个可选择的路线了,即10条.三、乘法原理解题三部曲1、完成一件事分N个必要步骤;2、每步找种数(每步的情况都不能单独完成该件事);3、步步相乘四、乘法原理的考题类型1、路线种类问题——比如说老师举的这个例子就是个路线种类问题;2、字的染色问题——比如说要3个字,然后有5种颜色可以给每个字然后,问3个字有多少种染色方法;包括几个部分的地图有几种染色的方法;4、排队问题——比如说6个同学,排成一个队伍,有多少种排法;5、数码问题——就是对一些数字的排列,比如说给你几个数字,然后排个几为数的偶数,有多少种排法.【例 1】 地图上有A ,B ,C ,D 四个国家(如下图),现有红、黄、蓝三种颜色给地图染色,使相邻国家的颜色不同,但不是每种颜色都必须要用,问有多少种染色方法?DC B A【考点】乘法原理之染色问题 【难度】3星 【题型】解答【解析】 A 有3种颜色可选;当B ,C 取相同的颜色时,有2种颜色可选,此时D 也有2种颜色可选.根据乘法原理,不同的涂法有32212⨯⨯=种;当B ,C 取不同的颜色时,B 有2种颜色可选,C 仅剩1种颜色可选,此时D 也只有1种颜色可选(与A 相同).根据乘法原理,不同的涂法有32116⨯⨯⨯=种.综上,根据加法原理,共有12618+=种不同的涂法.【答案】18【巩固】 如果有红、黄、蓝、绿四种颜色给例题中的地图染色,使相邻国家的颜色不同,但不是每种颜色都必须要用,问有多少种染色方法?【考点】乘法原理之染色问题 【难度】3星 【题型】解答【解析】 第一步,首先对A 进行染色一共有4种方法,然后对B 、C 进行染色,如果B 、C 取相同的颜色,有三种方式,D 剩下3种方式,如果B 、C 取不同颜色,有326⨯=种方法,D 剩下2种方法,对该图的染色方法一共有43332284⨯⨯+⨯⨯=()种方法.【注意】给地图染色问题中有的可以直接用乘法原理解决,有的需要分类解决,前者分类做也可以解决问题.【答案】84【例 2】 在右图的每个区域内涂上A 、B 、C 、D 四种颜色之一,使得每个圆里面恰有四种颜色,则一共有__________种不同的染色方法.7654321【考点】乘法原理之染色问题 【难度】4星 【题型】解答【解析】 因为每个圆内4个区域上染的颜色都不相同,所以一个圆内的4个区域一共有43224⨯⨯=种染色方法.如右图所示,当一个圆内的1、2、3、4四个区域的颜色染定后,由于6号区域的颜色不能与2、3、4三个区域的颜色相同,所以只能与1号区域的颜色相同,同理5号区域只能与4号区域的颜色相同,7号区域只能与2号区域的颜色相同,所以当1、2、3、4四个区域的颜色染定后,其他区域的颜色也就相应的只有一种染法,所以一共有24种不同的染法.【答案】24【例 3】 如图,地图上有A ,B ,C ,D 四个国家,现用五种颜色给地图染色,要使相邻国家的颜色不相同,有多少种不同染色方法?例题精讲DCB A【考点】乘法原理之染色问题 【难度】3星 【题型】解答【解析】 为了按要求给地图上的这四个国家染色,我们可以分四步来完成染色的工作:第一步:给A 染色,有5种颜色可选.第二步:给B 染色,由于B 不能与A 同色,所以B 有4种颜色可选.第三步:给C 染色,由于C 不能与A 、B 同色,所以C 有3种颜色可选.第四步:给D 染色,由于D 不能与B 、C 同色,但可以与A 同色,所以D 有3种颜色可选.根据分步计数的乘法原理,用5种颜色给地图染色共有5433180⨯⨯⨯=种不同的染色方法.【答案】180【巩固】 如图,一张地图上有五个国家A ,B ,C ,D ,E ,现在要求用四种不同的颜色区分不同国家,要求相邻的国家不能使用同一种颜色,不同的国家可以使用同—种颜色,那么这幅地图有多少着色方法?ED C BA【考点】乘法原理之染色问题 【难度】3星 【题型】解答【解析】 第一步,给A 国上色,可以任选颜色,有四种选择;第二步,给B 国上色,B 国不能使用A 国的颜色,有三种选择;第三步,给C 国上色,C 国与B ,A 两国相邻,所以不能使用A ,B 国的颜色,只有两种选择;第四步,给D 国上色,D 国与B ,C 两国相邻,因此也只有两种选择;第五步,给E 国上色,E 国与C ,D 两国相邻,有两种选择. 共有4322296⨯⨯⨯⨯=种着色方法.【答案】96【例 4】 如图:将一张纸作如下操作,一、用横线将纸划为相等的两块,二、用竖线将下边的区块划为相等的两块,三、用横线将最右下方的区块分为相等的两块,四、用竖线将最右下方的区块划为相等的两块……,如此进行8步操作,问:如果用四种颜色对这一图形进行染色,要求相邻区块颜色不同,应该有多少种不同的染色方法?【考点】乘法原理之染色问题 【难度】3星 【题型】解答【解析】 对这张纸的操作一共进行了8次,每次操作都增加了一个区块,所以8次操作后一共有9个区块,我们对这张纸,进行染色就需要9个步骤,从最大的区块从大到小开始染色,每个步骤地染色方法有:4、3、2、2、2……,所以一共有:4322222221536⨯⨯⨯⨯⨯⨯⨯⨯=种.【答案】1536【巩固】 用三种颜色去涂如图所示的三块区域,要求相邻的区域涂不同的颜色,那么共有几种不同的涂法?ABC【考点】乘法原理之染色问题【难度】2星【题型】解答【解析】涂三块毫无疑问是分成三步.第一步,涂A部分,那么就有三种颜色的选择;第二步,涂B部分,由于要求相邻的区域涂不同的颜色,A和B相邻,当A确定了一种颜色后,B只有两种颜色可选择了;第三步,涂C部分,C和A、B都相邻,A和B确定了两种不相同的颜色,那么C只有一种颜色可选择了.然后再根据乘法原理.3216⨯⨯=【答案】6【例 5】如图,有一张地图上有五个国家,现在要用四种颜色对这一幅地图进行染色,使相邻的国家所染的颜色不同,不相邻的国家的颜色可以相同.那么一共可以有多少种染色方法?【考点】乘法原理之染色问题【难度】3星【题型】解答【解析】这一道题实际上就是例题,因为两幅图各个字母所代表的国家的相邻国家是相同的,如果将本题中的地图边界进行直角化就会转化为原题,所以对这幅地图染色同样一共有4322296⨯⨯⨯⨯=种方法.【讨论】如果染色步骤为----C A BD E,那么应该该如何解答?答案:也是4322296⨯⨯⨯⨯=种方法.如果染色步骤为----C AD B E那么应该如何解答?答案:染色的前两步一共有4×3种方法,但染第三步时需要分类讨论,如果D与A颜色相同,那么B有2种染法,E也有2种方法,如果D与A染不同的颜色,那么D有2种染法那么B只有一种染法,E有2种染法,所以一共应该有43(122212)96⨯⨯⨯⨯+⨯⨯=种方法,(教师应该向学生说明第三个步骤用到了分类讨论和加法原理,加法原理在下一讲中将会讲授),染色步骤选择的经验方法:每一步骤所染的区块应该尽量和之前所染的区块相邻.【答案】96【巩固】某沿海城市管辖7个县,这7个县的位置如右图.现用红、黑、绿、蓝、紫五种颜色给右图染色,要求任意相邻的两个县染不同颜色,共有多少种不同的染色方法?【考点】乘法原理之染色问题【难度】4星【题型】解答【解析】为了便于分析,把地图上的7个县分别编号为A、B、C、D、E、F、G(如左下图).GF DC B AE为了便于观察,在保持相邻关系不变的情况下可以把左图改画成右图.那么,为了完成地图染色这件工作需要多少步呢?由于有7个区域,我们不妨按A 、B 、C 、D 、E 、F 、G 的顺序,用红、黑、绿、蓝、紫五种颜色依次分7步来完成染色任务.第1步:先染区域A ,有5种颜色可供选择;第2步:再染区域B ,由于B 不能与A 同色,所以区域B 的染色方式有4种;第3步:染区域C ,由于C 不能与B 、A 同色,所以区域C 的染色方式有3种;第4步:染区域D ,由于D 不能与C 、A 同色,所以区域D 的染色方式有3种;第5步:染区域E ,由于E 不能与D 、A 同色,所以区域E 的染色方式有3种;第6步:染区域F ,由于F 不能与E 、A 同色,所以区域F 的染色方式有3种;第7步:染区域G ,由于G 不能与C 、D 同色,所以区域G 的染色方式有3种.根据分步计数的乘法原理,共有54333334860⨯⨯⨯⨯⨯⨯=种不同的染色方法.【答案】4860【例 6】 用3种颜色把一个33⨯的方格表染色,要求相同行和相同列的3个格所染的颜色互不相同,一共有 种不同的染色法.【考点】乘法原理之染色问题 【难度】3星 【题型】解答【解析】 根据题意可知,染完后这个33⨯的方格表每一行和每一列都恰有3个颜色.用3种颜色染第一行,有336P =种染法;染完第一行后再染第一列剩下的2个方格,有2种染法;当第一行和第一列都染好后,再根据每一行和每一列都恰有3个颜色对剩下的方格进行染色,可知其余的方格都只有唯一一种染法.所以,根据乘法原理,共有326⨯=种不同的染法.【答案】6【例 7】 如右图,有A 、B 、C 、D 、E 五个区域,现用五种颜色给区域染色,染色要求:每相邻两个区域不同色,每个区域染一色.有多少种不同的染色方式?EDC BA 【考点】乘法原理之染色问题 【难度】3星 【题型】解答【解析】 先采用分步:第一步给A 染色,有5种方法;第二步给B 染色,有4种方式;第三步给C 染色,有3种方式;第四步给D 染色,有3种方式;第五步,给E 染色,由于E 不能与A 、B 、D 同色,但可以和C 同色.此时就出现了问题:当D 与B 同色时,E 有3种颜色可染;而当D 与B 异色时,E 有2种颜色可染.所以必须从第四步就开始分类:第一类,D 与B 同色.E 有3种颜色可染,共有5433180⨯⨯⨯=(种)染色方式;第二类,D 与B 异色.D 有2种颜色可染,E 有2种颜色可染,共有54322240⨯⨯⨯⨯=(种)染色方式.根据加法原理,共有180240420+=(种)染色方式.【注意】给图形染色问题中有的可以直接用乘法原理解决,但如果碰到有首尾相接的图形往往需要分类解决.【答案】420【巩固】 如右图,有A ,B ,C ,D 四个区域,现用四种颜色给区域染色,要求相邻区域的颜色不同,每个区域染一色.有多少种染色方法?D C B A【考点】乘法原理之染色问题 【难度】3星 【题型】解答【解析】 A 有4种颜色可选,然后分类:第一类:B ,D 取相同的颜色.有3种颜色可染,此时D 也有3种颜色可选.根据乘法原理,不同的染法有43336⨯⨯=(种);第二类:当B ,D 取不同的颜色时,B 有3种颜色可染,C 有2种颜色可染,此时D 也有2种颜色可染.根据乘法原理,不同的染法有432248⨯⨯⨯=(种).根据加法原理,共有364884+=(种)染色方法.【答案】84【巩固】用四种颜色对右图的五个字染色,要求相邻的区域的字染不同的颜色,但不是每种颜色都必须要用.问:共有多少种不同的染色方法?学奥而思数【考点】乘法原理之染色问题【难度】3星【题型】解答【解析】第一步给“而”上色,有4种选择;然后对“学”染色,“学”有3种颜色可选;当“奥”,“数”取相同的颜色时,有2种颜色可选,此时“思”也有2种颜色可选,不同的涂法有32212⨯⨯=种;当“奥”,“数”取不同的颜色时,“奥”有2种颜色可选,“数”剩仅1种颜色可选,此时“思”也只有1种颜色可选(与“学”相同),不同的涂法有32116⨯⨯⨯=种.所以,根据加法原理,共有43(222)72⨯⨯⨯+=种不同的涂法.【答案】72【例 8】分别用五种颜色中的某一种对下图的A,B,C,D,E,F六个区域染色,要求相邻的区域染不同的颜色,但不是每种颜色都必须要用.问:有多少种不同的染法?【考点】乘法原理之染色问题【难度】4星【题型】解答【解析】先按A,B,D,C,E的次序染色,可供选择的颜色依次有5,4,3,2,3种,注意E与D的颜色搭配有339⨯=(种),其中有3种E和D同色,有6种E和D异色.最后染F,当E与D同色时有3种颜色可选,当E与D异色时有2种颜色可选,所以共有542(3362)840⨯⨯⨯⨯+⨯=种染法.【答案】840【例 9】将图中的○分别涂成红色、黄色或绿色,要求有线段相连的两个相邻○涂不同的颜色,共有多少种不同涂法?D CBA【考点】乘法原理之染色问题【难度】3星【题型】解答【解析】如右上图,当A,B,C,D的颜色确定后,大正方形四个角上的○的颜色就确定了,所以只需求A,B,C,D有多少种不同涂法.按先A,再B,D,后C的顺序涂色.按---A B D C的顺序涂颜色:A有3种颜色可选;当B,D取相同的颜色时,有2种颜色可选,此时C也有2种颜色可选,不同的涂法有32212⨯⨯=种;当B,D取不同的颜色时,B有2种颜色可选,D仅剩1种颜色可选,此时C也只有1种颜色可选(与A相同),不同的涂法有32116⨯⨯⨯=(种).所以,根据加法原理,共有12618+=种不同的涂法.【答案】18【例 10】用4种不同的颜色来涂正四面体(如图,每个面都是完全相同的正三角形)的4个面,使不同的面涂有不同的颜色,共有________种不同的涂法.(将正四面体任意旋转后仍然不同的涂色法,才被认为是不同的)【考点】乘法原理之染色问题【难度】4星【题型】填空【关键词】迎春杯,中年级,复赛,第9题【解析】不旋转时共有4×3×2×1=24种染色方式,而一个正四面体有4×3=12种放置方法(4个面中选1个作底面,再从剩余3个面中选1个作正面),所以每种染色方式被重复计算了12次,则不同的染色方法有24÷12=2种。

小学奥数模块教程染色问题(一)

小学奥数模块教程染色问题(一)

染色问题(一)染色问题是一种将题目研究对象分类的形象化方法,通过将问题中的对象适当染色,我们可以更形象地观察分析出其中蕴含的关系,再经过一定的逻辑推理,便能得出问题的答案。

因此,这里的染色问题指的是一种解题方法。

这类问题不需要太多的数学知识,但技巧性、逻辑性较强,要注意学会集中典型的染色方法。

根据具体题目的研究对象,染色方法大致可以分为对点染色、对线段染色、对方格染色和对区域染色。

对方格染色常用的是黑白方格相间染色,也叫自然染色。

例1如右图,在5×5方格的A格中有一只爬虫,它每次总是朝上下左右方向爬到相邻的方格中。

那么他能否不重复的爬满每个方格再回A到A格中?解:有小虫的爬法,可黑白相间对方格自然染色,于是小虫只能由黑格爬到白格或白格爬到黑格。

所以它由A出发回到A,即黑格爬到黑格,必须经过偶数步。

而小方格为5×5=25个,每格爬过一次,就应该为25步,不是偶数。

于是这只爬虫不可能不重复地爬遍每格再回到A格。

例2 有一次车展有6×6=36个展室,如图。

每格展室与相邻的展室都有门相通,入口和出口如图所示。

参观者能否从入口进去,不重复地参观完每格展室在从出口出来?解:如图,对每个展室黑白相间染色,同样每次只能冲黑格到白格或者从白格到黑格。

入口和出口都是白格,故线路黑白相间,首位都是白格,于是应该白格比合格多1个,而实际上白格、黑格都是18个,故不能做到不重复走遍每个展室。

例3 右图是某一套房子的平面图,共12个房间,每相邻两间房间都有门相通。

请问,你能从某个房间出发,不重复地走完每个房间吗?解:如图所示,将房间黑白相间染色,发现只有5个黑格、7个白格。

因为每次只能从黑到白或者白到黑,路线必然是黑白相间,显然应该从多的白格开始。

但路线上1白1黑......直至5白5黑后还多余2白格,不可能从白到黑。

故无法实现不重复地走遍每个房间。

小结:染色问题的解题技巧主要在于染色具体方案的构造,其基本原则是使题目条件出现一定的规律,以利于解题。

(完整版)六年级奥数专题01:染色问题.doc

(完整版)六年级奥数专题01:染色问题.doc

二十染色问题(1)年级班姓名得分(编者按 : 由于内容本身的限制 ,本讲不设填空题 )1.某影院有 31 排,每排 29 个座位 .某天放映了两场电影 ,每个座位上都坐了一个观众 .如果要求每个观众在看第二场电影时必须跟他 (前、后、左、右 )相邻的某一观众交换座位 ,这样能办到吗 ?为什么 ?2.如图是一所房子的示意图 ,图中数字表示房间号码 ,每间房子都与隔壁的房间相通 .问能否从 1 号房间开始 ,不重复的走遍所有房间又回到 1 号房间 ?1 2 34 5 67 8 93.在一个正方形的果园里 ,种有 63 棵果树、加上右下角的一间小屋 ,整齐地排列成八行八列 (见图 (a)).守园人从小屋出发经过每一棵树 ,不重复也不遗漏 (不许斜走 ),最后又回到小屋 ,行吗 ?如果有 80 棵果树 ,连小屋在内排成九行九列 (图 (b)) 呢?(a) (b)4.一个 8 8 国际象棋 (下图 )去掉对角上两格后,是否可以用31 个 2 1 的“骨牌”(形如)把象棋盘上的62 个小格完全盖住?5.如果在中国象棋盘上放了多于45 只马 ,求证 :至少有两只马可以“互吃”.6.空间 6 个点 ,任三点不共线 ,对以它们为顶点的线段随意涂以红色或蓝色 ,是否必有两个同色三角形 ?7.如图 ,把正方体分割成 27 个相等的小正方体 ,在中心的那个小正方体中有一只甲虫 ,甲虫能从每个小正方体走到与这个正方体相邻的 6 个小正方体中的任一个中去 .如果要求甲虫能走到每个小正方体一次 ,那么甲虫能走遍所有的正方体吗?8.中国象棋的马走“日”字 ,车走横线或竖线 ,下图是半张中国象棋盘 ,试回答下面的问题 :A B一只马从起点出发 ,跳了 n 步又回到起点 .证明 :n 一定是偶数 .9.中国象棋的马走“日”字 ,车走横线或竖线 ,下图是半张中国象棋盘 ,试回答下面的问题 :A B一只马能否跳遍这半张棋盘,每一点都不重复 ,最后一步跳回起点 ?10.中国象棋的马走“日”字 ,车走横线或竖线 ,下图是半张中国象棋盘 ,试回答下面的问题 :A B证明 :一只马不可能从位置 B 出发 ,跳遍半张棋盘而每个点都只经过一次 (不要求最后一步跳回起点 ).11.中国象棋的马走“日”字 ,车走横线或竖线 ,下图是半张中国象棋盘 ,试回答下面的问题 :A B一只马能否从位置 B 出发 ,用 6 步跳到位置 A?为什么 ?12.中国象棋的马走“日”字 ,车走横线或竖线 ,下图是半张中国象棋盘 ,试回答下面的问题 :A B,走了若干步后到了位一只车从位置 A 出发 ,在这半张棋盘上走 ,每步走一格置 B.证明 :至少有一个格点没被走过或被走了不止一次.9 个 4 1 的长方13.8 8 的国际象棋棋盘能不能被剪成7 个 2 2 的正方形和形?如果可以 ,请给出一种剪法 ;如果不行 ,请说明理由 .14.(表1)是由数字 0,1 交替构成的 ,(表 2)是由 (表1)中任选、、三种形式组成的图形 ,并在每个小方格全部加 1 或减 1,如此反复多次进行形成的 , 试问 (表 2)中的 A 格上的数字是多少 ?并说明理由 .1 0 1 0 1 0 1 00 1 0 1 0 1 0 11 0 1 0 1 0 1 00 1 0 1 0 1 0 01 0 1 0 1 0 1 00 1 0 1 0 1 0 11 0 1 0 1 0 1 00 1 0 1 0 1 0 1表11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 A 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1表2———————————————答案——————————————————————1.把影院的座位画成黑白相的矩形 .(29 31),共有 899 个小方格 .不妨假定四角黑格 ,共有黑格 450 个,白格 449 个.要求看第二影 ,每位众必跟他相的某一众交位置 ,即要求每一黑白格必互 ,因黑白格的数不相等 ,因此是不可能的 .2.将号奇数的房染成黑色 ,号偶数的房染成白色 .从 1 号房出 ,只能按黑白黑白⋯⋯的次序,当走遍九个房在黑色房中 ,个房不与 1 号房相 ,故不能不重复地走遍所有房又回到 1 号房 .3.(a)行,走法如所示 .(a)(b)不行 ,将小屋染成黑色 ,果染成黑白相的色 ,(b)中有 41 个黑色的 ,40 个白色的 .从小屋出 ,按黑白黑白⋯⋯的次序,当走遍80 棵后 ,到达的的色是黑色,与小屋不相 ,故不可能最后回到小屋 .4. 不能 .原因是每一个 2 1 的矩形骨牌一定恰好盖住一个黑格和一个白格,31 个的骨牌恰好盖住 31 个黑格和 31 个白格 .但是国象棋棋上角两格的色是相同的 ,把它去掉后剩下的是 30 个白格 ,32 个黑格 ,或 32 个白格 ,30 个黑格 ,因此不能盖住 .5.中国象棋棋上有 90个交叉点 ,把棋分成 10个小部分 ,每部分有 3 3=9 个交叉点 ,由抽原知 ,至少有一个小部分内含有 6 只 .将一小部分的 9 个交叉点分涂上黑色及白色 .有两只在不同色交叉点上 ,故一定有两只“互吃”.6.六个点 A 、 B、 C、D、E、F.我先明存在一个同色的三角形 : 考由 A 点引出的五条段 AB 、AC 、 AD 、 AE、 AF,其中必有三条被染成了相同的色 ,不妨 AB 、AC 、AD 三条同色 .再考三角形 BCD 的三 : 若其中有一条色 ,存在一个色三角形 ;若三条都不是色 ,三角形 BCD 色三角形 .BCAD下面再来明有两个同色三角形,不妨三角形 ABC 的三同色 .(1)若三角形 DEF 也是色三角形 ,存在两个同色三角形 .(2)若三角形 DEF 中有一条色 (不妨 DE), 下面考 DA 、 DB 、DC三条段,其中必有两条同色.①若其中有两条是色的 ,如 DA 、DB 是色的 ,三角形 DAB 第二个同色三角形( 1).D AE B C(1)②若其中有两条是色的 , DA 、 DB 色 ( 2).此在 EA、 EB 两条段中 ,若有一条色 ,存在一个色三角形 ;若两条都是色的 ,三角形 EAB 色三角形 .上所述 ,一定有两个同色三角形.D AE B C(2)7.甲虫不能走遍所有的立方体 .我将大正方体如分割成 27 个小正方体 ,涂上黑白相的两种色 ,使得中心的小正方体染成白色 ,再使两个相的小正方体染上不同的色 .然在 27 个小正文体中 ,14 个是黑的 ,13 个是白的 .甲虫从中的白色正方体出 ,每走一步 , 小正方体就改一种色 .故它走 27 步, 14 个白色的小正方体 ,13 个黑色的小正方体 .因此在 27 步中至少有一个白色的小正方体,甲虫去两次 .故若要求甲虫到每个小正方体只去一次,甲虫就不能走遍所有的小正方体 .8.将棋上的各点按黑白相的方式染上黑白二色.由“ 步”的行走 ,当“ ”从黑点出 ,下一步只能跳到白点 ,以后依次是黑、白、黑、白⋯⋯要回到原出点 (黑点 ),它必跳偶数步 .9.不能 .半象棋共有 45 个格点 ,从起点出跳遍半棋 ,起点与最后一步同色 .故不可能从最后一步跳回起点 .10.与 B 点同色的点 (白点 )有 22 个,异色的点 (黑色 )有 23 个.从 B 点出 ,跳了 42 步时 ,已经跳遍了所有的白色 ,还剩下两个黑点 ,但是马不能够连续跳过两个黑点 .11.不能 .因为 A、 B 两点异色 ,从 B 到 A 所跳的步数是一个奇数 .12.“车”每走一步 ,所在的格点就会改变一次颜色 .因 A、B 两点异色 ,故从 A 到B“车”走的步数是一个奇数 .但半张棋盘共有 45 个格点 ,不重复地走遍半张棋盘要 44 步,但 44 是一个偶数 .13.如图对 8 8 的棋盘染色 ,则每一个 4 1 的长方形能盖住 2 白 2 黑小方格 , 而每一个 2 2 的正方形能盖住 1 白 3 黑或 1 黑 3 白小方格 ,那么 7 个 2 2 的正方形盖住的黑色小方格数总是一个奇数 ,但图中黑格数为 32 是一个偶数 .故这种剪法是不存在的 .+1 +1 - 1 - 1 +1 +1 +1+1 +1 - 1 - 1 +1 +1 +1+1 +1 - 1 - 1- 1 - 1 - 1 +1 +1 - 1 - 1- 1 - 1 - 1 +1 +1 - 1 - 114.如下图所示 ,将表 (1)黑白相间地染色 .表(1)本题条件允许如图所示的 6 个操作 ,这 6 个操作无论实行在那个位置上 ,白格中的数字之和减去黑格中的数字之和总是一个常数 ,所以表 1 中白格中数字之和与黑格中数字之和的差即 32,等于表 2 中白格中数字之和与黑格中数字之和的差即(31+A)-32,于是 (31+A)-32=32, 故 A=33.二十染色问题(2)年级班姓名得分1.下图是一套房子的平面图 ,图中的方格代表房间 ,每个房间都有通向任何一个邻室的门 .有人想从某个房间开始 ,依次不重复地走遍每一个房间 ,他的想法能实现吗 ?2.展览会有 36 个展室 (如图 ),每两相邻展室之间均有门相通 .能不能从入口进去 ,不重复地参观完全部展室后 ,从出口出来呢 ?3.图中的 16 个点表示 16 个城市 ,两个点之间的连线表示这两个城市有公路相通 .问能否找到一条不重复地走遍这 16 座城市的路线 ?4.下图是由 4 个小方格组成的“L”形硬纸片 ,用若干个这种纸片无重叠地拼成一个 4 n 的长方形 ,试证明 :n 一定是偶数 .5.中国象棋盘上最多能放几只马互不相“吃” (马“”走“日”字,另不考虑“别马腿”的情况 ).6.能否用一个田字和15 个 4 1 矩形覆盖 8 8 棋盘 ?7.能否用 1 个田字和 15 个 T 字纸片 ,拼成一个 8 8 的正方形棋盘 ?8.在 8 8 棋盘上 ,马能否从左下角的方格出发 ,不重地走遍棋盘 ,最后回到起点 ? 若能请找出一条路 ,若不能 ,请说明理由 .9.下面三个图形都是从 4 4 的正方形分别剪去两个 1 1 的小方格得到的 ,问可否把它们分别剪成 1 2 的七个小矩形 ?(1)(2)(3)10.把三行七列的 21 个小格组成的矩形染色 ,每个小格染上红、蓝两种色中的一种 .求证 :总可以找到 4 个同色小方格 ,处于某个矩形的 4 个角上 (如图 ) 1红红红红2311.17个科学家互相通信 ,在他们的通信中共讨论 3 个问题 ,而任意两个科学家之间仅讨论 1 个问题 .证明 :至少有 3 个科学家 ,他们彼此通信讨论的是同一个问题 .12.用一批 1 2 4 的长方体木块 ,能不能把一个容积为 6 6 6 的正方体木箱充塞填满 ?说明理由 .13.在平面上有一个 27 27 的方格棋盘 ,在棋盘的正中间摆好 81 枚棋子 ,它们被罢成一个 9 9 的正方形 .按下面的规则进行游戏 :每一枚棋子都可沿水平方向或竖直方向越过相邻的棋子 ,放进紧挨着这枚棋子的空格中 ,并把越过的这格棋子取出来 .问 :是否存在一种走法 ,使棋盘上最后恰好剩下一枚棋子 ?14.12 12 的超极棋盘上 ,一匹超级马每步跳至 3 4 矩形的另一角 (如图 ).问能否从任一点出发遍历每一格恰一次 ,再回到出发点 (这种情况又称马有“回路”)?OO———————————————答案——————————————————————1.不能 .对房间染色 ,使最下面的两个房间染成黑色 ,与黑色相邻的房染成白色,则图中有 7 个黑色房间和 5 个白色房间 .如果要想不重复地走过每一个房间 , 黑色与白色房间数应该相等 .故题中的想法是不能实现的 .2.不能 .对展室进行染色 ,使相邻两房间分别是黑色和白色的 .此时入口处展室的颜色与出口处展室的颜色是相同的,而不重复参观完36 个展室,入口与出口展室的颜色应该不相同 .3.不能 .对这 16 个城市进行黑白相间的染色 ,一种颜色有 9 个,另一种颜色有7 个 .而要不重复地走遍这 16 个城市 ,黑色与白色的个数应该相等 .4.如图 ,对 4 n 长方形的各列分别染上黑色和白色 .任一 L 形纸片所占的方格只有两类 :第一类占 3 黑 1 白 ,第二类占 3 白 1 黑 .n个设第一类有 a 个 , 第二类有 b 个 ,因为涂有两种颜色的方格数相等,故有3b+a=3a+b,即 a=b,也就是说第一类与第二类相等,因此各种颜色的方格数都是 4 的倍数 ,总数是 8 的倍数 ,从而 n 是偶然 .5.将棋盘黑白相间染色 ,由“马”的走法可知 ,放在黑点上的“马”,只能吃放在某些白点上的马 .整个棋盘上黑、白点的个数均为 45,故可在 45 个黑点放上马 ,它们是不能互吃的 .6.如图的方式对棋盘染色 .那么一个田字形盖住 1 个或 3 个白格 ,而一个 4 1 的矩形盖住 2 个白格 .这样一来一个田字和 15 个 4 1 的矩形能盖住的白格数是一个奇数 ,但上图中的白格数是一个偶数 ,因此一个田字形和 15 个 4 1 的矩形不能复盖8 8 的棋盘 .7.将棋盘里黑白相间涂色 .一个田字形盖住 2 个白格 ,一个 T 字形盖住 3 个或1 个白格 .故 1 个田字和 15 个 T 字盖住的白格数是一个奇数 ,但棋盘上的白格数是一个偶数 .因此一个田字形和 15 个 T 字形不能盖住 8 8 的棋盘 .8.将棋盘黑白相间地染色后 ,马的走法是从一种颜色的格子跳到另一种颜色 .棋盘上有 32 个白格与 32 个黑格 ,故马可能跳遍整个棋盘 .图中给出了一种走法 .56 41 58 35 50 39 60 3347 44 55 40 59 34 51 3842 57 46 49 36 53 32 6145 48 43 54 31 62 37 5220 5 30 63 22 11 16 1329 64 21 4 17 14 25 106 19 2 278 23 12 151 28 7 18 3 26 9 249.先 4 4 的棋黑白相的涂色 (如 ),道的是 7 个 1 2 矩形能否分复盖剪去A、B;剪去 A、C;剪去 A、 D 的三个棋 .若 7 个 1 2 矩形可以复盖剪残的棋 ,因每个 12 矩形均可盖住一个白格和一个黑格 ,所以棋的白格与黑格数目相等 .都是 7 个.而剪去 A 格和 C 格的棋 (2)有 5 个白格8 个黑格 ,剪去 A、D 的棋 (3)有 5 个白格 8 个黑格 ,因此两个剪的棋均不能被7 个 1 2 矩形复盖 ,也就不能剪成 7 个 1 2 的矩形 .ABCD棋 (1)可以被 7 个 1 2 的矩形所复盖 .下面出一种剪法 :A 1 1 27 7 B 26 5 4 36 5 4 310.在第一行的 7 格中必有 4 格同色 ,不妨 4 格位于前 4 个位置 ,且均色 .然后考前 4 列构成的 3 4 矩形 .若第二行和第 3 行中出 2 个或 2 个以上的色格子 .行的两个色格子与第一行的色格子就成一个 4 角同色格子的矩形 .若不然 ,第 2、3 行中都至少有 3 个格在前 4 列中 ,不妨第 2 行前 3 格色 ,然第三行中的前 3 格中至少有 2 个格,故在二、三行的前 4 列中必存在四角都是色的矩形 .11.将 17 个科学家用 17 个点代表 ,两点之的段表示两个科学家之的 .用三种色些段染色 ,表示三个 ,于是就成 : 17个点之的所有段用三种色染色,必有同色三角形 .从任意一点 ,不妨从 A 向其他 16 点 A1,A2, ⋯A16共可成 16 条段 ,用三种色染色 ,由抽原可知 ,必有 6 条段同色 . 6 条段 AA1,AA2, ⋯AA6且同色 .考 A1,A2,A3,A4,A5,A6六点之的 ,若有一条色 ,(如 A1A2色 ) , 三角形 AA1A2色的同色三角形 .A1 A2A3A A4A 5A6若这六点之间的连线中 ,没有一条是红色的 ,则它们之间只能涂两种颜色.考虑从 A1引出的五条线段 1 21 3 1 41 51 6 由抽屉原理知其中必有三A A A A A A A A A A , , 的三条是同色的 .不妨设这三条为 A1 2 1 3 1 4 且同为蓝色若三角形 2 3 4A A A A A , . A A A边中有一条为蓝色的 ,则有一个蓝色的三角形存在 ;若三角形 A2A3A4三边都不是蓝色的 ,则它的三边是同为第三色的同色三角形 .A2A3A1A412.把正方体木箱分成 27 个小正方体 ,每个小正方体的体积为 2 2 2=8.将这些正方体如右图黑白相间染上色 .显然黑色 2 2 2 的正方体有 14 个,白色 2 2 2小正方体有 13 个.每一个这样的正方体相当于8 个 1 1 1 的小正方体 .将1 2 4 的长方体放入木箱 ,无论怎么放 ,每个长方体木块盖住 8 个边长为 1 的单位正方体 ,其中有 4 个黑色的 ,4 个白色的 .木箱共含 6 6 6=216 个单位正方体,26 个长方体木块共盖住 8 26=208 个单位正方体 ,其中黑白各占 104 个 ,余下216-208=8 个单位正方体是黑色的 .但是第 27 个 1 2 4 长方体木块不管怎样放 , 也无法盖住这 8 个黑色单位正方体 .13.如图 ,将整个棋盘的每一格都分别染上红、白、黑三种颜色 ,这种染色方式将棋盘分成了三个部分 .按照游戏规则 ,每走一步 ,有两种颜色方格中的棋子数分别减少了 1 个,而第三种颜色的棋子数增加了一个 .这表明每走一步 ,每个部分的棋子的奇偶性要发生改变 .因为一开始时 ,81 枚棋子摆成一个 9 9 的正方形 ,显然三个部分的棋子数是相同的 ,从而每走一步 ,三部分中的棋子数的奇偶性是相同的 .如果走了若干步以后 , 棋盘上恰好剩下一枚棋子 ,则两部分上的棋子数为偶数 ,而另一部分上的棋子数为奇数 .这种结果是不可能出现的 .14.用两种方法对超级棋盘染色 .首先 ,将棋盘黑白相间染色,则马每跳一步 ,它所在的方格就要改变一次颜色. 不妨设第奇数步跳入白格.其次 ,将棋盘的第 3,4,5 及 8,9,10 这六行染成黑色 ,其余六行染成白色 .在此种染色方式下 ,马从白格一定跳入黑格 .又因黑白格总数相同 ,马要遍历每一格恰一次又回到出发点 ,因此 ,马从黑格只能跳入白格而不能跳入黑格 .不妨设马第奇数步跳入白格 .但是对于一种满足要求跳法 ,在两种染色方式下第奇数步跳入的格子的全体是不同的 ,这显然是不可能的 ,故题目要求的跳法是不存在的 .。

数字密码快速记忆三十六计

数字密码快速记忆三十六计

数字密码快速记忆三十六计数字密码快速记忆三十六计1、瞒天过海:数字密码1代表树。

你要度过一片大海,打算坐船过往,但天上有很多敌方的飞机在监视你,假如你的船在海上被发现,敌人就会用炮弹来轰炸你。

这时你想了一个好办法,砍了很多树装饰在你的船上,让船看起来像一棵大树。

趁着敌机以为你是一棵大树的时候,偷偷地度过了大海。

当你想到的时候,就想到树,想到树的时候,会想到你用树瞒着天上的敌机,安全度过大海,就会想到“瞒天过海”。

2、围魏救赵:数字密码2代表的是什么?是鸭子。

请想象一下,有一大群鸭子,并且都是白色的鸭子,里三层,外三层地团团围住一座城堡。

这座城堡叫做魏国,由于魏国把赵国公主给抢走了,赵国那些勇敢的鸭子为了救公主,把魏国给围了起来,要求他们放出公主。

当你想到2的时候,会想到鸭子,鸭子在做什么呢?它们在“围魏救赵”。

3、借刀杀人:数字密码3代表耳朵。

在战场上,有一个英雄借来了一把刀,去砍他的敌人。

但没想到,他只把对方的耳光砍掉了。

有人借刀杀人却只砍了耳朵。

想到3的时候会想到耳朵,耳朵和借刀杀人有何联系呢?你一定能想到。

4、以逸待劳:数字密码4是红旗。

你拿了一面红旗,站在一座山的山顶上,大声对山脚下的朋友喊道:“你们谁先到山顶,我这面红旗就奖给谁!”说完后,你很悠闲地坐在山顶,等着他们喘着粗气跑上来。

当你想到4的时候就会想到红旗,你拿着红旗“以逸待劳”。

5、趁火打劫:数字密码5代表钩子。

想象有一间珠宝店失火了,一个贼趁着别人都在救火的时候,用一只系着长绳的钩子。

小心喽,有人拿着钩子"趁火打劫"!6、声东击西:数字密码6代表勺子。

想象你手上拿着一把很有魔力的大勺子,当你在西边敲的时候,竟然在东边发出了声音。

当你想到6的时候,你会想到有着魔力的勺子,你拿着勺子"声东击西"。

7、无中生有:数字密码7代表拐杖。

有个魔术师,忽然在空荡荡的手中变出了一根拐杖,这真是"无中生有"呀。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

尽最大努力去做得更好!-马到成功老师
1数学三十六计搞定小升初续集之28:染色法作者:马到成功老师
利用染色的方法来思考数学问题,解决数学问题,这种方法的核心是对所研究的对象用不同颜色进行分类,有利于我们观察、分析对象之间的关系。

染色后许多隐藏的关系会变得明朗,能很简洁地对染色图形进行处理,以达到对原问题的解决。

而凡是能用染色方法来解的题,一般地都可以用赋值方法来解,只需将染成某一种颜色的对象换成赋于其某一数值就行了。

常见的染色方式有:点染色、线段染色、小方格染色和对区域染色。

本文试图选择一些名题加以说明。

【精典名题1】如图(1)~(6)所示的六种图形拼成右下图,如果图(1)必须放在右下图的中间一列,应如何拼?(人大附中某届入学试题。


【思路点拨】把右上图黑、白相间染色(见右图)。

其中
有11个白格和10个黑格,当图形拼成后,图形(2)(4)
(5)(6)一定是黑、白各2格,而图形(3)必须有3
格是同一种颜色,另一种颜色1格。

因为前四种图形,黑、
白已各占2×4=8(格),而黑格总共只有10格,所以图
形(3)只能是3白1黑。

由此知道图(1)一定在中间一
列的黑格,而上面的黑格不可能,所以图(1)在中间一
列下面的黑格中。

那么其它图形如何拼呢?为了说明方便,给每一格编一个数码(见左下图)。

相关文档
最新文档